Promoting Reflective Physics Teaching Through the Use of Collaborative Learning Annotation System
NASA Astrophysics Data System (ADS)
Milner-Bolotin, Marina
2018-05-01
Effective physics teaching requires extensive knowledge of physics, relevant pedagogies, and modern educational technologies that can support student learning. Acquiring this knowledge is a challenging task, considering how fast modern technologies and expectations of student learning outcomes and of teaching practices are changing Therefore 21st-century physics teachers should be supported in developing a different way of thinking about technology-enhanced physics teaching and learning. We call it Deliberate Pedagogical Thinking with Technology, and base it on the original Pedagogical Content Knowledge and Technological Pedagogical Content Knowledge frameworks. However, unlike the two aforementioned frameworks, the Deliberate Pedagogical Thinking with Technology emphasizes not only teachers' knowledge, but also their attitudes and dispositions about using digital tools in order to support student learning. This paper examines how an online system that allows an ongoing discussion of videos uploaded on it by the students can support reflection in physics teacher education. Examples of using such a system in physics teacher education and teacher-candidates' feedback on their experiences with it are also discussed.
ERIC Educational Resources Information Center
Kelani, Raphael R.; Gado, Issaou
2018-01-01
Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…
Teaching physics as a service subject
NASA Astrophysics Data System (ADS)
Lowe, T. L.; Hayes, M.
1986-07-01
At South Glamorgan Institute of Higher Education physics is taught over a wide range of courses. In addition to the more conventional courses found in science, technology and education faculties there is a physics input into areas such as beauty therapy, applied biology, catering, chiropody, dental technology, environmental health, food technology, hairdressing, human-movement studies, industrial design, applied life sciences, marine technology, medical laboratory science, physiological measurement, nursing and speech therapy. Due to the fundamental differences in emphasis required when teaching physics as a 'minor' subject on these types of courses, and since the authors have no courses which lead to a 'major' physics qualification, it is necessary to develop a rational strategy for teaching physics as a 'service' subject. If this is not achieved then staff satisfaction and student interest are likely to suffer. They describe their strategy.
NASA Astrophysics Data System (ADS)
2011-01-01
WE RECOMMEND Online Graphing Calculator Calculator plots online graphs Challenge and Change: A History of the Nuffield A-Level Physics Project Book delves deep into the history of Nuffield physics SEP Sound Booklet has ideas for teaching sound but lacks some basics Reinventing Schools, Reforming Teaching Fascinating book shows how politics impacts on the classroom Physics and Technology for Future Presidents A great book for teaching physics for the modern world iSeismometer iPhone app teaches students about seismic waves WORTH A LOOK Teachers TV Video Clip Lesson plan uses video clip to explore new galaxies Graphing Calculator App A phone app that handles formulae and graphs WEB WATCH Physics.org competition finds the best websites
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2016-01-01
This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article further discusses antiques used to teach vibrations and waves,…
NASA Astrophysics Data System (ADS)
Voelzke, M. R.; Paganotti, A.; Assis, A. M. M.
2017-07-01
Increasingly, digital technologies have been invading classrooms, providing more and more attractive teaching methods for both, students and teachers. The arrival of digital technologies in classrooms brings great advances, but also many uncertainties and insecurities to teachers. With current technologies, the school environment can transform into a meaningful learning ambience with a more active and interactive student. This research aimed to analyze the opinion of eleven teachers who teach in four public schools in the interior of Minas Gerais, about the challenges of using digital technologies at school everyday. The data were obtained from the application of a questionnaire with eight questions. One of those asked about the used of digital technologies in the classroom, ten professors claimed to use them, but in another question that inquired about their knowledge about simulation software for physics teaching, only six said they knew about this resource. When questioned about the lecture on the topic of technological development, only seven teachers stated that they use this technique, being a relatively small number. Out of the four surveyed schools, two had digital slates, but the teachers said they did not use them because they did not receive any training. It was concluded that teachers do not feel comfortable teaching physics using digital technological resources, apparently because they lack adequate training. In many schools either there is no equipment or the same exists, but the teachers did not undergo training to use them. It is noticed that in the XXI century teachers insist on the traditional teaching model, contrary to the current trends to which students are immersed in a digital and interactive technological world.
NASA Astrophysics Data System (ADS)
Tong, V.
2011-12-01
There is a growing emphasis on the research-teaching nexus, and there are many innovative ways to incorporate research materials and methods in undergraduate teaching. Solar Physics is a cross-disciplinary subject and offers the ideal opportunity for research-enhanced teaching (1). In this presentation, I outline i) how student-led teaching of research content and methods is introduced in an undergraduate module in Solar Physics, and ii) how electronic learning and teaching can be used to improve students' learning of mathematical concepts in Solar Physics. More specifically, I discuss how research literature reviewing and reporting methods can be embedded and developed systematically throughout the module with aligned assessments. Electronic feedback and feedforward (2) are given to the students in order to enhance their understanding of the subject and improve their research skills. Other technology-enhanced teaching approaches (3) are used to support students' learning of the more quantitative components of the module. This case study is particularly relevant to a wide range of pedagogical contexts (4) as the Solar Physics module is taught to students following undergraduate programs in Geology, Earth Sciences, Environmental Geology as well as Planetary Science with Astronomy in the host Department. Related references: (1) Tong, C. H., Let interdisciplinary research begin in undergraduate years, Nature (2010) v. 463, p. 157. (2) Tong, V. C. H., Linking summative assessments? Electronic feedback and feedforward in module design, British Journal of Educational Technology (2011), accepted for publication. (3) Tong, V. C. H., Using asynchronous electronic surveys to help in-class revision: A case study, British Journal of Educational Technology (2011), doi:10.1111/j.1467-8535.2011.01207.x (4) Tong, V. C. H. (ed.), Geoscience Research and Education, Springer, Dordrecht (2012)
Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country
ERIC Educational Resources Information Center
Hofer, Sarah I.
2015-01-01
The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…
ERIC Educational Resources Information Center
Okan, Ilyas
2016-01-01
This study aims to reveal the levels of the use of computer, which is nowadays one of the most important technologies, of teacher candidate studying in the departments of Physical Education and Sport Teaching, and School teaching; also aims to research whether there is differences according to various criteria or not. In research, data were…
Tactile Teaching: Exploring Protein Structure/Function Using Physical Models
ERIC Educational Resources Information Center
Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.
2006-01-01
The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…
ERIC Educational Resources Information Center
Rosengrant, David
2003-01-01
A physics teacher in a technical high school describes how he teaches outside the book through lab involvement, student projects, and thematic lessons. Describes a roller coaster construction project. (JOW)
Technology for Physics Instruction
ERIC Educational Resources Information Center
Bryan, Joel
2006-01-01
Although technological innovations have the capability to significantly change how scientific investigations are done and greatly enhance the teaching and learning of science, its use is no more effective than any other resource or innovation when researched-based effective teaching practices are not followed. This paper reviews established…
Teaching physics to radiology residents.
Hendee, William R
2009-04-01
The complexity of diagnostic imaging has expanded dramatically over the past two decades. Over the same period, the time and effort devoted to teaching physics (the science and technology of the discipline) have diminished. This paradox compromises the ability of future radiologists to master imaging technologies so that they are used in an efficient, safe, and cost-effective manner. This article addresses these issues. Efforts involving many professional organizations are under way to resolve the paradox of the expanding complexity of medical imaging contrasted with the declining emphasis on physics in radiology residency programs. These efforts should help to reestablish physics education as a core value in radiology residency programs.
Applying the tools of physics to teaching physics
NASA Astrophysics Data System (ADS)
Wieman, Carl
2003-05-01
The strengths of modern AMO physics are its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately AMO physicists usually abandon these powerful tools in their approach to the teaching of physics and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual AMO science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive applets to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress.
NASA Astrophysics Data System (ADS)
2001-11-01
Where teachers share ideas and teaching solutions with the wider physics teaching community: contact ped@iop.org. Contents: Technical Trimmings: The ALBA interface and logger Technical Trimmings: A constant velocity apparatus based on Lenz's Law On the Map: Ashfield School: A Technology College Let's Investigate: Microwave frustration Physics on a Shoestring: Variation of pressure with depth Starting Out: First Year Fun! My Way: Grüneisen's law for the classroom Curiosity: Aqua-Magic
Physics teaching in developing countries
NASA Astrophysics Data System (ADS)
Talisayon, V. M.
1984-05-01
The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.
ERIC Educational Resources Information Center
Ahtee, Maija, Ed.; Meisalo, Veijo, Ed.; Lavonen, Jari, Ed.
The 15 conference papers in this report address a variety of issues such as computer applications in mechanics and optics, three-dimensional representation in physics teaching, computers in the physics laboratory, information technologies, the perceptual approach in physics education, improving students' conceptual understanding in physics, using…
NASA Astrophysics Data System (ADS)
Jolly, Pratibha
2009-04-01
It is well recognized that science and technology and the quality of scientifically trained manpower crucially determines the development and economic growth of nations and the future of humankind. At the same time, there is growing global concern about flight of talent from physics in particular, and the need to make physics teaching and learning effective and careers in physics attractive. This presentation presents the findings of seminal physics education research on students' learning that are impacting global praxis and motivating changes in content, context, instruments, and ways of teaching and learning physics, focusing on active learning environments that integrate the use of a variety of resources to create experiences that are both hands-on and minds-on. Initiatives to bring about innovative changes in a university system are described, including a triadic model that entails indigenous development of PHYSARE using low-cost technologies. Transfer of pedagogic innovations into the formal classroom is facilitated by professional development programs that provide experiential learning of research-based innovative teaching practices, catalyze the process of reflection through classroom research, and establish a collaborative network of teachers empowered to usher radical transformation.
Teaching medical physics to general audiences.
Amador, S
1994-01-01
By judiciously selecting topics and reading materials, one can teach a full semester course on medical physics appropriate for college students not majoring in the natural sciences. This interdisciplinary field offers an opportunity to teach a great deal of basic physics at the freshman level in the context of explaining modern medical technologies such as ultrasound imaging, laser surgery, and positron emission tomography. This article describes one such course which combines lectures, outside visitors, varied readings, and laboratories to convey a select subset of physical principles and quantitative problem-solving skills. These resources are also valuable for enriching the standard freshman physics sequence for premedical students. PMID:8075355
Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines
NASA Astrophysics Data System (ADS)
Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo
2016-11-01
Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.
Primary and Secondary School Science.
ERIC Educational Resources Information Center
Educational Documentation and Information, 1984
1984-01-01
This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…
An Integration of Mobile Applications into Physical Education Programs
ERIC Educational Resources Information Center
Yu, Hyeonho; Kulinna, Pamela Hodges; Lorenz, Kent A.
2018-01-01
Even though technology in physical education has the potential to open up a variety of teaching and learning avenues by enhancing active experiences to help students develop the skills, attitudes, knowledge and behaviors needed for a lifetime of physical activity, some teachers may have a hard time finding ways to integrate technology into their…
NASA Astrophysics Data System (ADS)
Deb, Pradip
2010-07-01
As a fundamental basis of all natural science and technology, Physics is the key subject in many science teaching institutions around the world. Physics teaching and learning is the most important issue today—because of its complexity and fast growing applications in many new fields. The laws of Physics are global—but teaching and learning methods of Physics are very different among countries and cultures. When I first came in Australia for higher education about 11 years ago with an undergraduate and a graduate degree in Physics from a university of Bangladesh, I found the Physics education system in Australia is very different to what I have experienced in Bangladesh. After having two graduate degrees from two Australian universities and gaining few years experience in Physics teaching in Australian universities, I compare the two different types of Physics education experiences in this paper and tried to find the answer of the question—does it all depend on the resources or internal culture of the society or both. Undergraduate and graduate level Physics syllabi, resources and teaching methods, examination and assessment systems, teacher-student relationships, and research cultures are discussed and compared with those in Australia.
Exploring Pre-Service Physical Education Teacher Technology Use during Student Teaching
ERIC Educational Resources Information Center
Jones, Emily M.; Baek, Jun-hyung; Wyant, James D.
2017-01-01
Purpose: The purpose of this study was to investigate the factors influencing preservice teachers' (PST) experiences integrating technology within a guided action-based research project in the context of student teaching. Methods: Participants were enrolled at a rural, mid-Atlantic university (N = 80, 53 male; 27 female). Researchers retrieved…
Evaluation of a Cross-Campus Interactive Video Teaching Trial.
ERIC Educational Resources Information Center
Hansford, Brian C.; Baker, R. A.
1990-01-01
Discussion of the use of technology in distance education courses focuses on the evaluation of a two-week teaching trial between two college campuses in Australia that used compressed data interactive videoconferencing technology. Results for the adequacy of the physical presentation and student and staff perceptions are detailed. (14 references)…
The Use of ICT In Teaching Tertiary Physics: Technology and Pedagogy
ERIC Educational Resources Information Center
Nguyen, Nhung; Williams, John; Nguyen, Tuan
2012-01-01
In the light of the education reform driven by Vietnam's government, information communication technologies (ICTs) are becoming integrated into education, while concurrently, teaching approaches are shifting from teacher-centred to student-centred in Vietnam's universities. The innovation is top-down and is being applied on a large scale. Emerging…
Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators
ERIC Educational Resources Information Center
Hernandez, M. I.; Couso, D.; Pinto, R.
2011-01-01
Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…
NASA Astrophysics Data System (ADS)
Antunes de Macêdo, Josué; Soares Pedroso, Luciano; Voelzke, Marcos Rincon; Teixeira de Araújo, Mauro Sérgio
2014-04-01
In this study, an investigation of 231 articles of the oral communication sections presented at the National Symposium on Physics Teaching (NSPT) was conducted, trying to identify those related to Information and Communication Technology (ICT), its form of organization, the involved thematic areas and the degree of teaching, allowing to compare the different perspectives and trends in this field. The conducted state of the art-study had a bibliographical character and qualitative contours involving content analysis. It was realized that the thematic area "Information technology, technology diffusion and Physics teaching", where most of the research related to ICT is concentrated, represent 11.7% of the total number of papers at the XIX NSPT, confirming a trend of research in this area. It was found, among other things, the predominance of studies where learning objects are used in Physics Education, especially in High School and University Education; the use of ICT in multidisciplinary work and that some features need to be further explored, such as thermodynamics. It was also noted an expressive amount of studies involving the use of ICT in teacher training proposals, which can contribute to the enlargement of the methodological options of teachers and meet their training needs.
NASA Astrophysics Data System (ADS)
da Silva, A. M. R.; de Macêdo, J. A.
2016-06-01
On the basis of the technological advancement in the middle and the difficulty of learning by the students in the discipline of physics, this article describes the process of elaboration and implementation of a hypermedia system for high school teachers involving computer simulations for teaching basic concepts of electromagnetism, using free tool. With the completion and publication of the project there will be a new possibility of interaction of students and teachers with the technology in the classroom and in labs.
Boosting physics education through mobile augmented reality
NASA Astrophysics Data System (ADS)
Crǎciun, Dana; Bunoiu, Mǎdǎlin
2017-12-01
The integration of collaborative applications, based on modern learning technologies and the Internet, of various visualization techniques and digital strategies in open, flexible modern learning environments which facilitate access to resources, represents a challenge for physics teachers in Romania in general, and for novice teachers in particular. Although large efforts have been made worldwide to invest in educational technologies, their impact on the students' learning outcomes is quite modest. In this paper, we describe and analyze various curricular and extracurricular activities specifically designed for and undertaken by pre-service physics teachers. These activities employ new educational technologies, mobile augmented reality (MAR) and are based on modern teaching and learning theories. MAR is an extension for mobile devices of augmented reality, an interactive and in real time combination, of real and virtual objects overlaid in the real environment. The obtained results show that pre-service physics teachers are confident in using MAR in their teaching and learning activities, and consider that the activities performed helped them develop the skills necessary for science teachers in a technology-based society and to reflect upon the role of technology in the current Romanian educational context.
Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value
ERIC Educational Resources Information Center
Besson, Ugo; De Ambrosis, Anna
2014-01-01
Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…
Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook
ERIC Educational Resources Information Center
Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.
2016-01-01
In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…
The Effectiveness of Physical Models in Teaching Anatomy: A Meta-Analysis of Comparative Studies
ERIC Educational Resources Information Center
Yammine, Kaissar; Violato, Claudio
2016-01-01
There are various educational methods used in anatomy teaching. While three dimensional (3D) visualization technologies are gaining ground due to their ever-increasing realism, reports investigating physical models as a low-cost 3D traditional method are still the subject of considerable interest. The aim of this meta-analysis is to quantitatively…
Physics Teachers' Views on Teaching the Concept of Energy
ERIC Educational Resources Information Center
Bezen, Sevim; Bayrak, Celal; Aykutlu, Isil
2016-01-01
Problem Statement: With the advancement of technology, energy as a concept has become part of the every aspects of life, and it becomes more and more important day by day. Since 2013, the concept of energy has become part of the updated physics education program in Turkey. Teaching the concept of energy is a significant undertaking; most students…
Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors
ERIC Educational Resources Information Center
Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor
2016-01-01
Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…
Learning by Teaching with Virtual Peers and the Effects of Technological Design Choices on Learning
ERIC Educational Resources Information Center
Okita, Sandra Y.; Turkay, Selen; Kim, Mihwa; Murai, Yumiko
2013-01-01
Advancements in technology have brought about new forms of learning and online instruction that allow communication through virtual representations without physically meeting in person. This study builds on previous work involving recursive feedback that tests the hypothesis that an important facet of learning-by-teaching is the opportunity to…
Developing affordable multi-touch technologies for use in physics
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, Carolina; Schofield, Damian; Vampola, David
2012-02-01
Physics is one of many areas which has the ability to benefit from a number of different teaching styles and sophisticated instructional tools due to it having both theoretical and practical applications which can be explored. The purpose of this research is to develop affordable large scale multi-touch interfaces which can be used within and outside of the classroom as both an instruction technology and a computer supported collaborative learning tool. Not only can this technology be implemented at university levels, but also at the K-12 level of education. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style [1]. Through the use of these types of multi-touch tools and teaching methods which incorporate them, the classroom can be enriched to allow for better comprehension and retention of information. This is due in part to a wider range of learning styles, such as kinesthetic learning, which are being catered to within the classroom. [4pt] [1] Wieman, C.E, Perkins, K.K., Adams, W.K., ``Oersted Medal Lecture 2007: Interactive Simulations for teaching physics: What works, what doesn't and why,'' American Journal of Physics. 76 393-99.
What Children Should Know about Technology and the Virtual World
ERIC Educational Resources Information Center
Zhao, Yong
2010-01-01
The dominant view of technology so far has been that it is a tool to help improve the teaching of traditional subjects--knowledge mostly about the local and physical world. But technology has created a new realm: the virtual world. It may not be physical or tangible, but the virtual world is indisputable and has a significant economy. If one…
Wait, Kevin R; Cloud, Beth A; Forster, Lindsey A; Jones, Tiffany M; Nokleby, Jessica J; Wolfe, Cortney R; Youdas, James W
2009-01-01
An audience response system (ARS) has become popular among educators in medicine and the health professions because of the system's ability to engage listeners during a lecture presentation. No one has described the usefulness of ARS technology during planned nonlecture peer teaching sessions in gross anatomy instruction for health professionals. The unique feature of each peer teaching session was a nongraded 12-15 item ARS quiz assembled by six second-year doctor of physical therapy (DPT) students and purposely placed at the beginning of the review session for those first-year DPT students in attendance. This study used a ten-item questionnaire and a five-point Likert scale in addition to three open ended questions to survey perceptions of both first-year and second-year DPT students about the usefulness of ARS technology implemented during weekly interactive peer teaching sessions during a semester course in Anatomy for Physical Therapists. First-year students overwhelmingly acknowledged the ARS system permitted each student to self-assess his/her preparedness for a quiz or examination and compare his/her performance with that of classmates. Peer teachers recognized an ARS quiz provided them an opportunity to: (1) estimate first-year students' level of understanding of anatomical concepts; and (2) effectively prepare first-year students for their weekly quizzes and future examinations. On the basis of the mutual benefits derived by both students/tutees and teachers/tutors, physical therapist educators may wish to consider using ARS technology to enhance teaching methods for a class in gross human anatomy.
Bringing Technology into High School Physics Classrooms
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2005-04-01
In an effort to help high school physics teachers bring technology into their classrooms, we at JSU have been offering professional development to secondary education teachers. This effort is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind (NCLB) grant funded by the Alabama Commission on Higher Education, serving high school physics teachers in Northeast Alabama. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. To achieve IMPACTSEED's goals, we have forged a functional collaboration with school districts from about ten counties. This collaboration is aimed at achieving a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear- factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend technology workshops, and onsite support, we have been providing year-round support to the physics/chemistry teachers in this area. This outreach initiative has helped provide our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2015-01-01
The notion of bringing technology into the classroom has been the subject of many recent presentations at conferences and papers in physics teaching journals. The use of devices such as laptops, smartphones, tablets, and clickers is rising in today's classrooms and laboratories. PhET simulations have been available online for over a decade. A…
US students have wrong view of teaching
NASA Astrophysics Data System (ADS)
Kruesi, Liz
2017-04-01
Students taking science, technology, engineering and mathematics (STEM) subjects in the US have a number of misconceptions about teaching that may be leading them to choose other careers, according to a study by the American Physical Society (APS).
Teaching Physics as a Service Subject.
ERIC Educational Resources Information Center
Lowe, T. L.; Hayes, M.
1986-01-01
Discusses the need for physics to be taught to individuals in a wide variety of areas. Argues that the understanding of physics concepts enhances other fields. Proposes various ways to integrate physics into other programs. Gives examples of incorporating physics into speech therapy, environmental health and medical technology programs. (TW)
The Mobile Gymnasium Using Tablet PCs in Physical Education
ERIC Educational Resources Information Center
Gubacs-Collins, Klara; Juniu, Susana
2009-01-01
Physical educators teaching in a gymnasium need mobile technology that supports the gathering and dissemination of information in a variety of formats and that can adapt to different settings, allowing freedom of movement. Notebook PCs and personal digital assistants (PDAs) are examples of common types of mobile technology, but they lack the…
ERIC Educational Resources Information Center
Gurbuz, Fatih
2016-01-01
The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…
ERIC Educational Resources Information Center
Stuebing, Susan; And Others
This paper reviews an ongoing study on the physical settings of education with technology at the elementary and high school levels. The study, which is multi-disciplinary in nature, is based in sites in the process of change in teaching strategies, using learning technology as a catalyst for this change to take place. The focus of the study is on…
Reactor physics teaching and research in the Swiss nuclear engineering master
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI
Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)
Possibilities and Implications of Using a Motion-Tracking System in Physical Education
ERIC Educational Resources Information Center
Chow, Jia Yi; Tan, Clara Wee Keat; Lee, Miriam Chang Yi; Button, Chris
2014-01-01
Advances in technology have created new opportunities for enhanced delivery of teaching to improve the acquisition of game skills in physical education (PE). The availability of a motion-tracking system (i.e. the A-Eye), which determines positional information of students in a practice context, might offer a suitable technology to support…
ERIC Educational Resources Information Center
Browne, Tom
2015-01-01
Despite developments in information and communications technology (ICT), current research on the use of ICT in physical education (PE) is limited; research has been confined to investigating the use of visual technology, particularly digital cameras. Student teachers (participants) often use each other as learning resources and the purpose of this…
Teaching Einsteinian physics at schools: part 1, models and analogies for relativity
NASA Astrophysics Data System (ADS)
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-11-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the Einstein-First curriculum is the development of appropriate models and analogies. This paper is the first part of a three-paper series. It presents the conceptual foundation of our approach, based on simple physical models and analogies, followed by a detailed description of the models and analogies used to teach concepts of general and special relativity. Two accompanying papers address the teaching of quantum physics (Part 2) and research outcomes (Part 3).
Teaching Physics with Basketball
NASA Astrophysics Data System (ADS)
Chanpichai, N.; Wattanakasiwich, P.
2010-07-01
Recently, technologies and computer takes important roles in learning and teaching, including physics. Advance in technologies can help us better relating physics taught in the classroom to the real world. In this study, we developed a module on teaching a projectile motion through shooting a basketball. Students learned about physics of projectile motion, and then they took videos of their classmates shooting a basketball by using the high speed camera. Then they analyzed videos by using Tracker, a video analysis and modeling tool. While working with Tracker, students learned about the relationships between three kinematics graphs. Moreover, they learned about a real projectile motion (with an air resistance) through modeling tools. Students' abilities to interpret kinematics graphs were investigated before and after the instruction by using the Test of Understanding Graphs in Kinematics (TUG-K). The maximum normalized gain or
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.
NASA Astrophysics Data System (ADS)
Adrian, Brian; Zollman, Dean; Stevens, Scott
2006-02-01
To demonstrate how state-of-the-art video databases can address issues related to the lack of preparation of many physics teachers, we have created the prototype Physics Teaching Web Advisory (Pathway). Pathway's Synthetic Interviews and related video materials are beginning to provide pre-service and out-of-field in-service teachers with much-needed professional development and well-prepared teachers with new perspectives on teaching physics. The prototype was limited to a demonstration of the systems. Now, with an additional grant we will extend the system and conduct research and evaluation on its effectiveness. This project will provide virtual expert help on issues of pedagogy and content. In particular, the system will convey, by example and explanation, contemporary ideas about the teaching of physics and applications of physics education research. The research effort will focus on the value of contemporary technology to address the continuing education of teachers who are teaching in a field in which they have not been trained.
An Expert System Shell to Teach Problem Solving.
ERIC Educational Resources Information Center
Lippert, Renate C.
1988-01-01
Discusses the use of expert systems to teach problem-solving skills to students from grade 6 to college level. The role of computer technology in the future of education is considered, and the construction of knowledge bases is described, including an example for physics. (LRW)
NASA Astrophysics Data System (ADS)
Bykov, Tikhon
2010-03-01
In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.
Reviewing the curriculum for physics and technology in postgraduate sonography courses.
Oates, Crispian P
2015-02-01
Physics and technology is seen as a difficult subject by those training in medical ultrasound. The reasons for this are discussed. Who should teach the subject and what should be included are considered. Ways to approach the subject so as to make it more relevant and easier to learn are proposed and a basic syllabus is suggested in an appendix.
ERIC Educational Resources Information Center
Thohir, M. Anas
2018-01-01
In the 21st century, the competence of instructional technological design is important for pre-service physics teachers. This case study described the pre-service physics teachers' design of optical spreadsheet simulation and evaluated teaching and learning the task in the classroom. The case study chose three of thirty pre-service teacher's…
Physics Education and STSE: Perspectives from the Literature
ERIC Educational Resources Information Center
MacLeod, Katarin
2013-01-01
Science, technology, society, and environment (STSE) education has recently received attention in educational research, policy, and science curricular development. Fewer strides have been made in examining the connections between STSE education and learning/teaching physics. Examples of moving STSE theory into practice within a physics classroom…
Teaching Einsteinian physics at schools: part 3, review of research outcomes
NASA Astrophysics Data System (ADS)
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-11-01
This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.
ERIC Educational Resources Information Center
Menon, Deepika; Chandrasekhar, Meera; Kosztin, Dorina; Steinhoff, Douglas
2017-01-01
While iPads and other mobile devices are gaining popularity in educational settings, challenges associated with teachers' use of technology continue to hold true. Preparing preservice teachers within teacher preparation programs to gain experience learning and teaching science using mobile technologies is critical for them to develop positive…
Teaching Physics Using Appropriate Technology Projects
ERIC Educational Resources Information Center
Pearce, Joshua M.
2007-01-01
Appropriate technologies able to be easily and economically constructed from readily available materials by local craftspeople have a central role in the alleviation of poverty in the developing world. However, research and development of these technologies are generally apportioned relatively modest support by the developed world's institutions,…
Tablet Technology to Monitor Physical Education IEP Goals and Benchmarks
ERIC Educational Resources Information Center
Lavay, Barry; Sakai, Joyce; Ortiz, Cris; Roth, Kristi
2015-01-01
The Individual with Disabilities Education Act (IDEA) mandates that all children who are eligible for special education services receive an individualized education program (IEP). Adapted physical education (APE) professionals who teach physical education to children with disabilities are challenged with how to best collect and monitor student…
A Hypermedia Model for Teaching Technology.
ERIC Educational Resources Information Center
Savage, Ernest N.
Ohio's Model Industrial Technology Systems (MITS) project was initiated in 1987 to achieve the following: identify good activities in the areas of physical, communication, and bio-related technology; standardize the activities' format; and provide a coding system for their eventual use in a hypermedia system. To date, 220 activities have been…
Fiber-optical sensor with intensity compensation model in college teaching of physics experiment
NASA Astrophysics Data System (ADS)
Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu
2017-08-01
Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.
NASA Astrophysics Data System (ADS)
Kingston, D. G.; Eastwood, W. J.; Jones, P. I.; Johnson, R.; Marshall, S.; Hannah, D. M.
2012-05-01
Education in hydrology is changing rapidly due to diversification of students, emergent major scientific and practical challenges that our discipline must engage with, shifting pedagogic ideas and higher education environments, the need for students to develop new discipline specific and transferrable skills, and the advent of innovative technologies for learning and teaching. This paper focuses on new technologies in the context of learning and teaching in Physical Geography and reflects on the implications of our experiences for education in hydrology. We evaluate the experience of designing and trialling novel mobile technology-based field exercises and a virtual field tour for a Year 1 undergraduate Physical Geography module at a UK university. The new exercises are based on using and obtaining spatial data, operation of meteorological equipment (explained using an interactive DVD), and include introductions to global positioning systems (GPS) and geographical information systems (GIS). The technology and exercises were well received in a pilot study and subsequent rolling-out to the full student cohort (∼150 students). A statistically significant improvement in marks was observed following the redesign. Although the students enjoyed using mobile technology, the increased interactivity and opportunity for peer learning were considered to be the primary benefits by students. This is reinforced further by student preference for the new interactive virtual field tour over the previous "show-and-tell" field exercise. Despite the new exercises having many advantages, exercise development was not trivial due to the high start-up costs, the need for provision of sufficient technical support and the relative difficulty of making year-to-year changes (to the virtual field tour in particular). Our experiences are highly relevant to the implementation of novel learning and teaching technologies in hydrology education.
NASA Astrophysics Data System (ADS)
Kingston, D. G.; Eastwood, W. J.; Jones, P. I.; Johnson, R.; Marshall, S.; Hannah, D. M.
2011-12-01
Education in hydrology is changing rapidly due to diversification of students, emergent major scientific and practical challenges that our discipline must engage with, shifting pedagogic ideas and higher education environments, the need for students to develop new discipline specific and transferrable skills, and the advent of innovative technologies for learning and teaching. This paper focuses on new technologies in the context of learning and teaching in Physical Geography and reflects on the implications of our experiences for education in hydrology. We evaluate the experience of designing and trialling novel mobile technology-based field exercises and a virtual field trip for a Year 1 undergraduate Physical Geography module at a UK university. The new exercises are based on using and obtaining spatial data, operation of meteorological equipment (explained using an interactive DVD), and include introductions to global positioning systems (GPS) and geographical information systems (GIS). The technology and exercises were well received in a pilot study and subsequent rolling-out to the full student cohort (∼150 students). A statistically significant improvement in marks was observed following the redesign. Although the students enjoyed using mobile technology, the increased interactivity and opportunity for peer learning were considered to be the primary benefits by students. This is reinforced further by student preference for the new interactive virtual field trip over the previous "show-and-tell" field exercise. Despite the new exercises having many advantages, exercise development was not trivial due to the high start-up costs, the need for provision of sufficient technical support and the relative difficulty of making year-to-year changes (to the virtual field trip in particular). We believe our experiences are directly relevant to the implementation of such novel learning and teaching technologies in hydrology education.
ERIC Educational Resources Information Center
Laherto, Antti; Laherto, Jussi
2018-01-01
Addressing the widely reported deficiencies in elementary teachers' competence in technology use and in inquiry-based science instruction, we present and assess a novel teaching experiment conducted in a university-school collaboration. Preservice elementary teachers planned and produced teaching videos in which they gave instructions on…
Pedagogical Uses of Technology in Physical Education
ERIC Educational Resources Information Center
Juniu, Susana
2011-01-01
Teachers' subject and pedagogical knowledge requires an understanding of the relationship between various elements, rather than thinking of them in isolation. In order to teach in a given discipline, the teacher must have knowledge of the subject, an understanding of the best teaching strategies for presenting the content, and knowledge of the…
Reviewing the curriculum for physics and technology in postgraduate sonography courses
2015-01-01
Physics and technology is seen as a difficult subject by those training in medical ultrasound. The reasons for this are discussed. Who should teach the subject and what should be included are considered. Ways to approach the subject so as to make it more relevant and easier to learn are proposed and a basic syllabus is suggested in an appendix. PMID:27433234
Wrestling with Pedagogical Change: The TEAL Initiative at MIT
ERIC Educational Resources Information Center
Breslow, Lori
2010-01-01
In the late 1990s, the physics department at the Massachusetts Institute of Technology (MIT) had a problem. The department was responsible for teaching the two required physics courses that are part of the General Institute Requirements (GIRs), MIT's core curriculum--Physics I (mechanics, or in MIT parlance, 8.01) and Physics II (electricity and…
PhET: Interactive Simulations for Teaching and Learning Physics
NASA Astrophysics Data System (ADS)
Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron
2006-01-01
The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.
A development optical course based on optical fiber white light interference
NASA Astrophysics Data System (ADS)
Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo
2017-08-01
The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.
Competency based teaching of college physics: The philosophy and the practice
NASA Astrophysics Data System (ADS)
Rajapaksha, Ajith; Hirsch, Andrew S.
2017-12-01
The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.
Improving High School Physics Through An Outreach Initiative
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2006-04-01
We want to discuss our outreach initiative at Jacksonville State University designed to help improve the teaching of physics at a number of high schools in Northeast Alabama. This initiative is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. IMPACTSEED is designed to achieve a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear-factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend workshops designed to help bring technology into physics classrooms, onsite support, and a hotline, we have been providing year-round support to the physics/chemistry teachers in this area. IMPACTSEED aims at providing our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
Digital Video: The Impact on Children's Learning Experiences in Primary Physical Education
ERIC Educational Resources Information Center
O'Loughlin, Joe; Chroinin, Deirdre Ni; O'Grady, David
2013-01-01
Technology can support teaching, learning and assessment in physical education. The purpose of this study was to examine children's perspectives and experiences of using digital video in primary physical education. The impact on motivation, feedback, self-assessment and learning was examined. Twenty-three children aged 9-10 years participated in a…
ERIC Educational Resources Information Center
Best, Marnie; MacGregor, Denise
2017-01-01
Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding…
Discovering complementary colors from the perspective of steam education
NASA Astrophysics Data System (ADS)
Karabey, Burak; Yigit Koyunkaya, Melike; Enginoglu, Turan; Yurumezoglu, Kemal
2018-05-01
This study explored the theory and applications of complementary colors using a technology-based activity designed from the perspective of STEAM education. Complementary colors and their areas of use were examined from the perspective of physics, mathematics and art, respectively. The study, which benefits from technology, makes the theory of complementary colors accessible to all through practical applications and provides a multidisciplinary, integrated and innovative technique of teaching the subject of colors, which could be used to teach complementary colors.
Promoting Student Autonomy and Competence Using a Hybrid Model for Teaching Physical Activity
ERIC Educational Resources Information Center
Bachman, Christine; Scherer, Rhonda
2015-01-01
For approximately twenty-years, Web-enhanced learning environments have been popular in higher education. Much research has examined how best practices can integrate technology, pedagogical theories, and resources to enhance learning. Numerous studies of hybrid teaching have revealed mostly positive effects. Yet, very little research has examined…
ERIC Educational Resources Information Center
Lincoln, James
2017-01-01
Online videos are an increasingly important way technology is contributing to the improvement of physics teaching. Students and teachers have begun to rely on online videos to provide them with content knowledge and instructional strategies. Online audiences are expecting greater production value, and departments are sometimes requesting educators…
ERIC Educational Resources Information Center
Fitzgerald, Mike
2004-01-01
In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…
Support for New Physics Teachers
NASA Astrophysics Data System (ADS)
Adrian, Brian W.; Zollman, D.; Stevens, S.
2006-12-01
Teachers of physics can often lack the type of support they desperately need. The Physics Teaching Web Advisory (Pathway) is a dynamic digital library for physics teaching that is designed to offer such support. Carnegie Mellon University’s synthetic interview technology provides the foundation for a system that allows physics teachers to ask questions of a virtual mentor and get video responses. A log of the questions asked of our system provides a rich database of information about just what types of support teachers are requesting. This talk will present a summary of the common types of questions teachers ask. Such information is valuable as we design support systems for physics teachers, both new and experienced. In addition, recent progress and developments will be discussed. Supported by NSF grant numbers DUE-0226157, DUE-0226219, ESI-0455772 & ESI-0455813
Care and Feeding of a Paperless, Calculus-based Physics Course
NASA Astrophysics Data System (ADS)
Moore, Christopher; Fuller, Robert; Plano-Clark, Vicki L.; Dunbar, Steven R.
1997-04-01
Technology is playing an increasing role in our lives at home, at work, and in the classroom. We have begun a calculus-based introductory physics course to integrate mathematics and multimedia with the traditional physics content. This course relies on the use of technology to teach physics. We formulated the following rule for the conduct of the course: ''No paper is transferred between instructional staff and students that contains course information or assignments for grading.'' Implementing and maintaining this physics course within the context of the instructor goals will be discussed. Preliminary results of feedback from the students and an evaluation team will be presented.
Teaching and Learning Physics in a 1:1 Laptop School
NASA Astrophysics Data System (ADS)
Zucker, Andrew A.; Hug, Sarah T.
2008-12-01
1:1 laptop programs, in which every student is provided with a personal computer to use during the school year, permit increased and routine use of powerful, user-friendly computer-based tools. Growing numbers of 1:1 programs are reshaping the roles of teachers and learners in science classrooms. At the Denver School of Science and Technology, a public charter high school where a large percentage of students come from low-income families, 1:1 laptops are used often by teachers and students. This article describes the school's use of laptops, the Internet, and related digital tools, especially for teaching and learning physics. The data are from teacher and student surveys, interviews, classroom observations, and document analyses. Physics students and teachers use an interactive digital textbook; Internet-based simulations (some developed by a Nobel Prize winner); word processors; digital drop boxes; email; formative electronic assessments; computer-based and stand-alone graphing calculators; probes and associated software; and digital video cameras to explore hypotheses, collaborate, engage in scientific inquiry, and to identify strengths and weaknesses of students' understanding of physics. Technology provides students at DSST with high-quality tools to explore scientific concepts and the experiences of teachers and students illustrate effective uses of digital technology for high school physics.
Using the tools of science to teach science
NASA Astrophysics Data System (ADS)
Wieman, C.
2005-12-01
Much of the rapid progress of modern science comes from its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately, scientists usually abandon these powerful tools in their approach to the teaching of science and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive simulations to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress. Work supported by NSF and the Kavli Operating Institute
Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.
ERIC Educational Resources Information Center
Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten
2002-01-01
Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)
ERIC Educational Resources Information Center
Underwood, C. I.; And Others
1987-01-01
Discusses the use of satellite data in physics classrooms. Describes the apparatus that can be used to collect and analyze data. Provides examples of how telemetry data transmitted by the satellite UoSAT-2 can be used not only in teaching physics, but also in geography, mathematics, and information technology. (TW)
Teaching Einsteinian Physics at Schools: Part 1, Models and Analogies for Relativity
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-01-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the…
ERIC Educational Resources Information Center
MacLeod, Katarin
2014-01-01
Science, Technology, Society and Environment (STSE) education has received attention in educational research, policy, and science curricula development, yet less advancement has been made in moving theory into practice. There are many examples of STSE-based teaching in science at the elementary and secondary levels, yet little has focused…
Information and Communication Technologies (ICT) in Biology Teaching in Slovenian Secondary Schools
ERIC Educational Resources Information Center
Sorgo, Andrej; Verckovnik, Tatjana; Kocijancic, Slavko
2010-01-01
About two-thirds of Slovene secondary schools received computers equipped with data-loggers and sensors to be used in teaching Physics, Chemistry and Biology. Later it was recognized that only a couple of Biology teachers were using the donated equipment in their classrooms or laboratories. The questionnaire, intended to investigate the situation,…
Studying Gender Bias in Physics Grading: The role of teaching experience and country
NASA Astrophysics Data System (ADS)
Hofer, Sarah I.
2015-11-01
The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2 × 2 between-subjects design, with years of teaching experience included as moderating variable, physics teachers (N = 780) from Switzerland, Austria, and Germany graded a fictive student's answer to a physics test question. While the answer was exactly the same for each teacher, only the student's gender and specialization in languages vs. science were manipulated. Specialization was included to gauge the relative strength of potential gender bias effects. Multiple group regression analyses, with the grade that was awarded as the dependent variable, revealed only partial cross-border generalizability of the effect pattern. While the overall results in fact indicated the existence of a consistent and clear gender bias against girls in the first part of physics teachers' careers that disappeared with increasing teaching experience for Swiss teachers, Austrian teachers, and German female teachers, German male teachers showed no gender bias effects at all. The results are discussed regarding their relevance for educational practice and research.
Commentary: China Will Change Our Teaching
ERIC Educational Resources Information Center
Parslow, Graham R.
2013-01-01
The current spurt in life science activity in China has been driven by repatriating researchers trained in the prestigious institutions of the world. China's publications show a clear concentration in the physical sciences and technology, with materials science, chemistry, and physics predominant. Also clear is that the growth areas include…
ERIC Educational Resources Information Center
Macdonald, Doune; Mitchell, Jane; Mayer, Diane
2006-01-01
Background: The widespread and diverse models of professional standards for teaching raise questions with respect to the need to provide teachers with a pathway for continuing professional development balanced with the public nature of surveillance and accountability that may accompany standards. Ways of understanding technologies of power in…
Oh, Pok-Ja; Kim, Il-Ok; Shin, Sung-Rae; Jung, Hoe-Kyung
2004-10-01
This study was to develop Web-based multimedia content for Physical Examination and Health Assessment. The multimedia content was developed based on Jung's teaching and learning structure plan model, using the following 5 processes : 1) Analysis Stage, 2) Planning Stage, 3) Storyboard Framing and Production Stage, 4) Program Operation Stage, and 5) Final Evaluation Stage. The web based multimedia content consisted of an intro movie, main page and sub pages. On the main page, there were 6 menu bars that consisted of Announcement center, Information of professors, Lecture guide, Cyber lecture, Q&A, and Data centers, and a site map which introduced 15 week lectures. In the operation of web based multimedia content, HTML, JavaScript, Flash, and multimedia technology (Audio and Video) were utilized and the content consisted of text content, interactive content, animation, and audio & video. Consultation with the experts in context, computer engineering, and educational technology was utilized in the development of these processes. Web-based multimedia content is expected to offer individualized and tailored learning opportunities to maximize and facilitate the effectiveness of the teaching and learning process. Therefore, multimedia content should be utilized concurrently with the lecture in the Physical Examination and Health Assessment classes as a vital teaching aid to make up for the weakness of the face-to- face teaching-learning method.
Electrical Storm Simulation to Improve the Learning Physics Process
ERIC Educational Resources Information Center
Martínez Muñoz, Miriam; Jiménez Rodríguez, María Lourdes; Gutiérrez de Mesa, José Antonio
2013-01-01
This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand…
Teaching Temperature with Technology
NASA Astrophysics Data System (ADS)
Schillaci, Michael
2010-10-01
In recent years it has become very popular to introduce computational tools and/or simulations into the classroom. While the intention of this classroom addition is often meant to help elucidate a particular physical phenomena, teachers at ALL levels --- whether graduate or undergraduate, secondary- or middle-school --- may miss important teaching moments by either relying upon or struggling with the technology! I will demonstrate this phenomena with a sample teaching module developed at our instiitution that seeks to discover the relationship between temperature and latitude by having students gather data (e.g., average monthly temperature for a chosen city) from various world wide web resources. This task may be very difficult for students and teachers for reasons ranging from slow connection speeds to an inability to plot and interpret data.I will wrap up by demonstarting a simple Maple routine that will produce the graphs easily and discuss ways in which this kind of top-down solution may be the best bet for using and teaching technology at all levels.
NASA Astrophysics Data System (ADS)
Engström, Susanne; Carlhed, Carina
2014-09-01
With environmental awareness in the societies of today, political steering documents emphasize that all education should include sustainable development. But it seems to be others competing ideals for teaching physics, or why do the physics teachers teach as they do? Physics teachers in secondary school in Sweden have generally, been focused on facts and a strong link with scientific theories and concepts. In general, the curriculum sway the teaching, a standard text book in physics is used, the teaching is organized according to the book and the teacher deals with and demonstrates typical tasks on the whiteboard and group work is common for special issues related to tasks from the textbook or elaborating. The aim with this study is to analyze why physics teachers in upper secondary school choose to teach energy as they do. Data emerging from a questionnaire focused on indicators of the teachers' cultural and economic assets, or capital, according to the work of Pierre Bourdieu's sociology. Especially his concept on life styles and habitus provide a tool for analysis. We focus on physics teachers' positions in the social space, dispositions and standpoints towards the ideal way to teach physics in upper secondary school (n = 268). Our response rate is 29 % and due to the low response rate a non response bias analysis was made. In our analysis we primarily sought for groups, with a cluster analysis based on the teaching practice, revealed common features for both what and how they teach and three different teaching types emerged. Then we reconstructed the group habitus of the teachers by analyzing dispositions and standpoints and related those to the specific polarization of sacred values, that is struggles about the natural order (doxa) in the social space of science education, which is a part of and has boundaries to dominating fields like the natural sciences and the political fields (curriculum etc.). Three teacher-groups' habituses are described and analyzed; (1) The Manager of the Traditional, (2) The Challenger for Technology and (3) The Challenger for Citizenship. By constructing the habitus of the teachers in the different groups we can explain why teachers teach as they do and thereby make a contribution to both science education research and to teaching training, whereas reflective approach which also includes the individual dispositions and representations are paramount. In our paper we elaborate the grounds and implications of these findings further.
ERIC Educational Resources Information Center
Hyland, Matthew R.; Pinto-Zipp, Genevieve; Olson, Valerie; Lichtman, Steven W.
2010-01-01
Technological advancements and competition in student recruitment have challenged educational institutions to expand upon traditional teaching methods in order to attract, engage and retain students. One strategy to meet this shift from educator-directed teaching to student-centered learning is greater computer utilization as an integral aspect of…
ERIC Educational Resources Information Center
Hitt, G. W.; Isakovic, A. F.; Fawwaz, O.; Bawa'aneh, M. S.; El-Kork, N.; Makkiyil, S.; Qattan, I. A.
2014-01-01
We report on efforts to design the "Collaborative Workshop Physics" (CWP) instructional strategy to deliver the first interactive engagement (IE) physics course at Khalifa University of Science, Technology and Research (KU), United Arab Emirates (UAE). To our knowledge, this work reports the first calculus-based, introductory mechanics…
Teaching with Technology in Physical Education
ERIC Educational Resources Information Center
Eberline, Andrew D.; Richards, K. Andrew R.
2013-01-01
Physical education is at a crossroads in the 21st century. With government mandates related to the No Child Left Behind Act (U.S. Department of Education, 2001) emphasizing core subjects, such as math and literacy, non-core subjects have been deemphasized. The most recent "Shape of the Nation Report" (National Association for Sport and…
ERIC Educational Resources Information Center
Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew
2015-01-01
Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…
CNC Technology Brings out Hidden Talents in Disabled Children
ERIC Educational Resources Information Center
Lintz, Jeff
2004-01-01
In this article, the author shares his experience teaching production technology to special education students at Hialeah Middle School in Miami-Dade County, Florida. He has had many students who clearly had talent in graphics and design that went unrealized because of their physical disabilities. He has seen students with an enormous amount of…
Electronics Teacher's Guide. Science and Technology Document Series No. 40.
ERIC Educational Resources Information Center
Lewis, John
This is the second document on the teaching of electronics to appear as part of UNESCO's science and technology education program. An introductory section describes the role that electronics plays as part of the physics curriculum. The following section outlines the content of the electronics course. The outline includes guidelines for determining…
Differences in ICT Usage across Subject Areas: A Case of an Elementary School in Singapore
ERIC Educational Resources Information Center
Tay, Lee Yong; Lim, Cher Ping; Lim, Siew Khiaw
2015-01-01
Many factors affect the use of information and communication technology (ICT) for teaching and learning in schools: policy and school leadership, physical and technological infrastructure, teachers' practices and beliefs, curriculum and assessment, and professional development. The subject area, that has not been given as much attention in…
ERIC Educational Resources Information Center
Ray, Arindam; Chakrabarti, Amlan
2016-01-01
Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…
Australian Students' Views on Nuclear Issues: Does Teaching Alter Prior Beliefs?
ERIC Educational Resources Information Center
Cooper, Sarina; Yeo, Shelley; Zadnik, Marjan
2003-01-01
We have investigated the conceptual understandings of seventy-eight 16-year-old Australian high school students' and their knowledge about several issues related to nuclear energy. As a result of their study of the physics topic Nuclear Technology, the students learned more about applications of nuclear technology, had better though still…
Design and implementation of artistic gymnastics training guidance system
NASA Astrophysics Data System (ADS)
Cai, Limin; Luo, Lin
2017-04-01
Artistic gymnastics (AG) has developed into a favorite sports activity among many university students; recent years saw not only the increase of AG learners, but also the emergence of more and more problems in the training. Based on surveys in different forms, students' physical quality and their performance in the AG training were analyzed and summarized; and with the aid of the computer technology, Artistic Gymnastics Training Guidance System was designed and implemented to meet the students' needs for personalized training schemes and improve AG teaching quality. The System can provide convenient ways for scientific training in a targeted and oriented manner on the basis of the differences in physical quality. Also, it can provide teachers with detailed data about the students' physical quality and their AG training; through the visualization of valuable statistical data, it is able to provide a powerful basis for decision makers of teaching departments and thus facilitate the perfection of AG teaching methods.
NASA Astrophysics Data System (ADS)
Lincoln, James
2017-05-01
Online videos are an increasingly important way technology is contributing to the improvement of physics teaching. Students and teachers have begun to rely on online videos to provide them with content knowledge and instructional strategies. Online audiences are expecting greater production value, and departments are sometimes requesting educators to post video pre-labs or to flip our classrooms. In this article, I share my advice on creating engaging physics videos.
NASA Astrophysics Data System (ADS)
Dȩbowska, E.; Girwidz, R.; Greczyło, T.; Kohnle, A.; Mason, B.; Mathelitsch, L.; Melder, T.; Michelini, M.; Ruddock, I.; Silva, J.
2013-05-01
This paper presents the results of a peer review of multimedia materials for teaching and learning electricity and magnetism prepared as a part of the annual activities undertaken by an international group of scientists associated with Multimedia Physics in Teaching and Learning. The work promotes the use of valuable and freely accessible information technology materials for different levels of teaching, mostly higher education. The authors discuss the process of selecting resources and the rubrics used in the rating process. The reviews of high-quality learning resources are presented along with descriptions of valuable didactical features.
SU-E-E-06: Teaching Medical Physics in a Radiology Museum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bednarek, D; Rudin, S
Purpose: To enhance the learning process in the teaching of medical physics by providing a venue to experience the historical equipment and devices of radiology. Methods: We have created a museum by assembling a large collection of equipment and artifacts related to radiology and medical physics. As part of a learning-in-context educational approach, classes for a survey course in medical physics are held in the museum so that students are able to visually and tangibly experience the implements of radiology, while related topics are discussed. The students learn how x-ray equipment and techniques evolved throughout the years and they learnmore » to appreciate the differences and similarities between current x-ray technology and that of the early days. The collection contains items dating from the era of the discovery of x-rays up to recent times and includes gas x-ray tubes, hand-held fluoroscopes, generators, spark-gap kV meters, stereoscopes, glass-plate radiographs, a photofluorographic unit, wood-interspaced grid, flat-panel detector, linear-accelerator klystron, and brachytherapy radium applicators, as well as an extensive library containing some of the seminal literature of the field so that students can delve deeper into the technology. In addition to the classes, guided tours are provided for radiologic-technology, bioengineering, physics and medical students, as well as group and individual tours for the general public. Results: Student course assessments have consistently included positive expressions of their experience in the museum. Numerous students have volunteered to assist with display preparation and have learned by researching the content. Many individuals have been attracted on a walk-in basis and have expressed a deep curiosity in the technology, with positive feedback. Conclusion: The museum and its artifacts have been invaluable in stimulating interest in the history and technology of medical physics. Students and visitors alike obtain a deeper appreciation of the contribution physics has made to medicine.« less
Teaching color as an experiential exercise
NASA Astrophysics Data System (ADS)
Miele, Margaret A.
2002-06-01
This paper describes the evolution of the course 'The Psychology of Color' that I teach at the Fashion Institute of Technology. Information was synthesized from many disciplines including human biology, physics, consumer behavior, developmental psychology, cross-cultural anthropology and sociology. After initial implementation, the course went through two additional phases of refinement. The current course is an integration of research, theory and application to our everyday lives.
ERIC Educational Resources Information Center
Wait, Kevin R.; Cloud, Beth A.; Forster, Lindsey A.; Jones, Tiffany M.; Nokleby, Jessica J.; Wolfe, Cortney R.; Youdas, James W.
2009-01-01
An audience response system (ARS) has become popular among educators in medicine and the health professions because of the system's ability to engage listeners during a lecture presentation. No one has described the usefulness of ARS technology during planned nonlecture peer teaching sessions in gross anatomy instruction for health professionals.…
ERIC Educational Resources Information Center
Mathiasen, Helle
2015-01-01
Studies on the use of digital voting systems in large group teaching situations have often focused on the "non-anonymity" and control and testing functions that the technology provides. There has also been some interest in how students might use their votes tactically to gain "credits". By focusing on an empirical study of…
Teacher and pupil perspectives on the use of Virtual Field Trips as physically active lessons.
Norris, E; Shelton, N; Dunsmuir, S; Duke-Williams, O; Stamatakis, E
2015-11-25
Virtual Field Trips (VFTs) are emerging physically active lessons that combine curriculum content with globe-based movement using interactive whiteboards. No research has yet examined the acceptability of these sessions by target users. This study aimed to (1) assess current physically active lesson teaching practices, (2) assess teacher attitudes towards VFTs and (3) investigate pupil perceptions of VFTs. Data was collected from teaching staff interviews (n = 12) and three elementary school pupil focus groups (k = 3, n = 18), with all participants provided with a sample VFT session. Thematic analysis was used to analyse data. Teachers described VFTs as a flexible teaching tool, allowing inclusive learning across abilities and a range of taught subjects. They stressed a packed curriculum may make delivering VFT sessions problematic and warned that some teachers may be resistant to their use of technology. Pupils enjoyed the ability to move in the classroom and the ability to share a new teaching experience with their peers. This work suggests positive attitudes towards VFTs as novel, physically active lessons and identifies potential teacher concerns for consideration in forthcoming intervention planning. Future experimental work will assess if these attitudes persist during longitudinal exposure to VFTs.
ERIC Educational Resources Information Center
Kuhn, Jochen; Vogt, Patrik
2013-01-01
New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…
Innovative Physics Teaching Conferences in the Czech Republic
ERIC Educational Resources Information Center
Milbrandt, Rod
2010-01-01
Even today, with all of the instant communication technologies available, we are still often unaware of all that happens in other parts of the world. In the middle of Europe, in the Czech Republic, physics teachers have created a couple of innovative conferences--or "workshops" might be a better term. Having attended two of each, I think…
ERIC Educational Resources Information Center
Holbrow, C. H.
1983-01-01
A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)
ERIC Educational Resources Information Center
Vizenor, Katie Virginia
2014-01-01
Digital Citizenship is a concept typically used in discussions of how technology impacts our relationships with others and our physical world communities. It is also used to describe ways that we can leverage our technology use and skill to make our communities and nations better and stronger. Educators are now teaching "good digital…
Science Anxiety and Gender in Students Taking General Education Science Courses
ERIC Educational Resources Information Center
Udo, M. K.; Ramsey, G. P.; Mallow, J. V.
2004-01-01
Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. "Journal of Science Education and Technology" 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? "Journal of Science Education and Technology" 10: 237-247] of…
Teaching Newton's Laws with the iPod Touch in Conceptual Physics
NASA Astrophysics Data System (ADS)
Kelly, Angela M.
2011-04-01
One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion…" and "For every action…"), but they rarely demonstrate a working knowledge of how to apply them to observable phenomena. As a firm believer in inquiry-based teaching methods, I like to develop activities where students can experiment and construct understandings based on relevant personal experiences. Consequently, I am always looking for exciting new technologies that can readily demonstrate how physics affects everyday things. In a conceptual physics class designed for ninth-graders, I created a structured activity where students applied Newton's laws to a series of free applications downloaded on iPod Touches. The laws had been introduced during the prior class session with textual descriptions and graphical representations. The course is offered as part of the Enlace Latino Collegiate Society, a weekend enrichment program for middle and high school students in the Bronx. The majority of students had limited or no prior exposure to physics concepts, and many attended high schools where physics was not offered at all.
NASA Astrophysics Data System (ADS)
Nishida, Masahiko
How student evaluations of the teaching of fundamental physics for engineering relate to teaching strategy from academic 2004 to 2006 has been studied, focusing on students‧ earnestness to learn. The teaching emphasized instructing theoretical concepts for 2004 and solving problems for 2005. The instruction during 2006 offered a good balance between the strategy for 2004 and that for 2005. The first and second components produced by principal-component analysis of the evaluation data have indicated the quality of instruction and the scholastic ability of students, respectively, independent of the teaching strategy. While correlation between the second component and the degree of earnestness was positive for 2004 and negative for 2005, the correlation for 2006 has been negligible, as expected. Multiple-regression analysis between the evaluation data and students‧ exam scores has shown little correlation for 2006, in contrast to that for 2004, but similar to that for 2005. Finally, we can say that the teaching strategy for 2006 would lead to educational effects similar to those in 2005 when the exam scores were notably improved.
STEM education and Fermi problems
NASA Astrophysics Data System (ADS)
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
The Design of Collaborative Learning for Teaching Physics in Vocational Secondary School
NASA Astrophysics Data System (ADS)
Ismayati, Euis
2018-04-01
Vocational secondary school (Sekolah Menengah Kejuruan or SMK) is a vocational education that is based on the principle of human resource investment (human capital investment) referring to the quality of education and productivity to compete in the global job market. Therefore, vocational education relates directly to business world/industry which fulfills the needs of the skilled worker. According to the results of some researches, the work ethics of vocational graduates are still unsatisfying. Most of them are less able to perform their works, to adapt to the changes and development of technology and science, to be retrained, to develop themselves, to collaborate, and to argue. Meanwhile, the employers in the world of work and industries require their employees to have abilities to think creatively and working collaboratively. In addition, the students’ abilities to adapt to the technology in working environment are greatly influenced by the learning process in their schools, especially in science learning. The process of science learning which can help the students to think and act scientifically should be implemented by teachers using a learning approach which is appropriate to the students’ need and the material taught to the students. To master technology and industry needs science mastery. Physics, as a part of science, has an important role in the development of technology since the products of technology strongly support further development of science. In order to develop the abilities to think critically and working collaboratively, education should be given to the students through the learning process using learning model which refers to a collaborative group discussion system called Collaborative Learning. Moreover, Collaborative learning for teaching Physics in vocational secondary school should be designed in such a way that the goal of teaching and learning can be achieved. Collaborative Learning is advantageous to improve the students’ creative thinking and collaborative working.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria
2014-11-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.
Using DVI To Teach Physics: Making the Abstract More Concrete.
ERIC Educational Resources Information Center
Knupfer, Nancy Nelson; Zollman, Dean
The ways in which Digital Video Interactive (DVI), a new video technology, can help students learn concepts of physics were studied in a project that included software design and production as well as formative and summative evaluation. DVI provides real-time motion, with the full-motion image contained to a window on part of the screen so that…
Stereo 3-D Vision in Teaching Physics
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2012-01-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…
Innovative Physics Teaching Conferences in the Czech Republic
NASA Astrophysics Data System (ADS)
Milbrandt, Rod
2010-09-01
Even today, with all of the instant communication technologies available, we are still often unaware of all that happens in other parts of the world. In the middle of Europe, in the Czech Republic, physics teachers have created a couple of innovative conferences—or workshops might be a better term. Having attended two of each, I think they're worth publicizing more broadly.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
To evolve a new methodology and system for teaching physics to students aspiring to become (or to become more competent as) technicians in a variety of technologies, this research and development effort was initiated. The project's thesis stemmed from a notion that the study of physics would be more accepted and assimilated by students if concepts…
The astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
de Macedo, Josué Antunes; Voelzke, Marcos Rincon
2014-11-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs
ERIC Educational Resources Information Center
San Diego State Coll., CA. Dept. of Industrial Arts.
Six teaching units which were developed by the 24 institute participants are given. "Wood Identification and Chemistry" covers the physical properties and structural features of hardwoods and softwoods. "Seasoning" explains air drying, kiln drying, and seven special lumber seasoning processes. "Research on Laminates"…
Hasegawa, Tomoyuki; Kojima, Haruna; Masu, Chisato; Fukushima, Yasuhiro; Kojima, Hironori; Konokawa, Kiminori; Isobe, Tomonori; Sato, Eisuke; Murayama, Hideo; Maruyama, Koichi; Umeda, Tokuo
2010-01-01
Physics-related subjects are important in the educational fields of radiological physics and technology. However, conventional teaching tools, for example texts, equations, and two-dimensional figures, are not very effective in attracting the interest of students. Therefore, we have created several multimedia educational materials covering radiological physics and technology. Each educational presentation includes several segments of high-quality computer-graphic animations designed to attract students' interest. We used personal computers (PCs) and commercial software to create and compile these. Undergraduate and graduate students and teachers and related professionals contributed to the design and creation of the educational materials as part of student research. The educational materials can be displayed on a PC monitor and manipulated with popular free software. Opinion surveys conducted in undergraduate courses at Kitasato University support the effectiveness of our educational tools in helping students gain a better understanding of the subjects offered and in raising their interest.
Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia
2012-09-01
This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.
Methodological pluralism in the teaching of Astronomy
NASA Astrophysics Data System (ADS)
de Macedo, Josué Antunes; Voelzke, Marcos Rincon
2015-04-01
This paper discusses the feasibility of using a teaching strategy called methodological pluralism, consisting of the use of various methodological resources in order to provide a meaningful learning. It is part of a doctoral thesis, which aims to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. It was offered an extension course at the "Federal Institution of Education, Science and Technology" in the North of Minas Gerais (FINMG), Campus Januaria, for thirty-two students of licentiate courses in Physics, Mathematics and Biological Sciences, involving themes of Astronomy, in order to search and contribute to improving the training of future teachers. The following aspects are used: the mixed methodology, with pre-experimental design, combined with content analysis. The results indicate the rates of students' prior knowledge in relation to Astronomy was low; meaningful learning indications of concepts related to Astronomy, and the feasibility of using digital resources Involving technologies, articulated with traditional materials in the teaching of Astronomy. This research sought to contribute to the initial teacher training, especially in relation to Astronomy Teaching, proposing new alternatives to promote the teaching of this area of knowledge, extending the methodological options of future teachers.
Using NASA Space Imaging Technology to Teach Earth and Sun Topics
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.
2011-12-01
We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.
Integrating computers in physics teaching: An Indian perspective
NASA Astrophysics Data System (ADS)
Jolly, Pratibha
1997-03-01
The University of Delhi has around twenty affiliated undergraduate colleges that offer a three-year physics major program to nearly five hundred students. All follow a common curriculum and submit to a centralized examination. This structure of tertiary education makes it relatively difficult to implement radical or rapid changes in the formal curriculum. The technology onslaught has, at last, irrevocably altered this; computers are carving new windows in old citadels and defining the agenda in teaching-learning environments the world over. In 1992, we formally introduced Computational Physics as a core paper in the second year of the Bachelor's program. As yet, the emphasis is on imparting familiarity with computers, a programming language and rudiments of numerical algorithms. In a parallel development, we also introduced a strong component of instrumentation with modern day electronic devices, including microprocessors. Many of us, however, would like to see not just computer presence in our curriculum but a totally new curriculum and teaching strategy that exploits, befittingly, the new technology. The current challenge is to realize in practice the full potential of the computer as the proverbial versatile tool: interfacing laboratory experiments for real-time acquisition and control of data; enabling rigorous analysis and data modeling; simulating micro-worlds and real life phenomena; establishing new cognitive linkages between theory and empirical observation; and between abstract constructs and visual representations.
Physics Instruction for Radiologic Technologists
ERIC Educational Resources Information Center
Chaney, Edward L.; And Others
1974-01-01
Discusses the Denver collaborative training program in radiologic technology with emphasis upon identification of core topics, preparation of quality instructional materials, and use of innovative teaching techniques, such as computer-assisted instruction and video tape presentations. Included is a 10-week course outline. (CC)
An alternative strategy to teach biomechanics: The long jump
NASA Astrophysics Data System (ADS)
de la Vega, G. J.; Aguilera, J. A.; Puzzella, A. E.; Mallamaci, C. C.
2007-11-01
The work develops an alternative methodology to teach the Physics principles of Parabolic Cannon Shot in the career of Bioengineering using instead the physic-biological relationship of the long jump performed in Athletics. This is a closer-to-reality example for this discipline, and it is a field- and computer laboratory-reproducible practice that is simple to do by using affordable technology, because the practice can be filmed by the students in a real setting for future analysis off classroom hours. The data extracted from the film can be analysed and used to learn the physics of motion of the participating athletes, and to draw conclusions from their hands-on experience. As a main factor of the proposal, this latter characteristic aims at motivating the students to work and participate within a collaborative framework, so as to motivate them to reason and respond the questionnaire issues that stems from a real experience. A significant improvement of knowledge transference is thus attained by promoting teaching (and self-teaching) through reality-based perception, analysis and learning). This work is undergoing its first stage, and its conclusions arise from the observations on team-work dynamics. Quantitative results are expected for the following stages which are under way of execution.
Translations on USSR Military Affairs, Number 1319
1977-12-22
basis of military economics. As is known, the modern scientific and technological revolution has strengthened even more the dependence of war and...investment spheres of an academy’s graduates must also be consider- ed The teaching of political and military economies would border on enlight - enment...dynamics of its military, economic, scientific and technological potential without mastering the changes in the industrial structure of physical
NASA Astrophysics Data System (ADS)
Lindgren, Richard; Thornton, Stephen
2010-02-01
Professional development courses offered in physical/Earth science and physics by the Department of Physics are delivered by different venues to accommodate the needs of the K-12 teaching community. The majority of teachers take our courses off-site or through our distance-learning web-based program on the Internet for endorsement or recertification, but with a gradually increasing number enrolling in our 30 credit Masters of Arts in Physics Education degree (MAPE) program. The purpose of the Masters program is to provide increased physics content to those teachers who feel inadequately prepared to teach high school physics. The increase in numbers and success of this program is partly due to the convenience of taking online web-based courses which is made possible by using the latest communication technologies on the high speed internet. There is also a residential component of the MAPE program, which requires the candidates to earn 14 credits of calculus-based core physics in residence in the summer at the University. We have graduated a total of 91 teachers since the program began in 2000. )
Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''
NASA Astrophysics Data System (ADS)
Kurki-Suonio, Kaarle
2011-03-01
This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.
Physics Learning Strategies with Multi-touch Technology
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, C.; Schofield, D.
2011-03-01
Advancements in technology have opened doorways to build new teaching and learning methods. Through conjunctive use of these technologies and methods, a classroom can be enriched to stimulate and improve student learning. The purpose of our research is to ascertain whether or not multi-touch technology enhances students' abilities to better comprehend and retain the knowledge taught in physics. At their basis, students learn via visual, aural, reading/writing, and kinesthetic styles. Labs provide for all but the aural style, while lectures lack kinesthetic learning. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style. By using multi-touch technology in lecture, not only can we accommodate kinesthetic learners, but we can also enrich the experiences of visual learners. Ushering to this wider array of students will hopefully lead to an increase in meaningful learning.
Training of Trainers (ToT) Program in Team Teaching
NASA Astrophysics Data System (ADS)
Febrianti, Werry; Wiryanto, Leo Hari
2018-01-01
The first year students in Sumatera Institute of Technology (ITERA) follow the first year program (TPB). They will learn about mathematics, physics, chemistry, and all of the basic subjects that they need for learning in ITERA. They will study in the big classrooms with different background department of their friends. This situation makes the lectures become more challenging in teaching their lessons. Besides the classrooms, the experience of the lecturers is still need to be improved because the lecturers are young and less of experience in teaching so that they need guidance from their senior lecturer. Because of that situation, Training of Trainers (ToT) program in team teaching is one of the solution that can increase the young lecturers’s ability so that they can teach well in the massal conditions of the classrooms. ToT program in team teaching indicated the better result than regular teaching.
The Value of Physical Examination: A New Conceptual Framework.
Zaman, Junaid; Verghese, Abraham; Elder, Andrew
2016-12-01
The physical examination defines medical practice, yet its role is being questioned increasingly, with statistical comparisons of diagnostic accuracy often the sole metric used against newer technologies. We set out to highlight seven ways in which the physical examination has value beyond diagnostic accuracy to reaffirm its place in the core skills of a physician and guide future research, teaching, and curriculum design. We show that this more comprehensive approach to the physical examination of its "utility" beyond that of reaching a diagnosis can be beneficial to both doctor and patient.
The astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Macedo, Josue
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Antunes de Macêdo, Josué
2015-08-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Research on the potential use of interactive materials on astronomy education
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Macedo, Josue
2016-07-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Zum Problem der Hochschulreform in Spanien: Einige ausgewahlte Daten.
ERIC Educational Resources Information Center
Val, Jose Cajide; Philipp, Rita Radl; Castro, Ana Porto
1998-01-01
Investigates the teaching, research, and management entailed in four new degree programs--physics, agricultural engineering, agricultural food-processing technology, and pharmacy courses--at Spain's University of Santiago de Compostela. Reports students' opinions of reforms in these courses, revealing dissatisfaction with facilities for practical…
Automated Explanation for Educational Applications.
ERIC Educational Resources Information Center
Suthers, Daniel D.
1991-01-01
Artificial intelligence techniques available for generating explanations for teaching purposes are surveyed, and the way in which they are combined in a computer program that provides explanations is described. The program responds to questions in the physical sciences. Potential contributions of this technology to computer-based education are…
ERIC Educational Resources Information Center
Sigford, Ann; Nelson, Nancy
1998-01-01
Presents a program for elementary teachers to learn how to use hand tools and household appliances to teach the principles of physics. The lesson helps teachers become familiar with simple hand tools, combat the apprehension of mechanical devices, and develop an interest in tools and technology. Session involves disassembling appliances to…
Initial Teacher Training Science Nature and Mathematics and the Teaching of Astronomy
NASA Astrophysics Data System (ADS)
Macedo, Josué Antunes de
2014-11-01
Although Astronomy is part of the National Curriculum Parameters, it is rarely taught adequately in basic education. In this regard, this research has been developed aiming to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. The following steps were taken: i) analysis of educational pedagogical projects (EPP) from licentiate courses at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (FINMG); ii) analysis of students' preconceptions on Astronomy and digital technologies; iii) elaboration of the course and application, developed under the education modality of blended learning, using the teaching proposal of methological pluralism; iv) application and analysis of the final questionnaire. The research subjects were constituted by thirty-two students of Physics, Mathematics and Biological Sciences courses. A mixed methodology with a pre-experimental delineation, combined with content analysis, has been used. The results showed the following: at the IFNMG, only the licentiate course in physics includes Astronomy content in several curriculum subjects; students´ rates of previous knowledge of Astronomy are low, and there are indications of meaningful learning of concepts related to Astronomy. This research sought to contribute to initial teacher training, particularly in relation to Astronomy teaching, proposing new alternatives to promote the teaching of this knowledge area. Furthermore, the intention was to respond to requests of institutions for implementation of blended learning or distance courses, since during the survey it was verified that, although discussions in forums are important, there is a need for such courses to promote on-site meetings conducting practical and manipulative activities.
UNESCO active learning approach in optics and photonics leads to significant change in Morocco
NASA Astrophysics Data System (ADS)
Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.
2014-07-01
There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.
The Hypothesis-Driven Physical Examination.
Garibaldi, Brian T; Olson, Andrew P J
2018-05-01
The physical examination remains a vital part of the clinical encounter. However, physical examination skills have declined in recent years, in part because of decreased time at the bedside. Many clinicians question the relevance of physical examinations in the age of technology. A hypothesis-driven approach to teaching and practicing the physical examination emphasizes the performance of maneuvers that can alter the likelihood of disease. Likelihood ratios are diagnostic weights that allow clinicians to estimate the post-probability of disease. This hypothesis-driven approach to the physical examination increases its value and efficiency, while preserving its cultural role in the patient-physician relationship. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploration of optical classroom teaching by network platform
NASA Astrophysics Data System (ADS)
Jiao, Zheng; Ma, Kun
2017-08-01
The investigation shows that the difficulties students encounter in the course of optics are mainly due to the abstraction of the content of the optical course, and the problem that the description of the physical phenomenon and process is difficult to show in the classroom teaching. We consider to integrate information technology with classroom teaching. Teachers can set up course websites and create more teaching resources, such as videos of experimental processes, design of simulated optical paths, mock demonstration of optical phenomena, and so on. Teachers can use the courseware to link the resources of the website platform, and display the related resources to the students. After class, students are also able to learn through the website, which is helpful to their study.
Impact E-Learning Platform Moodle on the Physic's Learning Process in the High School's Students
NASA Astrophysics Data System (ADS)
Torres-Montealban, Jonas; Ruiz-Chavarria, Gregorio; Gomez-Lozoya, Enrique Armando
2011-03-01
As a didactic proposal, moodle e-learning platform was implemented in one of two Physics High School's group at UACH, in order to show how the use of new technologies can improve the learning progress linked to physics concepts. As a result, the first group worked at the same time with inside class activities as well as outside resources from the moodle e-platform. The second group only worked with inside class activities. This teaching application was developed in six sections. Section I defines the educational framework. Section II identifies the key physic's concepts to be studied in each proposed activity. Section III describes the didactic model. Section IV displays the compared results between similarities and differences in both groups. Section VI shows the gathered information in order to be discussed as a topic related on how new technologies improve the Physic's learning process in the high school' students.
Interactive Materials In The Teaching Of Astronomy
NASA Astrophysics Data System (ADS)
Macêdo, J. A.; Voelzke, M. R.
2014-10-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Science. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, research locus of its Campus Januária; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students prior knowledge in relation to astronomy was low; an evidence of meaningful learning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs.
ERIC Educational Resources Information Center
Progressive Architecture, 1978
1978-01-01
The Brooklyn Children's Museum, the world's oldest children's museum, has a new home underground. The museum's teaching collection of artifacts is particularly strong in the areas of ethnology, natural history, and technology. Objects relating to these fields are organized according to the historic physical divisions of fire, air, earth, and…
Higher Education: Teaching about the Colonization of Space.
ERIC Educational Resources Information Center
Huebner, Jay S.
1980-01-01
Describes an upper-division science course offered at the University of North Florida, Colonization of Space. The course presents several current issues in the areas of physical science and includes topics in science and technology likely to influence the future lives of present college students. (CS)
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
NASA Astrophysics Data System (ADS)
Takada, Tohru; Nakamura, Jin; Suzuki, Masaru
All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.
ERIC Educational Resources Information Center
Yee, Roger
1974-01-01
Built into 26 new Chicago school designs are two features: physical plants offering educators latitude to remove nearly all internal partitions for open plan teaching or to return to a traditional "eggorate" format if need be; and a new fire control technology placing a building on electronic alert for immediate reaction to dangerous symptoms with…
Teaching Oscillations by a Model of Nanoresonator
ERIC Educational Resources Information Center
Lindell, A.; Viiri, J.
2009-01-01
Nanoscience offers fascinating opportunities for science education as it links the achievements of modern technology to traditional models of science. In this article we present a nanotechnology orientated lesson on oscillations, suitable for physics courses at high schools and universities. The focus of the lesson is in forced oscillations on a…
Information Literacy: An Online Course for Student Library Assistants
ERIC Educational Resources Information Center
Lincoln, Margaret
2009-01-01
As technology advances continue to impact K-12 schools, online education options offer alternative choices for both teaching and learning. Library media specialists, long committed to providing physical and intellectual access to instructional materials, have responded to changing needs in this online world. They had previously created a virtual…
A MOOC Based on Blended Pedagogy
ERIC Educational Resources Information Center
Rayyan, S.; Fredericks, C.; Colvin, K. F.; Liu, A.; Teodorescu, R.; Barrantes, A.; Pawl, A.; Seaton, D. T.; Pritchard, D. E.
2016-01-01
We describe three iterations of a Massive Open Online Course (MOOC) developed from online preparation materials for a reformed introductory physics classroom at the Massachusetts Institute of Technology, in which the teaching staff interact with small groups of students doing problems using an expert problem-solving pedagogy. The MOOC contains an…
Virtual Reality: Is It for Real?
ERIC Educational Resources Information Center
Dowding, Tim J.
1994-01-01
Defines virtual reality and describes its application to psychomotor skills training. A description of a system that could be used to teach a college course in physical therapy, including the use of miniature computer workstation, sensory gloves, a programmable mannequin, and other existing technology, is provided. (Contains 10 references.) (KRN)
Expanding Learning Opportunities with Transmedia Practices: "Inanimate Alice" as an Exemplar
ERIC Educational Resources Information Center
Fleming, Laura
2013-01-01
The proliferation of digital and networking technologies enables us to rethink, restructure, and redefine teaching and learning. Transmedia storytelling takes advantage of the rapid convergence of media and allows teachers and learners to participate in rich virtual (and physical) environments that have been shown to foster students' real…
Integrating an Awareness of Selfhood and Society into Virtual Learning
ERIC Educational Resources Information Center
Stricker, Andrew, Ed.; Calongne, Cynthia, Ed.; Truman, Barbara, Ed.; Arenas, Fil, Ed.
2017-01-01
Recent technological advances have opened new platforms for learning and teaching. By utilizing virtual spaces, more educational opportunities are created for students who cannot attend a physical classroom environment. "Integrating an Awareness of Selfhood and Society into Virtual Learning" is a pivotal reference source that discusses…
A Multi-Media Approach to Teaching Elementary School Gymnastics.
ERIC Educational Resources Information Center
Annarino, Anthony A.; And Others
The introduction of the open classroom concept, individualized instruction, independent study, use of technology, and other innovations provide supportive evidence that there may be new ways to minimize the limitations imposed on elementary school physical education programs by teachers, students' ability, or facilities. In view of this, a…
Introducing the History of Science at the French Middle School
ERIC Educational Resources Information Center
Fauque, Danielle M. E.
2009-01-01
In scientific teaching, especially in physics and chemistry, some historical aspects have been introduced at the secondary level in France, since 1993. Particularly, in 2007, the syllabuses of 11'-15' years old level ("college") propose precise activities in history of science and technology. Detailed guidance has been distributed in…
A Digital Ecosystems Model of Assessment Feedback on Student Learning
ERIC Educational Resources Information Center
Gomez, Stephen; Andersson, Holger; Park, Julian; Maw, Stephen; Crook, Anne; Orsmond, Paul
2013-01-01
The term ecosystem has been used to describe complex interactions between living organisms and the physical world. The principles underlying ecosystems can also be applied to complex human interactions in the digital world. As internet technologies make an increasing contribution to teaching and learning practice in higher education, the…
The Teaching Effectiveness of a Relevant Physics Course
NASA Astrophysics Data System (ADS)
Hobson, Art
1998-04-01
If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.
The Elements of Teaching Nonscientists: Make it Conceptual, Social, Modern, and Interactive
NASA Astrophysics Data System (ADS)
Hobson, Art
2001-03-01
Physics literacy for all students should be a top priority for every physics department. Reasons include each department's self-interest, and the health of our profession. But most importantly, as the American Association for the Adancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." Because nonscientists have little need and less desire for algebra-based physics problems, these courses should be conceptual (non-algebraic) although they should certainly be numerate. Since 1976, I have developed and taught a course of this type that includes most of the major principles of physics. Its success has stemmed from (1) a conceptual approach, (2) inclusion of relevant societal topics such as energy resources, scientific methodology, pseudoscience, global warming, and technological risk, (3) modern physics topics that occupy 50instruction techniques even in (especially in!) classes of over 200. I will describe this course and present interactive teaching ideas for one socially relevant topic: transportation and energy efficiency. A textbook is available: Physics: Concepts and Connections, by Art Hobson (Prentice Hall, 2nd Edition 1999). Further info: http://www.uark.edu/depts/physics/about/hobson.html
The Elements of Teaching Nonscientists: Make it Conceptual, Social, Modern, and Interactive
NASA Astrophysics Data System (ADS)
Hobson, Art
2000-04-01
Physics literacy for all students should be a top priority for every physics department. Reasons include each department's self-interest, and the health of our profession. But most importantly, as the American Association for the Adancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." Because nonscientists have little need and less desire for algebra-based physics problems, these courses should be conceptual (non-algebraic) although they should certainly be numerate. Since 1976, I have developed and taught a course of this type that includes most of the major principles of physics. Its success has stemmed from (1) a conceptual approach, (2) inclusion of relevant societal topics such as energy resources, scientific methodology, pseudoscience, global warming, and technological risk, (3) modern physics topics that occupy 50instruction techniques even in (especially in!) classes of over 200. I will describe this course and conduct an "active learning" demonstration of ideas for teaching one socially relevant topic: transportation and energy efficiency. A textbook is available: Physics: Concepts and Connections, by Art Hobson (Prentice Hall, 2nd Edition 1999). Further info: http://www.uark.edu/depts/physics/about/hobson.html
What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics
NASA Astrophysics Data System (ADS)
Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj
Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.
Use of information and communication technologies for teaching physics at the Technical University
NASA Astrophysics Data System (ADS)
Polezhaev, V. D.; Polezhaeva, L. N.; Kamenev, V. V.
2017-01-01
The paper discusses the ways to improve methods and algorithms of the automated control of knowledge, approaches to the establishment and effective functioning of electronic teaching complexes, which include tests of a new generation, and their use is not limited control purpose only. Possibilities of computer-based testing system SCIENTIA are presented. This system is a tool to automate the control of knowledge that can be used for the assessment and monitoring of students' knowledge in different types of exams, self-control of students' knowledge, making test materials, creating a unified database of tests on a wide range of subjects etc. Successful operation of informational system is confirmed in practice during the study of the course of physics by students at Technical University.
ERIC Educational Resources Information Center
Rumble, Greville; Koul, Badri N
2007-01-01
As defined by the Commonwealth of Learning (COL), Open Schooling involves "the physical separation of the school-level learner from the teacher, and the use of unconventional teaching methodologies, and information and communications technologies (ICTs) to bridge the separation and provide the education and training". Within this…
ERIC Educational Resources Information Center
Trevathan, Jarrod; Myers, Trina
2013-01-01
Process-Oriented Guided Inquiry Learning (POGIL) is a technique used to teach in large lectures and tutorials. It invokes interaction, team building, learning and interest through highly structured group work. Currently, POGIL has only been implemented in traditional classroom settings where all participants are physically present. However,…
The Use of Video Technology in Science Teaching: A Vehicle for Alternative Assessment.
ERIC Educational Resources Information Center
Lawrence, Michael
1994-01-01
A secondary physics teacher used video assessments in science as an economical assessment form that required students to use the scientific method, explanation, feedback, critical thinking, and metacognition. When using video assessment in optics, he found his scoring was not biased and that students improved their performance following video…
The Value of ICT from a Learning Game-Playing Perspective
ERIC Educational Resources Information Center
McNeill, Michael C.; Fry, Joan M.
2012-01-01
This study evaluated an Information and Communication Technology (ICT) case study in physical education teacher education from a student perspective. Action research evaluated the impact of a range of ICT options on student teachers' learning to play as well as learning to teach games in a secondary school context. Although multiple media were…
Tablet Computer Literacy Levels of the Physical Education and Sports Department Students
ERIC Educational Resources Information Center
Hergüner, Gülten
2016-01-01
Education systems are being affected in parallel by newly emerging hardware and new developments occurring in technology daily. Tablet usage especially is becoming ubiquitous in the teaching-learning processes in recent years. Therefore, using the tablets effectively, managing them and having a high level of tablet literacy play an important role…
The Infrared Thermometer in School Science: Teaching Physics with Modern Technologies
ERIC Educational Resources Information Center
Girwidz, Raimund; Ireson, Gren
2011-01-01
Infrared thermometers measure temperature from a distance, using the infrared radiation emitted by all objects. These so-called non-contact thermometers make a wide variety of temperature measurement and monitoring activities accessible to school-age students. Portable hand-held sensors also enable new or simplified investigations to be carried…
Affordance Analysis of Google+ Features: Advancing Teaching and Learning in Higher Education
ERIC Educational Resources Information Center
Zawawi, Boshra F.; Al Abri, Maimoona H.; Dabbagh, Nada
2017-01-01
This paper aims to analyze the affordances of the digital technology (DT) Google+. The analysis process was informed by the theory of affordances. Accordingly, this paper highlighted the different types of affordances of Google+ features, i.e., functional, cognitive, physical, sensory, emotional, and social. In addition, the authors reviewed…
Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics
ERIC Educational Resources Information Center
Sahar-Halbany, Adi; Vance, Jennifer M.; Drain, Charles Michael
2011-01-01
As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights…
Loop-the-Loop: Bringing Theory into Practice
ERIC Educational Resources Information Center
Suwonjandee, N.; Asavapibhop, B.
2012-01-01
During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…
Ultrasound imaging in medical student education: Impact on learning anatomy and physical diagnosis.
So, Sokpoleak; Patel, Rita M; Orebaugh, Steven L
2017-03-01
Ultrasound use has expanded dramatically among the medical specialties for diagnostic and interventional purposes, due to its affordability, portability, and practicality. This imaging modality, which permits real-time visualization of anatomic structures and relationships in vivo, holds potential for pre-clinical instruction of students in anatomy and physical diagnosis, as well as providing a bridge to the eventual use of bedside ultrasound by clinicians to assess patients and guide invasive procedures. In many studies, but not all, improved understanding of anatomy has been demonstrated, and in others, improved accuracy in selected aspects of physical diagnosis is evident. Most students have expressed a highly favorable impression of this technology for anatomy education when surveyed. Logistic issues or obstacles to the integration of ultrasound imaging into anatomy teaching appear to be readily overcome. The enthusiasm of students and anatomists for teaching with ultrasound has led to widespread implementation of ultrasound-based teaching initiatives in medical schools the world over, including some with integration throughout the entire curriculum; a trend that likely will continue to grow. Anat Sci Educ 10: 176-189. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Sheldon, Peter; Wellington, Tracey
2003-03-01
The Physics Department at Randolph-Macon Woman's College, a liberal arts women's college of 720, has traditionally turned out approximately 0.6 majors/year. We have invigorated the program by adding community (e.g. SPS, physical space, organized activities), adding a significant technical component (e.g. web-assisted and computer interfaced labs and more technology in the classes [1]), and incorporating new learning techniques (JITT, Physlets, Peer Instruction [2], Interactive DVD's, and using the Personal Response System [3]). Students have responded well as evidenced by significant increases in enrollments as well as strong scores on the FCI. As an offshoot of this original project supported by the NSF, we have applied some of these teaching methods to teach younger children and teachers of younger children. In this presentation, we will discuss the implementation of the new curricular developments and the specific changes we have seen and hope to see in student learning. [1] This work is supported in part by the NSF CCLI Program under grant DUE-9980890. [2] See, for example, the project Galileo website http://galileo.harvard.edu for a description of all of these techniques. [3] The Personal Response System is a wireless response system made by Educue, www.educue.com.
NASA Astrophysics Data System (ADS)
1998-11-01
Undergraduate physics programmes for the 21st century were under discussion at a recent event held in Arlington, USA, open to two or three members of the physics faculties of universities from across the whole country. The conference was organized by the American Association of Physics Teachers with co-sponsorship from the American Institute of Physics, the American Physical Society and Project Kaleidoscope. Among the various aims were to learn about physics departments that have successfully revitalized their undergraduate physics programmes with innovative introductory physics courses and multi-track majors programmes. Engineers and life scientists were to be asked directly how physics programmes can better serve their students, and business leaders would be speaking on how physics departments can help to prepare their students for the diverse careers that they will eventually follow. It was planned to highlight ways that departments could fulfil their responsibilities towards trainee teachers, to identify the resources needed for revitalizing a department's programme, and to develop guidelines and recommendations for a funding programme to support collaborative efforts among physics departments for carrying out the enhancements required. More details about the conference can be found on the AAPT website (see http://www.aapt.org/programs/rupc.html). Meanwhile the UK's Higher Education Funding Council has proposed a two-pronged approach to the promotion of high quality teaching and learning, as well as widening participation in higher education from 1999-2000. A total of £60m should be available to support these initiatives by the year 2001-2002. As part of this scheme the Council will invite bids from institutions to support individual academics in enhancing learning and teaching, as well as in recognition of individual excellence. As with research grants, such awards would enable staff to pursue activities such as the development of teaching materials, textbooks and technology applications, the improvement of delivery methods and work on curriculum and assessment practice. In addition, around half of the funding total will be set aside to widen participation for all students who can benefit from higher education, with assistance to ensure that those students succeed.
Top 10 Research Questions Related to Teaching Games for Understanding.
Memmert, Daniel; Almond, Len; Bunker, David; Butler, Joy; Fasold, Frowin; Griffin, Linda; Hillmann, Wolfgang; Hüttermann, Stefanie; Klein-Soetebier, Timo; König, Stefan; Nopp, Stephan; Rathschlag, Marco; Schul, Karsten; Schwab, Sebastian; Thorpe, Rod; Furley, Philip
2015-01-01
In this article, we elaborate on 10 current research questions related to the "teaching games for understanding" (TGfU) approach with the objective of both developing the model itself and fostering game understanding, tactical decision making, and game-playing ability in invasion and net/wall games: (1) How can existing scientific approaches from different disciplines be used to enhance game play for beginners and proficient players? (2) How can state-of-the-art technology be integrated to game-play evaluations of beginners and proficient players by employing corresponding assessments? (4) How can complexity thinking be utilized to shape day-to-day physical education (PE) and coaching practices? (5) How can game making/designing be helpfully utilized for emergent learning? (6) How could purposeful game design create constraints that enable tactical understanding and skill development through adaptive learning and distributed cognition? (7) How can teacher/coach development programs benefit from game-centered approaches? (8) How can TGfU-related approaches be implemented in teacher or coach education with the goal of facilitating preservice and in-service teachers/coaches' learning to teach and thereby foster their professional development from novices to experienced practitioners? (9) Can the TGfU approach be considered a helpful model across different cultures? (10) Can physical/psychomotor, cognitive, affective/social, and cultural development be fostered via TGfU approaches? The answers to these questions are critical not only for the advancement of teaching and coaching in PE and sport-based clubs, but also for an in-depth discussion on new scientific avenues and technological tools.
Top 10 Research Questions Related to Teaching Games for Understanding
Memmert, Daniel; Almond, Len; Bunker, David; Butler, Joy; Fasold, Frowin; Griffin, Linda; Hillmann, Wolfgang; Hüttermann, Stefanie; Klein-Soetebier, Timo; König, Stefan; Nopp, Stephan; Rathschlag, Marco; Schul, Karsten; Schwab, Sebastian; Thorpe, Rod; Furley, Philip
2015-01-01
In this article, we elaborate on 10 current research questions related to the “teaching games for understanding” (TGfU) approach with the objective of both developing the model itself and fostering game understanding, tactical decision making, and game-playing ability in invasion and net/wall games: (1) How can existing scientific approaches from different disciplines be used to enhance game play for beginners and proficient players? (2) How can state-of-the-art technology be integrated to game-play evaluations of beginners and proficient players by employing corresponding assessments? (4) How can complexity thinking be utilized to shape day-to-day physical education (PE) and coaching practices? (5) How can game making/designing be helpfully utilized for emergent learning? (6) How could purposeful game design create constraints that enable tactical understanding and skill development through adaptive learning and distributed cognition? (7) How can teacher/coach development programs benefit from game-centered approaches? (8) How can TGfU-related approaches be implemented in teacher or coach education with the goal of facilitating preservice and in-service teachers/coaches’ learning to teach and thereby foster their professional development from novices to experienced practitioners? (9) Can the TGfU approach be considered a helpful model across different cultures? (10) Can physical/psychomotor, cognitive, affective/social, and cultural development be fostered via TGfU approaches? The answers to these questions are critical not only for the advancement of teaching and coaching in PE and sport-based clubs, but also for an in-depth discussion on new scientific avenues and technological tools. PMID:26452580
AAPT/PTRA -- A Part of the Solution
NASA Astrophysics Data System (ADS)
Amann, George; Mader, Jan; Matsler, Karen Jo; Nelson, Jim
2011-12-01
A train barrels directly toward a stone wall. It looks like a disaster is inevitable. Suddenly, a group of railroad workers run to a switch that changes the direction of the train. They reroute the train onto a new track by throwing the switch just in time. Perhaps you had not known what to do, nor were you strong enough to do it yourself, but you now see that it was not a forgone conclusion that the train had to run into the wall. In this scenario, the train represents precollege physics education in the United States. The wall represents the classroom situation that many teachers find when they are assigned to teach physics. These teachers often find themselves teaching a subject for which they were not adequately prepared. It is not their fault, but rather the result of the necessity of having a teacher assigned to the class. The United States needs students to be prepared for a future in which science and technology will be more and more a part of everyone's life, and there are not enough well-prepared physics teachers graduating from colleges and universities. So the train is headed toward the wall. "Who are the strong railroad workers?" you ask. These are the 200 Physics Teaching Resource Agents (PTRAs), who for the past 25 years have been selected and trained by AAPT to do workshops for practicing physics and physical science teachers. Thus AAPT celebrated the PTRA silver anniversary during the 2010 AAPT meeting in Portland. And APS recognized this achievement with their 2011 Excellence in Physics Education Award.2
"Physics and Life" - Teachers Meet Scientists at Major EIROforum Event [
NASA Astrophysics Data System (ADS)
2003-11-01
More than 400 selected delegates from 22 European countries will take part in "Physics on Stage 3" , organised by the EIROforum [1] research organisations (CERN, EFDA, EMBL, ESA, ESO, ESRF, ILL) at the ESA ESTEC site (Noordwijk, The Netherlands). It is the culmination of a year-long educational programme and is a central event during the EC-sponsored European Science and Technology Week (November 8-15, 2003). Following the vastly successful preceeding events in 2000 and 2002, the main theme this year is "Physics and Life", reflecting the decision to broaden the Physics on Stage activities to encompass more of the natural sciences within an interdisciplinary approach. As before, European teachers, scientists, curricula organisers and others connected to the national education systems in Europe will gather with the main goal of exploring solutions to stimulate the interest of young people in science, by means of exciting and innovative teaching methods and materials. The rich one-week programme has many components: spectacular and original performances by students and professional actors, intensive encounters at a central fair where each country will present the latest developments from its teaching community at their stands, workshops about a host of crucial themes related to the central mission of this programme, seminars where EIROforum scientists and experienced high school teachers get together to discuss new teaching opportunities based on the latest results from front-line research projects at Europe's leading science centres, as well as a publishers fair that will also serve as an international exchange for new educational materials. A mystery cultural event will surprise everyone with its originality. And last but not least, the annual European Science Teaching Awards - the highest distinction in this field - will be presented at the end of the meeting. "Physics on Stage" is a joint project organised by EIROforum, together with the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE) . The project is funded in part by the European Commission and takes place under the auspices of the European Science and Technology Week 2003. It is directed by the EIROforum Working Group on Outreach that brings together key members of the seven organisations' respective outreach departments. The "Physics on Stage 3" festival will be opened on Monday, November 10, by His Royal Highness, Prince Johan Friso of the Netherlands. Among the distinguished guests will also be Her Excellency, Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, as well as several Directors-General of the EIROforum organisations. This "Physics on Stage 3" festival is the most visible event within a year-long programme with the very active involvement of National Committees in two dozen European countries, each of which organised national events or competitions, during which the 400 delegates to the festival were selected for their outstanding projects to promote science teaching. Among the many entries, for example, two young physicists from Germany focus on the beauty of physical phenomena, producing fractals and demonstrating the "Theremin", the only musical instrument played without being touched. In another demonstration, a team from the UK explore the nature of sound and the theme of genetics through drama, music and physical theatre. In this third international festival of physics education, biological and biochemical themes will also play a major role. As usual, the colourful centrepiece of the week is the Fair. Every country has its own stand where delegates show their new, exciting and surprising projects, innovative software, elegant experiments, etc. In this highly inspiring atmosphere, the teachers exchange practical experience and insights, learning from each other and preparing themselves to bring back to their respective countries a rich harvest of new ideas and inspiration for better teaching of science. "Physics on Stage 3" is thus a unique international event, both in terms of international exchange, opportunities for collaboration, as well as encounters between the still all too separate worlds of school education and state-of-the-art science and technology. The organisers cordially invite journalists to take part in this spectacular event, an extraordinary opportunity in political as well as in cultural, scientific and visual terms.
NASA Astrophysics Data System (ADS)
Zadkov, Victor N.; Koroteev, Nikolai I.
1995-10-01
An experience of managing the continuing education and retraining programs at the International Laser Center (ILC) of Moscow State University is discussed. The offered programs are in a wide range of areas, namely laser physics and technology, laser biophysics and biomedicine, laser chemistry, and computers in laser physics. The attendees who are presumably scientists, engineers, technical managers, and graduate students can join these programs through the annual ILC term (6 months), individual training and research programs (up to a year), annual ILC Laser Graduate School, graduate study, and post-docs program, which are reviewed in the paper. A curriculum that includes basic and specialized courses is described in detail. A brief description of the ILC Laser Teaching and Computer Labs that support all the educational courses is given as well.
The material co-construction of hard science fiction and physics
NASA Astrophysics Data System (ADS)
Hasse, Cathrine
2015-12-01
This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.
Blackboard Technologies: A Vehicle to Promote Student Motivation and Learning in Physics
ERIC Educational Resources Information Center
Larkin, Teresa L.; Belson, Sarah Irvine
2005-01-01
The Blackboard Learning System™, a Web-based server software system, is widely used on many college and university campuses today. This paper explores the use of the Blackboard system as a teaching and learning tool. Particular emphasis is placed on the online chat feature available through the Blackboard interface. During the fall 2002 pilot…
ERIC Educational Resources Information Center
Maza, Paul Sadiri
2010-01-01
In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a…
Teaching Physics to Deaf College Students in a 3-D Virtual Lab
ERIC Educational Resources Information Center
Robinson, Vicki
2013-01-01
Virtual worlds are used in many educational and business applications. At the National Technical Institute for the Deaf at Rochester Institute of Technology (NTID/RIT), deaf college students are introduced to the virtual world of Second Life, which is a 3-D immersive, interactive environment, accessed through computer software. NTID students use…
ERIC Educational Resources Information Center
Juuti, Kalle; Lavonen, Jari
2016-01-01
Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine…
Connecting Research to Teaching: Evaluating and Writing Dynamic Geometry Tasks
ERIC Educational Resources Information Center
Trocki, Aaron
2014-01-01
The advent of dynamic geometry software has changed the way students draw, construct, and measure by using virtual tools instead of or along with physical tools. Use of technology in general and of dynamic geometry in particular has gained traction in mathematics education, as evidenced in the Common Core State Standards for Mathematics (CCSSI…
ERIC Educational Resources Information Center
Murphy, Maureen Kendrick
2010-01-01
In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…
ERIC Educational Resources Information Center
Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro
2016-01-01
This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…
ERIC Educational Resources Information Center
Jones, Ida M.
2011-01-01
In the online environment, students and instructors are virtually, but not physically, present in the same environment. In the online environment, technology mediates learning: it mediates communications and information transfer between the student and the instructor, between the student and the content, and among the students. Critics fear that…
Science in Cinema. Teaching Science Fact through Science Fiction Films.
ERIC Educational Resources Information Center
Dubeck, Leroy W.; And Others
Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…
ERIC Educational Resources Information Center
National Academies Press, 2013
2013-01-01
Spurred on by new discoveries and rapid technological advances, the capacity for life science research is expanding across the globe-and with it comes concerns about the unintended impacts of research on the physical and biological environment, human well-being, or the deliberate misuse of knowledge, tools, and techniques to cause harm. This…
ERIC Educational Resources Information Center
Ramírez Díaz, Mario H.; Nieto Betance, Gabriela; García Trujillo, Luís Antonio; Chávez-Campos, David A.
2015-01-01
In its program of studies for preschool level, the Secretary of Public Education of Mexico promoted development of four standards of science: Scientific knowledge, applications of scientific knowledge and technology, skills associated to science, and attitudes associated to science. However, to develop this skills and reach out the standards there…
An Innovative Method to Teach Physics to 4-H Students
ERIC Educational Resources Information Center
Raju, P. K.; Sankar, Chetan S.; Cook, John A.
2004-01-01
The need to impart technological literacy to youth is vital for a state such as Alabama, since it has historically received relatively low levels of Federal research and development funding (EPSCOR). Thirty five counties in the state of Alabama have less than 10% of the general population with college degrees. As our society becomes more and more…
The effectiveness of physical models in teaching anatomy: a meta-analysis of comparative studies.
Yammine, Kaissar; Violato, Claudio
2016-10-01
There are various educational methods used in anatomy teaching. While three dimensional (3D) visualization technologies are gaining ground due to their ever-increasing realism, reports investigating physical models as a low-cost 3D traditional method are still the subject of considerable interest. The aim of this meta-analysis is to quantitatively assess the effectiveness of such models based on comparative studies. Eight studies (7 randomized trials; 1 quasi-experimental) including 16 comparison arms and 820 learners met the inclusion criteria. Primary outcomes were defined as factual, spatial and overall percentage scores. The meta-analytical results are: educational methods using physical models yielded significantly better results when compared to all other educational methods for the overall knowledge outcome (p < 0.001) and for spatial knowledge acquisition (p < 0.001). Significantly better results were also found with regard to the long-retention knowledge outcome (p < 0.01). No significance was found for the factual knowledge acquisition outcome. The evidence in the present systematic review was found to have high internal validity and at least an acceptable strength. In conclusion, physical anatomical models offer a promising tool for teaching gross anatomy in 3D representation due to their easy accessibility and educational effectiveness. Such models could be a practical tool to bring up the learners' level of gross anatomy knowledge at low cost.
TH-E-201-00: Teaching Radiology Residents: What, How, and Expectation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
Soomro, Kamal Ahmed; Kale, Ugur; Curtis, Reagan; Akcaoglu, Mete; Bernstein, Malayna
2018-01-01
The phenomenon of "digital divide" is complex and multidimensional, extending beyond issues of physical access. The purpose of this study was to develop a scale to measure a range of factors related to digital divide among higher education faculty and to evaluate its reliability and validity. Faculty's Information and Communication Technology Access (FICTA) scale was tested and validated with 322 faculty teaching in public and private sector universities. Principal components analysis with varimax rotation confirmed an 8-factor solution corresponding to various dimensions of ICT access. The 57-item FICTA scale demonstrated good psychometric properties and offers researchers a tool to examine faculty's access to ICT at four levels - motivational, physical, skills, and usage access.
Views about Learning Physics Held by Physics Teachers with Differing Approaches to Teaching Physics
ERIC Educational Resources Information Center
Mulhall, Pamela; Gunstone, Richard
2012-01-01
Research into teacher thinking offers potential insights into ways of promoting better teaching. A recent qualitative study explored the views about physics, and learning and teaching physics of a group of teachers whose classroom practice was "traditional" and a group who used conceptual change teaching approaches. This paper focuses on the views…
ERIC Educational Resources Information Center
Seung, Eulsun; Bryan, Lynn A.; Haugan, Mark P.
2012-01-01
In this study, we investigated the pedagogical content knowledge (PCK) that physics graduate teaching assistants (TAs) developed in the context of teaching a new introductory physics curriculum, "Matter and Interactions" ("M&I"). "M&I" is an innovative introductory physics course that emphasizes a unified framework for understanding the world and…
TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
TH-E-201-03: A Radiology Resident’s Perspectives of Physics Teaching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, A.
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
Technology Integration Practice as a Function of Pedagogical Expertise.
ERIC Educational Resources Information Center
Pierson, Melissa E.
2001-01-01
Investigated how teachers at various levels of technology use and teaching abilities used technology and how technology use related to general teaching practice. Highlights include teachers' personal definitions of technology integration; planning habits for technology inclusion; strategies for teaching about technology that matched teacher…
Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?
NASA Astrophysics Data System (ADS)
Vick, Matthew
2010-10-01
From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.
Development of a Physical Education Teaching Efficacy Scale
ERIC Educational Resources Information Center
Humphries, Charlotte A.; Hebert, Edward; Daigle, Kay; Martin, Jeffrey
2012-01-01
Relationships have been found between teacher efficacy and many teaching and learning variables, but few researchers have examined teaching efficacy in physical education. The instrument reported here, the Physical Education Teaching Efficacy Scale, was developed based on the teaching efficacy literature, existing scales, and National Association…
Views about Physics Held by Physics Teachers with Differing Approaches to Teaching Physics
ERIC Educational Resources Information Center
Mulhall, Pamela; Gunstone, Richard
2008-01-01
Physics teachers' approaches to teaching physics are generally considered to be linked to their views about physics. In this qualitative study, the views about physics held by a group of physics teachers whose teaching practice was traditional were explored and compared with the views held by physics teachers who used conceptual change approaches.…
TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sensakovic, W.
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
Anthropologische Grundlegung der Leibeserziehung
NASA Astrophysics Data System (ADS)
Grupe, Ommo
1989-03-01
An anthropological basis for physical education claims to go beyond forms and rationales of physical exercise and sport that are specific to particular cultures, and to elaborate the significance of movement, games and sports for all people, deducing this from the `essence' of man. From the standpoint of modern philosophical anthropology this article attempts to treat important questions of physicalness, movement and play, starting from the principle of man's freedom of action and decision. The resultant anthropological insights alone certainly do not permit of conclusions with a practical application in the teaching of physical education. There is however no doubt that they are relevant to present-day developments — the expansion of sport, diminished physical activity in the age of technology, the lack of vital experiences and the frequent obstruction by our culture of access to all things physical.
Yassi, A; Miller, B
1990-01-01
Medical technologists from four clinical laboratories in a large teaching hospital were surveyed for their perceptions of occupational stress or job dissatisfaction concomitant with the advent of major technological and procedural change. Overall the data support the interpretation of excessive stress and job dissatisfaction. More than one-third (37.7%) of the laboratory personnel experienced psychological symptoms of occupational stress; 46.4% had experienced physical symptoms of stress. There was a marked and significant increase in reports of adverse effects among the group of laboratory workers subjected to the most extensive technological changes. Main components of the stress difference related to work overload, feelings of uncertainty in the face of new technology, lack of direction from supervisors and lack of influence on management. Age, type of shift worked and years of employment were associated with physical and psychological manifestations of stress. Implications and recommendations for laboratory workers, hospital administrators and educators are discussed.
Going deeper: teaching more than the mechanics
NASA Astrophysics Data System (ADS)
Bruck, R. A.
2013-02-01
What follows is a description of an introductory holography course titled "Lasers and Holography," taught by the author at Columbia College Chicago since 1997. Because this is a science class at an arts college with an open admissions policy, these students have many different levels of education, dissimilar backgrounds, and varied fields of interest. There are few science majors. Therefore, specific learning objectives are developed. The author contends that for many of these students it is not enough to teach the physics of making holograms. To inspire and instill a lifelong appreciation for science and physics, one must go still deeper. Students need to be touched on more than just an intellectual level. Consequently, a broader approach is used. Ultimately, it may stir students to want to learn more, and to be confident they can. The paper addresses: 1) Becoming aware of one's individual state of seeing 2) Perceptual illusions: their impact on the advancement of science 3) Promoting artistic applications and exposing students to fine art holography 4) Teaching holography as an information processing, as well as an image-making technology 5) Introducing and exploring philosophical implications of holographic principles.
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
The earth in technological balance
NASA Astrophysics Data System (ADS)
Stout, Dorothy L.
1998-08-01
The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.
Turkish Physics Teachers' Views about the 2007 Physics Teaching Program and its Implementation
ERIC Educational Resources Information Center
Mercan, Fatih Caglayan
2013-01-01
The renewal of the secondary school physics teaching program was initiated in 2008, however, there is limited research investigating physics teachers' enactment of the teaching program in their classes. The purpose of this study was to identify and describe teachers' views about the official teaching program and its implementation. The…
Technology, Teaching, and the Future.
ERIC Educational Resources Information Center
May, William F.
A philosophical overview of the place of technology in higher education and especially in teaching is presented. Research can be viewed as the acquisition of knowledge; teaching as its transmission; and service as its application. Technology affects the transmission of knowledge in both the teaching process and the content of teaching. The…
Deep learning for teaching university physics to computers
NASA Astrophysics Data System (ADS)
Davis, Jackson P.; Price, Watt A.
2017-04-01
Attempts to improve physics instruction suggest that there is a fundamental barrier to the human learning of physics. We argue that the new capabilities of artificial intelligence justify a reconsideration not of how we teach physics but to whom we teach physics.
Students’ Perception on Teaching Practicum Evaluation using Video Technology
NASA Astrophysics Data System (ADS)
Chee Sern, Lai; ‘Ain Helan Nor, Nurul; Foong, Lee Ming; Hassan, Razali
2017-08-01
Video technology has been widely used in education especially in teaching and learning. However, the use of video technology for evaluation purpose especially in teaching practicum is extremely scarce and the benefits of video technology in teaching practicum evaluation have not yet been fully discovered. For that reason, this quantitative research aimed at identifying the perceptions of trainee teachers towards teaching practicum evaluation via video technology. A total of 260 students of Teacher Certification Programme (Program Pensiswazahan Guru - PPG) from the Faculty of Technical and Vocational Education (FPTV) of Universiti Tun Hussein Onn Malaysia (UTHM) had been randomly selected as respondents. A set of questionnaire was developed to assess the suitability, effectiveness and satisfaction of using video technology for teaching practicum. Conclusively, this research showed that the trainee teachers have positive perceptions in all three aspects related teaching practicum evaluation using video technology. Apart from that, no significant racial difference was found in the measured aspects. In addition, the trainee teachers also showed an understanding of the vast importance of teaching practicum evaluation via video. These research findings suggest that video technology can be a feasible and practical means of teaching practicum evaluation especially for distance learning program.
"Physics and Life" for Europe's Science Teachers
NASA Astrophysics Data System (ADS)
2003-04-01
The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now preparing related programs in their countries. Through these national activities, outstanding individuals will be selected to represent their teachers' communities at the final international event, the "Physics on Stage 3" festival. A list of national contact points is attached below. International festival The high-profile "festival" during the European Science and Technology Week 2003 will stimulate the dissemination of successful education tools and methods, identify the most effective ways to support teachers and motivate novel developments in science education. It will take place at the ESA-ESTEC site in Noordwijk (The Netherlands), from November 8 - 15, 2003 . The climax of the event will be the presentation of the European Science Teaching Awards , in recognition of teaching excellence, inspiration and motivation of young people. Online Resource Archive An online archive of the best teaching materials and practices in Europe will be established, forming a unique 'resource centre', which will make available all of the interesting materials identified through the programme and provide a forum for exchange which will last well beyond the duration of the activity. More information Full information about "Physics on Stage 3" is available at the central website: www.physicsonstage.net From here there is also direct connection to the national websites and the many related activities all over Europe. Be sure to check the site at regular intervals for new information about the developments!
NASA Astrophysics Data System (ADS)
Chittleborough, Gail
2014-06-01
The Australian Government initiative, Teaching Teachers for the Future (TTF), was a targeted response to improve the preparation of future teachers with integrating technology into their practice. This paper reports on TTF research involving 28 preservice teachers undertaking a chemistry curriculum studies unit that adopted a technological focus. For chemistry teaching the results showed that technological knowledge augmented the fundamental pedagogical knowledge necessary for teaching chemistry content. All the pre-service teachers demonstrated an understanding of the role of technology in teaching and learning and reported an increased skill level in a variety of technologies, many they had not used previously. Some students were sceptical about this learning when schools did not have technological resources available. This paper argues that teacher education courses should include technological skills that match those available in schools, as well as introduce new technologies to support a change in the culture of using technology in schools.
ERIC Educational Resources Information Center
Masin, Sergio Cesare; Crivellaro, Francesco; Varotto, Diego
2014-01-01
The research field of intuitive physics focuses on discrepancies between theoretical and intuitive physical knowledge. Consideration of these discrepancies can help in the teaching of elementary physics. However, evidence shows that theoretical and intuitive physical knowledge may also be congruent. Physics teaching could further benefit from…
A Model for Bilingual Physics Teaching: "The Feynman Lectures "
NASA Astrophysics Data System (ADS)
Metzner, Heqing W.
2006-12-01
Feynman was not only a great physicist but also a remarkably effective educator. The Feynman Lectures on Physics originally published in 1963 were designed to be GUIDES for teachers and for gifted students. More than 40 years later, his peculiar teaching ideas have special application to bilingual physics teaching in China because: (1) Each individual lecture provides a self contained unit for bilingual teaching; (2)The lectures broaden the physics understanding of students; and (3)Feynman's original thought in English is experienced through the bilingual teaching of physics.
ERIC Educational Resources Information Center
Engström, Susanne; Carlhed, Carina
2014-01-01
With environmental awareness in the societies of today, political steering documents emphasize that all education should include sustainable development. But it seems to be others competing ideals for teaching physics, or why do the physics teachers teach as they do? Physics teachers in secondary school in Sweden have generally, been focused on…
Design Steps for Physic STEM Education Learning in Secondary School
NASA Astrophysics Data System (ADS)
Teevasuthonsakul, C.; Yuvanatheeme, V.; Sriput, V.; Suwandecha, S.
2017-09-01
This study aimed to develop the process of STEM Education activity design used in Physics subjects in the Thai secondary schools. The researchers have conducted the study by reviewing the literature and related works, interviewing Physics experts, designing and revising the process accordingly, and experimenting the designed process in actual classrooms. This brought about the five-step process of STEM Education activity design which Physics teachers applied to their actual teaching context. The results from the after-class evaluation revealed that the students’ satisfaction level toward Physics subject and critical thinking skill was found higher statistically significant at p < .05. Moreover, teachers were advised to integrate the principles of science, mathematics, technology, and engineering design process as the foundation when creating case study of problems and solutions.
NASA Astrophysics Data System (ADS)
Caleon, Imelda S.; Tan, Yuen Sze Michelle; Cho, Young Hoan
2018-02-01
This study utilized multiple data sources to examine the beliefs about learning and teaching physics and the instructional practices of five beginning teachers and seven experienced teachers from Singapore. Our study was implemented in the unique context of teachers teaching the topic of electricity to students grouped according to academic abilities. The topic of electricity is one of the most difficult physics topics for students to understand and for teachers to teach. It was found that the experienced teachers, compared to the beginning teachers, tended to have beliefs about teaching and learning physics that are closer to constructivist views. The majority of the teachers, particularly the beginning teachers, espoused beliefs about learning physics that were incongruent with their beliefs about teaching physics. Although transmission-oriented and teacher-directed practices dominated the classroom lessons of both groups of teachers, more elements of constructivist instruction were found in the classroom lessons of the experienced teachers. It was also found that the classroom practices of the teachers, especially those in their inductive years of teaching, were more aligned with their beliefs about learning physics than their beliefs about teaching physics.
Ideas II. A Sharing of Teaching Practices by Secondary School Physical Education Practitioners.
ERIC Educational Resources Information Center
Carlson, Ronald P., Ed.
This book describes physical education activity teaching ideas for the secondary school level. The first section describes curriculum ideas in such areas as adapted physical education, quality control, elective physical education, and advanced physical education. Section II describes instructional ideas involving peer teaching, skill improvement,…
How New Technologies Have (and Have Not) Changed Teaching and Learning in Schools
ERIC Educational Resources Information Center
Halverson, Richard; Smith, Annette
2010-01-01
Information technologies have reshaped teaching and learning in schools, but often not in ways anticipated by technology proponents. This paper proposes a contrast between technologies for learning and technologies for learners to explain how technologies influence teaching and learning in and out of schools. Schools have made significant use of…
An intelligent tutoring system for teaching fundamental physics concepts
NASA Astrophysics Data System (ADS)
Albacete, Patricia Lucia
1999-12-01
Students in traditional elementary mechanics classes can master problem solving of a quantitative nature but not those of a qualitative type. Moreover, students' naive conceptions of physics remain unchanged after completing their class. A few approaches have been implemented to improve this situation however none have met with great success. Since elementary mechanics is the foundation for all of physics and it is a required course for most science majors there is a clear need to improve the instruction of the subject. To address this problem I developed a intelligent tutoring system, called the Conceptual Helper, which coaches students during homework problem solving. The tutor uses a unique cognitive based approach to teaching physics, which presents innovations in three areas. (1) The teaching strategy, which focuses on teaching those links among the concepts of the domain that are essential for conceptual understanding yet are seldom learned by the students. (2) The manner in which the knowledge is taught, which is based on a combination of effective human tutoring techniques (e.g., hinting), effective pedagogical methods (e.g., a microscopic view of matter), and less cognitively demanding approaches (e.g., anthropomorphism). (3) The way in which misconceptions are handled which uses the underlying scientific correct line of reasoning to describe to the student the phenomenon that is the basis for the misconception. From a technological point of view the Conceptual Helper was implemented as a model-tracing tutor which intervenes when students make errors and after completion of each problem, at which time the tutor scaffolds the students on post-problem reflection. The remediation is guided by probabilistic assessment of mastery and the interventions are adapted to the errors. The thesis also presents the results of the evaluation of the system which revealed that the gain scores of the experimental group were statistically significantly higher than those of the control group, suggesting that the Conceptual Helper was indeed capable of effectively teaching the conceptual aspects of physics as well as helped students abandon common misconceptions. Furthermore, the evaluation showed that the students' performance on a standardized test was comparable to those of other more complex approaches.
ERIC Educational Resources Information Center
Johnston, Jennifer; Riordain, Maire Ni; Walshe, Grainne
2014-01-01
The concept and importance of curriculum integration in Science and Mathematics has come to the fore in the recent years (Czerniak, 2007). Ireland's Science and Mathematics performance is well documented and extensively reported in the media and elsewhere (e.g. Expert Group on Future Skills Needs, 2008; Task Force on the Physical Sciences, 2002).…
ERIC Educational Resources Information Center
Delen, Erhan; Liew, Jeffrey
2016-01-01
Distance education in the 21st century often relies on educational technology as the primary delivery of teaching to learners. In distance education, the source of the information and the learner do not share the same physical setting; therefore, the information is delivered by a variety of methods. The new emerging tools that are used in online…
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
EDITORIAL: Astrophysics by all means - but by what means?
NASA Astrophysics Data System (ADS)
Kibble, Bob
1997-01-01
The October total lunar eclipse offered me no more company than two foxes out on a night excursion across Caterham Common. It was 4am, however, so company was an optimistic hope. The deep pink/red umbral phase was indeed breathtaking, as indeed was teaching physics the following day after only 90 minutes sleep. Two weeks later it was altogether a different story. I lost count of the people who kept me company on Waterloo Bridge for the duration of the partial solar eclipse. With telescope and safe projection all set up I met Americans on holiday, families out for the day, Greek students from King's College and a host of casual passers-by. It was a happy and interactive event. I had quite a crowd at one point and the broad pavement was blocked. There was much talk of Cornwall 1999 and the 'big one'. I have shared these scenes with you because for me they encapture the emerging renaissance of astronomy within the public domain. Was it a coincidence that the same month saw an entire night devoted to Star Trek on the TV, not to mention National Astronomy week. Translated into the curriculum, this movement has given birth to Earth and Beyond at Key Stages 1 to 4, to a revitalized GCSE astronomy course and to cosmology and astrophysics modules at A-level. This special issue provides readers with some engaging reading to support their interest in space and physics. From the personal account of three professionals who reflect on life after astrophysics to the latest curriculum package to emerge from the Trump team I hope you will find material here to enrich your own perspectives and your teaching. This is the third astronomy-related special that I have been associated with and there will no doubt be more. As 1999 approaches and we in the UK gear ourselves for those few minutes of totality, an equally significant event will be underway in schools and colleges. The post-Dearing physics syllabuses will be in operation, eclipsing the current, outdated, uninspiring, subject-centred menu and offering a new updated, attractive, student-centred approach to teaching and learning physics. The approach will be one where teaching is supported by innovative teaching materials, enabling students to work in groups, to role-play, to research and problem-solve, to design using mathematical models, to learn about physics beyond their classrooms, to develop key skills and to speak about physics with an enthusiasm and sparkle. Yes, I too can dream, but if you don't aim for the stars, as the saying goes, you will not even reach the top of the mountain. The inclusion of topics like astrophysics, cosmology and particle physics in syllabus structures is to be applauded for offering young people a broader vision of physics. However, they are all developments which attempt to influence the content of a physics syllabus. The debate has been whether or not to include the fourth-power law in an astrophysics unit or whether refractive index has a place in Medical Physics to explain optical fibre technology. What has been missing as far as I can see has been a parallel movement in developing the way Physics has been taught, can be taught and can be studied. The time for funding new initiatives which will develop the methodology of teaching and learning physics is now. It is over 20 years since I used the teacher's pages of the old Nuffleld Advanced books to give me ideas on how to teach the course as a probationer (NQT). I still find myself referring to them on occasion. In the intervening years we have learnt much about how young people learn science and how older people teach science. So here is a message to the physics education community. By all means fund projects to introduce some modern physics into the curriculum but hear this plea for parallel developments in new ways to teach the new, and the old, physics - ways that will cater for broad ability ranges and for the diverse career interests of students and will allow teachers to adjust their focus away from the content and towards the learners. Physics education in schools is not just about physics but about education.
Is classical mechanics a prerequisite for learning physics of the 20th century?
NASA Astrophysics Data System (ADS)
Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.
2016-11-01
Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.
Feminist Teaching in University Physical Education Programs.
ERIC Educational Resources Information Center
Bain, Linda L.; And Others
1991-01-01
Examines feminist teaching in university physical education. Three articles describe the personal experiences of physical educators who try to teach in ways that promote equality. The articles focus on social diversity and justice and feminist pedagogy in the sport sciences and physical education. (SM)
NASA Astrophysics Data System (ADS)
Lopez, Ramon E.
1997-03-01
This paper summarizes the conference presentations that specifically dealt with the role of the physics department in education of teachers, both before they begin teaching (pre-service) and during their careers (in-service). These presentations in general reflected a consensus that, as in the case of other students, instruction in pre-service and in-service courses should employ more active engagement techniques, both to improve student understanding and to model effective instruction, and that the appropriate use of technology can be a powerful aid to that end. Improvements made in standard introductory physics courses will impact most future secondary science teachers who, by and large, will have science degrees or take a significant amount of science courses. However, pre-service elementary teachers take few science courses and are often science phobic. This population represents the vast bulk of teachers who, if they have a good understanding of basic science, can engage children at the ages when they are most curious. Physics departments can play a valuable role in stimulating and sustaining reform of pre-college science teaching by being more involved in providing effective and appropriate instruction and models for inquiry to current and future elementary and secondary teachers.
Technology and Teaching Philosophy
ERIC Educational Resources Information Center
King, Paul C.
2012-01-01
This article discusses the challenges faced when integrating new technologies into the classroom. Viewing the experiences of teaching a first year learning community through the lens of the principles of the Reflective Teaching Portfolio, the author looks to answer the question: "How should Technology relate to our Teaching Philosophy?"…
Sutkin, Gary; Littleton, Eliza B; Kanter, Steven L
2015-01-01
To study surgical teaching captured on film and analyze it at a fine level of detail to categorize physical teaching behaviors. We describe live, filmed, intraoperative nonverbal exchanges between surgical attending physicians and their trainees (residents and fellows). From the films, we chose key teaching moments and transcribed participants' utterances, actions, and gestures. In follow-up interviews, attending physicians and trainees watched videos of their teaching case and answered open-ended questions about their teaching methods. Using a grounded theory approach, we examined the videos and interviews for what might be construed as a teaching behavior and refined the physical teaching categories through constant comparison. We filmed 5 cases in the operating suite of a university teaching hospital that provides gynecologic surgical care. We included 5 attending gynecologic surgeons, 3 fellows, and 5 residents for this study. More than 6 hours of film and 3 hours of interviews were transcribed, and more than 250 physical teaching motions were captured. Attending surgeons relied on actions and gestures, sometimes wordlessly, to achieve pedagogical and surgical goals simultaneously. Physical teaching included attending physician-initiated actions that required immediate corollary actions from the trainee, gestures to illustrate a step or indicate which instrument to be used next, supporting or retracting tissues, repositioning the trainee's instruments, and placement of the attending physicians' hands on the trainees' hands to guide them. Attending physicians often voiced surprise at the range of their own teaching behaviors captured on film. Interrater reliability was high using the Cohen κ, which was 0.76 for the physical categories. Physical guidance is essential in educating a surgical trainee, may be tacit, and is not always accompanied by speech. Awareness of teaching behaviors may encourage deliberate teaching and reflection on how to innovate pedagogy for the teaching operating room. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Professional development workshops for physics education research
NASA Astrophysics Data System (ADS)
Sayre, Eleanor C.; Franklin, Scott V.; Kustusch, Mary Bridget
2017-01-01
Physics education research holds the promise of satisfying expectations of both scholarship, which is increasing at teaching-centric institutions, and teaching effectiveness, a concern at all institutions. Additionally, junior physics education researchers seek more diverse training in research methods and theories. Emerging education researchers need support as they develop their research programs and expand their theoretical and methodological expertise, and they benefit from the guidance of knowledgable peers and near-peers. Our two-part professional development model combines intensive in-person workshops with long-term remote activities. During a two-week in-person workshop, emerging and established education researchers work closely together to develop research questions, learn appropriate analytic techniques, and collect a corpus of data appropriate to their research questions. Afterwards, they meet biweekly in a distributed, mentored research group to share analyses and develop their ideas into publishable papers. In this talk, we discuss this model for professional development and show results from one three-year implementation in the IMPRESS program at the Rochester Institute of Technology. Partially funded by the PERTG of the AAPT.
Astronomy in the Initial Formation of Sciences Teachers
NASA Astrophysics Data System (ADS)
Costa, Samuel; Euzébio, Geison João; Damasio, Felipe
2016-12-01
Although astronomy is considered one of the older sciences of mankind, its teaching in basic education is facing problems. It is the school responsibility the dissemination of correct scientific concepts, including those related to Astronomy. This study was conducted at the Federal Institute of Education, Science and Technology of Santa Catarina, Campus Araranguá. In this article, we aimed to present the activities developed to help the formation of teachers, training undergraduate students in Natural Sciences with specialization in Physics to contribute to the dissemination and improvement of the teaching-learning of Astronomy. This paper presents the process and results of the evaluation of that training program. Analyses of the activity from the perspective of the participants are indicated and additional considerations are made regarding its use as a resource for teaching Astronomy and for teacher training.
Physics Teacher Demonstrations for the Classroom
NASA Astrophysics Data System (ADS)
Murfee, Lee
2005-04-01
A sharing of physics and physics teaching demonstrations by Lee Murfee, a teacher of students learning physics and mathematics at Berkeley Preparatory School and the United States Military Academy for 21 years, and active member of the Florida Section of American Association of Physics Teachers (AAPT). Presentation is a fast paced array of physics and physics teaching demonstrations. Topics include who and what we teach, a successful science department philosophy, forces, acceleration, impulse, momentum, observations, pendulums, springs, friction, inclined plane, rotational motion, moment of inertia, teaching description of motion with data, equations and graphing, slope, uniform circular motion, derivatives, integrals, PASCO Data Studio sensor applications, students presenting to students, flashboards, sound, pressure, and sensitivity analysis in determining specific heat. Demonstrations apply to high school and college introductory physics teaching; handouts and some door prizes/gifts will be provided.
ERIC Educational Resources Information Center
Compton, Vicki J.; Compton, Ange D.
2013-01-01
This paper reports on findings related to Technological Knowledge from Stage Two of the "Technological Knowledge and Nature of Technology: Implications for teaching and learning" ("TKNoT: Imps") research project undertaken in 2009. A key focus in Stage Two was the trialing of different teaching strategies to determine how…
Integrating Educational Technology into the Secondary Science Teaching
ERIC Educational Resources Information Center
Guzey, S. Selcen; Roehrig, Gillian H.
2012-01-01
The integration of technology in teaching is still challenging for most teachers, even though there has been a historical growth of Internet access and available educational technology tools in schools. Teachers have not incorporated technology into their teaching for various reasons, such as lack of knowledge of technology, time, and support. In…
NASA Astrophysics Data System (ADS)
2001-07-01
Good teaching isn't a hardware problem Stuart Robertson, a physics teacher by training, now works to ensure that teachers are fully trained to use Information and Communication Technology (ICT) and that all Scottish students leave school competent with the basics of using computers. He addressed the Stirling meeting of physics teachers at the end of May. So, how do governments measure progress with ICT? They measure the numbers of schools with full internet access, the proportion of teachers with e-mail, the numbers of computers in classrooms and so on. One of England's most successful state schools (by exam results) boasts 26 interactive whiteboards, and in the UK there seems to be a feeling that lots of hardware = good school. Teaching isn't that simple. We don't need expensive research to know that just using a computer won't make teaching necessarily better. Robertson knows this and advises: don't be driven by technology—be driven by what you can do with it. Good teaching has always been about using the resources at hand, and it still is. Our aim at Physics Education is support the teaching of physics by reviewing and discussing new teaching tools— hardware and software (see Reviews). That's not to say that we must all be using expensive electronic boxes of tricks to reinforce every concept. We don't need computers to teach physics. I really doubt that my teachers, back in the 1970s, would have taught me much more physics if we had had computers in our lab. In this issue of Physics Education we have examples of some very straight-forward demonstrations and experiments—with no computer involvement whatsoever. But we also have some computer-interfaced activities and some computer-based investigations. We recognize that some institutions have an erratic electricity supply and few, if any, computers. Others are being driven to use as much electronic gadgetry as possible, following the mistaken assumption that this is, in itself, educationally better. Other schools and colleges are exploring electronic learning through the internet and virtual labs (see Steve Mellema's use of IT in his Lecture for the 21st Century). We aim to provide useful material for everybody at and in between the extremes. But some words of caution, sounded by Robertson in Stirling: today we might find that our classes are motivated and interested when we use computers, but how long will the excitement last? If every lesson faces children with computer screens will they soon get bored and demotivated? Individual learning, through worksheets, was a great success when it was developed in the 70s, but when every lesson faced a child with yet another worksheet, students were turned off. It became known as 'death by a thousand worksheets'. Let's not abuse computers in the same way. Physics for the beach and the igloo Physics is about being cool, as we are always trying to tell our students! In this 'summer' issue we have two papers which allow us to demonstrate this practically. I should also like to remind readers that Physics Education is available online (www.iop.org/Journals/pe) in addition to the paper version. The electronic version has the advantages of hotlinks to websites, search facilities and the ability to download teaching materials. My guess is that we haven't begun to explore the possibilities of the electronic journal as a teaching resource for teachers. If it can be stored electronically, we can include it as a multimedia clip pictures, worksheets, spreadsheets, videos, sounds... But there are also many advantages of paper—convenience and permanence being just two. Physics Education is a worthwhile publication and it feels like that in your hand. Having a journal like this, to put in my bag, or stack on my bookshelf, still feels good to me. And judging by readers' comments, you agree. IOPP will, no doubt, support both formats for a long time to come. So, this summer, enjoy the format you are reading, read Physics Education on screen or on the beach, reflect on your teaching, your students' learning and remind yourself that physics really can be cool. Editor: Kerry Parker
Teaching Physical Geography with Toys, Household Items, and Food
ERIC Educational Resources Information Center
Carnahan, Laura; Pankratz, Mary Jo; Alberts, Heike
2014-01-01
While many college physical geography instructors already use a wide variety of creative teaching approaches in their classes, others have not yet been exposed to teaching with toys, household items, or food. The goal in this article is to present some ideas for teaching college-level physical geography (weather/climate and geomorphology) for…
Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan
2017-01-01
The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…
Physics Teaching in a Rural School.
ERIC Educational Resources Information Center
Wilhite, Lora
1979-01-01
The author describes, in a highly personal manner, physics teaching in a rural school. Topics detailed include: program descriptions, teaching methods, textbook selection and adoption procedures, teaching load, and the problems associated with teaching in a school district with limited funds. (BT)
Can New Digital Technologies Support Parasitology Teaching and Learning?
Jabbar, Abdul; Gasser, Robin B; Lodge, Jason
2016-07-01
Traditionally, parasitology courses have mostly been taught face-to-face on campus, but now digital technologies offer opportunities for teaching and learning. Here, we give a perspective on how new technologies might be used through student-centred teaching approaches. First, a snapshot of recent trends in the higher education is provided; then, a brief account is given of how digital technologies [e.g., massive open online courses (MOOCs), flipped classroom (FC), games, quizzes, dedicated Facebook, and digital badges] might promote parasitology teaching and learning in digital learning environments. In our opinion, some of these digital technologies might be useful for competency-based, self-regulated, learner-centred teaching and learning in an online or blended teaching environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pre-Service Physics Teachers' Metacognitive Knowledge about Their Instructional Practices
ERIC Educational Resources Information Center
Yerdelen-Damar, Sevda; Özdemir, Ömer Faruk; Ünal, Cezmi
2015-01-01
This study aims to investigate pre-service physics teachers' metacognitive knowledge about their teaching practices. The participants included six pre-service physics teachers. A taxonomy of metacognition for teaching was developed to analyze the level of pre-service physics teachers' metacognitive knowledge about their teaching practices.…
Evaluation of a multimedia online tool for teaching bronchial hygiene to physical therapy students.
Silva, Cibele C B Marques da; Toledo, Sonia L P; Silveira, Paulo S P; Carvalho, Celso R F
2012-01-01
Advances in information technology have been widely used in teaching health care professionals. The use of multimedia resources may be important for clinical learning and we are not aware of previous reports using such technology in respiratory physical therapy education. Our approach was to evaluate a conventional bronchial hygiene techniques (BHTs) course with an interactive online environment, including multimedia resources. Previous developed audiovisual support material comprised: physiology, physiopathology and BHTs, accessible to students through the Internet in conjunction with BHTs classes. Two groups of students were compared and both attended regular classes: the on-line group (n=8) received access to online resources, while the control group (n=8) received conventional written material. Student's performance was evaluated before and after the course. A preliminary test (score 0 to 10) was applied before the beginning of the course, showing that the initial knowledge of both groups was comparable [online, 6.75 (SD=0.88) vs. control, 6.125 (SD=1.35); p>0.05]. Two weeks after the end of the course, a second test showed that the online group performed significantly better than the control group [respectively, 7.75 (SD=1.28) vs. 5.93 (SD=0.72); p>0.05]. The use of a multimedia online resource had a positive impact on student's learning in respiratory therapy field in which instrumental and manual resources are often used and can be explored using this technology.
NASA Astrophysics Data System (ADS)
van der Veen, Janet Krause
In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.
ERIC Educational Resources Information Center
Figg, Candace; Jamani, Kamini Jaipal
2011-01-01
Two approaches to teaching with technology to highlight practice-based teacher knowledge and actions for teaching technologically enhanced lessons are presented. Participants were two elementary pre-service teachers teaching during practicum. Qualitative data sources included verbatim transcripts of participant interviews, field notes of planning…
On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.
ERIC Educational Resources Information Center
Compton, Vicki J.; Compton, Ange D.
2013-01-01
This paper reports on findings related to the Nature of Technology from Stage Two of the "Technological Knowledge and Nature of Technology: Implications for teaching and learning" ("TKNoT: Imps") research project undertaken in 2009. A key focus in Stage Two was the trialing of different teaching strategies to determine how…
Giving up Technology and Social Media: Why University Lecturers Stop Using Technology in Teaching
ERIC Educational Resources Information Center
Shelton, Chris
2017-01-01
University lecturers use a wide range of technologies when teaching and there has been much research into how particular technologies are adopted. However, there are also many technologies that, despite early promise, are no longer being used in university teaching and have been abandoned by institutions or individuals. This article presents the…
Education in physics and the support of professional orientation of pupils
NASA Astrophysics Data System (ADS)
ŠebeÅ, Vladimír; Lapitková, Viera
2017-01-01
Authors in the article present some of the conclusions resulting from execution of a national project ITMS: 26110130549 "Support for guidance primary school pupils for vocational education and training through the development of polytechnic education aimed at developing work skills and work with talents". Authors focus on the influence of selected determinants of students' interest in Physics. Outputs linked to the increase of pupils' knowledge of physics; ways of increasing interest in physics and thus influencing the choice of secondary studies are presented based on two-year research that was realized in forms of experimental activities in newly built laboratories. Selection of physics experiments realized during lessons was determined by implementation of innovative teaching aids and information and communication technologies. The most important results that were analysed related to the research were presented.
ERIC Educational Resources Information Center
Hyndman, Brendon P.
2017-01-01
Identifying and understanding the perceptions of pre-service teachers (PSTs) is vital to informing teaching practices. The purpose of the "Generalist Entry into Teaching Physical Education" (GET-PE) study was to investigate Australian generalist PSTs' perceptions of the barriers to teaching physical education (PE) classes. A…
Teachers' approaches to teaching physics
NASA Astrophysics Data System (ADS)
2012-12-01
Benjamin Franklin said, "Tell me, and I forget. Teach me, and I remember. Involve me, and I learn." He would not be surprised to learn that research in physics pedagogy has consistently shown that the traditional lecture is the least effective teaching method for teaching physics. We asked high school physics teachers which teaching activities they used in their classrooms. While almost all teachers still lecture sometimes, two-thirds use something other than lecture most of the time. The five most often-used activities are shown in the table below. In the January issue, we will look at the 2013 Nationwide Survey of High School Physics teachers. Susan White is Research Manager in the Statistical Research Center at the American Institute of Physics; she directs the Nationwide Survey of High School Physics Teachers. If you have any questions, please contact Susan at swhite@aip.org.
NASA Astrophysics Data System (ADS)
Overlin, Trudy K.; Marts, Donna J.
1995-05-01
The Idaho National Engineering Laboratory (INEL), in response to the National Institute of Justice, less-than-lethal (LTL) technologies program, has proposed to help police departments modify their training programs to meet the challenge of training officers to use new LTL technologies. Work performed by the INEL in the development of an air bag restraint for patrol vehicles and in a technologies assessment for vehicle interdiction technologies has given laboratory researchers a better understanding of the law enforcement environment and has enabled them to evaluate potential training aids to help police departments use new technolgies and teach their officers to most efficiently and effectively use them. With the developemnt of LTL technologies as options in law enforcement comes the need for departments to adapt their current departmental training and refresher training programs to incorporate alternative weapons. This adaptation may include modifying decision making and skills training to teach officers when and how to effectively use new technologies. By assessing current programs and reviewing the training programs of other succesful agencies, a department may be able to easily adapt their current program to meet the needs of training officers in the use of LTL technologies. As litigation drove the need to develop new alternative weapons for law enforcement, it will also shape the application of the technologies when used in the field. If used incorrectly they may be ineffective, dangerous to the user, or cause more physical damage than intended. Because technology is rapidly changing, law enforcement training must keep up with the changes and meet their needs.
NASA Astrophysics Data System (ADS)
Hockicko, Peter; Krišt‧ák, L.‧uboš; Němec, Miroslav
2015-03-01
Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think creatively, improves their performance and helps them in studying physics. This paper deals with increasing the key competencies in engineering by analysing real-life situation videos - physical problems - by means of video analysis and the modelling tools using the program Tracker and simulations of physical phenomena from The Physics Education Technology (PhET™) Project (VAS method of problem tasks). The statistical testing using the t-test confirmed the significance of the differences in the knowledge of the experimental and control groups, which were the result of interactive method application.
The contributions of digital technologies in the teaching of nursing skills: an integrative review.
Silveira, Maurício de Souza; Cogo, Ana Luísa Petersen
2017-07-13
To analyze the contributions of digital educational technologies used in teaching nursing skills. Integrative literature review, search in five databases, from 2006 to 2015 combining the descriptors 'education, nursing', 'educational technology', 'computer-assisted instruction' or related terms in English. Sample of 30 articles grouped in the thematic categories 'technology in the simulation with manikin', 'incentive to learning' and 'teaching of nursing skills'. It was identified different formats of digital educational technologies used in teaching Nursing skills such as videos, learning management system, applications, hypertext, games, virtual reality simulators. These digital materials collaborated in the acquisition of theoretical references that subsidize the practices, enhancing the teaching and enable the use of active learning methods, breaking with the traditional teaching of demonstrating and repeating procedures.
The Importance of Indirect Teaching Behaviour and Its Educational Effects in Physical Education
ERIC Educational Resources Information Center
Jung, Hyunwoo; Choi, Euichang
2016-01-01
Background: Physical education teacher behaviour has been a subject of study in physical education including physical education teacher education for 30 years. However, the research on teacher behaviour has tended to focus on direct teaching behaviour (DTB) to demonstrate the benefits of effective teaching, centred on a technical understanding of…
The Process of Physics Teaching Assistants' Pedagogical Content Knowledge Development
ERIC Educational Resources Information Center
Seung, Eulsun
2013-01-01
This study explored the process of physics teaching assistants' (TAs) PCK development in the context of teaching a new undergraduate introductory physics course. "Matter and Interactions" (M&I) has recently adopted a new introductory physics course that focuses on the application of a small number of fundamental physical…
Staitieh, Bashar S; Saghafi, Ramin; Kempker, Jordan A; Schulman, David A
2016-04-01
Hypothesis-driven physical examination emphasizes the role of bedside examination in the refinement of differential diagnoses and improves diagnostic acumen. This approach has not yet been investigated as a tool to improve the ability of higher-level trainees to teach medical students. To assess the effect of teaching hypothesis-driven physical diagnosis to pulmonary fellows on their ability to improve the pulmonary examination skills of first-year medical students. Fellows and students were assessed on teaching and diagnostic skills by self-rating on a Likert scale. One group of fellows received the hypothesis-driven teaching curriculum (the "intervention" group) and another received instruction on head-to-toe examination. Both groups subsequently taught physical diagnosis to a group of first-year medical students. An oral examination was administered to all students after completion of the course. Fellows were comfortable teaching physical diagnosis to students. Students in both groups reported a lack of comfort with the pulmonary examination at the beginning of the course and improvement in their comfort by the end. Students trained by intervention group fellows outperformed students trained by control group fellows in the interpretation of physical findings (P < 0.05). Teaching hypothesis-driven physical examination to higher-level trainees who teach medical students improves the ability of students to interpret physical findings. This benefit should be confirmed using validated testing tools.
Factors that Impact Quality of E-Teaching/Learning Technologies in Higher Education
ERIC Educational Resources Information Center
Daukilas, Sigitas; Kaciniene, Irma; Vaisnoriene, Daiva; Vascila, Vytautas
2008-01-01
The article analyzes and assesses factors that have impact upon the quality of eTeaching/learning technologies in higher education; it is on their basis that the concept of eTeaching/learning quality is denied. Research data about the students' motives in choosing various teaching/learning technologies for the development of their competence are…
ERIC Educational Resources Information Center
Cherry, Jennifer E.
2014-01-01
The purpose of this study was to explore possible causal factors for level of teachers' adoption of technology in teaching and learning. Furthering the understanding of the factors related to teachers' technology adoption may facilitate increased levels of technology integration in the teaching and learning process. Based on previous research and…
The practice of problem-based investigative teaching reform in semiconductor physics course
NASA Astrophysics Data System (ADS)
Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei
2017-08-01
Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.
A qualitative study of the meaning of physical examination teaching for patients.
Chretien, Katherine C; Goldman, Ellen F; Craven, Katherine E; Faselis, Charles J
2010-08-01
Physical examination teaching using actual patients is an important part of medical training. The patient experience undergoing this type of teaching is not well-understood. To understand the meaning of physical examination teaching for patients. Phenomenological qualitative study using semi-structured interviews. Patients who underwent a physical examination-based teaching session at an urban Veterans Affairs Medical Center. A purposive sampling strategy was used to include a diversity of patient teaching experiences. Multiple interviewers triangulated data collection. Interviews continued until new themes were no longer heard (total of 12 interviews). Interviews were recorded and transcribed verbatim. Coding was performed by two investigators and peer-checked. Themes were identified and meanings extracted from themes. Seven themes emerged from the data: positive impression of students; participation considered part of the program; expect students to do their job: hands-on learning; interaction with students is positive; some aspects of encounter unexpected; range of benefits to participation; improve convenience and interaction. Physical examination teaching had four possible meanings for patients: Tolerance, Helping, Social, and Learning. We found it possible for a patient to move from one meaning to another, based on the teaching session experience. Physical examination teaching can benefit patients. Patients have the potential to gain more value from the experience based on the group interaction.
ERIC Educational Resources Information Center
Palmer, David
This document contains an annotated bibliography aimed at the teaching of the physical sciences at the tertiary level to those who wish to become more informed about teaching related research evidence and undertake science education research. The bibliography offers an overview of teaching and learning in the physical sciences and key references…
Dove, Erica; Astell, Arlene J
2017-01-11
The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of technology with this population. Future research should address the appropriate introduction, teaching, and support required for people living with dementia or MCI to use the motion-based technology. In addition, it is recommended that the diverse needs of these specific end-users be considered in the design and development of this technology. ©Erica Dove, Arlene J Astell. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.01.2017.
Astell, Arlene J
2017-01-01
Background The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. Objective The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. Methods A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. Results A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. Conclusions The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of technology with this population. Future research should address the appropriate introduction, teaching, and support required for people living with dementia or MCI to use the motion-based technology. In addition, it is recommended that the diverse needs of these specific end-users be considered in the design and development of this technology. PMID:28077346
PhD Year 1 Students' Experience with the Educational Technology and Innovation Course
ERIC Educational Resources Information Center
Asamoah, Moses Kumi; Mackin, Eva Esi
2016-01-01
The advent of information, communication and new technologies, globalisation and rising costs has prompted rethinking what we teach, how we teach and even where teaching and learning take place. The Educational Technology and Innovation Course (Adlt704) was designed to enable students to create, use and manage appropriate technological processes…
Technologies for Teaching: Strategies and Pitfalls
ERIC Educational Resources Information Center
Meloni, Julie
2011-01-01
It isn't a stretch to say that the definitions of "teaching online" and "teaching with technology" vary, even from instructor to instructor. Whatever the level of technology, and regardless of teachers' comfort level with it, one has to remember that for all that educational technology can offer through new communication methods and the ability to…
NASA Astrophysics Data System (ADS)
Sones, Bryndol
2009-03-01
Since 2002, the Department of Physics at West Point has been the fortunate recipient of yearly attendance at the AAPT New Faculty Workshop. This sustained involvement has contributed directly to enhancements in our two-semester introductory physics program. Two aspects of West Point's environment make our involvement with the workshop especially fruitful: our diverse students and our frequent faculty turn-over. We teach to over 1100 students with majors across the entire spectrum. The majority of our faculty is an active duty Army officer here for just three years. At West Point, we rely on the workshop as a wellspring for faculty development, technological innovation, and pedagogical refinement. In the past few years, we have incorporated aspects of peer instruction, activity-based learning, and tutorials for student discovery. On the technological side, we now have TabletPCs for faculty, rf response cards (TurningPoint), high speed video analysis (LoggerPro) projects, and video tutoring capabilities (Camtashia). Student achievement is measured through our traditional course evaluation tools as well as nationally recognized standardize tests. Results will are discussed in the presentation.
Sensing our Environment: Remote sensing in a physics classroom
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit
2017-04-01
Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.
The Complementary Teaching of Physics and Music Acoustics - The Science of Sound
NASA Astrophysics Data System (ADS)
Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.
2007-04-01
The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.
Physics Teachers' Future Teaching Plans
ERIC Educational Resources Information Center
Physics Teacher, 2012
2012-01-01
There are two sides of the physics teacher turnover equation: teachers leaving and teachers entering. This month we will focus on teachers' future teaching plans. As seen in the figure, about 5% of the 27,000 teachers who taught physics in U.S. high schools in 2008-09 were in their first year of teaching physics (but not necessarily their first…
ERIC Educational Resources Information Center
Kagan, Arleen
The final volume (the fifth in the series and the fourth curriculum guide) in Project Teach 'n' Reach, a program designed to teach nondisabled students about disabilities, focuses on physical disabilities. Information on goals, performance objectives, and activity procedures are presented for topics dealing with physical and health impairments,…
ERIC Educational Resources Information Center
Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana
2014-01-01
Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…
The 60's Are the New 20's: Teaching Older Adults Technology
ERIC Educational Resources Information Center
Heaggans, Raphael C.
2012-01-01
The purpose of this article is to present the existing practice-based and empirically based literature on teaching technology to seniors to determine a) what kind of research has been conducted to assess the effectiveness of teaching technology to seniors, b) what biases must be dismantled for younger computer trainers to teach older ones, c) what…
ERIC Educational Resources Information Center
Soobik, Mart
2014-01-01
The sustainability of technology education is related to a traditional understanding of craft and the methods used to teach it; however, the methods used in the teaching process have been influenced by the innovative changes accompanying the development of technology. In respect to social and economic development, it is important to prepare young…
[Exploration and practice of genetics teaching assisted by network technology platform].
Li, Ya-Xuan; Zhang, Fei-Xiong; Zhao, Xin; Cai, Min-Hua; Yan, Yue-Ming; Hu, Ying-Kao
2010-04-01
More teaching techniques have been brought out gradually along with the development of new technologies. On the basis of those traditional teaching methods, a new platform has been set up by the network technology for teaching process. In genetics teaching, it is possible to use the network platform to guide student studying, promote student's learning interest and study independently by themselves. It has been proved, after exploring and applying for many years, that network teaching is one of the most useful methods and has inimitable advantage comparing to the traditional ones in genetics teaching. The establishment of network teaching platform, the advantage and deficiency and relevant strategies were intro-duced in this paper.
Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course
ERIC Educational Resources Information Center
Wrinkle, Cheryl Schaefer; Manivannan, Mani K.
2009-01-01
The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…
Physical terms and leisure time activities
NASA Astrophysics Data System (ADS)
Valovičová, Ľubomíra; Siptáková, Mária; ŠtubÅa, Martin
2017-01-01
People have to educate not only in school but also outside it. One approach to acquire new knowledge are leisure activities such as hobby groups or camps. Leisure activities, more and more seem to be the appropriate form for informal learning of physics concepts. Within leisure activities pupils have the possibility to acquire new concepts in unusual and interesting way. It is possible to inspire their intrinsic motivation on the matter or the phenomenon which is the aim of all teachers. This article deals with the description of and insights on acquisition of the concept of uniform and non-uniform rectilinear movement during a physics camp where pupils had the opportunity to use modern technologies which are despite of modernization of education still unconventional teaching methods in our schools.
Congruency between educators' teaching beliefs and an electronic health record teaching strategy.
Bani-issa, Wegdan; Rempusheski, Veronica F
2014-06-01
Technology has changed healthcare institutions into automated settings with the potential to greatly enhance the quality of healthcare. Implementation of electronic health records (EHRs) to replace paper charting is one example of the influence of technology on healthcare worldwide. In the past decade nursing higher education has attempted to keep pace with technological changes by integrating EHRs into learning experiences. Little is known about educators' teaching beliefs and the use of EHRs as a teaching strategy. This study explores the composition of core teaching beliefs of nurse educators and their related teaching practices within the context of teaching with EHRs in the classroom. A collective case study and qualitative research approach was used to explore and describe teaching beliefs of seven nurse educators teaching with EHRs. Data collection included open-ended, audio-taped interviews and non-participant observation. Content analysis of transcribed interviews and observational field notes focused on identification of teaching belief themes and associated practices. Two contrasting collective case studies of teaching beliefs emerged. Constructivist beliefs were dominant, focused on experiential, student-centered, contextual and collaborative learning, and associated with expanded and a futuristic view of EHRs use. Objectivist beliefs focused on educators' control of the context of learning and were associated with a constrained, limited view of EHRs. Constructivist educators embrace technological change, an essential ingredient of educational reform. We encourage nurse educators to adopt a constructivist view to using technology in teaching in order to prepare nurses for a rapidly changing, technologically sophisticated practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
The application of network teaching in applied optics teaching
NASA Astrophysics Data System (ADS)
Zhao, Huifu; Piao, Mingxu; Li, Lin; Liu, Dongmei
2017-08-01
Network technology has become a creative tool of changing human productivity, the rapid development of it has brought profound changes to our learning, working and life. Network technology has many advantages such as rich contents, various forms, convenient retrieval, timely communication and efficient combination of resources. Network information resources have become the new education resources, get more and more application in the education, has now become the teaching and learning tools. Network teaching enriches the teaching contents, changes teaching process from the traditional knowledge explanation into the new teaching process by establishing situation, independence and cooperation in the network technology platform. The teacher's role has shifted from teaching in classroom to how to guide students to learn better. Network environment only provides a good platform for the teaching, we can get a better teaching effect only by constantly improve the teaching content. Changchun university of science and technology introduced a BB teaching platform, on the platform, the whole optical classroom teaching and the classroom teaching can be improved. Teachers make assignments online, students learn independently offline or the group learned cooperatively, this expands the time and space of teaching. Teachers use hypertext form related knowledge of applied optics, rich cases and learning resources, set up the network interactive platform, homework submission system, message board, etc. The teaching platform simulated the learning interest of students and strengthens the interaction in the teaching.
Leirer, V O; Morrow, D G; Pariante, G M; Sheikh, J I
1988-10-01
This study investigates three questions related to the problem of medication nonadherence among elders. First, does recall failure play a significant role in nonadherence? Recent research suggests that it may not. Second, can the new portable bar code scanner technology be used to study nonadherence? Other forms of monitoring are obtrusive or inaccurate. Finally, can inexpensive computer assisted instructions (CAI) be used to teach mnemonic techniques specifically designed to improve medication schedule recall? Current research on memory training teaches nonspecific mnemonics and uses the expensive classroom approach. Results of the present study suggest that physically active and cognitively alert elders do have significant nonadherence (control group = 32.0%) problems related to forgetting and that CAI courseware can significantly reduce (medication recall training group = 10.0%) this form of nonadherence. Portable bar code technology proved easy to use by elderly patients and provided detailed information about the type of forgetting underlying nonadherence. Most significant recall failure was in the complete forgetting to take medication rather than delays in medicating or overmedicating.
ERIC Educational Resources Information Center
Love, Tyler S.; Wells, John G.; Parkes, Kelly A.
2017-01-01
A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…
Beliefs about Teaching and Uses of Technology among Pre-Service Teachers
ERIC Educational Resources Information Center
Teo, Timothy; Chai, Ching Sing; Hung, David; Lee, Chwee Beng
2008-01-01
In the current learning environments, technology is integrated in different ways. Teachers acting in the capacity of main change agents bring with them beliefs about teaching which effects their use of technology in the classroom. This study aims to examine the possible relationship between teachers' beliefs about teaching and uses of technology.…
ERIC Educational Resources Information Center
Burgos, Rosalina
2014-01-01
The rapid growth of e-learning technologies in higher education challenges university faculty to make their teaching relevant in these new contexts. As e-learning technologies are widely available, faculty members integrated them to their teaching repertoire. Several researchers discussed the impact of e-learning technologies on teaching and…
Teaching Technology from a Feminist Perspective: A Practical Guide. The Athene Series.
ERIC Educational Resources Information Center
Rothschild, Joan
Research, publications, and teaching about women in technology have been growing steadily. The level of interest and the number of courses seems to be high. This book attempts to analyze and synthesize curriculum experiences that apply new research on gender and technology to technology teaching. In fall 1985, a questionnaire and request for…
ERIC Educational Resources Information Center
Jorgensen, Mary; Havel, Alice; Fichten, Catherine; King, Laura; Marcil, Evelyne; Lussier, Alex; Budd, Jillian; Vitouchanskaia, Cristina
2018-01-01
Our goal was to explore the technology related pedagogical practices of college professors deemed by their students to be excellent in using technology in their teaching. We explored the views of 114 community/junior college professors who were nominated by their students as excellent in using technology in their teaching using both questionnaires…
Teachers' self-assessed levels of preparation
NASA Astrophysics Data System (ADS)
White, Susan C.
2016-02-01
Every four years we survey a nationally representative sample of high school physics teachers. We define anyone who teaches at least one physics class to be a "physics teacher." About 40% of these teachers teach a majority of their classes in subjects other than physics. We also ask teachers to rate how well prepared they felt in various aspects of teaching. The response choices are "not adequately prepared," "adequately prepared," and "very well prepared." The accompanying figure shows the proportion of teachers who reported feeling adequately or very well prepared in the following aspects of teaching: • Basic physics knowledge, • Other science knowledge, • Application of physics to everyday experience, • Use of demonstrations, • Instructional laboratory design, • Use of computers in physics instruction and labs, and • Recent developments in physics.
Radiation Oncology Physics and Medical Physics Education
NASA Astrophysics Data System (ADS)
Bourland, Dan
2011-10-01
Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).
NASA Astrophysics Data System (ADS)
Zachariadou, K.; Yiasemides, K.; Trougkakos, N.
2012-11-01
We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C# and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff.
Saghafi, Ramin; Kempker, Jordan A.; Schulman, David A.
2016-01-01
Rationale: Hypothesis-driven physical examination emphasizes the role of bedside examination in the refinement of differential diagnoses and improves diagnostic acumen. This approach has not yet been investigated as a tool to improve the ability of higher-level trainees to teach medical students. Objectives: To assess the effect of teaching hypothesis-driven physical diagnosis to pulmonary fellows on their ability to improve the pulmonary examination skills of first-year medical students. Methods: Fellows and students were assessed on teaching and diagnostic skills by self-rating on a Likert scale. One group of fellows received the hypothesis-driven teaching curriculum (the “intervention” group) and another received instruction on head-to-toe examination. Both groups subsequently taught physical diagnosis to a group of first-year medical students. An oral examination was administered to all students after completion of the course. Measurements and Main Results: Fellows were comfortable teaching physical diagnosis to students. Students in both groups reported a lack of comfort with the pulmonary examination at the beginning of the course and improvement in their comfort by the end. Students trained by intervention group fellows outperformed students trained by control group fellows in the interpretation of physical findings (P < 0.05). Conclusions: Teaching hypothesis-driven physical examination to higher-level trainees who teach medical students improves the ability of students to interpret physical findings. This benefit should be confirmed using validated testing tools. PMID:26730644
NASA Astrophysics Data System (ADS)
1999-07-01
Considerable coverage appeared in the national media in April following a talk by Averil Macdonald at the Institute of Physics Annual Congress in Salford. Averil, who recently received the 1999 Bragg Medal of the Institute for her contributions to physics education, notably advocated single-sex science classes for all school students over the age of 11 and flashy cars for physics teachers! This would, she hoped, go a long way towards encouraging girls to take up careers in science and engineering. It is well known that girls from single-sex schools do better at science than those in mixed schools, whereas boys perform better when both boys and girls are present. Averil wondered whether we should be prepared to sacrifice girls' potential achievements just so that boys can do better in mixed classes, as well as the latter benefiting from the `civilizing' influence of their female counterparts. Teaching styles could also be adding to the problem since boys prefer the model of an explanation followed by a test of understanding adopted by most teachers. Girls, however, benefit most from a more cooperative teaching style and also get better results with continuous assessment - so Averil wondered why we are still using a qualifications system in which most marks are given for examination performance. Science, and particularly physics, needs to be seen as a rewarding, high prestige career - hence the mention of the expensive car! In addition, girls need to be reassured that they can cope well with physics, even when it forms part of a `science' syllabus, since everyone should have their work in each science properly recognized and rewarded more fairly. Averil concluded that if some of the factors that hinder girls' success could be removed then more women might share the challenges of a science-based career and the UK's scientific and technical achievements would undoubtedly benefit. Shortly before Averil's talk, a new resource became available for girls and women seeking information on careers in science and technology. A new website has been set up by the UK Department of Trade and Industry's Promoting SET (science, engineering and technology) for Women Unit, to provide information on activities and projects, where to find information on careers, funding schemes for research and links to many useful sites for those in industry, research or teaching. To view the possibilities, go to www.set4women.gov.uk and take it from there!
ERIC Educational Resources Information Center
King, Chris; Kennett, Peter
2002-01-01
Explains how physics teaching can be more relevant for elementary and secondary students by integrating physics and earth science content that students can relate to and understand. Identifies and explains Earth contexts that can be appropriately implemented into the physics curriculum such as energy resources and radioactivity. (Author/YDS)
Racial and Gender Issues with Physics in the Pacific Region
ERIC Educational Resources Information Center
Aung, Than; Singh, Awnesh; Prasad, Uma
2011-01-01
This paper examines the state of physics teaching and learning in the Pacific Island nations. How have things changed in teaching physics? We believe that some of the goals and many of the challenges faced today have changed very little over the years. This paper is purely based upon the authors' experiences in teaching physics at the first-year…
Educating Primary Teachers to Teach Physical Education
ERIC Educational Resources Information Center
Tsangaridou, Niki
2012-01-01
Research evidence suggests that, worldwide, physical education in early years is mainly taught by primary teachers (Graber et al., 2008; Hunter, 2006; Kirk, 2005). Descriptions of primary teachers' experiences of teaching physical education are particularly essential as an avenue for developing better-quality teacher training for teaching primary…
ERIC Educational Resources Information Center
Muyskens, Judith A., Ed.
This collection of papers is divided into three parts. After "Introduction," (Judith A. Muyskens), Part 1, "Issues in Teaching with Technology: Implications for the Future Training of Teaching Assistants," includes "Exploring the Link between Teaching and Technology: An Approach to TA Development" (Virginia M. Scott) and "A Revolution from Above:…
The Potential of Directed Instruction to Teach Effectively Technology Usage
ERIC Educational Resources Information Center
Hosseini, Zahra
2016-01-01
Currently, teacher educational systems tend to develop their teachers' knowledge to effectively integrate technology in teaching. Consequently, numerous studies have attempted to describe strategies, models and approaches to develop teachers' knowledge for teaching with technology. However, most teachers are still following their traditional…
NASA Astrophysics Data System (ADS)
Deng, Zongyi
2001-05-01
The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.
A Qualitative Study of the Meaning of Physical Examination Teaching for Patients
Goldman, Ellen F.; Craven, Katherine E.; Faselis, Charles J.
2010-01-01
BACKGROUND Physical examination teaching using actual patients is an important part of medical training. The patient experience undergoing this type of teaching is not well-understood. OBJECTIVE To understand the meaning of physical examination teaching for patients. DESIGN Phenomenological qualitative study using semi-structured interviews. PARTICIPANTS Patients who underwent a physical examination-based teaching session at an urban Veterans Affairs Medical Center. APPROACH A purposive sampling strategy was used to include a diversity of patient teaching experiences. Multiple interviewers triangulated data collection. Interviews continued until new themes were no longer heard (total of 12 interviews). Interviews were recorded and transcribed verbatim. Coding was performed by two investigators and peer-checked. Themes were identified and meanings extracted from themes. KEY RESULTS Seven themes emerged from the data: positive impression of students; participation considered part of the program; expect students to do their job: hands-on learning; interaction with students is positive; some aspects of encounter unexpected; range of benefits to participation; improve convenience and interaction. Physical examination teaching had four possible meanings for patients: Tolerance, Helping, Social, and Learning. We found it possible for a patient to move from one meaning to another, based on the teaching session experience. CONCLUSIONS Physical examination teaching can benefit patients. Patients have the potential to gain more value from the experience based on the group interaction. PMID:20352363
ERIC Educational Resources Information Center
Chambers, Jack A., Ed.
This collection of 18 papers covers four broad areas of teaching and learning in higher education: innovative college teaching/learning strategies; effective classroom research/assessment activities; advanced classroom technology; and developing teaching and learning centers. Titles include: (1) "Changing Teaching Styles When Technology Becomes…
Teaching with Technology. Teaching in Focus. No. 12
ERIC Educational Resources Information Center
OECD Publishing, 2015
2015-01-01
Information and communication technology (ICT) use has been identified as one of the more active teaching practices, which promote skills students need for success. And yet, less than 40% of teachers across Teaching and Learning International Survey (TALIS) countries report using ICT as a regular part of their teaching practice. Shortages in…
Relations of didactics of physics and projects of education in physics
NASA Astrophysics Data System (ADS)
Zelenický, Ľubomír; Rakovská, Mária
2017-01-01
Deepening interest in didactical problems of teaching physics can be from the beginning associated with the creation of the subject of physics, especially at secondary schools. In the 20th century it was no longer possible to ignore the rapid development of physical science and application of its results in practice. The subject of physics required the definition of its content, development of textbooks and, amongst others, new ways of teaching in comparison with the past. The interest of teachers focused mainly on increasing the clarity of explanation - the creation of experiments and teaching aids. Since 1926 Association of Mathematicians and Physicists in the first Czechoslovak Republic issued a didactic-methodological annex to the Journal of Mathematics and Physics, as a discussion in order to increase the quality of teaching. However, this action was spontaneous and subjective. In the second half of the 20th century didactics of physics became a study discipline, part of the training of future secondary school teachers and the development of scientific work in the field of Theory of teaching physics started.
[The practice and discussion of the physical knowledge stepping into genetics teaching].
Luo, Shen; Luo, Peigao
2014-09-01
Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.
ERIC Educational Resources Information Center
Chittleborough, Gail
2014-01-01
The Australian Government initiative, Teaching Teachers for the Future (TTF), was a targeted response to improve the preparation of future teachers with integrating technology into their practice. This paper reports on TTF research involving 28 preservice teachers undertaking a chemistry curriculum studies unit that adopted a technological focus.…
ERIC Educational Resources Information Center
Nadelson, Louis S.; Bennett, Darcie; Gwilliam, Ezra; Howlett, Catherine; Oswalt, Steve; Sand, Jaime
2013-01-01
The evolving landscape of instructional technology is influenced by access to a wide range of technology tools that can be accessed to enhance teaching and learning. Technological tools such as smart phones, apps, tablets, social media, and YouTube exemplify the kinds of resources that are readily available for teaching and learning. Further, the…
ERIC Educational Resources Information Center
Middle Tennessee State Univ., Murfreesboro.
This proceedings of the seventh annual Mid-South Instructional Technology Conference on Teaching, Learning, and Technology contains the following papers: "A Tale of Two Classes: Face-to-Face versus Online" (Carol Wilson); "Best Practices in Organization Highlighting 360 Degree Feedback" (Bonita Barger); "Collaborating Online To Teach Information…
The Technology of Teaching Young Handicapped Children.
ERIC Educational Resources Information Center
Bijou, Sidney W.
To fabricate a technology for teaching young school children with serious behavior problems, classroom materials, curriculum format, and teaching procedures were developed, and problems that evolve from the technology investigated. Two classrooms were architecturally designed to provide the basic needs of a special classroom and to facilitate…
E-Collaboration Technologies in Teaching/Learning Activity
ERIC Educational Resources Information Center
Zascerinska, Jelena; Ahrens, Andreas
2009-01-01
A proper use of e-collaboration technologies in the teaching/learning process is provided by varied cooperative networks, which penetrate teachers' and students' activity more thoroughly with the availability of broadband services. However, the successful use of e-collaboration technologies in teaching/learning activity within a multicultural…
Chinese Language Teaching and Information Technology.
ERIC Educational Resources Information Center
Ho, Man-koon
2000-01-01
Provides an overview of the theoretical arguments and problems encountered in the implementation of information technology in Chinese language teaching. States there is a belief that teaching and learning can be enhanced with the introduction of information technology, explaining that it may increase students' motivation to learn. (CMK)
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
Physics graduate students' perceptions of the value of teaching
NASA Astrophysics Data System (ADS)
Verley, Jim D.
An exploratory study was undertaken to examine the perceptions of physics graduate students regarding teaching and their institutional and departmental support for their teaching efforts. A Likert survey was developed and distributed to 249 physics graduate students at four Rocky Mountain institutions of higher education. The survey was distributed through individual physics department email lists to prevent spam and virus blockers from removing the survey email. Of those 249 receiving the survey 132 students responded (53%) and of those responding 50% gave written comments about their perceptions of the value of teaching. Two of the institutions surveyed have some level of formal teaching development and assistance programming available to the graduate students and two had no formal programs in place either departmentally or institutionally. Both quantitative and qualitative analysis was utilized to examine the survey questions, demographic information and an open-ended question regarding the students' personal perceptions of teaching. Results of the survey analysis indicate that this group of physics graduate students perceive and place a high value on the importance of teaching. The results of the study also indicate that while there was high awareness by the student population of formal programs to aid in their teaching efforts, it did not translate into a high value placed on teaching by the institutions or departments from the student perspective. Students at those institutions that maintain formal programs for teaching development and support, while aware of those programs, often perceive departmental support for their teaching efforts to be lacking and feel unable to accommodate a personal interest in teaching because of a departmental focus on research. The students attending the institution with no formal institutional or departmental programs for teaching had the highest perceived value on its departmental teaching and support for teaching compared to those institutions with formal programs in place.
ERIC Educational Resources Information Center
Kurki-Suonio, T.; Hakola, A.
2007-01-01
In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…
Teaching Instrumentation and Methodology in Human Motion Analysis
2001-10-25
TEACHING INSTRUMENTATION AND METHODOLOGY IN HUMAN MOTION ANALYSIS V. Medved Faculty of Physical Education , University of Zagreb, Zagreb, Croatia...the introducement of teaching curricula to implement the apropriate knowledge. Problems are discussed of educating professionals and disseminating...University of Zagreb, undergraduate teaching of locomotion biomechanics is provided only at the Faculty of Physical Education . Following a need to teach
NASA Astrophysics Data System (ADS)
McCaughey, J.; Chong, E.
2011-12-01
Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.
ERIC Educational Resources Information Center
Albright, Michael J., Ed.; Graf, David, L., Ed.
New instructional programs and services involving technology are being established which have significant implications for the way teaching and learning will be conducted in the future. This volume contains 10 papers which examine some of the current trends in instructional technology in higher education and discuss implications for teaching and…
NASA Astrophysics Data System (ADS)
Shah, Lisa; Hao, Jie; Rodriguez, Christian A.; Fallin, Rebekah; Linenberger-Cortes, Kimberly; Ray, Herman E.; Rushton, Gregory T.
2018-06-01
A generally agreed upon tenant of the physics teaching community is the centrality of subject-specific expertise in effective teaching. However, studies which assess the content knowledge of incoming K-12 physics teachers in the U.S. have not yet been reported. Similarly lacking are studies on if or how the demographic makeup of aspiring physics educators is different from previously reported analyses of the actual high school physics teaching workforce. Here we present findings about the demographics and subject knowledge of prospective high school physics teachers using data from Praxis physics subject assessments administered between 2006 and 2016. Our analysis reveals significant variations in exam participation and performance between men and women, as well as those with different undergraduate majors and academic performance over the past decade. Findings from this work inform understandings and decisions about the quality, recruitment, and preparation of the high school physics teaching workforce.
Integration of the digital technologies in the teaching of astronomy
NASA Astrophysics Data System (ADS)
de Macedo, J. A.; Voelzke, M. R.
2014-08-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group has researched little or no knowledge of astronomy-related topics, which can be explained by the exclusion of astronomy in basic education in Brazil; (iii) the analysis of the final questionnaire showed that there was significant learning (Ausubel; Novak and Hanesian, 1978), since the results indicate a significant improvement in student responses, (iv) the results indicate a high level of student satisfaction, and; (v) viability of resource use involving digital technologies in the teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs. When the study of sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources such as models, observations, real and virtual experiments, animations, simulations, video classes, can arouse students' interest in the conceptual content, different from what occurs when the study permits only using conventional resources, as books and handouts. D.P. Ausubel; J.D. Novak; H. Hanesian. Educational psychology: a cognitive view. 2nd. ed. New York: Holt, Rinehart and Winston, 1978. 733p. M. R. Voelzke; E. P. Gonzaga. Analysis of the astronomical concepts presented by teachers of some brazilian state schools. Journal of Science Education, v. 14, n.1, 23-25, 2013.
Use of Digital Storytelling in Biology Teaching
ERIC Educational Resources Information Center
Karakoyun, Ferit; Yapici, I. Ümit
2016-01-01
With the technological developments in the 21st century, it is now necessary to integrate technological renovations effectively into teaching-learning environments. There are several approaches that allow integration of technology into teaching-learning environments. One of these approaches is digital storytelling. The purpose of this study was to…
Teaching and Learning Mathematics with Technology. 1997 Yearbook.
ERIC Educational Resources Information Center
Blume, Glendon W., Ed.; Heid, M. Kathleen, Ed.
This yearbook focuses on the role of technology in school mathematics. Chapters are replete with classroom-tested ideas for using technology to teach new mathematical ideas and to teach familiar mathematical ideas better. Chapters included: (1) "Using the Graphing Calculator in the Classroom: Helping Students Solve the "Unsolvable" (Eric Milou,…
Online Teaching, Change, and Critical Theory
ERIC Educational Resources Information Center
Wang, Victor C. X.; Torrisi-Steele, Geraldine
2015-01-01
While many educators in higher education are using technologies in their teaching, their use of technology is generally restricted to meeting purposes of convenience and efficiency. Rarely are the affordances of technology being exploited by educators in higher education in order to develop teaching strategies that truly engage students, and help…
Uses of Technology to Support Reflective Teaching Practices
ERIC Educational Resources Information Center
Brent, Wayne
2010-01-01
This dissertation researched and reported on how technology was used to facilitate and inform reflective teaching practices. It also identified the characteristics of benefits and barriers in using technology for teaching and reflection. The study, descriptive in nature, was designed to determine the reflective practices of instructors and how…
Factors Enabling the Use of Technology in Subject Teaching
ERIC Educational Resources Information Center
Cubukcuoglu, Begum
2013-01-01
The importance of information and communication technologies in the teaching and learning process has been proven by many research studies to be an effective way of supporting teaching and learning. Although many teachers do not use new technologies as instructional tools, some are integrating information and communication technologies…
ERIC Educational Resources Information Center
Getenet, Seyum Tekeher; Beswick, Kim
2013-01-01
This study describes the construction of a questionnaire instrument to measure mathematics teacher educators' knowledge for technology integrated mathematics teaching. The study was founded on a reconceptualisation of the generic Technological Pedagogical Content Knowledge framework in the specific context of mathematics teaching. Steps in the…
75 FR 48658 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... individuals who teach science, technology, engineering, and math (STEM). TEACH.gov is an essential component... among minority individuals, and particularly in teaching science, technology, engineering, and math...
Enhancing clinical teaching with information technologies: what can we do right now?
Sandroni, S
1997-09-01
Effective small-group clinical teaching requires recognizing the challenges posed by clinical settings, mastering certain teaching skills, and responding to the needs of what is often a diverse group of learners. Information technologies can enhance clinical teaching by increasing the amount of relevant clinical information available to learners, allowing for the rapid integration of needed information into the teaching encounter, facilitating information processing within small groups, and helping to compensate for the many discontinuities inherent in today's clinical teaching environment. However, as many clinical teachers look toward future implementations of advanced, totally integrated medical information systems, they often overlook information technologies they have at hand right now--e.g., CD-ROM textbooks--that can measurably enhance their teaching. The author describes the "real-world" use of several available technologies (for example, "bookmarking" MEDLINE access points) and offers suggestions for how they might be used by faculty in clinical settings.
NASA Astrophysics Data System (ADS)
Ibrahim, Hyatt Abdelhaleem
The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and power of the study suggest that the effect may not be subtle, but reliable. Physics teachers can use these results to inform their decisions about structuring learning environment when conceptual learning is important.
ERIC Educational Resources Information Center
Han, Insook; Shin, Won Sug; Ko, Yujung
2017-01-01
The student teaching experience has been considered important in establishing pre-service teachers' beliefs and attitudes towards their teaching. However, few studies have investigated the effect of student teaching experiences as an educational intervention for increasing technology integration--especially pre-service teachers' pedagogical…
ERIC Educational Resources Information Center
DeChenne, Sue Ellen; Enochs, Larry
2010-01-01
An instrument to measure the teaching self-efficacy of science, technology, engineering, and mathematics (STEM) GTAs is adapted from a general college teaching instrument (Prieto Navarro, 2005) for the specific teaching environment of the STEM GTAs. The construct and content validity and reliability of the final instrument are indicated. The final…
NASA Astrophysics Data System (ADS)
2012-05-01
WE RECOMMEND Scientific American—The Amateur Scientist 3.0 Article collection spans the decades DynaKar DynaKar drives dynamics experiments The Fundamentals of Imaging Author covers whole imaging spectrum Teaching Secondary Physics Effective teaching is all in the approach Novel Materials and Smart Applications/Novel materials sample pack Resources kit samples smart materials WORTH A LOOK Cryptic disk Metal disk spins life into discussions about energy, surfaces and kinetics HANDLE WITH CARE The New Resourceful Physics Teacher Book brings creativity to physics WEB WATCH Apps for tablets and smartphones can aid physics teaching
NASA Astrophysics Data System (ADS)
Hendrick, M. Georgeann
The course content for middle school physical science in Virginia is defined by the Standards of Learning. These eleven categories include topics in scientific experimentation, the nature of matter, chemistry and physics. Content knowledge is essential if teachers are to provide effective teaching, which includes analogies, illustrations, examples, and most importantly, hands-on experimentation. One means of assessing teacher content knowledge is by determining their academic major and minor. Teachers lacking a major or minor in the classes they teach are defined as "out-of-field" by Ingersoll (1996). When he examined data for middle school physical science teachers, 74% were "out-of-field." This survey study had two major facets. First, Virginia teachers were asked to assess their content knowledge in all eleven categories. They were also asked to provide descriptive and demographic data about themselves (including their academic degrees) and their schools. Secondly, the teachers were asked for their professional development preferences as well as organizational logistics including location, time, other participants, and use of technology. The survey was mailed to each school containing an eighth grade within the Commonwealth. The survey response rate was 73%. The data was analyzed descriptively and analytically, using frequency, percentages, T-tests, and ANOVA. Three major findings emerged. (1) The three areas which teachers assessed as lowest content knowledge included PS.11 (Electricity and Magnetism), PS.9 (Light), and PS.8 (Sound). These exactly match the three topics most desired for professional development. (2) Based on Ingersoll's definition, 68% of Virginia's teachers are providing "out-of-field" instruction. In addition, teachers with fewer years of teaching experience or mixed assignments, and/or those teaching in smaller, more rural schools report lower content knowledge. (3) Teachers desire professional development in all eleven categories. They are especially interested in programs which provide hands-on materials. Programs should be organized locally, enabling them to create collaborative teams. This study highlights the importance of professional development support for teachers who often lack an in-depth academic background in the physical sciences. This teacher input should inform program developers. In addition, inquiry into changing student SOL scores after teachers attend such programs could continue this line of inquiry.
Impact of “smart” technologies in teaching maritime subjects
NASA Astrophysics Data System (ADS)
Barsan, E.; Varsami, C.; Duse, A.; Hanzu-Pazara, R.; Jenaru, A.
2017-08-01
Nowadays students were born in a world of continuous evolution of technology. Technology is part of their daily life inside and outside their professional studies. One of the most important discoveries when it comes to technology is the internet which provides today the possibility for students to have access to all types of information and resources which are very useful in their studies activities. Therefore, in our paper we ask a very natural question: which is the place of technology in the university studies? Moreover: What part does technology play in teaching Maritime subjects? And: Which is the impact of technology in maritime teaching? Our intention is to go into more specific details on this subject, as in trying to exemplify our observations based on our own experience in teaching in Constanta Maritime University. Further on, we intend to discuss how the so called “smart” technologies came into occupying a very important place in the daily activities of our students forcing trainers to cope with this phenomenon in order to improve their teaching activities and even their relation (communication) with their students. We chose to develop this subject because everybody needs to be aware of the huge differences between generations of students. Previous generations used to require and enjoy studying from the traditional paper resources, while present generations do not even visit the libraries anymore. This is why university lecturers need to adapt their teaching methods, teaching tools and study materials to their students’ needs and of course to the evolution of technology.
An Evaluation of Student Team Teaching in Sophomore Physics Classes. Final Report.
ERIC Educational Resources Information Center
Thrasher, Paul H.
In the present document the effectiveness of a student team teaching technique is evaluated in comparison with the lecture method. The team teaching technique, previously used for upper division and graduate physics courses, was, for this study, used in a sophomore physics, electricity and magnetism course for engineers, mathematicians, chemists,…
ERIC Educational Resources Information Center
Keiner, Louis E.; Gilman, Craig
2015-01-01
This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…
Pendulums in the Physics Education Literature: A Bibliography
ERIC Educational Resources Information Center
Gauld, Colin
2004-01-01
Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories--types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a…
Multiculturalism in Teaching Physical Education: A Review of U.S. Based Literature
ERIC Educational Resources Information Center
Choi, Wonseok; Chepyator-Thomson, Rose
2011-01-01
The purpose of this paper was to review extant literature on multicultural education in the context of teaching physical education. More specifically, the article was designed to review the literature on physical education teachers' knowledge and skills related to teaching culturally diverse students. The findings revealed teachers' knowledge and…
Effective Teaching Methods--Project-based Learning in Physics
ERIC Educational Resources Information Center
Holubova, Renata
2008-01-01
The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…
Quality Physical Education: A Commentary on Effective Physical Education Teaching
ERIC Educational Resources Information Center
Dyson, Ben
2014-01-01
In my commentary in response to the 3 articles (McKenzie & Lounsbery, 2013; Rink, 2013; Ward, 2013), I focus on 3 areas: (a) content knowledge, (b) a holistic approach to physical education, and (c) policy impact. I use the term "quality teaching" rather than "teacher effectiveness." Quality teaching is a term with the…
A model teaching session for the hypothesis-driven physical examination.
Nishigori, Hiroshi; Masuda, Kozo; Kikukawa, Makoto; Kawashima, Atsushi; Yudkowsky, Rachel; Bordage, Georges; Otaki, Junji
2011-01-01
The physical examination is an essential clinical competence for all physicians. Most medical schools have students who learn the physical examination maneuvers using a head-to-toe approach. However, this promotes a rote approach to the physical exam, and it is not uncommon for students later on to fail to appreciate the meaning of abnormal findings and their contribution to the diagnostic reasoning process. The purpose of the project was to develop a model teaching session for the hypothesis-driven physical examination (HDPE) approach in which students could practice the physical examination in the context of diagnostic reasoning. We used an action research methodology to create this HDPE model by developing a teaching session, implementing it over 100 times with approximately 700 students, conducting internal reflection and external evaluations, and making adjustments as needed. A model nine-step HDPE teaching session was developed, including: (1) orientation, (2) anticipation, (3) preparation, (4) role play, (5) discussion-1, (6) answers, (7) discussion-2, (8) demonstration and (9) reflection. A structured model HDPE teaching session and tutor guide were developed into a workable instructional intervention. Faculty members are invited to teach the physical examination using this model.
ERIC Educational Resources Information Center
Hyndman, Brendon P.; Pill, Shane
2016-01-01
There has been a paucity of literature investigating the teaching beliefs and intentions of Australian physical education teacher education (PETE) students that enter teacher training. The First-year Influences on Teaching Perspectives Exploratory (FIT-PE) study explores the teaching perspectives of first year PETE students; including teaching…
NASA Astrophysics Data System (ADS)
Machold, Dolf K.
1992-09-01
The paper points out that many students and adults are accustomed to solving problems in physics on the basis of everyday concepts; believing that these concepts are very successful, those students are not interested in concepts offered by science teaching. Furthermore, the teaching physics in terms of mathematical descriptions of problems is too early — students don't see the original problem, so they are not interested in solutions. One way to avoid these difficulties is M. Wagenschein's proposal of the ‘Exemplary-genetic Method’. This method and its principles are presented and illustrated with examples taken from history. On the basis of this method educational and pedagogical functions of teaching physics are developed. P.S.: Martin Wagenschein (1896 1989), Professor of physics education at the University of Tübingen, was concerned with finding new methods for successfully teaching science.
How valuable is physical examination of the cardiovascular system?
Elder, Andrew; Japp, Alan; Verghese, Abraham
2016-07-27
Physical examination of the cardiovascular system is central to contemporary teaching and practice in clinical medicine. Evidence about its value focuses on its diagnostic accuracy and varies widely in methodological quality and statistical power. This makes collation, analysis, and understanding of results difficult and limits their application to daily clinical practice. Specific factors affecting interpretation and clinical application include poor standardisation of observers' technique and training, the study of single signs rather than multiple signs or signs in combination with symptoms, and the tendency to compare physical examination directly with technological aids to diagnosis rather than explore diagnostic strategies that combine both. Other potential aspects of the value of physical examination, such as cost effectiveness or patients' perceptions, are poorly studied. This review summarises the evidence for the clinical value of physical examination of the cardiovascular system. The best was judged to relate to the detection and evaluation of valvular heart disease, the diagnosis and treatment of heart failure, the jugular venous pulse in the assessment of central venous pressure, and the detection of atrial fibrillation, peripheral arterial disease, impaired perfusion, and aortic and carotid disease. Although technological aids to diagnosis are likely to become even more widely available at the point of care, the evidence suggests that further research into the value of physical examination of the cardiovascular system is needed, particularly in low resource settings and as a potential means of limiting inappropriate overuse of technological aids to diagnosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Teaching Wellness Concepts Using Mosston's Spectrum of Teaching Styles
ERIC Educational Resources Information Center
Wilkinson, Carol; Pennington, Todd; Zanandrea, Maria
2011-01-01
Teaching wellness principles in secondary physical education classes has become an important aspect of physical education as teachers work to help their students develop lifelong healthy lifestyle habits. Many schools now have a required wellness/fitness component as part of their state core requirements. Having developed their teaching skills by…
Rizvi, Nusrat Fatima; Gulzar, Saleema; Nicholas, Wachira; Nkoroi, Beatrice
2017-01-01
Education methods have undergone transformation over the centuries. Use of technology is the cornerstone for innovation in teaching methods. Hence, blended learning which includes face to face and online modalities is being increasingly explored as effective method for learning. This pilot study determines the perceptions of faculty members in a private international university on barriers influencing adoption of technology for teaching and learning. A cross-sectional survey was conducted through a self-reported questionnaire using 'survey monkey'. The data was entered and analyzed using Statistical Package for the Social Sciences (SPSS version 20). Frequencies and proportions are reported. Findings indicated that 51.6% faculty members perceived the importance of integration of technology in their teaching. Around 54% of the participants recognized that they do possess the ability and accessibility to integrate information communication technology (ICT) in teaching and learning, but there is a need to hone the basic information technology (IT) skills to initiate technology driven teaching. Findings revealed that 55% faculty members acknowledged the constraint of not getting protective time to develop and deliver technology driven courses. Further, results showed that 45% faculty members perceived that their innovation efforts in terms of teaching as blended learning do not count towards their professional promotion or recognition, as usually priority is given to research over teaching innovation. The findings also indicated that 54.5% participants asserted that university lack mentorship in the field of blended learning. Therefore, study suggests that universities should provide adequate mentorship programmes for the faculty members in enhancing their skills of integrating technology in their teaching.
Aamodt, Carla B; Virtue, David W; Dobbie, Alison E
2006-05-01
Teaching physical examination skills effectively, consistently, and cost-effectively is challenging. Faculty time is the most expensive resource. One solution is to train medical students using lay physical examination teaching associates. In this study, we investigated the feasibility, acceptability, and cost-effectiveness of training medical students using teaching associates trained by a lay expert instead of a clinician. We used teaching associates to instruct students about techniques of physical examination. We measured students' satisfaction with this teaching approach. We also monitored the financial cost of this approach compared to the previously used approach in which faculty physicians taught physical examination skills. Our program proved practical to accomplish and acceptable to students. Students rated the program highly, and we saved approximately $9,100, compared with our previous faculty-intensive teaching program. We believe that our program is popular with students, cost-effective, and generalizable to other institutions.
Understanding Graduate Teaching Assistants as Tutorial Instructors
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Elby, A.
2006-12-01
Physics graduate teaching assistants are essential to the implementation of many collaborative active-learning environments, including tutorials. However, many TAs have trouble teaching effectively in these formats. Anecdotal evidence suggests that the problems may include inappropriate models of physics students, unproductive theories of learning, lack of experience with modern pedagogical methods, and weaknesses in understanding basic physics topics. A new research project at the University of Maryland is investigating the specific nature of TAs' experience with reform instruction using in-depth studies of TAs in course preparation sessions, in the tutorial classroom, in a weekly teaching seminar, and in reflective interviews. We find that all TAs studied recognize the insufficiency of traditional instruction to at least some extent, citing as evidence their own learning experiences, prior teaching experiences, and exposure to FCI-type data. We also observe great variability in views of the nature of physics knowledge and learning (both professed and enacted). These results are informing the development of the professional development program for physics teaching assistants at the University of Maryland.
Teaching Energy to a General Audience
NASA Astrophysics Data System (ADS)
Baski, Alison; Hunnicutt, Sally
2010-02-01
A new, interdisciplinary course entitled ``Energy!'' has been developed by faculty in the physics and chemistry departments to meet the university's science and technology general education requirement. This course now enrolls over 400 students each semester in a single lecture where faculty from both departments co-teach throughout the term. Topics include the fundamentals of energy, fossil fuels, global climate change, nuclear energy, and renewable energy sources. The students represent an impressive range of majors (science, engineering, business, humanities, etc.) and comprise freshmen to seniors. To effectively teach this diverse audience and increase classroom engagement, in-class ``clickers'' are used with guided questions to teach concepts, which are then explicitly reinforced with online LON-CAPAfootnotetextFree open-source distributed learning content management and assessment system (www.lon-capa.org) homework. This online system enables immediate feedback in a structured manner, where students can practice randomized versions of problems for homework, quizzes, and exams. The course is already in high demand after only two semesters, in part because it is particularly relevant to students given the challenging energy and climate issues facing the nation and world. )
Reconstructing Iconic Experiments in Electrochemistry: Experiences from a History of Science Course
NASA Astrophysics Data System (ADS)
Eggen, Per-Odd; Kvittingen, Lise; Lykknes, Annette; Wittje, Roland
2012-01-01
The decomposition of water by electricity, and the voltaic pile as a means of generating electricity, have both held an iconic status in the history of science as well as in the history of science teaching. These experiments featured in chemistry and physics textbooks, as well as in classroom teaching, throughout the nineteenth and twentieth centuries. This paper deals with our experiences in restaging the decomposition of water as part of a history of science course at the Norwegian University of Science and Technology, Trondheim, Norway. For the experiment we used an apparatus from our historical teaching collection and built a replica of a voltaic pile. We also traced the uses and meanings of decomposition of water within science and science teaching in schools and higher education in local institutions. Building the pile, and carrying out the experiments, held a few surprises that we did not anticipate through our study of written sources. The exercise gave us valuable insight into the nature of the devices and the experiment, and our students appreciated an experience of a different kind in a history of science course.
Pedagogy and/or technology: Making difference in improving students' problem solving skills
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.
2013-01-01
Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.
ERIC Educational Resources Information Center
Hastürk, Gamze; Dogan, Alev
2016-01-01
Effective use of educational technologies by teachers in classrooms has come into prominence as the integration of technology into educational settings in todays world is considered as an inseparable part of an effective teaching. Besides, recent teacher training curriculums too emphasize the use of teaching strategies including technology to…
Teaching Techniques: Using "Storybird" in Young Learners' Creative Writing Class
ERIC Educational Resources Information Center
Giacomini, Laura
2015-01-01
Major changes in technology have had an influence on education. Teachers cannot neglect the impact of new technologies and fail to incorporate them in their teaching practice because that would not cater to many students' needs. Ignoring technological advances would also entail not benefiting from an array of online teaching resources and academic…
Ten Timeless Tips for Keeping on Top of Teaching Technology
ERIC Educational Resources Information Center
Poling, Devereaux A.; LoSchiavo, Frank M.
2014-01-01
We provide tips for helping psychology faculty effectively seek, select, and place new technology into pedagogical practice. We also provide tips to help psychology departments position themselves for a future that includes teaching technologies that have not yet been created. Instead of discussing today's top innovations in teaching (which…
ERIC Educational Resources Information Center
Yildiz, Merve; Selim, Yavuz
2015-01-01
With improvements in information technologies, distance education programs have become widespread. Institutions that offer distance education programs are increasing in number. Scholars who were used to face-to-face teaching began to give courses in distance education programs which entail technological teaching methods, a new teaching experience…
ERIC Educational Resources Information Center
Englund, Claire; Olofsson, Anders D.; Price, Linda
2017-01-01
Research indicates that teachers' conceptions of and approaches to teaching with technology are central for the successful imple-mentation of educational technologies in higher education. This study advances this premise. We present a 10-year longitudinal study examining teachers' conceptions of and approaches to teaching and learning with…
THE TECHNOLOGY OF TEACHING. THE CENTURY PSYCHOLOGY SERIES.
ERIC Educational Resources Information Center
SKINNER, B.F.
TEACHING AS A TECHNOLOGY IS THE ARRANGEMENT OF CONTINGENCIES OF REINFORCEMENT UNDER WHICH BEHAVIOR CHANGES. RECENT ADVANCES IN TECHNIQUES OF BEHAVIOR CONTROL HAVE MADE SUCH A TECHNOLOGY IMMANENT, BUT THERE IS A SHOCKING LACK OF APPLICATION OF THESE TECHNIQUES. INSTEAD, TEACHING CONTINUES TO RELY HEAVILY ON AVERSIVE CONTROL FOR MOTIVATION AND TO…
Teaching and Learning with Technology: Effectiveness of ICT Integration in Schools
ERIC Educational Resources Information Center
Ghavifekr, Simin; Rosdy, Wan Athirah Wan
2015-01-01
Integration of Information, Communication, and Technology (ICT) will assist teachers to the global requirement to replace traditional teaching methods with a technology-based teaching and learning tools and facilities. In Malaysia, ICT is considered as one of the main elements in transforming the country to the future development. The Ministry of…
Assuring Best Practice in Technology-Enhanced Learning Environments
ERIC Educational Resources Information Center
Keppell, Mike; Suddaby, Gordon; Hard, Natasha
2015-01-01
This paper documents the development and findings of the Good Practice Report on Technology-Enhanced Learning and Teaching funded by the Australian Learning and Teaching Council (ALTC). Developing the Good Practice Report required a meta-analysis of 33 ALTC learning and teaching projects relating to technology funded between 2006 and 2010. This…
Showcasing Faculty Experiences with Technology Enhanced Teaching and Learning
ERIC Educational Resources Information Center
Naidu, Som; Cunnington, David
2004-01-01
This paper describes a research project that seeks to explore the experience of faculty with technology-enhanced teaching and learning. A particular focus of this investigation is on how the use of information and communications technology is influencing teaching practices and students' approaches to learning at the University of Melbourne. This…
Multak, Nina; Newell, Karen; Spear, Sherrie; Scalese, Ross J; Issenberg, S Barry
2015-06-01
Research demonstrates limitations in the ability of health care trainees/practitioners, including physician assistants (PAs), to identify important cardiopulmonary examination findings and diagnose corresponding conditions. Studies also show that simulation-based training leads to improved performance and that these skills can transfer to real patients. This study evaluated the effectiveness of a newly developed curriculum incorporating simulation with deliberate practice for teaching cardiopulmonary physical examination/bedside diagnosis skills in the PA population. This multi-institutional study used a pretest/posttest design. Participants, PA students from 4 different programs, received a standardized curriculum including instructor-led activities interspersed among small-group/independent self-study time. Didactic sessions and independent study featured practice with the "Harvey" simulator and use of specially developed computer-based multimedia tutorials. Preintervention: participants completed demographic questionnaires, rated self-confidence, and underwent baseline evaluation of knowledge and cardiopulmonary physical examination skills. Students logged self-study time using various learning resources. Postintervention: students again rated self-confidence and underwent repeat cognitive/performance testing using equivalent written/simulator-based assessments. Physician assistant students (N = 56) demonstrated significant gains in knowledge, cardiac examination technique, recognition of total cardiac findings, identification of key auscultatory findings (extra heart sounds, systolic/diastolic murmurs), and the ability to make correct diagnoses. Learner self-confidence also improved significantly. This study demonstrated the effectiveness of a simulation-based curriculum for teaching essential physical examination/bedside diagnosis skills to PA students. Its results reinforce those of similar/previous research, which suggest that simulation-based training is most effective under certain educational conditions. Future research will include subgroup analyses/correlation of other variables to explore best features/uses of simulation technology for training PAs.
Teaching and Learning in the Digital Age
ERIC Educational Resources Information Center
Starkey, Louise
2012-01-01
"Teaching and Learning in the Digital Age" is for all those interested in considering the impact of emerging digital technologies on teaching and learning. It explores the concept of a digital age and perspectives of knowledge, pedagogy and practice within a digital context. By examining teaching with digital technologies through new learning…
ERIC Educational Resources Information Center
Oren, Fatma Sasmaz
2017-01-01
This research aims to determine the technologies that pre-service science teachers prefer to use in micro teaching presentations performed for improving their teaching skills and to determine the purposes of using these technologies. For this purpose, the case study model was used in the research. The research was made with some 48 pre-service…
The construction of bilingual teaching of optoelectronic technology
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhao, Enming; Yang, Fan; Li, Qingbo; Zhu, Zheng; Li, Cheng; Sun, Peng
2017-08-01
This paper combines the characteristics of optoelectronic technology with that of bilingual teaching. The course pays attention to integrating theory with practice, and cultivating learners' ability. Reform and exploration have been done in the fields of teaching materials, teaching content, teaching methods, etc. The concrete content mainly includes five parts: selecting teaching materials, establishing teaching syllabus, choosing suitable teaching method, making multimedia courseware and improving the test system, which can arouse students' interest in their study and their autonomous learning ability to provide beneficial references for improving the quality of talents of optoelectronic bilingual courses.
ERIC Educational Resources Information Center
Erbas, Mustafa Kayihan
2014-01-01
This study aimed to determine the alienation levels and attitudes of physical education teacher candidates towards the teaching profession and identify the relationship between their alienation levels and their attitudes towards teaching. The study group consisted of 695 teacher candidates studying in physical education and sports teaching…
ERIC Educational Resources Information Center
Pill, Shane; Penney, Dawn; Swabey, Karen
2012-01-01
This paper focuses on the significance of physical education teacher education (PETE) in the diffusion of "new" thinking about sport teaching in physical education. It explores issues arising from a case study investigation that sought to respond to the critical commentary about the form and substance of sport teaching in physical…
Eight Hundred Years of Physics Teaching.
ERIC Educational Resources Information Center
Bishop, George
This book uses a biographical pattern to trace the history of physics teaching. Whenever possible the story of an influential person or institution is used to tell the story of that period. The book begins with the contributions of the Greeks, the Romans, and the Arabs to physics and its teaching. Chapters include: (1) "The First Beginnings of…
Puerto Rico: Race, Ethnicity, Culture, and Physics Teaching
ERIC Educational Resources Information Center
González-Espada, Wilson J.; Carrasquillo, Rose E.
2017-01-01
It was a pleasant surprise to see Gary White's call for papers on race and physics teaching. We definitely think that the physics teaching and learning of students from diverse and minority backgrounds is an important issue to discuss, especially given the fact that bias and discrimination are common experiences in the lives of many Latinx,…
ERIC Educational Resources Information Center
Jaakkola, Timo; Watt, Anthony
2011-01-01
The main purpose of the study was to analyze teaching styles used in Finnish physical education. Another aim was to investigate the relationships between background characteristics of teachers and use of teaching styles. The participants of the study were 294 (185 females and 109 males) Finnish physical education teachers. The teachers responded…
Association of Quality Physical Education Teaching with Students’ Physical Fitness
Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Hammond-Bennett, Austin
2016-01-01
This study examined the extent to which four essential dimensions of quality physical education teaching (QPET) were associated with healthy levels of physical fitness in elementary school students. Participants were nine elementary PE teachers and 1, 201 fourth- and fifth-grade students who were enrolled in nine elementary schools. The students’ physical fitness were assessed using four FITNESSGRAM tests. The PE teachers’ levels of QPET were assessed using the Assessing Quality Teaching Rubrics (AQTR). The AQTR consisted of four essential dimensions including Task Design, Task Presentation, Class Management, and Instructional Guidance. Codes were confirmed through inter-rater reliability (82.4% and 84.5%). Data were analyzed through descriptive statistics, multiple R-squared regression models, and independent sample t-tests. The four essential teaching dimensions of QPET were significantly associated with the students’ cardiovascular endurance, muscular strength and endurance, and flexibility. However, they accounted for relatively low percentage of the total variance in PACER test, followed by Curl-up test, while explaining very low portions of the total variance in Push-up and Trunk Lift tests. This study indicated that the students who had experienced high level of QPET were more physically fit than their peers who did not have this experience in PACER and Curl-up tests, but not in Push-up and Trunk lift tests. In addition, the significant contribution of the four essential teaching dimensions to physical fitness components was gender-specific. It was concluded that the four teaching dimensions of QPET were significantly associated with students’ health-enhancing physical fitness. Key points Although Task Design, Task Presentation, Class Management, and Instructional Guidance has its unique and critical teaching components, each essential teaching dimensions is intertwined and immersed in teaching practices. Four essential teaching dimensions all significantly contributed to students’ health-enhancing physical fitness. Implementation of QPET in a lesson plays more significant role in contributing to improving girls’ cardiovascular endurance. Implementation of QPET in a lesson contributed significantly to improving boy’s abdominal, upper-body, and back extensor muscular strength and endurance as well as flexibility PMID:27274673
An appraisal of the literature on teaching physical examination skills.
Easton, Graham; Stratford-Martin, James; Atherton, Helen
2012-07-01
To discover which models for teaching physical examination skills have been proposed, and to appraise the evidence for each. We conducted a narrative review of relevant literature from 1990-2010. We searched the databases MEDLINE, PsycINFO, and ERIC (The Education Resource Information Centre) for the terms: 'physical examination' AND 'teaching' as both MESH terms and keyword searches. We excluded web-based or video teaching, non-physical examination skills (e.g. communication skills), and articles about simulated patients or models. We identified five relevant articles. These five studies outlined several approaches to teaching physical examination skills, including Peyton's 4-step model, an adaptation of his model to a 6-step model; the silent run through; and collaborative discovery. There was little evidence to support one method over others. One controlled trial suggested that silent run-through could improve performance of complex motor tasks, and another suggested that collaborative discovery improves students' ability to recognise key findings in cardiac examinations. There are several models for teaching physical examinations, but few are designed specifically for that purpose and there is little evidence to back any one model over another. We propose an approach which adopts several key features of these models. Future research could usefully evaluate the effectiveness of the proposed models, or develop innovative practical models for teaching examination skills.
Physics: Frightful, but Fun. Pupils' and Teachers' Views of Physics and Physics Teaching
ERIC Educational Resources Information Center
Angell, Carl; Guttersrud, Oystein; Henriksen, Ellen K.; Isnes, Anders
2004-01-01
There is widespread concern for the situation of school physics regarding recruitment, contents, teaching methods, etc. In this study based on questionnaire and focus group data, we explore how upper secondary pupils and teachers perceive physics as a subject, how they experience physics instruction, and how physics compares to other subjects. Our…
A Collection of Problems for Physics Teaching
ERIC Educational Resources Information Center
Grober, S.; Jodl, H. -J.
2010-01-01
Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching,…
Research on Expertise: Guideposts for Expertise and Teacher Education in Physical Education.
ERIC Educational Resources Information Center
O'Sullivan, Mary; Doutis, Panayiotis
1994-01-01
Presents guideposts for thinking about teaching and teacher education in light of recent research on expertise in teaching, particularly teaching in physical education. The paper critiques the concept of expertise, suggesting the term virtuoso as a more appropriate term for teaching expertly. Implications of the redefinition are presented. (SM)
Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning
NASA Astrophysics Data System (ADS)
Lambourne, Robert
2007-05-01
Developments in the laboratory-based teaching of physics and astronomy are resulting from the collaboration between conventional and distance teaching universities. The collaboration, piCETL, is one of the Centres for Excellence in Teaching and Learning established as a result of a broad initiative by the Higher Education Funding Council for England. The initiative, the piCETL collaboration and some of its work on laboratory-based teaching are all described.
NASA Astrophysics Data System (ADS)
Hosny, Hala M.; Kahil, Heba M.
2005-10-01
From our national statistics, it is evident that in the population of physicists there are considerably fewer women than men. Our role is to attract girls to physics and thus decrease this gap. The institutional structure in Egypt provides an equal opportunity for girls to study sciences, including physics. It is reckoned that girls refrain from studying physics due to a group of social and economic factors. We will discuss teaching physics at schools and present some ideas to develop it. The media should play a role in placing female physicists in the spotlight. Unfortunately, careers that require intellectual skills are considered men's careers. This necessitates that society changes the way it sees women and trusts more in their skills and talents. We therefore call for the cooperation of governmental and nongovernmental bodies, together with universities and the production sectors involved. This will ultimately lead to enhancing the entrepreneurial projects related to physics and technology on the one hand, and will encourage girls to find challenging opportunities on the other.
Interprofessional Peer Teaching of Pharmacy and Physical Therapy Students.
Sadowski, Cheryl A; Li, Johnson Ching-hong; Pasay, Darren; Jones, C Allyson
2015-12-25
To evaluate an interprofessional peer-teaching activity during which physical therapy students instructed undergraduate pharmacy students on 3 ambulatory devices (canes, crutches, walkers). The pre/post evaluation of 2 pharmacy undergraduate classes included 220 students, 110 per year. After pharmacy students completed a 10-point, knowledge-based pretest, they participated in a hands-on activity with physical therapy students teaching them about sizing, use, and safety of canes, crutches, and walkers. A 10-point posttest was completed immediately afterward. The mean difference of pre/post scores was 3.5 (SD 1.9) for the peer-led teaching, and 3.8 (SD 2.2) for the peer learning group. Students had positive responses regarding the learning exercise and recommended further peer teaching. The peer-learning activity involving physical therapy students teaching pharmacy students was an effective method of improving knowledge and skills regarding basic ambulatory devices.
Interprofessional Peer Teaching of Pharmacy and Physical Therapy Students
Sadowski, Cheryl A.; Li, Johnson Ching-hong; Pasay, Darren
2015-01-01
Objective. To evaluate an interprofessional peer-teaching activity during which physical therapy students instructed undergraduate pharmacy students on 3 ambulatory devices (canes, crutches, walkers). Design. The pre/post evaluation of 2 pharmacy undergraduate classes included 220 students, 110 per year. After pharmacy students completed a 10-point, knowledge-based pretest, they participated in a hands-on activity with physical therapy students teaching them about sizing, use, and safety of canes, crutches, and walkers. A 10-point posttest was completed immediately afterward. Assessment. The mean difference of pre/post scores was 3.5 (SD 1.9) for the peer-led teaching, and 3.8 (SD 2.2) for the peer learning group. Students had positive responses regarding the learning exercise and recommended further peer teaching. Conclusion. The peer-learning activity involving physical therapy students teaching pharmacy students was an effective method of improving knowledge and skills regarding basic ambulatory devices. PMID:26889067
Teaching for understanding and/or teaching for the examination in high school physics
NASA Astrophysics Data System (ADS)
Geelan, David R.; Wildy, Helen; Louden, William; Wallace, John
2004-04-01
Literature on the related notions of 'teaching for understanding' and 'exemplary teaching' tends to be interpreted as prescribing certain classroom approaches. These are usually the strategies often identified with constructivist teaching, which involve a redefinition of the teacher's role: rather than being seen as a source of knowledge and control, the teacher is described as the facilitator of a largely student-directed search for understanding. More 'transmissive', teacher-centred approaches are held to lead to poor student understanding, low cognitive engagement and rote learning. This paper reports a case study of physics teaching in a government high school in Perth, Western Australia. This case study is part of a larger project spanning 5 years and eight case investigations in Perth schools. While the pedagogical style of the teacher studied could be labelled as 'transmissive', we tentatively assert that his practice exemplified high-quality physics teaching and led to high-quality understanding on the part of the students. The study suggests that prescriptions for quality teaching must be sensitive to issues of context and content, and that further study in a variety of school contexts is required to expand our understanding of what constitutes good teaching and learning in physics.
ERIC Educational Resources Information Center
Gorev, Dvora; Gurevich-Leibman, Irina
2015-01-01
This paper presents our experience of integrating technological tools into our mathematics teaching (in both disciplinary and didactic courses) for student-teachers. In the first cycle of our study, a variety of technological tools were used (e.g., dynamic software, hypertexts, video and applets) in teaching two disciplinary mathematics courses.…
The Rationale for a Teaching Innovation about the Interrelationship between Science and Technology
ERIC Educational Resources Information Center
Hadjilouca, R.; Constantinou, C. P.; Papadouris, N.
2011-01-01
This paper refers to the development of a teaching innovation for the nature of science (NOS), for students aged 11-15, which specifically focuses on the interrelationship between science and technology. The development of the teaching and learning materials relied on inputs from three sources: the history and philosophy of science and technology,…
Issues in Integrating Information Technology in Learning and Teaching EFL: The Saudi Experience
ERIC Educational Resources Information Center
Al-Maini, Yousef Hamad
2013-01-01
The Saudi education system is facing a climate of change characterized by an interest in integrating new technology and educational approaches to improve teaching and learning. In this climate, the present paper explores the issues in integrating information technology in learning and teaching English as a foreign language (EFL) in government…
The Use of Computer Software to Teach High Technology Skills to Vocational Students.
ERIC Educational Resources Information Center
Farmer, Edgar I.
A study examined the type of computer software that is best suited to teach high technology skills to vocational students. During the study, 50 manufacturers of computer software and hardware were sent questionnaires designed to gather data concerning their recommendations in regard to: software to teach high technology skills to vocational…
ERIC Educational Resources Information Center
Hasan, Zahir T.
2016-01-01
This research study examines teaching beliefs of English-language professors in Japan, how professors make sense of their beliefs, and how the beliefs influence their pedagogical strategies related to using technology and teaching with technology. An Interpretative Phenomenological Analysis (IPA) research design was used. Six English-language…
Problem Based Learning in Design and Technology Education Supported by Hypermedia-Based Environments
ERIC Educational Resources Information Center
Page, Tom; Lehtonen, Miika
2006-01-01
Audio-visual advances in virtual reality (VR) technology have given rise to innovative new ways to teach and learn. However, so far teaching and learning processes have been technologically driven as opposed to pedagogically led. This paper identifies the development of a pedagogical model and its application for teaching, studying and learning…
ERIC Educational Resources Information Center
Dede, Chris, Ed.; Richards, John, Ed.
2012-01-01
The Digital Teaching Platform (DTP) brings the power of interactive technology to teaching and learning in classrooms. In this authoritative book, top researchers in the field of learning science and educational technology examine the current state of design and research on DTPs, the principles for evaluating them, and their likely evolution as a…
Choosing Technology Tools to Meet Pronunciation Teaching and Learning Goals
ERIC Educational Resources Information Center
Yoshida, Marla Tritch
2018-01-01
For decades, researchers and teachers have suggested ways to apply technology in teaching and learning pronunciation, and there are many useful tools that can be used for this purpose. However, many teachers feel unsure about how to teach pronunciation at all, and the idea of using computers, mobile devices, or other technology may make…
Rowe, Michael; Frantz, Jose; Bozalek, Vivienne
2013-04-10
While there is evidence to suggest that teaching practices in clinical education should include activities that more accurately reflect the real world, many educators base their teaching on transmission models that encourage the rote learning of knowledge and technical skills. Technology-mediated instruction may facilitate the development of professional attributes that go beyond "having" knowledge and skills, but there is limited evidence for how to integrate technology into these innovative teaching approaches. This study used a modified Delphi method to help identify the professional attributes of capable practitioners, the approaches to teaching that may facilitate the development of these attributes, and finally, how technology could be integrated with those teaching strategies in order to develop capable practitioners. Open-ended questions were used to gather data from three different expert panels, and results were thematically analysed. Clinical educators should not view knowledge, skills and attitudes as a set of products of learning, but rather as a set of attributes that are developed during a learning process. Participants highlighted the importance of continuing personal and professional development that emphasised the role of values and emotional response to the clinical context. To develop these attributes, clinical educators should use teaching activities that are learner-centred, interactive, integrated, reflective and that promote engagement. When technology-mediated teaching activities are considered, they should promote the discussion of clinical encounters, facilitate the sharing of resources and experiences, encourage reflection on the learning process and be used to access content outside the classroom. In addition, educational outcomes must drive the integration of technology into teaching practice, rather than the features of the technology. There is a need for a cultural change in clinical education, in which those involved with the professional training of healthcare professionals perceive teaching as more than the transmission of knowledge and technical skills. Process-oriented teaching practices that integrate technology as part of a carefully designed curriculum may have the potential to facilitate the development of capable healthcare graduates who are able to navigate the complexity of health systems and patient management in ways that go beyond the application of knowledge and skills.
2013-01-01
Background While there is evidence to suggest that teaching practices in clinical education should include activities that more accurately reflect the real world, many educators base their teaching on transmission models that encourage the rote learning of knowledge and technical skills. Technology-mediated instruction may facilitate the development of professional attributes that go beyond “having” knowledge and skills, but there is limited evidence for how to integrate technology into these innovative teaching approaches. Methods This study used a modified Delphi method to help identify the professional attributes of capable practitioners, the approaches to teaching that may facilitate the development of these attributes, and finally, how technology could be integrated with those teaching strategies in order to develop capable practitioners. Open-ended questions were used to gather data from three different expert panels, and results were thematically analysed. Results Clinical educators should not view knowledge, skills and attitudes as a set of products of learning, but rather as a set of attributes that are developed during a learning process. Participants highlighted the importance of continuing personal and professional development that emphasised the role of values and emotional response to the clinical context. To develop these attributes, clinical educators should use teaching activities that are learner-centred, interactive, integrated, reflective and that promote engagement. When technology-mediated teaching activities are considered, they should promote the discussion of clinical encounters, facilitate the sharing of resources and experiences, encourage reflection on the learning process and be used to access content outside the classroom. In addition, educational outcomes must drive the integration of technology into teaching practice, rather than the features of the technology. Conclusions There is a need for a cultural change in clinical education, in which those involved with the professional training of healthcare professionals perceive teaching as more than the transmission of knowledge and technical skills. Process-oriented teaching practices that integrate technology as part of a carefully designed curriculum may have the potential to facilitate the development of capable healthcare graduates who are able to navigate the complexity of health systems and patient management in ways that go beyond the application of knowledge and skills. PMID:23574731
Bittner, Melissa D; Rigby, B Rhett; Silliman-French, Lisa; Nichols, David L; Dillon, Suzanna R
2017-08-01
Deficits in social behavior and communication skills are correlated with reduced gross motor skills in children with autism spectrum disorders (ASD). The ExerciseBuddy application (EB app) was designed to communicate these motor skills to those with ASD and integrates evidence-based practices such as visual support and video modeling supported by The National Professional Development Center on Autism Spectrum Disorders. The purpose of this study was to determine the effectiveness of the EB app in facilitating increased physiologic responses to physical activity via a continuous measurement of energy expenditure and heart rate versus practice-style teaching methods in children with ASD. Six children, ages 5 to 10years, diagnosed with ASD were recruited. Each participant performed a variety of locomotor or object control skills as defined by the Test of Gross Motor Development-2 once per week for 4weeks. Motor skills were communicated and demonstrated using either practice-style teaching methods or the instructional section of the EB app. Energy expenditure and heart rate were measured continuously during each 12-minute session. A Wilcoxon signed-rank test was performed to assess any differences between the use of the app and practice-style teaching methods. The use of the EB app elicited greater values for peak energy expenditure (p=0.043) and peak heart rate response (p=0.028) while performing locomotor skills but no differences were observed while performing object control skills. Similarities were observed with average physiologic responses between the use of the EB app and practice-style teaching methods. The use of the EB app may allow for a greater peak physiologic response during more dynamic movements and a similar average cardiovascular and metabolic response when compared to practice-style teaching methods in children with ASD. Published by Elsevier Inc.
American Association of Physics Teachers Annual Report, 2009
ERIC Educational Resources Information Center
American Association of Physics Teachers (NJ1), 2009
2009-01-01
The American Association of Physics Teachers (AAPT) mission is to enhance the understanding and appreciation of physics through teaching. Embracing the notion that physics understanding is critical to the wellbeing of society, AAPT is committed to serving its members and the larger community by promoting effectiveness in physics teaching for…
American Association of Physics Teachers Annual Report, 2008
ERIC Educational Resources Information Center
American Association of Physics Teachers (NJ1), 2008
2008-01-01
The American Association of Physics Teachers (AAPT) mission is to enhance the understanding and appreciation of physics through teaching. Aspiring to advance the greater good through physics, AAPT strives to be the leading voice, primary resource, advocate of choice, and driving force in physics education, serving professionals who teach physics…
An Ecological Examination of an Urban Sixth Grade Physical Education Class
ERIC Educational Resources Information Center
James, Alisa R.; Collier, Douglas
2011-01-01
Background: There are several factors that influence teaching urban physical education. Violence, poverty and irrelevant curricula influence the teaching-learning environment in urban physical education. One approach to urban physical education is to look carefully at the ecology that exists within an urban physical education class. This ecology…
Teaching Secondary Mathematics with ICT. Learning & Teaching with ICT
ERIC Educational Resources Information Center
Johnston-Wilder, Sue; Pimm, David
2004-01-01
This book shows the reader how to use Information and Communication Technology (ICT) effectively to enhance the teaching of mathematics in the secondary school. It explains which forms of technology can be used to improve mathematics teaching and learning, how to get started and where to go for further information. The book includes practical…
Automatic Speech Recognition Technology as an Effective Means for Teaching Pronunciation
ERIC Educational Resources Information Center
Elimat, Amal Khalil; AbuSeileek, Ali Farhan
2014-01-01
This study aimed to explore the effect of using automatic speech recognition technology (ASR) on the third grade EFL students' performance in pronunciation, whether teaching pronunciation through ASR is better than regular instruction, and the most effective teaching technique (individual work, pair work, or group work) in teaching pronunciation…
ERIC Educational Resources Information Center
Borovik, Alexandre
2011-01-01
Although mathematicians frequently use specialist software in direct teaching of mathematics, as a means of delivery e-learning technologies have so far been less widely used. We (mathematicians) insist that teaching methods should be subject-specific and content-driven, not delivery-driven. We oppose generic approaches to teaching, including…
Gulzar, Saleema; Nicholas, Wachira; Nkoroi, Beatrice
2017-01-01
Background Education methods have undergone transformation over the centuries. Use of technology is the cornerstone for innovation in teaching methods. Hence, blended learning which includes face to face and online modalities is being increasingly explored as effective method for learning. This pilot study determines the perceptions of faculty members in a private international university on barriers influencing adoption of technology for teaching and learning. Methods A cross-sectional survey was conducted through a self-reported questionnaire using ‘survey monkey’. The data was entered and analyzed using Statistical Package for the Social Sciences (SPSS version 20). Frequencies and proportions are reported. Results Findings indicated that 51.6% faculty members perceived the importance of integration of technology in their teaching. Around 54% of the participants recognized that they do possess the ability and accessibility to integrate information communication technology (ICT) in teaching and learning, but there is a need to hone the basic information technology (IT) skills to initiate technology driven teaching. Findings revealed that 55% faculty members acknowledged the constraint of not getting protective time to develop and deliver technology driven courses. Further, results showed that 45% faculty members perceived that their innovation efforts in terms of teaching as blended learning do not count towards their professional promotion or recognition, as usually priority is given to research over teaching innovation. The findings also indicated that 54.5% participants asserted that university lack mentorship in the field of blended learning. Conclusions Therefore, study suggests that universities should provide adequate mentorship programmes for the faculty members in enhancing their skills of integrating technology in their teaching. PMID:28567414
Preparing Mathematics Teachers for Technology-Rich Environments
ERIC Educational Resources Information Center
Sturdivant, Rodney X.; Dunham, Penelope; Jardine, Richard
2009-01-01
This article describes key elements for faculty development programs to prepare mathematics teachers for technology-rich environments. We offer practical examples from our experiences in teaching mathematics with technology and in teaching others to incorporate technology-based pedagogies. We address challenges faced by faculty using technology,…
Analysis of Engineering Content within Technology Education Programs
ERIC Educational Resources Information Center
Fantz, Todd D.; Katsioloudis, Petros J.
2011-01-01
In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…
ERIC Educational Resources Information Center
Sun, Guodong
2011-01-01
The cultivation target of physical education major in normal universities is mainly physical teachers' qualification in basic education. Training of teaching-plan-telling on students of sports teaching major in normal universities has significant meaning to enhance the quality of students in a comprehensive way, realize the target of professional…
ERIC Educational Resources Information Center
Pesman, Haki; Ozdemir, Omer Faruk
2012-01-01
The purpose of this study is to explore not only the effect of context-based physics instruction on students' achievement and motivation in physics, but also how the use of different teaching methods influences it (interaction effect). Therefore, two two-level-independent variables were defined, teaching approach (contextual and non-contextual…
ERIC Educational Resources Information Center
Hill, Kathleen
The final booklet in a series on physical education and sports for the handicapped presents ideas for teaching dance to the physically disabled. Introductory sections consider the rehabilitation role of dance, physiological and psychological benefits, and facilities for dance instruction. Step-by-step suggestions are given for teaching ballroom…
Puerto Rico: Race, Ethnicity, Culture, and Physics Teaching
NASA Astrophysics Data System (ADS)
González-Espada, Wilson J.; Carrasquillo, Rosa E.
2017-09-01
It was a pleasant surprise to see Gary White's call for papers on race and physics teaching. We definitely think that the physics teaching and learning of students from diverse and minority backgrounds is an important issue to discuss, especially given the fact that bias and discrimination are common experiences in the lives of many Latinx, including school-age children and college students.
ERIC Educational Resources Information Center
Demirci, Neset
2015-01-01
The main aim of this study was to determine the teaching practices of prospective high school physics teachers with respect to their preference for teaching as a traditionalist or as a constructivist. To study the beliefs of prospective high school physics teachers on this subject, firstly, the Teacher Belief Survey was administered to 135…
Learning From Where Students Look While Observing Simulated Physical Phenomena
NASA Astrophysics Data System (ADS)
Demaree, Dedra
2005-04-01
The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.
NASA Astrophysics Data System (ADS)
Spencer, Cherrill
2010-02-01
High-school teachers are amongst the most important contributors to the development of the science and technology workforce of the future. Many of the more than 23,000 US high-school physics teachers are not adequately prepared to teach the subject. Only one-third of them, for example, majored in physics or physics education. Can inadequate teacher preparation be a factor in the poor performance of US students on international assessments of their achievements in science and physics? Since 1995 the Trends in International Mathematics and Science Study (TIMSS) has been administered four times to many hundreds of thousands of students in over 60 countries. TIMSS is used to measure trends in the mathematics and science knowledge and skills of fourth- and eighth-graders. The Program for International Student Assessment (PISA) has been administered three times since 2000, it focuses on 15-year-olds' capabilities in reading literacy, mathematics literacy, and science literacy. TIMSS Advanced (1995) assessed school-leaving students who have had special preparation in advanced mathematics and physics. In all these studies the US students, including the Advanced Placement physics students, scored below the international average, sometimes in the bottom third of countries! Three speakers have been invited to talk about the physics K-12 education systems in other countries, one that consistently scores at the top of the PISA (Finland) or score much higher than the USA on TIMSS ( various Northern European countries) and significantly better on recent bi-lateral comparisons (China). What can we learn from the physics teaching systems in these high-scoring countries that might be applied in the USA? There will be a panel discussion following the 3 invited talks, audience participation will be encouraged. )
High school physics and socioeconomics
NASA Astrophysics Data System (ADS)
White, Susan C.
2015-11-01
In our September column, we noted that Hispanic and African-American seniors were less likely to have taken a high school physics course than their peers, and we suggested that socioeconomic status (SES) played a role in the lower participation. In the figure, we display the proportion of seniors, of physics teachers, and of physics enrollments at schools by SES. While the number of seniors is roughly one-third in each group, physics enrollments differ dramatically by SES. Furthermore, the disparity in enrollments is greater than the disparity in physics teachers; this means that the teachers teaching physics at "better off" schools teach more physics than the physics teachers at "worse off" schools. Thus, a physics teacher at a "better off" school is more likely to teach a majority of their classes in physics.
Emotional Component in Teaching and Learning
NASA Astrophysics Data System (ADS)
Ponnambalam, Michael
2018-02-01
The laws of physics are often seen as objective truth, pure and simple. Hence, they tend to appear cerebral and cold. However, their presentation is necessarily subjective and may vary from being boring to being exciting. A detailed analysis of physics education reform efforts over the last three decades finds that interactive instruction results in greater learning gains than the traditional lecture format. In interactive engagement, the emotional component plays a far greater role than acknowledged by many. As an experienced physics teacher [(i) Four decades of teaching and research in four continents (teaching all courses to undergraduate physics majors and algebra-based physics to high school seniors as well as college freshmen), (ii) 11 years of volunteer work in Physics Popularization in six countries to many thousands of students in elementary, middle, and high schools as well as colleges and universities, and (iii) eight years as a Master Teacher and mentor], I feel that the emotional component in teaching and learning physics has been neglected. This paper presents the role of the emotional component in transforming ordinary teaching and learning of physics into an enjoyable and exciting experience for students as well as teachers.
ERIC Educational Resources Information Center
Hoffmann, Werner
1974-01-01
Contains remarks concerning lesson orientation in the use of the obligatory instructional aids and of reserves of teaching materials, also in relation to minimal requirements in the development of the physical teaching area for foreign language instruction. (Text is in German.) (IFS/WGA)
From students to researchers: The education of physics graduate students
NASA Astrophysics Data System (ADS)
Lin, Yuhfen
This dissertation aims to make two research contributions: (1) In physics education research, this work aims to advance our understanding of physics student learning at the graduate level. This work attempts to better understand how physics researchers and teachers are produced, and what factors support or encourage the process of becoming a researcher and a teacher. (2) In cognitive science research in the domain of expert/novice differences, researchers are interested in defining and understanding what expertise is. This work aims to provide some insight into some of the components of expertise that go into becoming a competent expert researcher in the domain of physics. This in turn may contribute to our general understanding of expertise across multiple domains. Physics graduate students learn in their classes as students, teach as teaching assistants, and do research with research group as apprentices. They are expected to transition from students to independent researchers and teachers. The three activities of learning, teaching, and research appear to be very different and demand very different skill-sets. In reality, these activities are interrelated and have subtle effects on each other. Understanding how students transition from students to researchers and teachers is important both to PER and physics in general. In physics, an understanding of how physics students become researchers may help us to keep on training physicists who will further advance our understanding of physics. In PER, an understanding of how graduate students learn to teach will help us to train better physics teachers for the future. In this dissertation, I examine physics graduate students' approaches to teaching, learning, and research through semi-structured interviews. The collected data is interpreted and analyzed through a framework that focuses on students' epistemological beliefs and locus of authority. The data show how students' beliefs about knowledge interact with their learning, teaching, and research activities. In many cases, their perception of the learning, teaching, or research environment influences their choice of learning, teaching, or research approach. Physics graduate students learn "the language of physics" from the core courses, but don't learn many transferable research skills from taking courses. Constrained by the teaching environment, many graduate students are not motivated to teach as teaching assistants. Some finishing graduate students have clearly become confident and able researchers, while others remain dependent on their advisors for even the simplest direction. The data also show that it is possible for a single graduate student to hold very distinct beliefs about learning and teaching between classroom and research settings. It is possible for a well-motivated graduate student to take unfavorable approach toward learning when the environment does not support learning for deep understanding. This dissertation attempts to distill out aspects of success in the graduate program and identify features of positive experiences that help graduate students to transition from students to competent and confident researchers. The data suggest that having graduate students treated as legitimate participants is the vital element for them to build their confidence as researchers and teachers.
Teaching and Research with Accelerators at Tarleton State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, Daniel K.
2009-03-10
Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projectsmore » performed by Tarleton students will be presented.« less
Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics.
Sahar-Halbany, Adi; Vance, Jennifer M; Drain, Charles Michael
2011-05-01
As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights into the chemistry and principles of nanolithography. The experiment also has flexibility, making it suitable for a range of classroom levels from high school to more advanced labs in college. Because CD-Rs are composed of grooves of polycarbonate, the experiment provides a basis for discussions and exploration into the chemistry and physics of polymers on the nanoscale.
Preparing Teachers for Technology Based Teaching-Learning Using TPACK
ERIC Educational Resources Information Center
Padmavathi, M.
2017-01-01
Technological Pedagogical Content Knowledge (TPACK) is a conceptual framework for teachers to teach effectively using technology. This framework originates from the opinion that use of technology in educational context would be effective only if content, pedagogy and technology are aligned carefully. It implies that for teachers to use technology…
The Digital Divide in Classrooms: Teacher Technology Comfort and Evaluations
ERIC Educational Resources Information Center
Dornisch, Michele
2013-01-01
A disconnect exists between students' comfort with using technology for learning and teachers' comfort in using technology for teaching. Students report the desire for more engaging technology-based assignments. Teachers cite multiple reasons for their hesitancy to use technology in their teaching. The current study investigates whether…
Influencing Technology Education Teachers to Accept Teaching Positions
ERIC Educational Resources Information Center
Steinke, Luke Joseph; Putnam, Alvin Robert
2008-01-01
Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…
Factors influencing pre-service physics teachers' skills of writing teaching materials
NASA Astrophysics Data System (ADS)
Sinaga, Parlindungan
2016-02-01
Writing teaching materials is one of the generic pedagogical skills. Teachers and pre-service teachers should be trained to have the skills of writing teaching materials. This study examines the factors that influence the skills of writing in the disciplines among pre-service physics teachers. This study in particular aims to contribute to the development of science writing in the disciplines and to the organization of workshops on writing teaching materials for pre-service teachers. The problems of this research are formulated in the question of what are the factors that influence the skills of pre-service physics teachers in writing teaching materials. The research adopted mixed methods with embedded experimental design. The research subjects were 18 students enrolled in the school physics course. The instruments used consisted of conceptual understanding tests, learning strategy questionnaire, tests of the multiple representation skills, and one-on-one semi- structured interview. Results of data analysis show that the ability and skills of writing physics teaching materials of the pre- service physics teachers are determined by the factors of conceptual understanding of the subject matter with a contribution of 20%, the skills of making multiple representations of concepts with a contribution of 9.8% and students' self-regulation and learning strategy with a contribution of 33.5%. There are other factors that have not been investigated in this study; therefore, it is recommended that future research conduct further investigation on other factors that influence pre-service teachers' skills in writing physics teaching materials.
ERIC Educational Resources Information Center
Scarborough, Jule Dee
2007-01-01
This Northern Illinois University College of Engineering and Engineering Technology (CEET) initiative represents the authors' first attempt to prepare engineering and technology professors for teaching to improve student learning and the Scholarship of Teaching. This college portfolio is nontraditional in that it combines a learning paper approach…
ERIC Educational Resources Information Center
Bianco, Andrew S.
2014-01-01
All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…
ERIC Educational Resources Information Center
Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi
2014-01-01
In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…
Graphic Design: A Sustainable Solution to Manage the Contents of Teaching Materials
ERIC Educational Resources Information Center
Victor, Garcia Izaguirre; Luisa, Pier Castello Maria; Eduardo, Arvizu Sanchez
2010-01-01
There is a concern that the teaching of subjects is applied not only with support from a set of technological devices, but largely in the proper use of teaching and new technologies. Taking this idea, the authors develop a research and sustainable design that result in educational materials in solid content and technological innovation, also to…
NASA Astrophysics Data System (ADS)
Sechler, Phares Lochiel Coleman
State departments of public instruction require that teachers periodically update their licenses throughout their teaching careers. Various professional development events such as in-service workshops, university offerings, and special innovative programs provide opportunities for novice and experienced teachers to grow professionally. The "Team Science" workshop was designed from models supported by research that described guidelines for successful workshop strategies. In evaluating the workshop, the question was asked "Why did not all teachers implement the ideas from the workshop in their science classrooms?" This study investigates the possible relationship between teacher personality characteristics and implementation of technology innovations. Team Science was an extensive workshop program planned to develop science teachers' expertise in using computer and video technology to teach in physical science, chemistry, and physics classrooms in rural school in North Carolina. Upon evaluating the four-year effort, it was found that the 23 participants implemented the technological strategies at various levels. At the higher end of the range of technology use, some teachers exhibited complete integration of the computers and interfacing devices into both the laboratory work and the classroom inquiry. At the lower end of the range, some teachers used the technology very little. The resulting question emerged from the data collected: Do specific teacher personality characteristics (independent variables) correlate with the degree of implementation (dependent variable) of the innovative ideas and tools used in the teacher's science classroom after the in-service workshop? To determine if there were any significant personality traits, each teacher was given five personality tests. The tests were Hunt's Conceptual Development Test, the Paragraph Completion Test; James Rest's Defining Issues Test; Simmons Personal Survey, an emotional tendency test; the Myers-Briggs Type Indicator; and Riggs and Enochs Self-Efficacy Test. The data were analyzed using descriptive statistics, multiple regression, and factor analysis to see what variables were predictors of implementation. The regression analysis revealed that subtests from Myers-Briggs Type Indicator, Simmons Personal Survey, Hunt's Paragraph Completion Test, and Rest's Defining Issues Test could be used to predict implementation. Factor analysis indicated teachers who implemented the technology were "risk takers" and "flexible planners."
Physics Teacher Preparation as a Means for Growth
NASA Astrophysics Data System (ADS)
Henderson, Ron
2013-03-01
Physics departments across the country are experiencing pressures to increase the number of graduates. One response is to improve marketing and recruiting efforts to add students to existing pipelines. A more innovative approach is to create new pathways tied to career paths that are alternatives to graduate school. One occupation that currently needs more graduates than physics departments are supplying is physics teaching. About 3 years ago, MTSU began implementing a strategy to prepare physics majors for careers in high school teaching. These efforts included developing coursework specifically related to physics teaching, creating relationships with the college of education, moving to pedagogies that reflect physics education research (PER)-validated best practices, hiring a tenure-track PER expert, implementing new ways to reach potential majors, and seeking external funding. The cumulative result has not only added a number of physics teaching majors to our roles, but has affected our existing programs in a manner that has yielded further growth. Support provided by the APS/AAPT PhysTEC project.
ERIC Educational Resources Information Center
Attard, Catherine
2011-01-01
New technologies continue to change every aspect of home, life and work: the way people communicate, calculate, analyse, shop, make presentations and socialise. "The Australian Curriculum" acknowledges the importance of teaching and learning with technology by including the use of information and communication technology (ICT) as one of…
ERIC Educational Resources Information Center
Hofmeister, Alan M.; And Others
1989-01-01
Presented is an introduction to laser videodisc technology, covering both hardware and courseware considerations and technological applications to special education. Described is the application of videodisc courseware to the teaching of fractions, and results of a successful program to teach fractions to eight mainstreamed students with learning…
Socio-Demographic Factors Relating to Perception and Use of Mobile Technologies in Tertiary Teaching
ERIC Educational Resources Information Center
Lai, Kwok-Wing; Smith, Lee
2018-01-01
In 2014, we investigated how socio-demographic factors such as gender, teaching disciplines, teaching experience and academic seniority were related to the perception and use of digital mobile technologies in learning and teaching of a group of university teachers from one research-intensive university in New Zealand. Three hundred and eight…
Online Physics Lab Exercises--A Binational Study on the Transfer of Teaching Resources
ERIC Educational Resources Information Center
Theyßen, Heike; Struzyna, Sarah; Mylott, Elliot; Widenhorn, Ralf
2016-01-01
In this paper, we present the design and the results of a comparative study that evaluated the success of a transfer of an online-teaching resource between two universities, one in Germany and one in the USA. The teaching resource is an online physics lab that has been used in the physics education of medical students in Germany since 2003. The…
ERIC Educational Resources Information Center
Murathan, Talha; Özdemir, Kübra
2017-01-01
The purpose of this study was to examine the attitudes of physical education teacher candidates toward the teaching profession and the perceptions of professional competence according to some variables. A total of 351 teacher candidates, studying in the last class of Physical Education and Sport Teaching Department in the Faculty of Sports…
Cherry, Shirley J; Flora, Bethany H
2017-01-01
To assess radiography faculty perceptions of the effectiveness of online courses. An original survey instrument was created by selecting items from 3 instruments used in prior research and adding unique questions designed to elicit demographic data from faculty. The sample included a national dataset of radiography faculty members employed in Joint Review Committee on Education in Radiologic Technology-accredited programs in the United States. Findings showed that faculty perceptions of online course effectiveness are not affected significantly by faculty position, type of institution, faculty age, or years of teaching experience. Positive perceptions of the effectiveness of online courses moderately increased with years of teaching online courses, number of online courses taught in the past 5 years, and perceived competence with the use of technology. Faculty satisfaction with interaction in online courses moderately increased as the years of teaching online courses increased. However, the number of years of teaching online courses was not related to faculty satisfaction with teaching online courses or faculty satisfaction with institutional support. Online technology acceptance had a moderately positive relationship with perceived ease of use and a strong positive relationship with perceived usefulness of online technology. In addition, the use of technology-enhanced learning methods had a strong positive relationship with technological self-efficacy. Radiography faculty perceptions of the effectiveness of online courses improved with experience in teaching online courses and competence with use of technology. Perceived ease of use and perceived usefulness of online technology were related directly to online technology acceptance. Furthermore, faculty members with technological self-efficacy were more likely to use technology-enhanced learning methods in the online environment.
Preparing prospective physics teachers to teach integrated science in junior high school
NASA Astrophysics Data System (ADS)
Wiyanto; Hartono; Nugroho, S. E.
2018-03-01
The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.
IN MY OPINION: The how of physics
NASA Astrophysics Data System (ADS)
Kibble, Bob
2000-03-01
In a society such as ours, increasingly concerned as it is with improving quality, it is relatively easy to find data charting the fortunes, good or ill, of the quality of education. League tables are such an example. The `quality' of a school, whatever that means, might be judged by its league table position. A science department might be judged as offering a high quality service if its value-added indices are positive. There is often mention made of the quality of A-level students or postgraduate entrants to the teaching profession. What then of the quality of physics teaching? As an initial trainer/educator of physics teachers I am expected to have a view as to some of the ingredients which might be part of the balanced diet of good physics teaching. School inspectors certainly have a view. I expect that most heads of departments and advisers will also have something to say on the subject. Perhaps there is a consensus within the profession as to what constitutes good physics teaching. Certainly at the IOP Congress two years ago a number of teachers in a discussion session I chaired came up with what appeared to be a shared view of the qualities of good teaching. These qualities included teaching that allowed for pupils to have their say, to articulate their ideas, teachers who listened and encouraged discussion, group work and problem solving tasks, clear lesson structures shared with learners, imaginative use of resources, shared enthusiasm, clear outcomes and much more. If there is a professional consensus then why can many physics lessons be so cripplingly dull? The gradual demise in the status of physics as a desirable subject of choice, post-16, in schools has resulted in fewer young people choosing to study physics and to teach physics. If physics has an image problem, there is all the more reason for the quality of physics teaching to rise above the mediocre. Now one might say that I am speaking from a limited experience and the situation I describe doesn't apply to your teaching. You are probably right on both counts. However, the fact that you are reading this journal indicates that you are likely to be taking a dynamic interest in your own teaching, more interest than most. As far as my sampling goes, you only have to speak to students who watch physics teaching in schools and to inspectors who do the same and to heads of departments who make it their job to get out and about into other classrooms. Yes, there is good teaching but there is so much that is simply as safe as houses, plodding through the syllabus, covering the material in a transmission style but so unimaginatively. Physics teaching looks tired. Is there an initiative to be taken? Recent curriculum developments have forged ahead with new materials for learners. But most of this amounts to developments in the WHAT of physics teaching. They offer either support for learners or new interpretations of syllabus content. There is no doubt that these initiatives are of considerable value and they will help to change the face of physics as a subject but I don't think in themselves they offer solutions that will change the HOW of physics teaching in the way that, for example, the Nuffield initiatives did in the 1970s. The original Nuffield programmes included teacher's handbooks that had pages devoted to teaching strategies. The guides encouraged reflection on such issues as the dangers of teaching theory, students reporting their findings, the value of discussion in helping students to `get ideas inside themselves' etc. There were pages about the HOW alongside pages about the WHAT. There is no doubt that a factor in this equation resides with national issues such as school resources, class sizes, contact hours and the drive to increase pass rates. However, even within these parameters can we identify ways forward that will enable professional change and revitalize classroom experiences? Schools have a long history of in-service professional development but I wonder if development days have lost the plot somewhat. How often are such days devoted to generic, whole school issues and how often do they focus on teachers and teaching? As a teacher I found it a rare luxury to find a forum, both the time and the place, to talk about teaching. Occasionally the ASE local section meetings or the ASE annual meeting provided space for professional reflection, and I often returned from such events with ideas to try out and to share with colleagues. Perhaps better use might be made of subject departments as agents for change. A modest investment in training middle managers as teacher-mentors and leaders might result in change that would be managed from within schools. Teachers helping teachers. I'll end this editorial with a plea to head teachers, advisers, department heads and the physics teaching community. Resurrect the HOW of physics teaching. Let's create space and time for teachers to share, reflect and explore their trade, to observe others teaching, to articulate their strategies for lesson planning and motivating learners and to be brave enough to step out from the stifling atmosphere of their classroom boxes and breathe again.
Innovations in Science Education in Europe
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2001-12-01
At many European Universities, the retention of skilled science graduates is hindered mainly by organisational structures. In particular, women students are often under-represented in sciences, and career progression is in general difficult. The linear system of knowhow transfer is inefficient from the pedagogical point of view and unsatisfactory for many students. Owing to fast changes in society and the working environment, a re-building of curricula in tertiary education (including University Education) has begun. Conceptual visions aim at influencing the investment in the largely untapped human capital and preparing the students for quick adaptation and enhanced flexiblity. Traditional methods of classroom teaching and knowhow transfer are increasingly complemented by New Learning Technologies and Mentoring. The EU Project INDECS (Potentials of Interdisciplinary Degree Courses in Engineering, Information Technology, Natural and Socio-Economic Sciences in a Changing Society) examines such pedagogical aspects in European degree courses combining engineering, IT, physical sciences and socio-economic sciences. Inclusion of specific IT and social science topics in modular form is examined. How innovation in University Teaching will meet the attractiveness to both students and employers in Europe is major focus of the study.
ERIC Educational Resources Information Center
Wang, Lijuan; Wang, Min; Wen, Hongwei
2015-01-01
This study examines the teaching behavior of physical education (PE) teachers in teaching students with special needs and the factors that determine their teaching behaviour. An extended theory of planned behaviour (TPB) was utilised as the theoretical framework. Three secondary and two high school PE teachers participated in the study. Data…
Determinants of Teachers' Intentions To Teach Physically Active Physical Education Classes.
ERIC Educational Resources Information Center
Martin, Jeffrey J.; Kulinna, Pamela Hodges; Eklund, Robert C.; Reed, Brett
2001-01-01
Investigated elementary and secondary teachers' intentions to teach physically active physical education classes, examining a model hypothesizing that teachers' intentions were determined by subjective norm, attitude, perceived behavioral control, and self-efficacy. Teacher surveys supported the theories of reasoned action and planned behavior.…
Teaching Information Technology Law
ERIC Educational Resources Information Center
Taylor, M. J.; Jones, R. P.; Haggerty, J.; Gresty, D.
2009-01-01
In this paper we discuss an approach to the teaching of information technology law to higher education computing students that attempts to prepare them for professional computing practice. As information technology has become ubiquitous its interactions with the law have become more numerous. Information technology practitioners, and in particular…
Technology, Teaching and Sanity.
ERIC Educational Resources Information Center
Coladarci, Arthur
Despite recent advances in instructional technology, there still exist substantial gaps between technology's promise and its achievement. This situation is partly due to the fact that teachers who have a clear conception of the teaching-learning interaction are not involved in the implementation of technological innovations. Teachers and teacher…
ERIC Educational Resources Information Center
Deutsch, William
1992-01-01
Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)
Interprofessional approach for teaching functional knee joint anatomy.
Meyer, Jakob J; Obmann, Markus M; Gießler, Marianne; Schuldis, Dominik; Brückner, Ann-Kathrin; Strohm, Peter C; Sandeck, Florian; Spittau, Björn
2017-03-01
Profound knowledge in functional and clinical anatomy is a prerequisite for efficient diagnosis in medical practice. However, anatomy teaching does not always consider functional and clinical aspects. Here we introduce a new interprofessional approach to effectively teach the anatomy of the knee joint. The presented teaching approach involves anatomists, orthopaedists and physical therapists to teach anatomy of the knee joint in small groups under functional and clinical aspects. The knee joint courses were implemented during early stages of the medical curriculum and medical students were grouped with students of physical therapy to sensitize students to the importance of interprofessional work. Evaluation results clearly demonstrate that medical students and physical therapy students appreciated this teaching approach. First evaluations of following curricular anatomy exams suggest a benefit of course participants in knee-related multiple choice questions. Together, the interprofessional approach presented here proves to be a suitable approach to teach functional and clinical anatomy of the knee joint and further trains interprofessional work between prospective physicians and physical therapists as a basis for successful healthcare management. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
ERIC Educational Resources Information Center
Flavin, Michael
2016-01-01
This paper examines the usage of institutional and non-institutional technologies to support learning and teaching in UK higher education. Previous work on disruptive technology and disruptive innovation has argued that users prefer simple and convenient technologies, and often repurpose technologies from designers' intentions; this paper…
ERIC Educational Resources Information Center
Willis, Jana; Weiser, Brenda; Smith, Donna
2016-01-01
Providing teacher candidates opportunities to engage in experiences modeling effective technology integration could improve confidence/comfort in using technology and support skill development and transfer. A purposeful sample of 424 candidates in an educational technology course was administered the Technology and Teaching Efficacy Scale to…
ERIC Educational Resources Information Center
Menazel, Basil H.
2016-01-01
The study aimed to identify the use of educational technology in social studies teaching and the obstacles to availability and use of educational technology in teaching social studies at schools in the North West Badiya Education Directorate in Mafraq governorate, the Hashemite Kingdom of Jordan. The study population comprised of 137 male and…
ERIC Educational Resources Information Center
Kim, Eunjin
2013-01-01
This study aims to show how music technology mediated (or music software mediated) music teaching and learning can provide an effective pedagogy in music education. It also seeks to demonstrate that music technology mediated teaching is in accordance with socio-educational trends for both postmodern values and IT mediated learning. The new…
ERIC Educational Resources Information Center
Risser, Hilary Smith
2011-01-01
More than twenty years after the introduction of the first handheld graphing calculator the mathematics community appears to still be struggling with the use of technology in the teaching and learning of mathematics. One major venue for arguments against technology use in the teaching and learning of mathematics is the news magazines of…
Doubling the number of physics majors who teach
NASA Astrophysics Data System (ADS)
Marder, Michael
2009-03-01
The American Physical Society has adopted a doubling initiative to increase the number of physics majors. One of the main motivations is to increase the number of physics majors certified to teach secondary physics. I will review some of the possible strategies for reaching this goal, and discuss some of the steps we have taken with UTeach, the program for secondary science and mathematics teacher preparation at The University of Texas at Austin.I will discuss the roles of curriculum revision, financial support, and community support in convincing majors to teach. Finally, I will talk about the expansion of UTeach into engineering.
Physics Teaching in Times of Change
NASA Astrophysics Data System (ADS)
Dykstra, Dewey
2006-05-01
Powerful political forces have been at play in building a mandate to change the schools. The latest, on-going manifestation is in the No Child Left Behind Act, but the mandate for change was being formulated in the early 1980s in the A Nation at Risk report. As physicists we may feel somewhat removed from such goings on, but our children attend school and their teachers come through our classrooms. Physics education research offers extensive, carefully collected data on the consequences of standard physics teaching. The data challenges conventional beliefs about physics learning. It is said that times of crisis represent both opportunity and danger. Because the mandates to change are up to the individual states, each of us in our own state has the opportunity to shift the focus in physics/science teaching toward something better. We also face the danger that existing physics/science teaching will be even more deeply entrenched than it already is.
The Integration of technology in teaching mathematics
NASA Astrophysics Data System (ADS)
Muhtadi, D.; Wahyudin; Kartasasmita, B. G.; Prahmana, R. C. I.
2017-12-01
This paper presents the Transformation of Technological Pedagogical and Content Knowledge (TPACK) of three pre-service math teacher. They participate in technology-based learning modules aligned with teaching practice taught school and became characteristic of teaching method by using the mathematical software. ICT-based learning environment has been the demands in practice learning to build a more effective approach to the learning process of students. Also, this paper presents the results of research on learning mathematics in middle school that shows the influence of design teaching on knowledge of math content specifically.
Modern projection of the old electroscope for nuclear radiation quantitative work and demonstrations
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Baltokoski Boch, Layara
2017-11-01
Although quantitative measurements in radioactivity teaching and research are only believed to be possible with high technology, early work in this area was fully accomplished with very simple apparatus such as zinc sulphide screens and electroscopes. This article presents an experimental practice using the electroscope, which is a very simple apparatus that has been widely used for educational purposes, although generally for qualitative work. The main objective is to show the possibility of measuring radioactivity not only in qualitative demonstrations, but also in quantitative experimental practices. The experimental set-up is a low-cost ion chamber connected to an electroscope in a configuration that is very similar to that used by Marie and Pierre Currie, Rutherford, Geiger, Pacini, Hess and other great researchers from the time of the big discoveries in nuclear and high-energy particle physics. An electroscope leaf is filmed and projected, permitting the collection of quantitative data for the measurement of the 220Rn half-life, collected from the emanation of the lantern mantles. The article presents the experimental procedures and the expected results, indicating that the experiment may provide support for nuclear physics classes. These practices could spread widely to either university or school didactic laboratories, and the apparatus has the potential to allow the development of new teaching activity for nuclear physics.
Information Technology and Academic Productivity.
ERIC Educational Resources Information Center
Massy, William F.; Zemsky, Robert
1996-01-01
Enumerates the challenges of adopting information technology (IT)-based teaching and learning strategies in higher education. Concerns addressed include whether IT should supplant rather than augment traditional teaching methods, the financing of IT acquisition, change of teaching and learning processes to increase productivity per person, and…
Research on Teaching in Physical Education: Questions and Comments.
ERIC Educational Resources Information Center
Lee, Amelia M.
1991-01-01
Reinforces some of the points made in Stephen Silverman's research review on teaching in physical education, examining the process-product paradigm, the measurement of learning and teaching, and the significance of student mediation. The article identifies issues that merit further discussion and analysis. (SM)
NASA Astrophysics Data System (ADS)
Calder, Austin Michael
Physics Education Research (PER) has shown us that when students have opportunities to make sense of concepts they tend to remember them better and can apply them more appropriately to new situations. PER has also revealed that an interactive, cooperative, small group environment is more conducive to achieving this than traditional lecture and recitation sections. It is useful to consider the aims of reformed instruction from the point of view of the graduate teaching assistants (GTAs) in physics, who are facilitating the instruction. The data in this dissertation comes from audio-recordings of GTAs teaching in an algebra-based introductory course; I develop a rubric for assessing the teaching practices of the GTAs which separates teaching into five categories according to the reformed practices present. The rubric and technique developed here could be used as a diagnostic for GTAs new to a reformed classroom. I also conducted surveys of the GTA participants, as well as semi-structured interviews to gain more information about the attitudes and perspectives toward reformed physics instruction. Results from this work include: (1) A diagnostic tool for teaching improvement and (2) a detailed understanding of the GTA facilitators' teaching practices in the reformed physics laboratory.
ERIC Educational Resources Information Center
Linder, Anne; Airey, John; Mayaba, Nokhanyo; Webb, Paul
2014-01-01
Recently, the South African Institute of Physics undertook a major review of university physics education. The report highlighted the necessity for further transformation of the teaching of physics, particularly in relation to the teaching of under-prepared students. In this article we examine how physics lecturers in South Africa reported how…
Sustaining the Progress to Improve Physics Education
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq
2010-01-01
One of the problems we face in teaching introductory physics courses at the college level is that about 2/3 of students never had physics prior coming to college. Thus, many students find it very difficult to learn physics for the first time at the relatively fast-paced teaching of college physics courses. Sometimes the drop/failure/withdrawal…
Adoption of Mobile Technology for Teaching Preparation in Improving Teaching Quality of Teachers
ERIC Educational Resources Information Center
Nawi, Aliff; Hamzah, Mohd Isa; Ren, Chua Chy; Tamuri, Ab Halim
2015-01-01
This study aims to identify the readiness of teachers to use mobile phones for the purpose of teaching preparation. The study also reviewed the level of teachers' satisfaction when using the mobile technology applications developed for the purpose of teaching and learning in the classroom. This study used the mix method to collect data. A total of…
ERIC Educational Resources Information Center
Randall, John H.
2016-01-01
As more online courses and programs are created, it is imperative institutions understand the concern of their faculty toward teaching online, the types of technology they use, and the methods they use to instruct students in order to provide appropriate resources to support them. This quantitative study measures these concerns, using the Stages…
SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology
NASA Astrophysics Data System (ADS)
Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.
2010-12-01
SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This presentation will provide an overview of the educational modules. A variety of sensors will be described, which are suitably simple for design and construction from first principles by high school students while being accurate enough for students to make meaningful environmental measurements. The presentation will also describe how the sensor building activities can be tied to core curricula classroom theory, enabling the modules to be utilized in regular classes by mathematics, science and computing teachers without disrupting their semester’s teaching goals. Furthermore, the presentation will address of the first two years of the SENSE IT project, during which 39 teachers have been equipped, trained on these materials, and have implemented the modules with around approximately 2,000 high school students.
Designing Learning Environments to Teach Interactive Quantum Physics
ERIC Educational Resources Information Center
Puente, Sonia M. Gomez; Swagten, Henk J. M.
2012-01-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…
How Computer-Assisted Teaching in Physics Can Enhance Student Learning
ERIC Educational Resources Information Center
Karamustafaoglu, O.
2012-01-01
Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…
Fostering Inclusion and Positive Physical Education Experiences for Overweight and Obese Students
ERIC Educational Resources Information Center
Rukavina, Paul B.; Doolittle, Sarah A.
2016-01-01
Overweight and obese students are often socially and instructionally excluded from physical education and school physical activity opportunities. This article describes teaching strategies from a study of middle school physical education teachers who are committed to providing effective teaching and positive experiences for overweight and obese…
Jump Start the Heart: Teaching Children Cardiovascular Fitness
ERIC Educational Resources Information Center
McCollum, Starla; Maina, Michael P.; Maina, Julie Schlegel; Griffin, Mike
2004-01-01
Quality physical education classes are an important avenue for teaching children about lifetime fitness participation. Specific fitness information and habits can be taught as part of physical education classes. Physical education, however, should not be the only source of physical activity for children. Children need opportunities to participate…
Making Visual Illustrations of Physics Accessible to Blind Students
ERIC Educational Resources Information Center
Pereira Torres, Josiane; Gonçalves Mendes, Enicéia
2017-01-01
The teaching of physics often involves the use of illustrations that complement and assist the understanding of a particular situation or physical phenomenon. Overall, the proper use of illustrations can maximize the learning and understanding of concepts and phenomena related to the teaching of science (physics, chemistry, biology) and…
Active Learning Strategies in Physics Teaching
ERIC Educational Resources Information Center
Karamustafaoglu, Orhan
2009-01-01
The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…
Visions Management: Effective Teaching through Technology.
ERIC Educational Resources Information Center
Larson, Robert W.
In making effective use of technology, instructors must face several challenges, such as deciding which technology is really necessary for effective teaching and working with limited department budgets. In addressing these issues, faculty should be aware of three major trends in communications technology: miniaturization of the media of…
Technology Supported Learning and Teaching: A Staff Perspective
ERIC Educational Resources Information Center
O'Donoghue, John, Ed.
2006-01-01
"Technology Supported Learning and Teaching: A Staff Perspective" presents accounts and case studies of first-hand experience in developing, implementing, or evaluating learning technologies. This book highlights the many areas in which practitioners are attempting to implement learning technologies and reflects themes of current topical interest.…
Teaching 'How To' Technologies in Context.
ERIC Educational Resources Information Center
Leigh, Patricia Randolph
The introductory instructional technology course at Iowa State University is a survey course covering various technologies. In this case, the instructor chose to create a situated learning environment using low-technology everyday surroundings to teach the fundamentals of photographic and video production, linking the photography, audio, and video…
ERIC Educational Resources Information Center
Tang, Thomas Li-Ping; Austin, M. Jill
2009-01-01
This study examined business students' perceptions of four objectives (i.e., Enjoyment, Learning, Motivation, and Career Application) across five teaching technologies (i.e., Projector, PowerPoint, Video, the Internet, and Lecture), business professors' effective application of technologies, and students' academic performance. We collected data…
NASA Astrophysics Data System (ADS)
2001-03-01
PHYSICS AT ASE Warm welcome for new-look Physics Education; TEACHING COMMUNITY Conference in the Netherlands; RESEARCH Evidence based practice; PHYSICS AT ASE Teacher of Physics Awards; PHYSICS AT ASE Festival encourages science teachers; AWARDS Bragg Medal; PHYSICS AT ASE Meteorites are cool! PUBLIC UNDERSTANDING March 2001 - a science odyssey; WEB RESOURCES New website launched to support the gifted and talented; PHYSICS TEACHING A Fun lesson; RESEARCH FRONTIERS Are cell phones safe? OBITUARY Roy Schofield 1924-2000
Promoting Plasma Physics as a Career: A Generational Approach
NASA Astrophysics Data System (ADS)
Morgan, James
2005-10-01
A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.
Simulator technology as a tool for education in cardiac care.
Hravnak, Marilyn; Beach, Michael; Tuite, Patricia
2007-01-01
Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.
Roles of Modern Information Technology in Graduate Training
ERIC Educational Resources Information Center
Li, Ruixian; Gao, Song
2009-01-01
Introduction of information technology into the education field has greatly enriched teaching content and forms, and facilitated transformation of teaching mode, teaching approaches and training concepts. Especially for training of graduates, its introduction seems extraordinarily prominent. In this paper, the authors will analyze and discuss…
ERIC Educational Resources Information Center
Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.
2018-01-01
We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…
ERIC Educational Resources Information Center
Diaz-Cueto, Mario; Hernandez-Alvarez, Juan Luis; Castejon, Francisco Javier
2010-01-01
The purpose of this study was to understand the perceptions of in-service Physical Education (PE) teachers when using Teaching Games for Understanding (TGfU) in teaching sports. Data were gathered from interviews, work group meetings, and participants' diaries. The results show the difficulties PE teachers had in the planning and implementation of…
Ruan, Min; Ji, Tong; Zhang, Chen-Ping
2016-12-01
With the increasing maturation of 3D printing technology, as well as its application in various industries, investigation of 3D printing technology into clinic medical education becomes an important task of the current medical education. The teaching content of oromaxillofacial head and neck surgical oncology is complicated and diverse, making lower understanding/memorizing efficiency and insufficient skill training. To overcome the disadvantage of traditional teaching method, it is necessary to introduce 3D printing technique into teaching of oromaxillofacial head and neck surgical oncology, in order to improve the teaching quality and problem solving capabilities, and finally promote cultivation of skilled and innovative talents.
Boom, Doom and Rocks - The Intersection of Physics, Video Games and Geology
NASA Astrophysics Data System (ADS)
McBride, J. H.; Keach, R. W.
2008-12-01
Geophysics is a field that incorporates the rigor of physics with the field methods of geology. The onset and rapid development of the computer games that students play bring new hardware and software technologies that significantly improve our understanding and research capabilities. Together they provide unique insights to the subsurface of the earth in ways only imagined just a few short years ago. 3D geological visualization has become an integral part of many petroleum industry exploration efforts. This technology is now being extended to increasing numbers of universities through grants from software vendors. This talk will explore 3D visualization techniques and how they can be used for both teaching and research. Come see examples of 3D geophysical techniques used to: image the geology of ancient river systems off the coast of Brazil and in the Uinta Basin of Utah, guide archaeological excavations on the side of Mt. Vesuvius, Italy, and to study how volcanoes were formed off the coast of New Zealand.
ERIC Educational Resources Information Center
Anandam, Kamala, Ed.
Focusing on the diversity of the uses of technology in education and the institutions which apply them, this book presents 13 articles describing technological transformations in teaching at two-year colleges throughout the United States. The book contains: (1) "Tradition and Technology at Amarillo College: People Make the Difference," by Diana…
Explicating the Influences That Explain Intention to Use Technology among English Teachers in China
ERIC Educational Resources Information Center
Teo, Timothy; Huang, Fang; Hoi, Cathy Ka Weng
2018-01-01
Given the paradox between pervasive promotion of technology use in English teaching and lack of studies about teachers' technology acceptance in China, this study aims to examine intentions of English teachers in China to use technology in their classroom teaching. Based on the technology acceptance model, eight variables including perceived…
ERIC Educational Resources Information Center
Oda, Kazue
2011-01-01
While many studies have demonstrated the advantages of using computer technology in foreign language classrooms, many post-secondary foreign language (FL) teachers still remain reluctant to use technology in instruction. Even when teachers do use technology, critiques have indicated that it is oftentimes used merely to replicate traditional…
ERIC Educational Resources Information Center
Kruger-Ross, Matthew J.; Holcomb, Lori B.
2012-01-01
The use of educational technologies is grounded in the assumptions of teachers, learners, and administrators. Assumptions are choices that structure our understandings and help us make meaning. Current advances in Web 2.0 and social media technologies challenge our assumptions about teaching and learning. The intersection of technology and…
ERIC Educational Resources Information Center
Groth, Lois A.; Dunlap, Kristy L.; Kidd, Julie K.
2007-01-01
With an increased emphasis on incorporating technology-based instruction into K-12 classrooms and an expectation that teachers will use technology to support their teaching, teacher educators are continuously challenged to prepare K-12 teachers to use new and emerging technologies effectively for learning and teaching (Ross & Wiseman, 2001).…
Alignment between Principal and Teacher Beliefs about Technology Use
ERIC Educational Resources Information Center
Alghamdi, Abdulmajeed; Prestridge, Sarah
2015-01-01
This paper explores the link between principals' and teachers' beliefs regarding technology use in teaching and learning. Principals who have a clear vision for carrying out the pedagogical requirements for technological change in teaching and learning approaches can direct the use of technology to enhance the school learning environment.…
Problem Solving in Technology Education: A Taoist Perspective.
ERIC Educational Resources Information Center
Flowers, Jim
1998-01-01
Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)
ERIC Educational Resources Information Center
Gonzalez, Maria Jose; González-Ruiz, Ignacio
2017-01-01
Teachers' beliefs, together with sound technological pedagogical content knowledge (TPACK), are directly related to the effective integration of technology in mathematics teaching. This study explored the relationship between pre-service teachers' behavioural intention to use technology to teach mathematics and their TPACK. A case-study analysis…
Teachers' Use of Technology in Elementary Reading Lessons
ERIC Educational Resources Information Center
McDermott, Peter; Gormley, Kathleen A.
2016-01-01
Proponents claim technology will transform classroom teaching and improve children's engagement and learning. Opponents argue that such benefits are oversold because little evidence exists that technology improves teaching and learning. We examined how elementary teachers in an urban school that was well resourced with technology used it when…
Utilization of Information and Communication Technologies in Mathematics Learning
ERIC Educational Resources Information Center
Saadati, Farzaneh; Tarmizi, Rohani Ahmad; Ayub, Ahmad Fauzi Mohd
2014-01-01
Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students' perception regarding the use of Information and Communication Technologies (ICT)…
ERIC Educational Resources Information Center
Van Rooy, Wilhelmina S.
2012-01-01
Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes…
Disruptive Conduct: The Impact of Disruptive Technologies on Social Relations in Higher Education
ERIC Educational Resources Information Center
Flavin, Michael
2016-01-01
Higher education institutions (HEIs) have invested significantly in digital technologies for learning and teaching. However, technologies provided by HEIs have not been universally successful in terms of adoption and usage. Meanwhile, both students and lecturers use disruptive technologies to support learning and teaching. This article examines…
The Integration of Information and Communication Technology into Classroom Teaching.
ERIC Educational Resources Information Center
Reid, Scott
2002-01-01
A Newfoundland study examining how information technologies affect teaching interviewed 13 teachers at a leading high school in the use of information technology. Teachers used information technology to interact on a global basis, expand resources, enhance local content, and customize material. Problems included need for training, information…
ERIC Educational Resources Information Center
Stephens, Andrew G.
2017-01-01
The purpose of this qualitative study is to investigate how teachers who have been identified as high level integrators of technology (specifically laptop technology) perceive their journey to integration, the impact of it on their teaching pedagogy, and the impact of it on student learning. Constructivist Theory informed the interpretations of…
NASA Astrophysics Data System (ADS)
Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian
2009-11-01
Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.
Effects of Web based inquiry on physical science teachers and students in an urban school district
NASA Astrophysics Data System (ADS)
Stephens, Joanne
An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.
Learning style and teaching method preferences of Saudi students of physical therapy
Al Maghraby, Mohamed A.; Alshami, Ali M.
2013-01-01
Context: To the researchers’ knowledge, there are no published studies that have investigated the learning styles and preferred teaching methods of physical therapy students in Saudi Arabia. Aim: The study was conducted to determine the learning styles and preferred teaching methods of Saudi physical therapy students. Settings and Design: A cross-sectional study design. Materials and Methods: Fifty-three Saudis studying physical therapy (21 males and 32 females) participated in the study. The principal researcher gave an introductory lecture to explain the different learning styles and common teaching methods. Upon completion of the lecture, questionnaires were distributed, and were collected on completion. Statistical Analysis Used: Percentages were calculated for the learning styles and teaching methods. Pearson’s correlations were performed to investigate the relationship between them. Results: More than 45 (85%) of the students rated hands-on training as the most preferred teaching method. Approximately 30 (57%) students rated the following teaching methods as the most preferred methods: “Advanced organizers,” “demonstrations,” and “multimedia activities.” Although 31 (59%) students rated the concrete-sequential learning style the most preferred, these students demonstrated mixed styles on the other style dimensions: Abstract-sequential, abstract-random, and concrete-random. Conclusions: The predominant concrete-sequential learning style is consistent with the most preferred teaching method (hands-on training). The high percentage of physical therapy students whose responses were indicative of mixed learning styles suggests that they can accommodate multiple teaching methods. It is recommended that educators consider the diverse learning styles of the students and utilize a variety of teaching methods in order to promote an optimal learning environment for the students. PMID:24672278
New optical museum at Saint-Petersburg for education and training
NASA Astrophysics Data System (ADS)
Vasil'ev, V. N.; Stafeef, S. K.; Tomilin, M. G.
2009-06-01
Nowadays the educational problem of teaching optics and photonics is to attract the young generation to the wonderful and magic world of light, optical science, technology and systems. The main issue is to explain that in the course of last several hundred years optics has been representing the most clear world view for humanity. In fact, the optics itself is a multidisciplinary complex of independent scientific directions, and, moreover, it has always been a generator of new fields of knowledge. Besides, optics and photonics are the fields within which the most fundamental problems of today's reality are to be resolved. It is absolutely necessary to encourage our scholars in getting optics and photonics education as an alternative physical basis to gaining solely computer knowledge. The main obstacle is the poor connection between program of optical education and the real optical researches, disintegration of different branches of the optical science, the demographic situation, some problems with teaching mathematics and physics at schools, and the collision between traditional educational methods and the mentality of the new generation. In Russia the Saint-Petersburg State University of Information Technologies, Mechanics and Optics offers partial solution to these problems: the organization of a real place for interactive optical science in a form of a new museum of optics, intended for education and training, seems to be the most effective way. This was the main reason for establishing such a museum in Saint-Petersburg at the end of 2008.
Physics teacher use of the history of science
NASA Astrophysics Data System (ADS)
Winrich, Charles
The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics (CHOP). ITOP participants self-report changes to their teaching practices as a result of their participation in ITOP. The purpose of this study was to verify and characterize those changes in the specific area of the participants' use of history after their study of CHOP. Ten recent ITOP participants were observed, interviewed, and asked to provide lesson plans and samples of student work from their classes. Case studies of each participant's teaching were constructed from the data. The individual cases were synthesized to characterize the impact of CHOP on the ITOP participants. The results show that the participants integrate CHOP into their pedagogical content knowledge (PCK) to inform their understanding of: (1) the relationship between physics and other disciplines, (2) the relationship between specific physics concepts, (3) student understanding of physics concepts, (4) student difficulties in learning physics concepts, and (5) methods for teaching physics concepts. The participants use history to teach a variety of topics, although the most common were mechanics and electromagnetism. All of the participants used history to teach aspects of the nature of science (NOS) and to increase student interest in physics, while eight participants taught physics concepts through history. The predominant mode of incorporating history was through adding anecdotes about the scientists who worked on the concepts, but seven participants had their students study the historical development of physical concepts. All the participants discussed a lack of time as a factor that inhibits a greater use of history in their courses. Eight participants discussed a lack of appropriate resources for using history in high school physics classes. Two participants said they did not feel that explicit study of the history of physics would benefit their students until they had better mastery of physics concepts.
NASA Astrophysics Data System (ADS)
Kerlínová, Věra
2017-01-01
Within the long-term pedagogical research ongoing since the school year 2008/2009 to 2015/2016 at the secondary vocational school in Bohumín was through of Entrance test of physics, which included curriculum of the sixth to ninth year of elementary school, regularly finding out, in which parts of Entrance test - Unit conversions, International System of Units, Properties of matter, Mechanics, Thermodynamics, Electricity and Magnetism, Optics, Atoms and Universe - pupils of the 1st years of secondary vocational school, technical and non-technical, reach a higher number of correct answers, in which dominates the wrong answers and which parts of the test pupils are better left out completely. It turned out that the results of these tests are very informative not only for theoretical and practical teaching, but also technical and other science subjects. The results of the Entrance tests are also a valuable source of information for continuous innovation Workbook of Physics - Mechanics for the 1st year of secondary vocational schools [1] - whose the first version began during the school year 2007/2008 and which was tested within pre-research in school years 2008/2009, 2009/2010 and within research in school year 2010/2011. On the basis of feedbacks getting from research the Workbook is regularly expanded, innovated and updated. The Workbook consists of parts dedicated to physical concepts, physical tasks, proposals to physical experiments, pupils comments from viewed video projection and documentary films, examples from the world of science and technology, examples from practice and real life, physical terminology in English, quizzes, competitions, interesting things and links related to discussed curriculum. The Workbook is divided into thematic sections, chapters and subchapters similar as physics textbooks for pupils of the 1st years of Secondary Schools in the Czech Republic. In the Workbook there are included tasks on fill in the words, polynomial tasks with choice answer "one right answer", tasks assignment, tasks to sketching to the pictures and physical tasks including graphic sketches. Long-term research through the Entrance test of physics and the use of the Workbook in physics teaching will continue in the school year 2016/2017 and not just among pupils of the 1st years of secondary vocational school, but also pupils at grammar school, where the research was conducted in the school year 2010/2011 and 2014/2015.
Teaching with technology: free Web resources for teaching and learning.
Wink, Diane M; Smith-Stoner, Marilyn
2011-01-01
In this bimonthly series, the department editor examines how nurse educators can use Internet and Web-based computer technologies such as search, communication, collaborative writing tools; social networking, and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. In this article, the department editor and her coauthor describe free Web-based resources that can be used to support teaching and learning.