NASA Astrophysics Data System (ADS)
2014-09-01
This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1
On the Correct Analysis of the Foundations of Theoretical Physics
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2007-04-01
The problem of truth in science -- the most urgent problem of our time -- is discussed. The correct theoretical analysis of the foundations of theoretical physics is proposed. The principle of the unity of formal logic and rational dialectics is a methodological basis of the analysis. The main result is as follows: the generally accepted foundations of theoretical physics (i.e. Newtonian mechanics, Maxwell electrodynamics, thermodynamics, statistical physics and physical kinetics, the theory of relativity, quantum mechanics) contain the set of logical errors. These errors are explained by existence of the global cause: the errors are a collateral and inevitable result of the inductive way of cognition of the Nature, i.e. result of movement from formation of separate concepts to formation of the system of concepts. Consequently, theoretical physics enters the greatest crisis. It means that physics as a science of phenomenon leaves the progress stage for a science of essence (information). Acknowledgment: The books ``Surprises in Theoretical Physics'' (1979) and ``More Surprises in Theoretical Physics'' (1991) by Sir Rudolf Peierls stimulated my 25-year work.
NASA Astrophysics Data System (ADS)
Nordmann, Alfred
2003-12-01
The title of Salvo d'Agostino's book suggests that it may contain a collection of various and sundry ideas from the history of theoretical physics. However, d'Agostino pursues something far more specific and compelling, yet also far more controversial: a history of the idea of theoretical physics. When, how, and why did physics become theoretical physics, and what did this shift mean? While some would argue that physics became theoretical at a time of stasis and sterility, perhaps decadence or crisis, d'Agostino considers the epistemological turn of physics liberating, productive, even empowering.
ERIC Educational Resources Information Center
Masin, Sergio Cesare; Crivellaro, Francesco; Varotto, Diego
2014-01-01
The research field of intuitive physics focuses on discrepancies between theoretical and intuitive physical knowledge. Consideration of these discrepancies can help in the teaching of elementary physics. However, evidence shows that theoretical and intuitive physical knowledge may also be congruent. Physics teaching could further benefit from…
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
NASA Astrophysics Data System (ADS)
Hoang, Trinh Xuan; Ky, Nguyen Anh; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
This volume contains selected papers presented at the 2nd International Workshop on Theoretical and Computational Physics (IWTCP-2): Modern Methods and Latest Results in Particle Physics, Nuclear Physics and Astrophysics and the 39th National Conference on Theoretical Physics (NCTP-39). Both the workshop and the conference were held from 28th - 31st July 2014 in Dakruco Hotel, Buon Ma Thuot, Dak Lak, Vietnam. The NCTP-39 and the IWTCP-2 were organized under the support of the Vietnamese Theoretical Physics Society, with a motivation to foster scientific exchanges between the theoretical and computational physicists in Vietnam and worldwide, as well as to promote high-standard level of research and education activities for young physicists in the country. The IWTCP-2 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). About 100 participants coming from nine countries participated in the workshop and the conference. At the IWTCP-2 workshop, we had 16 invited talks presented by international experts, together with eight oral and ten poster contributions. At the NCTP-39, three invited talks, 15 oral contributions and 39 posters were presented. We would like to thank all invited speakers, participants and sponsors for making the workshop and the conference successful. Trinh Xuan Hoang, Nguyen Anh Ky, Nguyen Tri Lan and Nguyen Ai Viet
Mathematics, Experiments, and Theoretical Physics: The Early Days of the Sommerfeld School
NASA Astrophysics Data System (ADS)
Eckert, Michael
1999-10-01
The names of his students read like a Who's Who of the pioneers in modern physics Peter Debye, Peter Paul Ewald, Wolfgang Pauli, Werner Heisenberg, Hans A. Bethe - to name only the most prominent. In retrospect, the success of Sommerfeld's school of modern theoretical physics tends to overshadow its less glorious beginnings. A century ago, theoretical physics was not yet considered as a distinct discipline. In this article I emphasize more the haphazard beginnings than the later achievements of Sommerfeld's school, which mirrored the state of theoretical physics before it became an independent discipline.
The Charm of Theoretical Physics (1958-1993)
NASA Astrophysics Data System (ADS)
Maiani, Luciano; Bonolis, Luisa
2017-12-01
Personal recollections on theoretical particle physics in the years when the Standard Theory was formed. In the background, the remarkable development of Italian theoretical physics in the second part of the last century, with great personalities like Bruno Touschek, Raoul Gatto, Nicola Cabibbo and their schools.
Understanding Older Adults' Physical Activity Behavior: A Multi-Theoretical Approach
ERIC Educational Resources Information Center
Grodesky, Janene M.; Kosma, Maria; Solmon, Melinda A.
2006-01-01
Physical inactivity is a health issue with serious consequences for older adults. Investigating physical activity promotion within a multi-theoretical approach may increase the predictive strength of physical activity determinants and facilitate the development and implementation of effective interventions for older adults. This article examines…
Informing Physics: Jacob Bekenstein and the Informational Turn in Theoretical Physics
NASA Astrophysics Data System (ADS)
Belfer, Israel
2014-03-01
In his PhD dissertation in the early 1970s, the Mexican-Israeli theoretical physicist Jacob Bekenstein developed the thermodynamics of black holes using a generalized version of the second law of thermodynamics. This work made it possible for physicists to describe and analyze black holes using information-theoretical concepts. It also helped to transform information theory into a fundamental and foundational concept in theoretical physics. The story of Bekenstein's work—which was initially opposed by many scientists, including Stephen Hawking—highlights the transformation within physics towards an information-oriented scientific mode of theorizing. This "informational turn" amounted to a mild-mannered revolution within physics, revolutionary without being rebellious.
NASA Astrophysics Data System (ADS)
2014-10-01
Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.
Testing a Theoretical Model of Immigration Transition and Physical Activity.
Chang, Sun Ju; Im, Eun-Ok
2015-01-01
The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.
Students' Views about the Nature of Experimental Physics
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive…
NASA Astrophysics Data System (ADS)
Tuminaro, Jonathan
Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of mathematical use in the context physics, and (2) a detailed understanding, in terms of the proposed theoretical framework, of the errors that students make when using mathematics in the context of physics.
PEOPLE IN PHYSICS: Interview with Peter Higgs
NASA Astrophysics Data System (ADS)
Fancey, Conducted by Norman
1998-01-01
Peter Higgs, FRSE, FRS held until recently a personal chair in theoretical physics at the University of Edinburgh and is now an emeritus professor. Peter is well known for predicting the existence of a new particle, the Higgs boson - as yet unconfirmed. He has been awarded a number of prizes in recognition of his work, most recently the Paul Dirac Medal and Prize for outstanding contributions to theoretical physics from the Institute of Physics and the 1997 High Energy and Particle Physics Prize by the European Physical Society.
Torque limit of PM motors for field-weakening region operation
Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH
2012-02-14
The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.
On the history of the Institute of Theoretical and Experimental Physics (ITEP, Moscow)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abov, Yu. G.
A survey of investigations performed at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the realms of low-energy physics from the foundation of the institute to the present time is given.
(Fundamental of hadron physics from the theoretical and the experimental points of view)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luccio, A.
1991-02-19
A winter course at a School of Nuclear Physics was organized by the Italian Government Agency INFN. Lectures included fundamental of Hadron Physics from the theoretical and the experimental points of view. The present traveler was invited to hold a course on relevant accelerator physics. All expenses were paid by the Italians.
The role of language in learning physics
NASA Astrophysics Data System (ADS)
Brookes, David T.
Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics concepts; this categorization of physics concepts plays a key role in students' ability to solve physics problems. In summary, I present a theoretical framework that provides a possible explanation of the role that language plays in learning physics. The framework also attempts to account for how and why physicists' language influences students in the way that it does.
Images of Inherited War: Three American Presidents in Vietnam
2011-06-01
Dependent Realism to demonstrate how theoretical advances in modern physical science correlate to cognitive theories in International Relations. We...Quantum Physics and Model-Dependent Realism In his book, The Grand Design, theoretical physicist and cosmologist Stephen Hawking draws on theoretical...exhibited wave-like properties and that existing scientific laws could not account for their behavior. Newtonian physics was “built on a framework
NASA Astrophysics Data System (ADS)
Jinyan, Liu
2014-03-01
The Institute of Theoretical Physics (ITP), Chinese academy of Sciences (CAS), founded in June 1978, is a specialized institute studying major issues in the fundamental research of theoretical physics. ITP has played an important role in the development of theoretical physics in China, especially in organizing and undertaking major national projects, expanding international exchanges and cooperation, and nurturing advanced researchers. My presentation will examine the reasons why ITP was founded in 1978 and why Peng Huanwu and Zhou Guangzhao, two prominent Chinese theorists, were chosen as the first and second directors of ITP. Moreover, I will summarize ITP's scientific activities and achievements in the past 35 years. Last but not least, I will compare ITP with university physics departments and explore its unique characters (both strength and weakness).
Undergraduate-postgraduate astronomy in Cambridge - a student's perspective
NASA Astrophysics Data System (ADS)
Williams, Robin
1991-01-01
This article describes the astronomical scene at Cambridge University from the point of view of a one-time graduate there: I'm now a first-year postgraduate. I progressed from an interest in Maths and Physics at sixth-form level to a degree in Physics and Theoretical Physics, a postgraduate Applied Maths and Theoretical Physics course (Part III) and now to the Institute of Astronomy.
Physics in the Twentieth Century
ERIC Educational Resources Information Center
Weisskopf, Victor F.
1970-01-01
Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…
Physics Division annual review, 1 April 1975--31 March 1976. [ANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, G. T.
1976-01-01
An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)
Ideals and Realities: Articulating Feminist Perspectives in Physical Education.
ERIC Educational Resources Information Center
Smeal, Georgia; And Others
1994-01-01
Information from feminist physical educators helps examine relationships between theoretical debates in feminism and feminist practice in secondary schools. The article discusses debates over equality, how theoretical struggles between feminists are handled in sport and physical education, and how calls for equality are understood as calls for…
Research in Theoretical High Energy Physics- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Nobuchika
PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less
Perlovsky, Leonid I
2016-01-01
Is it possible to turn psychology into "hard science"? Physics of the mind follows the fundamental methodology of physics in all areas where physics have been developed. What is common among Newtonian mechanics, statistical physics, quantum physics, thermodynamics, theory of relativity, astrophysics… and a theory of superstrings? The common among all areas of physics is a methodology of physics discussed in the first few lines of the paper. Is physics of the mind possible? Is it possible to describe the mind based on the few first principles as physics does? The mind with its variabilities and uncertainties, the mind from perception and elementary cognition to emotions and abstract ideas, to high cognition. Is it possible to turn psychology and neuroscience into "hard" sciences? The paper discusses established first principles of the mind, their mathematical formulations, and a mathematical model of the mind derived from these first principles, mechanisms of concepts, emotions, instincts, behavior, language, cognition, intuitions, conscious and unconscious, abilities for symbols, functions of the beautiful and musical emotions in cognition and evolution. Some of the theoretical predictions have been experimentally confirmed. This research won national and international awards. In addition to summarizing existing results the paper describes new development theoretical and experimental. The paper discusses unsolved theoretical problems as well as experimental challenges for future research.
Perlovsky, Leonid I.
2016-01-01
Is it possible to turn psychology into “hard science”? Physics of the mind follows the fundamental methodology of physics in all areas where physics have been developed. What is common among Newtonian mechanics, statistical physics, quantum physics, thermodynamics, theory of relativity, astrophysics… and a theory of superstrings? The common among all areas of physics is a methodology of physics discussed in the first few lines of the paper. Is physics of the mind possible? Is it possible to describe the mind based on the few first principles as physics does? The mind with its variabilities and uncertainties, the mind from perception and elementary cognition to emotions and abstract ideas, to high cognition. Is it possible to turn psychology and neuroscience into “hard” sciences? The paper discusses established first principles of the mind, their mathematical formulations, and a mathematical model of the mind derived from these first principles, mechanisms of concepts, emotions, instincts, behavior, language, cognition, intuitions, conscious and unconscious, abilities for symbols, functions of the beautiful and musical emotions in cognition and evolution. Some of the theoretical predictions have been experimentally confirmed. This research won national and international awards. In addition to summarizing existing results the paper describes new development theoretical and experimental. The paper discusses unsolved theoretical problems as well as experimental challenges for future research. PMID:27895558
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
Larkin, Louise; Kennedy, Norelee; Gallagher, Stephen
2015-01-01
Despite physical activity having significant health benefits for people with rheumatoid arthritis (RA), current levels of physical activity in this population are suboptimal. Changing behaviour is challenging and interventions aimed at increasing physical activity in this context have had varying levels of success. This review provides an overview of common behaviour change theories used in interventions to promote physical activity and their application for promoting physical activity in people with RA. A scoping, narrative review was conducted of English language literature, using the search terms "physical activity/exercise" and keywords, which are associated with behaviour change interventions. The theoretical basis of such interventions in people with RA was assessed using the "theory coding scheme". Six theories which have been used in physical activity research are discussed. Further, four studies which aimed to increase physical activity levels in people with RA are explored in detail. To date, behaviour change interventions conducted in RA populations to increase physical activity levels have not had a strong theoretical underpinning. It is proposed that an intervention utilising the theory of planned behaviour is developed with the aim of increasing physical activity in people with RA. Implications for Rehabilitation Interventions to promote physical activity in the rheumatoid arthritis (RA) population have failed to change participants' behaviour. A small number of studies have used behaviour change theories in the development and delivery of interventions. The theory of planned behaviour is recommended as the theoretical basis for an intervention to promote physical activity in the RA population.
My Career as a Theoretical Physicist - So Far
NASA Astrophysics Data System (ADS)
Langer, J. S.
2017-03-01
Theoretical physics and the institutions that support it have changed greatly during my career. In this article, I recount some of my most memorable experiences as a physicist, first as a graduate student with Rudolf Peierls at the University of Birmingham in England and later as a colleague of Walter Kohn at the Institute for Theoretical Physics in Santa Barbara, California. I use this account to illustrate some of the changes that have occurred in my field and also as a rationale for asserting that theoretical physics has an increasingly vital role to play in modern science.
Experimental projects in graduate theoretical physics courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosner, J.L.
1996-10-01
Some beginning graduate courses in physics at the University of Chicago have been taught with final projects in addition to or in place of written final examinations. Although these courses and many of the projects are theoretical, experimental projects have been encouraged, with some success. A few examples are discussed. {copyright} {ital 1996 American Association of Physics Teachers.}
ERIC Educational Resources Information Center
Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred
2014-01-01
Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…
Physics Division progress report for period ending June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)
Final Report. Research in Theoretical High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greensite, Jeffrey P.; Golterman, Maarten F.L.
Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.
Leaving No Stone Unturned in the Pursuit of New Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Timothy
The major goal of this project was to investigate a variety of topics in theoretical particle physics, with an emphasis on beyond the Standard Model phenomena. A particular emphasis is placed on making a connection to ongoing experimental efforts designed to extend our knowledge of the fundamental physics frontiers. The principal investigator aimed to play a leading role in theoretical research that complements this impressive experimental endeavor. Progress requires a strong synergy between the theoretical and experimental communities to design and interpret the data that is produced. Thus, this project's main goal was to improve our understanding of models, signatures,more » and techniques as we continue the hunt for new physics.« less
The first dozen years of the history of ITEP Theoretical Physics Laboratory
NASA Astrophysics Data System (ADS)
Ioffe, B. L.
2013-01-01
The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.
Evolution of Theoretical Perspectives in My Research
NASA Astrophysics Data System (ADS)
Otero, Valerie K.
2009-11-01
Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.
NASA Astrophysics Data System (ADS)
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczerbinska, Barbara
In response to an increasing interest in experiments conducted at deep underground facilities around the world, in 2010 the theory community has proposed a new initiative - a Center for Theoretical Underground Physics and Related Areas (CETUP*). The main goal of CETUP* is to bring together people with different talents and skills to address the most exciting questions in particle and nuclear physics, astrophysics, geosciences, and geomicrobiology. Scientists invited to participate in the program do not only provide theoretical support to the underground science, they also examine underlying universal questions of the 21 st century including: What is dark matter?,more » What are the masses of neutrinos?, How have neutrinos shaped the evolution of the universe?, How were the elements from iron to uranium made?, What is the origin and thermal history of the Earth? The mission of the CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science via individual and collaborative research in dynamic atmosphere of intense scientific interactions. Our main goal is to bring together scientists scattered around the world, promote the deep underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities. CETUP*2014 included 5 week long program (June 24 – July 26, 2013) covering various theoretical and experimental aspects of Dark Matter, Neutrino Physics and Astrophysics. Two week long session focused on Dark Matter (June 24-July 6) was followed by two week long program on Neutrino Physics and Astrophysics (July 15-26). The VII th International Conference on Interconnections between Particle Physics and Cosmology (PPC) was sandwiched between these sessions (July 8-13) covering the subjects of dark matter, neutrino physics, gravitational waves, collider physics and other from both theoretical end experimental aspects. PPC was initiated at Texas A&M University in 2007 and travelled to many places which include Geneva, Turin, Seoul (S. Korea) etc. during the last 5 years before coming back to USA. The objectives of CETUP* and PPC were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments, develop a theoretical understanding of the three-neutrino oscillation parameters, provide a stimulating venue for exchange of scientific ideas among experts in neutrino physics and unification, connect with venues for public education outreach to communicate the importance of dark matter, neutrino research, and support of investment in science education, support mission of the Snowmass meeting and allow for extensive discussions of the ideas crucial for the future of high energy physics. The selected subjects represented the forefront of research topics in particle and nuclear physics, for example: recent precise measurements of all the neutrino mixing angles (that necessitate a theoretical roadmap for future experiments) or understanding of the nature of dark matter (that allows us to comprehend the composition of the cosmos better). All the covered topics are considered as a base for new physics beyond the Standard Model of particle physics.« less
NASA Astrophysics Data System (ADS)
Si-Yu, Wu; Ya-Bo, Wu; Yue-Yue, Zhao; Xue, Zhang; Cheng-Yuan, Zhang; Bo-Hai, Chen
2016-03-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11175077, 11575075 and 11547156, the Joint Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education of China under Grant No 20122136110002, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics under Grant No Y4KF101CJ1, and the Project of Key Discipline of Theoretical Physics of Department of Education in Liaoning Province under Grant Nos 905035 and 905061.
Tomasone, Jennifer R; Arbour-Nicitopoulos, Kelly P; Pila, Eva; Lamontagne, Marie-Eve; Cummings, Isabelle; Latimer-Cheung, Amy E; Routhier, François
2017-06-01
In Canada, two counseling services are offered to facilitate physical activity participation among persons with physical disabilities, yet both have encountered concerns related to the recruitment and retainment of clients. The purpose of this paper is to explore factors related to service adoption among nonusers, and the barriers and facilitators to maintaining service participation among adopters. Individuals who had never enrolled in the services (nonusers, n = 13) as well as current/previous service clients (adopters, n = 26) participated in interviews based on the Theoretical Domains Framework. Transcripts were subjected to deductive thematic analysis according to participant group. Fifteen themes relating to service adoption within 10 of the 12 theoretical domains were identified for nonusers, while 23 themes relating to maintenence of service participation were identified across all 12 theoretical domains for adopters. The findings provide strategies to improve recruitment, adoption, and retention of clients in counseling services and to enhance the experiences of targeted service users. Implications for Rehabiliation Peer support and education for equipment use should be built into physical activity programs to encourage participation among persons with physical disabilities. Programs that encourage physical activity among individuals with disabilities should be designed by practitioners to be responsive to a variety of needs, which are addressed in the program's advertisements and offerings. The Theoretical Domains Framework is a useful framework for providing valuable insight about clients' experiences of adoption and maintenance of a behavior change service, suggesting merit in other rehabilitation settings.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
ERIC Educational Resources Information Center
Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire
2010-01-01
This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…
Some applications of mathematics in theoretical physics - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Kalpana
2016-06-21
Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical toolsmore » are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.« less
Some applications of mathematics in theoretical physics - A review
NASA Astrophysics Data System (ADS)
Bora, Kalpana
2016-06-01
Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczerbinska, Barbara
For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but theymore » will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP* in the time between the Dark Matter and Neutrino workshops (June 29 – July 3) covering the subjects of dark matter, dark energy, neutrino physics, gravitational waves, collider physics and many others. PPC brought about 90 national and international participants. Started at Texas A&M University in 2007, PPC travelled to many places which include Geneva (Switzerland), Turin (Italy), Seoul (South Korea) and Leon (Mexico) over last few years. The objectives of CETUP*2015 and PPC2015 were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments.« less
Studies In Theoretical High Energy Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keung, Wai Yee
2017-07-01
This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.
Final Report of DOE Grant No. DE-FG02-04ER41306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera
2013-12-10
Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less
NASA Astrophysics Data System (ADS)
2015-09-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905
Panorama of theoretical physics
NASA Astrophysics Data System (ADS)
Mimouni, J.
2012-06-01
We shall start this panorama of theoretical physics by giving an overview of physics in general, this branch of knowledge that has been taken since the scientific revolution as the archetype of the scientific discipline. We shall then proceed in showing in what way theoretical physics from Newton to Maxwell, Einstein, Feynman and the like, in all modesty, could be considered as the ticking heart of physics. By its special mode of inquiry and its tantalizing successes, it has capturing the very spirit of the scientific method, and indeed it has been taken as a role model by other disciplines all the way from the "hard" ones to the social sciences. We shall then review how much we know today of the world of matter, both in term of its basic content and in the way it is structured. We will then present the dreams of today's theoretical physics as a way of penetrating into its psyche, discovering in this way its aspirations and longing in much the same way that a child's dreams tell us about his yearning and craving. Yet our understanding of matter has been going in the past decades through a crisis of sort. As a necessary antidote, we shall thus discuss the pitfalls of dreams pushed too far….
Physics Division progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)
On the Role of Mathematics in Physics
ERIC Educational Resources Information Center
Quale, Andreas
2011-01-01
I examine the association between the observable physical world and the mathematical models of theoretical physics. These models will exhibit many entities that have no counterpart in the physical world, but which are still necessary for the mathematical description of physical systems. Moreover, when the model is applied to the analysis of a…
Bio-Physics Manifesto -- for the Future of Physics and Biology
NASA Astrophysics Data System (ADS)
Oono, Y.
2008-04-01
The Newtonian revolution taught us how to dissect phenomena into contingencies (e.g., initial conditions) and fundamental laws (e.g., equations of motion). Since then, `fundamental physics' has been pursuing purer and leaner fundamental laws. Consequently, to explain real phenomena a lot of auxiliary conditions become required. Isn't it now the time to start studying `auxiliary conditions' seriously? The study of biological systems has a possibility of shedding light on this neglected side of phenomena in physics, because we organisms were constructed by our parents who supplied indispensable auxiliary conditions; we never self-organize. Thus, studying the systems lacking self-organizing capability (such as complex systems) may indicate new directions to physics and biology (biophysics). There have been attempts to construct a `general theoretical framework' of biology, but most of them never seriously looked at the actual biological world. Every serious natural science must start with establishing a phenomenological framework. Therefore, this must be the main part of bio-physics. However, this article is addressed mainly to theoretical physicists and discusses only certain theoretical aspects (with real illustrative examples).
Engaging Students In Modeling Instruction for Introductory Physics
NASA Astrophysics Data System (ADS)
Brewe, Eric
2016-05-01
Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1998-06-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1997-02-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Framing curriculum discursively: theoretical perspectives on the experience of VCE physics
NASA Astrophysics Data System (ADS)
Hart, Christina
2002-10-01
The process of developing prescribed curricula has been subject to little empirical investigation, and there have been few attempts to develop theoretical frameworks for understanding the shape and content of particular subjects. This paper presents an account of the author's experience of developing a new course for school physics in the State of Victoria, Australia, at the end of the 1980s. The course was to represent a significant departure from traditional physics courses, and was intended to broaden participation and improve the quality of student learning. In the event the new course turned out to be very similar to traditional courses in Physics. The paper explores the reasons for this outcome. Some powerful discursive mechanisms are identified and some implications of post-structuralism for the theoretical understanding of curriculum are discussed.
Linking the subcultures of physics: virtual empiricism and the bonding role of trust.
Reyes-Galindo, Luis
2014-10-01
This article draws on empirical material concerning the communication and use of knowledge in experimental physics and its relations to the culture of theoretical physics. The role that trust plays in these interactions is used to create a model of social distance between interacting theoretical and experimental cultures. This article thus seeks to reintroduce trust as a fundamental element in answering the problem of disunity in the sociology of knowledge.
Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, John David
In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto inmore » 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.« less
XIII Modave Summer School in Mathematical Physics
NASA Astrophysics Data System (ADS)
2017-09-01
The Modave Summer School on Mathematical Physics is a yearly summer school in topics of theoretical physics. Various topics ranging from quantum gravity and cosmology to theoretical particle physics and string theory. The school takes place in Modave, a charming village in the Belgian Ardennes close to Huy. Modave School is organised by PhD students for PhD students, and this makes it rather unique. The courses are taught by Post-Docs or late PhD students, and they are all made of pedagogical, basic blackboard lectures about recent topics in theoretical physics. Participants and lecturers eat and sleep in the same place where the lectures are given. The absence of senior members, and the fact of spending day and night together in an isolated, peaceful place contribute to creating an informal atmosphere and facilitating interactions. Lectures of the thirteenth edition are centered around the following subjects: bulk reconstruction in AdS/CFT, twistor theory, AdS_2/CFT_1 and SYK, geometry and topology, and asymptotic charges.
Monthly Progress Report No. 60 for April 1948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.
Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.
Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C
2010-01-01
(1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
Examining Physical and Sexual Abuse Histories as Correlates of Suicide Risk Among Firefighters.
Hom, Melanie A; Matheny, Natalie L; Stanley, Ian H; Rogers, Megan L; Cougle, Jesse R; Joiner, Thomas E
2017-12-01
Research indicates that physical and sexual abuse are associated with increased suicide risk; however, these associations have not been investigated among firefighters-an occupational group that has been shown to be at elevated suicide risk. This study examined whether physical and sexual abuse histories are associated with (a) career suicide ideation, plans, and attempts; and (b) current suicide risk (controlling for theoretically relevant symptoms) in this occupational group. A sample of 929 U.S. firefighters completed self-report surveys that assessed lifetime history of physical and sexual abuse; career suicide ideation, plans, and attempts; current suicide risk; and theoretically relevant symptoms. Logistic regression analyses revealed that individuals who reported a history of physical abuse were significantly more likely to report career suicide ideation, adjusted odds ratio [AOR] = 6.12, plans, AOR = 13.05, and attempts, AOR = 23.81, than those who did not. A similar pattern of findings emerged for individuals who reported a sexual abuse history, AORs = 7.83, 18.35, and 29.58 respectively. Linear regression analyses revealed that physical and sexual abuse histories each significantly predicted current suicide risk, even after controlling for theoretically relevant symptoms and demographics, pr 2 = .07 and .06, respectively. Firefighters with a history of physical and/or sexual abuse may be at increased risk for suicidal thoughts and behaviors. A history of physical and sexual abuse were each significantly correlated with current suicide risk in this population, even after accounting for the effects of theoretically relevant symptoms. Thus, when conceptualizing suicide risk among firefighters, factors not necessarily related to one's firefighter career should be considered. Copyright © 2017 International Society for Traumatic Stress Studies.
Physical Chemistry in Practice: Evaluation of DVD Modules
ERIC Educational Resources Information Center
Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.
2007-01-01
The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…
Yeh, Hsiao-Pu; Stone, Joseph Antony; Churchill, Sarah May; Wheat, Jonathan Stephen; Brymer, Eric; Davids, Keith
2016-07-01
Increasing evidence supports the multiple benefits to physical, psychological and emotional wellbeing of green physical activity, a topic of increasing interest in the past decade. Research has revealed a synergistic benefit of green physical activity, which includes all aspects of exercise and physical activity in the presence of nature. Our theoretical analysis suggests there are three distinct levels of engagement in green physical activity, with each level reported to have a positive effect on human behaviours. However, the extent to which each level of green physical activity benefits health and wellbeing is assumed to differ, requiring confirmation in future research. This elucidation of understanding is needed because previous literature has tended to focus on recording empirical evidence rather than developing a sound theoretical framework to understand green physical activity effects. Here we propose an ecological dynamics rationale to explain how and why green physical activity might influence health and wellbeing of different population groups. This framework suggests a number of unexplored, interacting constraints related to types of environment and population groups, which shape reported levels of benefit of green physical activity. Further analysis is needed to clarify the explicit relationship between green physical activity and health and wellbeing, including levels of engagement, types of environmental constraints, levels of physical activity, adventure effects, skill effects and sampling of different populations.
High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Aaron
This award provided partial support for the Michigan Center for Theoretical Physics to host two workshops "Beyond the Standard Model 2016" in October 2016, and the "5th MCTP Symposium: Foundations of String Cosmology" in April 2017 on the University of Michigan campus.
Tilted Axis Rotation of 57Mn in Covariant Density Functional Theory
NASA Astrophysics Data System (ADS)
Peng, Jing; Xu, Wen-Qiang
2016-01-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11461141002, and the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF041CJ1.
Initiation Mechanism of Kinesin’s Neck Linker Docking Process
NASA Astrophysics Data System (ADS)
Geng, Yi-Zhao; Zhang, Hui; Lyu, Gang; Ji, Qing
2017-02-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11545014 and 11605038, and the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Science under Grant No Y5KF211CJ1.
Intentional Development: A Model to Guide Lifelong Physical Activity
ERIC Educational Resources Information Center
Cherubini, Jeffrey M.
2009-01-01
Framed in the context of researching influences on physical activity and actually working with individuals and groups seeking to initiate, increase or maintain physical activity, the purpose of this review is to present the model of Intentional Development as a multi-theoretical approach to guide research and applied work in physical activity.…
Shifting and Narrowing Masculinity Hierarchies in Physical Education: Status Matters
ERIC Educational Resources Information Center
Tischler, Amy; McCaughtry, Nate
2014-01-01
The purpose of this study was to examine boys' perceptions of masculinity hierarchies in adventure physical education in relation to past experiences in sport-based physical education and their evolving views about physical activity in their lives. Theoretical principles of masculinity guided this study. Data were collected with 55 male high…
ERIC Educational Resources Information Center
Close, Eleanor W.; Conn, Jessica; Close, Hunter G.
2016-01-01
In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…
On the Role of Mathematics in Physics: A Constructivist Epistemic Perspective
ERIC Educational Resources Information Center
Quale, Andreas
2011-01-01
The association between the observable physical world and the mathematical models used in theoretical physics to describe this world is examined. Such models will frequently exhibit solutions that are "unexpected," in the sense that they describe physical situations which are different from that which the physicist may initially have had in mind…
Extended physics as a theoretical framework for systems biology?
Miquel, Paul-Antoine
2011-08-01
In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the Bailly and Longo (2008, 2009) proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould's assumption (1989) concerning the bacterial world as a "left wall of least complexity" that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of Peers and Friends on Children’s and Adolescents’ Eating and Activity Behaviors
Salvy, Sarah-Jeanne; de la Haye, Kayla; Bowker, Julie C.; Hermans, Roel C.J.
2012-01-01
Obesity during childhood and adolescence is a growing problem in the United States, Canada, and around the world that leads to significant physical, psychological, and social consequences. Peer experiences have been theoretically and empirically related to the “Big Two” contributors to the obesity epidemic, unhealthy eating and physical inactivity [1]. In this article, we synthesize the empirical literature on the influence of peers and friends on youth’s eating and physical activity. Limitations and issues in the theoretical and empirical literatures are also discussed, along with future research directions. In conclusion, we argue that the involvement of children’s and adolescents’ peer networks in prevention and intervention efforts may be critical for promoting and maintaining positive behavioral health trajectories. However, further theoretical and empirical work is needed to better understand the specific mechanisms underlying the effects of peers on youth’s eating and physical activity. PMID:22480733
Physics Division annual review, 1 April 1980-31 March 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less
Physics of mind: Experimental confirmations of theoretical predictions.
Schoeller, Félix; Perlovsky, Leonid; Arseniev, Dmitry
2018-02-02
What is common among Newtonian mechanics, statistical physics, thermodynamics, quantum physics, the theory of relativity, astrophysics and the theory of superstrings? All these areas of physics have in common a methodology, which is discussed in the first few lines of the review. Is a physics of the mind possible? Is it possible to describe how a mind adapts in real time to changes in the physical world through a theory based on a few basic laws? From perception and elementary cognition to emotions and abstract ideas allowing high-level cognition and executive functioning, at nearly all levels of study, the mind shows variability and uncertainties. Is it possible to turn psychology and neuroscience into so-called "hard" sciences? This review discusses several established first principles for the description of mind and their mathematical formulations. A mathematical model of mind is derived from these principles. This model includes mechanisms of instincts, emotions, behavior, cognition, concepts, language, intuitions, and imagination. We clarify fundamental notions such as the opposition between the conscious and the unconscious, the knowledge instinct and aesthetic emotions, as well as humans' universal abilities for symbols and meaning. In particular, the review discusses in length evolutionary and cognitive functions of aesthetic emotions and musical emotions. Several theoretical predictions are derived from the model, some of which have been experimentally confirmed. These empirical results are summarized and we introduce new theoretical developments. Several unsolved theoretical problems are proposed, as well as new experimental challenges for future research. Copyright © 2017. Published by Elsevier B.V.
Midtgaard, Julie
2013-02-01
Sedentary behaviour and reduced exercise capacity are potential persisting effects of anti-cancer therapy that may predispose to serious health conditions. It is well-established that physical exercise may prevent some of these problems. However, the extent to which cancer survivors are able to adopt long-term physical activity habits depends largely on their motivation. This theoretical paper aims to outline how researchers and practitioners can draw from Antonovsky's salutogenetic theory and White & Epston's Narrative Therapy to develop and implement intervention efforts centered on promotion of long-term physical activity behaviour, while at the same time increasing the individual cancer survivor's sense of meaning and personal health resources. The Copenhagen PACT (Physical Activity after Cancer Treatment) Study targeting adoption and maintenance of regular physical activity in post-therapy cancer survivors is briefly presented including a brief review of the theoretical rationale behind the psychological component of the intervention, i.e. a narrative-based exercise counselling programme. Subsequently, particular attention is given to the core principles, different components and structure of the counselling manual including sample questions and examples of written documents that have emanated from the individual counselling sessions. The discussion includes consideration of some methodological challenges that arise when attempting to evaluate narrative-based interventions in the context of physical activity promotion in cancer rehabilitation and survivorship care.
Learning Physical Domains: Toward a Theoretical Framework.
ERIC Educational Resources Information Center
Forbus, Kenneth D.; Gentner, Dedre
People use and extend their knowledge of the physical world constantly. Understanding how this fluency is achieved would be an important milestone in understanding human learning and intelligence, as well as a useful guide for constructing machines that learn. This paper presents a theoretical framework that is being developed in an attempt to…
NASA Astrophysics Data System (ADS)
Qin, Jing-Yu; Geng, Yi-Zhao; Lü, Gang; Ji, Qing; Fang, Hai-Ping
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11605038) and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5KF211CJ1).
Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John C.; Roiban, Radu
2015-08-19
This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
ERIC Educational Resources Information Center
Carson, Russell L.; Chase, Melissa A.
2009-01-01
Background: The motivation of physical education (PE) teachers has received precious little attention over the years. Self-determination theory (SDT) is a salient theoretical model for understanding motivation, and posits that self-determined motivation (i.e., intrinsic motivation) stems from the perceived fulfillment of three psychological needs:…
On the physical basis of a theory of human thermoregulation.
NASA Technical Reports Server (NTRS)
Iberall, A. S.; Schindler, A. M.
1973-01-01
Theoretical study of the physical factors which are responsible for thermoregulation in nude resting humans in a physical steady state. The behavior of oxidative metabolism, evaporative and convective thermal fluxes, fluid heat transfer, internal and surface temperatures, and evaporative phase transitions is studied by physiological/physical modeling techniques. The modeling is based on the theories that the body has a vital core with autothermoregulation, that the vital core contracts longitudinally, that the temperature of peripheral regions and extremities decreases towards the ambient, and that a significant portion of the evaporative heat may be lost underneath the skin. A theoretical basis is derived for a consistent modeling of steady-state thermoregulation on the basis of these theories.
The Peoples Republic of China High-Frequency Gravitational Wave Research Program
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2009-03-01
For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.
PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics
NASA Astrophysics Data System (ADS)
Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.
2015-04-01
The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the Standard Model of particle physics. The various contributions covered in this scientific meeting lie between oral and posters presentations including many specialized topics like neutrinos' oscillations, the various large experiments like Borexino and Opera, the geo-neutrinos, as more theoretical topics like Majorana neutrinos and the double beta decay, anomalies in neutrino physics, neutrino models beyond the standard model and in curved space-time. We hope that putting in print the various contributions to this exciting meeting will be a valuable contribution to the literature to both professional as well as young researchers in neutrino physics. This workshop couldn't have taken place without the generous and unfaltering support of the DGRSTD which fully financed it through its various stages. Editors Profs. The editors: Mebarki N., Mimouni J., Vanucci F., Aissaoui H.
Levels of theory and types of theoretical explanation in theoretical physics
NASA Astrophysics Data System (ADS)
Flores, Francisco J.
In Newtonian physics, there is a clear distinction between a 'framework theory', a collection of general physical principles and definitions of physical terms, and theories that describe specific causal interactions such as gravitation, i.e., 'interaction theories'. I argue that this distinction between levels of theory can also be found in the context of Special Relativity and that recognizing it is essential for a philosophical account of how laws are explained in this theory. As a case study, I consider the history of derivations of mass-energy equivalence which shows, I argue, that there are two distinct types of theoretical explanations (i.e., explanations of laws) in physics. One type is best characterized by the 'top-down' account of scientific explanation, while the other is more accurately described by the 'bottom-up' account. What is significant, I argue, is that the type of explanation a law receives depends on whether it is part of the framework theory or part of an interaction theory. The former only receive 'top-down' explanations while the latter can also receive 'bottom- up' explanations. Thus, I argue that current debates regarding 'top-down' vs 'bottom-up' views of scientific explanation can be clarified by recognizing the distinction between two levels of physical theory.
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany
2017-04-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that addresses the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions = 71 and Nstudents = 7167) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expert-like response even in cases where their personal views disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics. This work was funded by the NSF-IUSE Grant No. DUE-1432204 and NSF Grant No. PHY-1125844.
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2003-11-01
Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.
Application of Science Aesthetics in the Teaching of Electrodynamics
ERIC Educational Resources Information Center
Li, Haiyan
2010-01-01
As the important part of the theoretical physics, the electrodynamics is a theoretical basic course of the physics and relative subjects. To adapt the demands for cultivating the target of highly-quality talents in the 21st century, the aesthetic principle can be used in the teaching to stimulate students' learning desire and cultivate students'…
ERIC Educational Resources Information Center
Barker, Dean; Wallhead, Tristan; Brock, Sheri; Goodyear, Victoria; Amade-Escot, Chantal
2017-01-01
Student group work is a central feature of many contemporary pedagogical approaches to teaching physical education. Despite this proliferation, our understanding of the teaching-learning dynamics inherent in group work remains limited and has tended to be under-theorized. The purpose of this paper was to examine different theoretical approaches to…
Game theoretic analysis of physical protection system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canion, B.; Schneider, E.; Bickel, E.
The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefitmore » analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.« less
ERIC Educational Resources Information Center
Daum, David N.; Woods, Amelia M.
2015-01-01
K-12 online physical education (OLPE) is as an educational opportunity in at least 30 states in the US (NASPE, 2006; 2010; 2012). The purpose of this study was to examine physical education teacher educators' perceptions toward and understanding of K-12 OLPE. Bandura's Social Cognitive Theory (1986) served as the theoretical framework for this…
ERIC Educational Resources Information Center
MacNamara, Aine; Collins, Dave; Bailey, Richard; Toms, Martin; Ford, Paul; Pearce, Gemma
2011-01-01
Background: Even though all school-aged children in most countries experience some form of curricular physical education many do not maintain a lifelong involvement in sport or physical activity. From a theoretical perspective, the development models that dominate sport are limited by their staged and linear approaches to development (e.g. Cote's…
ERIC Educational Resources Information Center
Kekeeva, Zinaida; Burlykov, Vladimir; Proshkin, Sergey
2016-01-01
The relevance of the investigated problem is due to the needs of modern society in the preservation of the physical health of the nation, development of physical education in higher school. The purpose of the article is to disclose theoretical and methodological basis of organisation of physical fitness monitoring of a specialist as a means of…
Light and dark: A survey of new physics ideas in the 1-100 MeV window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pospelov, Maxim
2013-11-07
I review the set of theoretical ideas motivating experimental searches of light physics beyond Standard Model using the high-intensity electron beams. While 'dark photon' is the chief example of such physics, the other 'light and dark' states (e.g. 'Dark Higgses') are also of interest. I discuss particle physics, cosmology and astrophysics applications.
Using Achievement Goal Theory to Assess an Elementary Physical Education Running Program
ERIC Educational Resources Information Center
Xiang, Ping; Bruene, April McBride, Ron E.
2004-01-01
Using Achievement Goal Theory as a theoretical framework, this study examined an elementary physical education running program called Roadrunners and assessed relationships among achievement goals, perceived motivational climate, and student achievement behavior. Roadrunners promotes cardiovascular health, physical active lifestyles, and mastery…
Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics
NASA Astrophysics Data System (ADS)
Halpern, Paul
2012-09-01
From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.
Experimental And Theoretical High Energy Physics Research At UCLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousins, Robert D.
2013-07-22
This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describesmore » frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.« less
Howle, Timothy C; Dimmock, James A; Whipp, Peter R; Jackson, Ben
2015-06-01
With the aim of advancing the literature on impression management in physical activity settings, we developed a theoretically derived 2 by 2 instrument that was designed to measure different types of context-specific self-presentation motives. Following item generation and expert review (Study 1), the instrument was completed by 206 group exercise class attendees (Study 2) and 463 high school physical education students (Study 3). Our analyses supported the intended factor structure (i.e., reflecting acquisitive-agentic, acquisitive-communal, protective-agentic, and protective-communal motives). We found some support for construct validity, and the self-presentation motives were associated with variables of theoretical and applied interest (e.g., impression motivation and construction, social anxiety, social and achievement goals, efficacy beliefs, engagement). Taken together, the results indicate that the Self-presentation Motives for Physical Activity Questionnaire (SMPAQ) may be useful for measuring various types of self-presentation motives in physical activity settings.
Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
2016-08-04
Killian1 1Department of Physics and Astronomy , Rice University, Houston, Texas 77005, USA 2Theoretical Division, Los Alamos National Laboratory, Los...2] L. Spitzer, Physics of Fully Ionized Gases, Interscience Tracts on Physics and Astronomy (Interscience Publishers, New York, 1962), Vol. 3. [3] L
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Physics transforming the life sciences.
Onuchic, José N
2014-10-08
Biological physics is clearly becoming one of the leading sciences of the 21st century. This field involves the cross-fertilization of ideas and methods from biology and biochemistry on the one hand and the physics of complex and far from equilibrium systems on the other. Here I want to discuss how biological physics is a new area of physics and not simply applications of known physics to biological problems. I will focus in particular on the new advances in theoretical physics that are already flourishing today. They will become central pieces in the creation of this new frontier of science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, S B; Weiss, M S
Edward Teller was one of the great physicists of the twentieth century. His career began just after the key ideas of the quantum revolution of the 1920's were completed, opening vast areas of physics and chemistry to detailed understanding. Thus, his early work in theoretical physics focused on applying the new quantum theory to the understanding of diverse phenomena. These topics included chemical physics, diamagnetism, and nuclear physics. Later, he made key contributions to statistical mechanics, surface physics, solid state, and plasma physics. In many cases, the ideas in these papers are still rich with important ramifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.
2011-12-05
We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).
Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczerbinska, Barbara
For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science,more » but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance the knowledge in particle and nuclear physics, astrophysics and cosmology. The scientific program usually consisted of 2-3 hour-long talks on selected subjects in dark matter and neutrino physics from both theoretical and experimental perspective and followed by extended in depth discussions. The format of the program accommodated separate discussion sessions where the outstanding issues of the disciplines were explored, for example: The Future of Large Physics Projects in the US, and the Role of Theory in the Future of US Physics. 2016 CETUP* summer program was attended by over 70 national and international scientists (including 17 graduate students, 16 postdocs and 39 senior scientists) from over 48 different universities and laboratories. CETUP* participants were very active senior and junior members of the community in order to make the discussions informative and productive. CETUP* 2016 provided a stimulating venue for the exchange of scientific ideas among experts in dark matter, neutrino physics, particle physics, astrophysics and cosmology. During Dark Matter session thirty-seven scientific talks and extended discussions were presented. Twenty-nine talks and discussions were conducted during the Neutrino Physics sessions by international Neutrino Physics experts. The power point presentations for the talks and discussions can be found on the CETUP* website: http://research.dsu.edu/cetup/agenda.aspx. Based on the collaborations established during CETUP* already ten preprints were published and many more are in preparation: https://research.dsu.edu/cetup/preprints.aspx?cetupYear=2016. The proceedings from CETUP*2016 are in preparation to be published by American Institute of Physics in summer 2017. Multiple outreach efforts aimed to share the excitement of the research with K-12, teachers, undergraduate and graduate students as well as the general public.« less
RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KHARZEEV,D.
2004-03-28
This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.
ERIC Educational Resources Information Center
Motl, Robert W.
2007-01-01
The study of physical activity behavior in youth generally lacks a sufficient theoretical foundation for examining variables that influence that behavior. This is a major limitation because theory guides the search for determinants of behavior and the subsequent interplay between research findings and application. Theory offers a systematically…
High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Aaron
This award provided partial support for the Michigan Center for Theoretical Physics to host the 5-day workshop "Emergent themes in String Theory" this winter, March 15 - 19, 2016. on the University of Michigan campus. In addition, this award provided limited support for the Young High Energy Theorist (YHET) visitor program at the University of Michigan.
Mathematical Physics in the Style of Gabriel Lamé and the Treatise of Emile Mathieu
NASA Astrophysics Data System (ADS)
Barbin, Évelyne; Guitart, René
The Treatise of Mathematical Physics of Emile Mathieu, published from 1873 to 1890, provided an exposition of the specific French "Mathematical Physics" inherited from Lamé, himself an heir of Poisson, Fourier, and Laplace. The works of all these authors had significant differences, but they were pursuing the same goal, described here with its relation to Theoretical Physics.
Project Physics Reader 4, Light and Electromagnetism.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
As a supplement to Project Physics Unit 4, a collection of articles is presented in this reader for student browsing. The 21 articles are included under the following headings: Letter from Thomas Jefferson; On the Method of Theoretical Physics; Systems, Feedback, Cybernetics; Velocity of Light; Popular Applications of Polarized Light; Eye and…
USDA-ARS?s Scientific Manuscript database
Theoretically, increased levels of physical activity self-efficacy (PASE) should lead to increased physical activity, but few studies have reported this effect among youth. This failure may be at least partially attributable to measurement limitations. In this study, Item Response Modeling (IRM) was...
Motivation and Self-Perception Profiles and Links with Physical Activity in Adolescent Girls
ERIC Educational Resources Information Center
Biddle, Stuart J. H.; Wang, C. K. John
2003-01-01
Research shows a decline in participation in physical activity across the teenage years. It is important, therefore, to examine factors that might influence adolescent girl's likelihood of being physically active. This study used contemporary theoretical perspectives from psychology to assess a comprehensive profile of motivational and…
Predicting Physical Activity in Arab American School Children
ERIC Educational Resources Information Center
Martin, Jeffrey J.; McCaughtry, Nate; Shen, Bo
2008-01-01
Theoretically grounded research on the determinants of Arab American children's physical activity is virtually nonexistent. Thus, the purpose of our investigation was to evaluate the ability of the theory of planned behavior (TPB) and social cognitive theory (SCT) to predict Arab American children's moderate-to-vigorous physical activity (MVPA).…
NASA Astrophysics Data System (ADS)
Kapucu, Serkan; Bahçivan, Eralp
2015-05-01
Background: There are some theoretical evidences that explain the relationships between core beliefs (i.e., epistemological beliefs) and peripheral beliefs (self-efficacy in learning) in the literature. The close relationships of such type of beliefs with attitudes are also discussed by some researchers. Constructing a model that investigates these relationships by considering theoretical and empirical evidences can empower researchers to discuss these relationships more comprehensively. Purpose: The purpose of this study is to explore the relationships among Turkish high school students' scientific epistemological beliefs, self-efficacy in learning physics and their attitudes toward physics. Sample: A total of 632 high school students participated in this study; however, 269 female and 229 male (a total of 498) high school students' data were used. Design and methods: Three distinct instruments that measure scientific epistemological beliefs, self-efficacy in learning physics and attitudes toward physics were combined into a unique questionnaire form and it was distributed to high school students. To explore the relationships among these variables, structural equation modeling was used. Results: The results showed that scientific epistemological belief dimensions uncovered by the nature of knowing (source and justification) significantly and positively related to both self-efficacy in learning physics and attitudes toward other important physics dimensions. Additionally, self-efficacy in learning physics significantly and positively predicted attitudes toward multiple physics dimensions (importance, comprehension and requirement). However, epistemological belief dimensions related to the nature of knowledge (certainty and development) did not have significant impact on self-efficacy in learning physics or attitudes toward physics. Conclusions: This study concludes that there are positive and significant relationships among Turkish high school students' scientific epistemological beliefs, self-efficacy in learning physics and their attitudes toward physics.
Finding the "Right-Size" Physical Therapy Workforce: International Perspective Across 4 Countries.
Jesus, Tiago S; Koh, Gerald; Landry, Michel; Ong, Peck-Hoon; Lopes, António M F; Green, Peter L; Hoenig, Helen
2016-10-01
Finding the "right-size" physical therapy workforce is an increasingly important issue, but it has had limited study, particularly across nations. This perspective article provides a comprehensive examination of physical therapy workforce issues across 4 countries (United States, Singapore, Portugal, and Bangladesh), which were deliberately selected to allow consideration of key contextual factors. This investigation provides a theoretical model uniquely adapted to focus on variables most likely to affect physical therapy workforce needs. This theoretical model was used to guide acquisition of public domain data across the respective countries. The data then were used to provide a contextualized interpretation about the physical therapy workforce supply (ie, physical therapists per capita) across the 4 countries in light of the following factors: indicators of physical therapy need, financial and administrative barriers affecting physical therapy access and demand, the proportion of physical therapy graduates (with varying trends over time across the countries), and the role of emigration/immigration in supply inequalities among countries of lower and higher income. In addition, both the physical therapy workforce supply and scope of practice were analyzed in the context of other related professions across the 4 countries. This international comparison indicated that there may not be a "one-size-fits-all" recommendation for physical therapy workforce supply across countries or an ideal formula for its determination. The optimal, country-specific physical therapy workforce supply appears to be affected by discipline-specific health care and contextual factors that may vary across countries, and even within the same country. This article provides a conceptual framework and basis for such contextualized evaluations of the physical therapy workforce. © 2016 American Physical Therapy Association.
ERIC Educational Resources Information Center
American Academy of Physical Education, Washington, DC.
Ten papers that address the theoretical advances being made in various areas of specialization in physical education and exercise science are included in this volume of American Academy of Physical Education Papers. General trends are reviewed in selected areas, including the social sciences, the biological sciences, motor learning, curriculum and…
Two decades of Mexican particle physics at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Rubinstein
2002-12-03
This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At themore » time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.« less
Report of the theory panel. [space physics
NASA Technical Reports Server (NTRS)
Ashourabdalla, Maha; Rosner, Robert; Antiochos, Spiro; Curtis, Steven; Fejer, B.; Goertz, Christoph K.; Goldstein, Melvyn L.; Holzer, Thomas E.; Jokipii, J. R.; Lee, Lou-Chuang
1991-01-01
The ultimate goal of this research is to develop an understanding which is sufficiently comprehensive to allow realistic predictions of the behavior of the physical systems. Theory has a central role to play in the quest for this understanding. The level of theoretical description is dependent on three constraints: (1) the available computer hardware may limit both the number and the size of physical processes the model system can describe; (2) the fact that some natural systems may only be described in a statistical manner; and (3) the fact that some natural systems may be observable only through remote sensing which is intrinsically limited by spatial resolution and line of sight integration. From this the report discusses present accomplishments and future goals of theoretical space physics. Finally, the development and use of new supercomputer is examined.
Kelly, Stephanie; Melnyk, Bernadette Mazurek; Belyea, Michael
2012-04-01
Most adolescents do not meet national recommendations regarding physical activity and/or the intake of fruits and vegetables. The purpose of this study was to explore whether variables in the information, motivation, behavioral skills (IMB) model of health promotion predicted physical activity and fruit and vegetable intake in 404 adolescents from 2 high schools in the Southwest United States using structural equation modeling (SEM). The SEM models included theoretical constructs, contextual variables, and moderators. The theoretical relationships in the IMB model were confirmed and were moderated by gender and race. Interventions that incorporate cognitive-behavioral skills building may be a key factor for promoting physical activity as well as fruit and vegetable intake in adolescents. Copyright © 2012 Wiley Periodicals, Inc.
Hansen, Murphy, Receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2014-08-01
Lars N. Hansen and Caitlin A. Murphy were awarded the 2013 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties.
Relationship between self-efficacy and physical activity among patients with type 2 diabetes.
Dutton, Gareth R; Tan, Fei; Provost, Bridgette C; Sorenson, Jamie L; Allen, Brandon; Smith, Dawn
2009-06-01
While previous studies indicate a significant relationship between self-efficacy and physical activity, less research has focused on this relationship among patients with type 2 diabetes. The purpose of this investigation was to examine whether self-efficacy mediated the relationship between participation in a 1-month, print-based physical activity intervention and improvements in activity levels. Participants (N = 85; mean age = 57; 73% Caucasian; 69% female) were recruited from a community diabetes center. The intervention was individually-tailored based on theoretical constructs, including self-efficacy. After controlling for age, baseline activity, and baseline self-efficacy, the tailored intervention was associated with significant improvements in physical activity, 95% CI [23.01, 271.68] as well as self-efficacy, CI [0.02, 3.48]. There was an indirect effect of treatment on physical activity through self-efficacy, CI [0.77, 73.11], and the direct effect of treatment on physical activity was no longer significant, CI [-7.33, 253.40], after the influences of self-efficacy change were accounted for in the model. Results supported a mediation effect, such that the treatment effect on physical activity was completely mediated by changes in self-efficacy. Although replication is needed, results support the theoretical rationale for targeting self-efficacy to promote physical activity among patients with type 2 diabetes.
ERIC Educational Resources Information Center
Hutzler, Yeshayahu; Bar-Eli, Michael
2013-01-01
The purpose of this article is to describe a theoretical model and practice examples of judgment and decision making bias within the context of inclusion in physical education and sports. After presenting the context of adapting for inclusion, the theoretical roots of judgment and decision are described, and are linked to the practice of physical…
Evolutionary preferences for physical formidability in leaders.
Murray, Gregg R
2014-01-01
This research uses evolutionary theory to evaluate followers' preferences for physically formidable leaders and to identify conditions that stimulate those preferences. It employs a population-based survey experiment (N ≥ 760), which offers the advantages to internal validity of experiments and external validity of a highly heterogeneous sample drawn from a nationally representative subject pool. The theoretical argument proffered here is followers tend to prefer leaders with greater physical formidability because of evolutionary adaptations derived from humans' violent ancestral environment. In this environment, individuals who allied with and ultimately followed physically powerful partners were more likely to acquire and retain important resources necessary for survival and reproduction because the presence of the physically powerful partner cued opponents to avoid a challenge for the resources or risk a costly confrontation. This argument suggests and the results indicate that threatening (war) and nonthreatening (peace, cooperation, and control) stimuli differentially motivate preferences for physically formidable leaders. In particular, the findings suggest threatening conditions lead to preferences for leaders with more powerful physical attributes, both anthropometric (i.e., weight, height, and body mass index) and perceptual (i.e., attributes of being "physically imposing or intimidating" and "physically strong"). Overall, this research offers a theoretical framework from which to understand this otherwise seemingly irrational phenomenon. Further, it advances the emerging but long-neglected investigation of biological effects on political behavior and has implications for a fundamental process in democratic society, leader selection.
NASA Astrophysics Data System (ADS)
Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro
2012-06-01
ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.
The Physics of "Copenhagen" for Students and the General Public.
ERIC Educational Resources Information Center
Bergstrom, L.; Johansson, K. E.; Nilsson, Ch.
2001-01-01
The play Copenhagen has attracted the attention of a large audience in several countries. The hypothetical discussion between two of the giants in physics, Niels Bohr and Werner Heisenberg, has inspired us to start a theoretical and experimental exploration of quantum physics. This theme has been used in Stockholm Science Laboratory for audiences…
Physics issues of gamma ray burst emissions
NASA Technical Reports Server (NTRS)
Liang, Edison
1987-01-01
The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.
Analysis of Learning in the Case of a Teaching on Heat and Temperature.
ERIC Educational Resources Information Center
Tiberghien, Andree
In the domain of research on physics education, results on students' conceptions show difficulties in physics learning. This paper aims to propose theoretical elements to interpret such learning difficulties related to physics teaching in the case of heat and temperature. Sections in this paper include: (1) Introduction; (2) Epistemological…
Abdus Salam and his International Influences
College, Cambridge where he distinguished himself with a double First in mathematics and physics in 1949 as well as the Smith's Prize for the most outstanding pre-doctoral contribution to physics in 1950 . By the time he received his doctorate in Theoretical Physics at the Cavendish Laboratory in 1951, his
New Themes in Physics Teaching: A Personal Retrospective
ERIC Educational Resources Information Center
Dykstra, Dewey I., Jr.
2012-01-01
For a little over 40 years, what we label now physics education research has been conducted. As a result, a new type of theme in the research and in physics education has emerged. Some of these themes are cognitivism, research as qualitative, learning as construction of knowledge, theoretical underpinnings that are not realist, student-centered…
ERIC Educational Resources Information Center
MacFarlane, Kendra; Wharf Higgins, Joan; Naylor, Patti-Jean
2018-01-01
Objective: This study explored factors affecting the implementation of good-quality physical activity provision in after-school childcare delivered in a Canadian jurisdiction without specific policy, standards or active interventions aimed at increasing physical activity underway. Design: Case study design theoretically guided by the…
A Theoretical Model of Children's Storytelling Using Physically-Oriented Technologies (SPOT)
ERIC Educational Resources Information Center
Guha, Mona Leigh; Druin, Allison; Montemayor, Jaime; Chipman, Gene; Farber, Allison
2007-01-01
This paper develops a model of children's storytelling using Physically-Oriented Technology (SPOT). The SPOT model draws upon literature regarding current physical storytelling technologies and was developed using a grounded theory approach to qualitative research. This empirical work focused on the experiences of 18 children, ages 5-6, who worked…
A framework for the design and development of physical employment tests and standards.
Payne, W; Harvey, J
2010-07-01
Because operational tasks in the uniformed services (military, police, fire and emergency services) are physically demanding and incur the risk of injury, employment policy in these services is usually competency based and predicated on objective physical employment standards (PESs) based on physical employment tests (PETs). In this paper, a comprehensive framework for the design of PETs and PESs is presented. Three broad approaches to physical employment testing are described and compared: generic predictive testing; task-related predictive testing; task simulation testing. Techniques for the selection of a set of tests with good coverage of job requirements, including job task analysis, physical demands analysis and correlation analysis, are discussed. Regarding individual PETs, theoretical considerations including measurability, discriminating power, reliability and validity, and practical considerations, including development of protocols, resource requirements, administrative issues and safety, are considered. With regard to the setting of PESs, criterion referencing and norm referencing are discussed. STATEMENT OF RELEVANCE: This paper presents an integrated and coherent framework for the development of PESs and hence provides a much needed theoretically based but practically oriented guide for organisations seeking to establish valid and defensible PESs.
Korean immigrant women's physical activity experience: a situation-specific theory.
Im, Eun-Ok; Chang, Sun Ju; Nguyen, Giang; Stringer, Lynn; Chee, Wonshik; Chee, Eunice
2015-01-01
To develop successful physical activity promotion programs for midlife immigrant women, especially for Korean immigrant midlife women, concrete theoretical bases are needed. However, virtually no theoretical frameworks and/or theories exist that can explain the influences of immigration transition on the physical activity experience of midlife immigrant women in general or Korean immigrant midlife women in specific. The purpose of this article is to present a situation-specific theory on physical activity experience of Korean immigrant midlife women (SPAKIM) with its development process. An integrative approach was used to develop the theory based on the midlife women's attitudes toward physical activity (MAPA) theory, the transitions theory, a review of the relevant literature, and two studies on midlife women's attitudes toward physical activity. The proposed theory includes nature of transitions, nonmodifiable and modifiable transition conditions, contexts of daily life, patterns of response, and nursing therapeutics as major concepts, and each major concept includes several related subconcepts. Because several concepts of the theory were developed mainly based on the literature review, the major concepts and related subconcepts need to be further developed and evaluated in future studies.
NASA Astrophysics Data System (ADS)
2014-09-01
The new director of the Nordic Institute for Theoretical Physics (Nordita) in Stockholm, Sweden traces her passion for physics to a bout of appendicitis she underwent while travelling the world in the late 1970s.
Effective techniques in healthy eating and physical activity interventions: a meta-regression.
Michie, Susan; Abraham, Charles; Whittington, Craig; McAteer, John; Gupta, Sunjai
2009-11-01
Meta-analyses of behavior change (BC) interventions typically find large heterogeneity in effectiveness and small effects. This study aimed to assess the effectiveness of active BC interventions designed to promote physical activity and healthy eating and investigate whether theoretically specified BC techniques improve outcome. Interventions, evaluated in experimental or quasi-experimental studies, using behavioral and/or cognitive techniques to increase physical activity and healthy eating in adults, were systematically reviewed. Intervention content was reliably classified into 26 BC techniques and the effects of individual techniques, and of a theoretically derived combination of self-regulation techniques, were assessed using meta-regression. Valid outcomes of physical activity and healthy eating. The 122 evaluations (N = 44,747) produced an overall pooled effect size of 0.31 (95% confidence interval = 0.26 to 0.36, I(2) = 69%). The technique, "self-monitoring," explained the greatest amount of among-study heterogeneity (13%). Interventions that combined self-monitoring with at least one other technique derived from control theory were significantly more effective than the other interventions (0.42 vs. 0.26). Classifying interventions according to component techniques and theoretically derived technique combinations and conducting meta-regression enabled identification of effective components of interventions designed to increase physical activity and healthy eating. PsycINFO Database Record (c) 2009 APA, all rights reserved.
Efficient numerical evaluation of Feynman integrals
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Jian; Yan, Qi-Shu; Zhao, Xiaoran
2016-03-01
Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass. Supported by the Natural Science Foundation of China (11305179 11475180), Youth Innovation Promotion Association, CAS, IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors, Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y4KF061CJ1), Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098)
Research in High Energy Physics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, John S.
2013-08-09
This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.
HEP Division Argonne National Laboratory
Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP Theory administrators theory users trice users HEP webmaster U.S. Department of Energy Office of Science | UChicago
NASA Technical Reports Server (NTRS)
Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1990-01-01
The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.
Salvy, Sarah-Jeanne; Bowker, Julie C.
2015-01-01
Obesity during childhood and adolescence is a growing problem in the United States, Canada, and around the world that leads to significant physical, psychological, and social impairment. In recent years, empirical research on factors that contribute to the development and maintenance of obesity has begun to consider peer experiences, such as peer rejection, peer victimization, and friendship. Peer experiences have been theoretically and empirically related to the “Big Two” contributors to the obesity epidemic, eating and physical activity, but there has not been a comprehensive review of the extant empirical literature. In this article, we review and synthesize the emerging theoretical and empirical literatures on peer experiences in relation to: (a) eating (food consumption and food selection); and (b) physical activity, during childhood and adolescence. A number of limitations and issues in the theoretical and empirical literatures are also discussed, along with future research directions. In conclusion, we argue that the involvement of children and adolescents’ peer networks in prevention and intervention efforts may be critical for promoting and maintaining positive behavioral health trajectories. PMID:28090396
Managing and capturing the physics of robotic systems
NASA Astrophysics Data System (ADS)
Werfel, Justin
Algorithmic and other theoretical analyses of robotic systems often use a discretized or otherwise idealized framework, while the real world is continuous-valued and noisy. This disconnect can make theoretical work sometimes problematic to apply successfully to real-world systems. One approach to bridging the separation can be to design hardware to take advantage of simple physical effects mechanically, in order to guide elements into a desired set of discrete attracting states. As a result, the system behavior can effectively approximate a discretized formalism, so that proofs based on an idealization remain directly relevant, while control can be made simpler. It is important to note, conversely, that such an approach does not make a physical instantiation unnecessary nor a purely theoretical treatment sufficient. Experiments with hardware in practice always reveal physical effects not originally accounted for in simulation or analytic modeling, which lead to unanticipated results and require nontrivial modifications to control algorithms in order to achieve desired outcomes. I will discuss these points in the context of swarm robotic systems recently developed at the Self-Organizing Systems Research Group at Harvard.
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Huijg, Johanna M; Dusseldorp, Elise; Gebhardt, Winifred A; Verheijden, Marieke W; van der Zouwe, Nicolette; Middelkoop, Barend J C; Duijzer, Geerke; Crone, Mathilde R
2015-04-01
Physical therapists play an important role in the promotion of physical activity (PA) and the effectiveness of PA interventions. However, little is known about the extent to which they implement PA interventions following the intervention protocol and about the factors influencing their implementation behaviors. The study objective was to investigate physical therapists' implementation fidelity regarding PA interventions, including completeness and quality of delivery, and influencing factors with a Theoretical Domains Framework-based questionnaire. The study was based on a cross-sectional design. A total of 268 physical therapists completed the Determinants of Implementation Behavior Questionnaire. Questions about completeness and quality of delivery were based on components and tasks of PA interventions as described by the Royal Dutch Society for Physical Therapy. Multilevel regression analyses were used to identify factors associated with completeness and quality of delivery. High implementation fidelity was found for the physical therapists, with higher scores for completeness of delivery than for quality of delivery. Physical therapists' knowledge, skills, beliefs about capabilities and consequences, positive emotions, behavioral regulation, and the automaticity of PA intervention delivery were the most important predictors of implementation fidelity. Together, the Theoretical Domains Framework accounted for 23% of the variance in both total completeness and total quality scores. The cross-sectional design precluded the determination of causal relationships. Also, the use of a self-report measure to assess implementation fidelity could have led to socially desirable responses, possibly resulting in more favorable ratings for completeness and quality. This study enhances the understanding of how physical therapists implement PA interventions and which factors influence their behaviors. Knowledge about these factors may assist in the development of strategies to improve physical therapists' implementation behaviors. © 2015 American Physical Therapy Association.
Theoretical Explanations in Mathematical Physics
NASA Astrophysics Data System (ADS)
Rivadulla, Andrés
Many physicists wonder at the usefulness of mathematics in physics. According Madrid to Einstein mathematics is admirably appropriate to the objects of reality. Wigner asserts that mathematics plays an unreasonable important role in physics. James Jeans affirms that God is a mathematician, and that the first aim of physics is to discover the laws of nature, which are written in mathematical language. Dirac suggests that God may have used very advanced mathematics in constructing the universe. And Barrow adheres himself to Wigner's claim about the unreasonable effectiveness of mathematics for the workings of the physical world.
Solid State Division annual progress report for period ending December 31, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, M.K.; Young, F.W. Jr.
1976-05-01
Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)
NASA Technical Reports Server (NTRS)
Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1991-01-01
The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.
A game-theoretic method for cross-layer stochastic resilient control design in CPS
NASA Astrophysics Data System (ADS)
Shen, Jiajun; Feng, Dongqin
2018-03-01
In this paper, the cross-layer security problem of cyber-physical system (CPS) is investigated from the game-theoretic perspective. Physical dynamics of plant is captured by stochastic differential game with cyber-physical influence being considered. The sufficient and necessary condition for the existence of state-feedback equilibrium strategies is given. The attack-defence cyber interactions are formulated by a Stackelberg game intertwined with stochastic differential game in physical layer. The condition such that the Stackelberg equilibrium being unique and the corresponding analytical solutions are both provided. An algorithm is proposed for obtaining hierarchical security strategy by solving coupled games, which ensures the operational normalcy and cyber security of CPS subject to uncertain disturbance and unexpected cyberattacks. Simulation results are given to show the effectiveness and performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Morozov, A. N.
2017-11-01
The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.
The Educational Benefits Claimed for Physical Education and School Sport: An Academic Review
ERIC Educational Resources Information Center
Bailey, Richard; Armour, Kathleen; Kirk, David; Jess, Mike; Pickup, Ian; Sandford, Rachel
2009-01-01
This academic review critically examines the theoretical and empirical bases of claims made for the educational benefits of physical education and school sport (PESS). An historical overview of the development of PESS points to the origins of claims made in four broad domains: physical, social, affective and cognitive. Analysis of the evidence…
Physics of Neutron Star Crusts.
Chamel, Nicolas; Haensel, Pawel
2008-01-01
The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.
Mathematics and Physics: The Idea of a Pre-Established Harmony
ERIC Educational Resources Information Center
Kragh, Helge
2015-01-01
For more than a century the notion of a pre-established harmony between the mathematical and physical sciences has played an important role not only in the rhetoric of mathematicians and theoretical physicists, but also as a doctrine guiding much of their research. Strongly mathematized branches of physics, such as the vortex theory of atoms…
ERIC Educational Resources Information Center
Yavuz, Ahmet
2015-01-01
This study aims to investigate (1) students' trust in mathematics calculation versus intuition in a physics problem solving and (2) whether this trust is related to achievement in physics in the context of epistemic game theoretical framework. To achieve this research objective, paper-pencil and interview sessions were conducted. A paper-pencil…
ERIC Educational Resources Information Center
Parviainen, Jaana; Aromaa, Johanna
2017-01-01
Bodily knowledge has attracted significant attention within the humanities and other related fields over the last two decades. Although theoretical discussion on bodily knowledge in the context of physical education has been active over the past 10 years, these discussions lack clear conceptual analyses of bodily knowledge. Using a…
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
NASA Astrophysics Data System (ADS)
2008-01-01
Why did you originally choose to study physics? I was really interested in science at school, and I also read a couple of fascinating popular-science books about quantum mechanics and special relativity. My interest in these topics made me decide to study physics at Oxford University. Straight after I graduated in 1967 I did a theoretical-physics DPhil, also at Oxford.
ERIC Educational Resources Information Center
Sharma, Shreela; Chuang, Ru-Jye; Hedberg, Ann Marie
2011-01-01
Background: The literature on theoretically-based programs targeting healthy nutrition and physical activity in preschools is scarce. Purpose: To pilot test CATCH Early Childhood (CEC), a preschool-based nutrition and physical activity program among children ages three to five in Head Start. Methods: The study was conducted in two Head Start…
Participation in High Energy Physics at the University of Chicago
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinec, Emil J.
2013-06-27
This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.
ERIC Educational Resources Information Center
Munier, Valerie; Merle, Helene
2009-01-01
The present study takes an interdisciplinary mathematics-physics approach to the acquisition of the concept of angle by children in Grades 3-5. This paper first presents the theoretical framework we developed, then we analyse the concept of angle and the difficulties pupils have with it. Finally, we report three experimental physics-based teaching…
The Use of Metacognitive Knowledge Patterns to Compose Physics Higher Order Thinking Problems
ERIC Educational Resources Information Center
Abdullah, Helmi; Malago, Jasruddin D.; Bundu, Patta; Thalib, Syamsul Bachri
2013-01-01
The main aspect in physics learning is the use of equation in problem solving. Equation is a mathematical form of theoretical statements, principles, and laws in physics, and describes a relationship between one concept to another by using a specific symbol. In a context of knowledge dimension, equation is a procedural knowledge. Students are…
ERIC Educational Resources Information Center
Verscheure, Ingrid; Amade-Escot, Chantal
2007-01-01
Background: Research on gender in physical education has pointed out the social construction of gendered bodies and minds through the curriculum. It has been shown that girls do not benefit from equal opportunities to participate in physical activities. Developed within the theoretical framework of the "didactique" tradition, this paper…
The role of a posteriori mathematics in physics
NASA Astrophysics Data System (ADS)
MacKinnon, Edward
2018-05-01
The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.
NASA Astrophysics Data System (ADS)
Zen Vasconcellos, César; Coelho, Helio T.; Hess, Peter Otto
Walter Greiner (29 October 1935 - 6 October 2016) was a German theoretical physicist. His scientific research interests include the thematic areas of atomic physics, heavy ion physics, nuclear physics, elementary particle physics (particularly quantum electrodynamics and quantum chromodynamics). He is most known in Germany for his series of books in theoretical physics, but he is also well known around the world. Greiner was born on October 29, 1935, in Neuenbau, Sonnenberg, Germany. He studied physics at the University of Frankfurt (Goethe University in Frankfurt Am Main), receiving in this institution a BSci in physics and a Master’s degree in 1960 with a thesis on plasma-reactors, and a PhD in 1961 at the University of Freiburg under Hans Marshal, with a thesis on the nuclear polarization in μ-mesic atoms. During the period of 1962 to 1964 he was assistant professor at the University of Maryland, followed by a position as research associate at the University of Freiburg, in 1964. Starting in 1965, he became a full professor at the Institute for Theoretical Physics at Goethe University until 2003. Greiner has been a visiting professor to many universities and laboratories, including Florida State University, the University of Virginia, the University of California, the University of Melbourne, Vanderbilt University, Yale University, Oak Ridge National Laboratory and Los Alamos National Laboratory. In 2003, with Wolf Singer, he was the founding Director of the Frankfurt Institute for Advanced Studies (FIAS), and gave lectures and seminars in elementary particle physics. He died on October 6, 2016 at the age of 80. Walter Greiner was an excellent teacher, researcher, friend. And he was a great supporter of the series of events known by the acronyms IWARA - International Workshop on Astronomy and Relativistic Astrophysics, STARS - Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics, and SMFNS - International Symposium on Strong Electromagnetic Fields and Neutron Stars. Walter Greiner left us. But his memory will remain always alive among us who have had the privilege of knowing him and enjoy his wisdom and joy of living.
Sweet, Shane N.; Fortier, Michelle S.; Strachan, Shaelyn M.; Blanchard, Chris M.; Boulay, Pierre
2014-01-01
Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.’s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, P<0.001). The overall model retained good fit indices. In conclusion, results diverged from theoretical predictions of physical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible. PMID:26973926
Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, J.R.; et al.
This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (V) phenomenological studies essential for comparing LHC data from Run II with theoretical predictions and projections for future measurements, and (VI) new developments in Monte Carlo event generators.
The Status of Women in Physics in Sudan
NASA Astrophysics Data System (ADS)
Abdelbagi, Abdrazig M.; Sirelkhatim, Amna H.; Abdelrahman, Wafaa S.; Osman, Mai E.; Shatir, Tahani S.
2009-04-01
The progress of women in physics education in the last five years was surveyed in the six top universities in Sudan. The data reveal great increases in the number of females studying undergraduate physics. Most were studying experimental physics rather than theoretical physics, especially the laser and electronics fields. It appears undergraduate laboratory experiments are an important factor in attracting women to physics. Our survey found that girls are encouraged to study physics at the high school level. However, the data also showed that the fewer tendencies to study physics among the women after high school are due to the limited job opportunities and low income of teachers. Postgraduate physics study is handicapped by lack of institutions, financial constraints, and lack of qualified advisors. Improvement of education systems and new ways of teaching will have great influences on attracting women to physics in Sudan.
Ransdell, L B; Dratt, J; Kennedy, C; O'Neill, S; DeVoe, D
2001-01-01
This paper presents the results of a 12-week single-sex, family-based physical activity intervention grounded in Social Cognitive Theory. Mother/daughter pairs and triads (n = 20) attended physical activity and classroom sessions twice weekly. Physiological data (VO2peak, height, and weight), psychological data (physical self-perception profile subscale scores), information about physical activity participation (PAP, d x wk(-1)) and qualitative impressions (QI) of the program were collected pre- and post-intervention. PAP and QI were also collected 6-months after completing the intervention. Although no significant increases in physical activity were reported, significant improvements in perceived sport competence, physical condition, and strength and muscularity were reported over time. The social cognitive theory, as used to plan this physical activity intervention, offered a promising theoretical perspective for facilitating improved physical self-perception in adolescent girls and their mothers.
USSR and Eastern Europe Scientific Abstracts Physics and Mathematics No. 35
1977-06-15
depends on the film thickness, on the conditions of demagnetization , and on the constant of uniaxial magnetic anisotropy. The distribution of...Acoustics 2 Crystals and Semiconductors.. .*. 16 Electricity and Magnetism 51 Fluid Dynamics 64 Lasers and Masers 88 Magnetohydrodynamics 110...Molecular Physics 132 Nuclear Physics 133 Optics and Spectroscopy 158 Stress, Strain and Deformation 165 Superconductivity 170 Theoretical
ERIC Educational Resources Information Center
Shneidman, N. Norman
Serving as an introduction to Soviet physical education which endeavors to give a concise outline of the organizational structure and the theoretical foundatons of Soviet sport, this book attempts to discuss Soviet physical education in relation to Soviet education and culture generally and to examine critically the practical applications of the…
ERIC Educational Resources Information Center
Causgrove Dunn, Janice; Cairney, John; Zimmer, Chantelle
2016-01-01
In this article, we reflect on the contributions of the social sciences to the field of adapted physical activity by examining the theories and methods that have been adopted from the social science disciplines. To broaden our perspective on adapted physical activity and provide new avenues for theoretical and empirical exploration, we discuss and…
Researcher Supported by Atomic Energy Commission and U.S. Department of
Energy is Co-Winner Of 2008 Nobel Prize in Physics October 7, 2008 Researcher Supported by Atomic Energy Commission and U.S. Department of Energy is Co-Winner Of 2008 Nobel Prize in Physics -winning the 2008 Nobel Prize in Physics for their theoretical insights that provide a deeper understanding
ERIC Educational Resources Information Center
Markovic, Živorad; Kopas-Vukašinovic, Emina
2015-01-01
In their work authors consider the significance of the organization of physical activities for the development of abilities of pre-school and school children. Led by theoretical basis that physical development of children represents the basis of their whole development, and that "fine motor skills" are determined by the development of…
ERIC Educational Resources Information Center
Ardzejewska, Kathie; Piscioneri, Antonio; Goode, Kim
2014-01-01
Using the theoretical frameworks of change and student voice this study examined whether the enactment of the senior Personal Development, Health and Physical Education (PDHPE) syllabus was received positively by students in light of their previous experience with the junior PDHPE syllabus. In addition, the study sought to examine whether there…
Useful Pedagogical Applications of the Classical Hall Effect
ERIC Educational Resources Information Center
Houari, Ahmed
2007-01-01
One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…
Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States
2017-12-09
I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.
The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein
NASA Astrophysics Data System (ADS)
Gingras, Yves
2015-07-01
In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's blackbody radiation law. A comparison is also made with his 1925 paper on the quantum gas where he used the same formal methods. Changes of formal points of view are most of the time taken for granted or passed over in silence in studies on the mathematization of physics as if they had no special significance. Revisiting Einstein's classic papers on the nature of light and matter from the angle of the various theoretical tools he used, namely entropy and energy fluctuation calculations, helps explain why he was in a unique position to make visible the particle structure of radiation and the dual (particle and wave) nature of light and matter. Finally, this case study calls attention to the more general question of the surprising creative power of formal analogies and their frequent use in theoretical physics. This aspect of intellectual creation can be useful in the teaching of physics.
Plasma physics abstracts, 1 January - 31 December 1971
NASA Technical Reports Server (NTRS)
Montgomery, D. C.; Gurnett, D. A.
1971-01-01
Abstracts are presented on various aspects of plasma physics, including theoretical discussions and ionospheric plasmas. The topics considered cover Alfven waves, magnetized plasmas, plasma diffusion, Poynting flux measurements, electric fields, the magnetosphere, auroras, and plasma convection.
Theoretical physics: Quarks fuse to release energy
NASA Astrophysics Data System (ADS)
Miller, Gerald A.
2017-11-01
In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. The discovery of an analogue of this process involving particles called quarks has implications for both nuclear and particle physics. See Letter p.89
Perspective: Quantum Hamiltonians for optical interactions
NASA Astrophysics Data System (ADS)
Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy
2018-01-01
The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.
The Quantum and Fluid Mechanics of Global Warming
NASA Astrophysics Data System (ADS)
Marston, Brad
2008-03-01
Quantum physics and fluid mechanics are the foundation of any understanding of the Earth's climate. In this talk I invoke three well-known aspects of quantum mechanics to explore what will happen as the concentrations of greenhouse gases such as carbon dioxide continue to increase. Fluid dynamical models of the Earth's atmosphere, demonstrated here in live simulations, yield further insight into past, present, and future climates. Statistics of geophysical flows can, however, be ascertained directly without recourse to numerical simulation, using concepts borrowed from nonequilibrium statistical mechanicsootnotetextJ. B. Marston, E. Conover, and Tapio Schneider, ``Statistics of an Unstable Barotropic Jet from a Cumulant Expansion,'' arXiv:0705.0011, J. Atmos. Sci. (in press).. I discuss several other ways that theoretical physics may be able to contribute to a deeper understanding of climate changeootnotetextJ. Carlson, J. Harte, G. Falkovich, J. B. Marston, and R. Pierrehumbert, ``Physics of Climate Change'' 2008 Program of the Kavli Institute for Theoretical Physics..
NASA Astrophysics Data System (ADS)
Wang, Jianxiong
2014-06-01
This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF
Flannery, C; McHugh, S; Anaba, A E; Clifford, E; O'Riordan, M; Kenny, L C; McAuliffe, F M; Kearney, P M; Byrne, M
2018-05-21
Obesity during pregnancy is associated with increased risk of gestational diabetes mellitus (GDM) and other complications. Physical activity is a modifiable lifestyle factor that may help to prevent these complications but many women reduce their physical activity levels during pregnancy. Interventions targeting physical activity in pregnancy are on-going but few identify the underlying behaviour change mechanisms by which the intervention is expected to work. To enhance intervention effectiveness, recent tools in behavioural science such as the Theoretical Domains Framework (TDF) and COM-B model (capability, opportunity, motivation and behaviour) have been employed to understand behaviours for intervention development. Using these behaviour change methods, this study aimed to identify the enablers and barriers to physical activity in overweight and obese pregnant women. Semi-structured interviews were conducted with a purposive sample of overweight and obese women at different stages of pregnancy attending a public antenatal clinic in a large academic maternity hospital in Cork, Ireland. Interviews were recorded and transcribed into NVivo V.10 software. Data analysis followed the framework approach, drawing on the TDF and the COM-B model. Twenty one themes were identified and these mapped directly on to the COM-B model of behaviour change and ten of the TDF domains. Having the social opportunity to engage in physical activity was identified as an enabler; pregnant women suggested being active was easier when supported by their partners. Knowledge was a commonly reported barrier with women lacking information on safe activities during pregnancy and describing the information received from their midwife as 'limited'. Having the physical capability and physical opportunity to carry out physical activity were also identified as barriers; experiencing pain, a lack of time, having other children, and working prevented women from being active. A wide range of barriers and enablers were identified which influenced women's capability, motivation and opportunity to engage in physical activity with "knowledge" as the most commonly reported barrier. This study is a theoretical starting point in making a 'behavioural diagnoses' and the results will be used to inform the development of an intervention to increase physical activity levels among overweight and obese pregnant women.
The uses of isospin in early nuclear and particle physics
NASA Astrophysics Data System (ADS)
Borrelli, Arianna
2017-11-01
This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.
Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy
2013-03-01
To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues
NASA Astrophysics Data System (ADS)
Larsen, Kasper J.; Rietkerk, Robbert
2018-01-01
Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.
NASA Astrophysics Data System (ADS)
Sieroka, Norman
2018-02-01
This paper aims at closing a gap in recent Weyl research by investigating the role played by Leibniz for the development and consolidation of Weyl's notion of theoretical (symbolic) construction. For Weyl, just as for Leibniz, mathematics was not simply an accompanying tool when doing physics-for him it meant the ability to engage in well-guided speculations about a general framework of reality and experience. The paper first introduces some of the background of Weyl's notion of theoretical construction and then discusses particular Leibnizian inheritances in Weyl's 'Philosophie der Mathematik und Naturwissenschaft', such as the general appreciation of the principles of sufficient reason and of continuity. Afterwards the paper focuses on three themes: first, Leibniz's primary quality phenomenalism, which according to Weyl marked the decisive step in realizing that physical qualities are never apprehended directly; second, the conceptual relation between continuity and freedom; and third, Leibniz's notion of 'expression', which allows for a certain type of (surrogative) reasoning by structural analogy and which gave rise to Weyl's optimism regarding the scope of theoretical construction.
NASA Astrophysics Data System (ADS)
Donnelly, Suzanne M.
This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations
Brancaccio, Maria Teresa
2014-12-01
This paper traces Enrico Morselli's intellectual trajectory from the 1870s to the early 1900s. His interest in phenomena of physical mediumship is considered against the backdrop of the theoretical developments in Italian psychiatry and psychology. A leading positivist psychiatrist and a prolific academic, Morselli was actively involved in the making of Italian experimental psychology. Initially sceptical of psychical research and opposed to its association with the 'new psychology', Morselli subsequently conducted a study of the physical phenomena produced by the medium Eusapia Palladino. He concluded that her phenomena were genuine and represented them as the effects of an unknown bio-psychic force present in all human beings. By contextualizing Morselli's study of physical mediumship within contemporary theoretical and disciplinary discourse, this study elaborates shifts in the interpretations of 'supernormal' phenomena put forward by leading Italian psychiatrists and physiologists. It demonstrates that Morselli's interest in psychical research stems from his efforts to comprehend the determinants of complex psychological phenomena at a time when the dynamic theory of matter in physics, and the emergence of neo-vitalist theories influenced the theoretical debates in psychiatry, psychology and physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Constructor theory of information
Deutsch, David; Marletto, Chiara
2015-01-01
We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems). PMID:25663803
The physics of Copenhagen for students and the general public
NASA Astrophysics Data System (ADS)
Bergström, L.; Johansson, K. E.; Nilsson, Ch
2001-09-01
The play Copenhagen has attracted the attention of a large audience in several countries. The hypothetical discussion in Copenhagen between two of the giants in physics, Niels Bohr and Werner Heisenberg, has inspired us to start a theoretical and experimental exploration of quantum physics. This theme has been used in Stockholm Science Laboratory for audiences of both students and the general public.
Artificial Oxide Heterostructures with Tunable Band Gap
2016-12-20
PIs: Xiaoxing Xi 1, and Jon Spanier2 1. Department of Physics , Temple University, Philadelphia, PA 19122, USA 2. Department of Materials Science...been summarized in the following. Our thin-film experimental group under the leadership of Prof. Xiaoxing Xi at physics department of Temple...theoretical group of Xifan Wu at physics department of Temple University. The first- principles calculations were performed by using density functional theory
Planetary atmospheric physics and solar physics research
NASA Technical Reports Server (NTRS)
1973-01-01
An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.
ERIC Educational Resources Information Center
Renshaw, Ian; Chow, Jia Yi; Davids, Keith; Hammond, John
2010-01-01
Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organisation of learning environments and effective and efficient use of practice time. An…
Definitions, Foundations and Associations of Physical Literacy: A Systematic Review.
Edwards, Lowri C; Bryant, Anna S; Keegan, Richard J; Morgan, Kevin; Jones, Anwen M
2017-01-01
The concept of physical literacy has stimulated increased research attention in recent years-being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. The purpose of this systematic review was to conduct a systematic review of the physical literacy construct, as reflected in contemporary research literature. Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analyzed in relation to three core areas: properties/attributes, philosophical foundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analyzed qualitatively using inductive thematic analysis. The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, the analysis identified a number of theoretical associations, including health, physical activity and academic performance. Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept.
Application of Intervention Mapping to the Development of a Complex Physical Therapist Intervention.
Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M
2016-12-01
Physical therapist interventions, such as those designed to change physical activity behavior, are often complex and multifaceted. In order to facilitate rigorous evaluation and implementation of these complex interventions into clinical practice, the development process must be comprehensive, systematic, and transparent, with a sound theoretical basis. Intervention Mapping is designed to guide an iterative and problem-focused approach to the development of complex interventions. The purpose of this case report is to demonstrate the application of an Intervention Mapping approach to the development of a complex physical therapist intervention, a remote self-management program aimed at increasing physical activity after acquired brain injury. Intervention Mapping consists of 6 steps to guide the development of complex interventions: (1) needs assessment; (2) identification of outcomes, performance objectives, and change objectives; (3) selection of theory-based intervention methods and practical applications; (4) organization of methods and applications into an intervention program; (5) creation of an implementation plan; and (6) generation of an evaluation plan. The rationale and detailed description of this process are presented using an example of the development of a novel and complex physical therapist intervention, myMoves-a program designed to help individuals with an acquired brain injury to change their physical activity behavior. The Intervention Mapping framework may be useful in the development of complex physical therapist interventions, ensuring the development is comprehensive, systematic, and thorough, with a sound theoretical basis. This process facilitates translation into clinical practice and allows for greater confidence and transparency when the program efficacy is investigated. © 2016 American Physical Therapy Association.
Power, Brian T; Kiezebrink, Kirsty; Allan, Julia L; Campbell, Marion K
2017-01-01
Unhealthy eating and physical activity behaviours are common among nurses but little is known about determinants of eating and physical activity behaviour in this population. The present study used a theoretical framework which summarises the many possible determinants of different health behaviours (the Theoretical Domains Framework; TDF) to systematically explore the most salient determinants of unhealthy eating and physical activity behaviour in hospital-based nurses. Semi-structured qualitative interviews based on the TDF were conducted with nurses ( n = 16) to explore factors that behavioural theories suggest may influence nurses' eating and physical activity behaviour. Important determinants of the target behaviours were identified using both inductive coding (of categories emerging from the data) and deductive coding (of categories derived from the TDF) of the qualitative data. Thirteen of the fourteen domains in the TDF were found to influence nurses' eating and physical activity behaviour. Within these domains, important barriers to engaging in healthy eating and physical activity behaviour were shift work, fatigue, stress, beliefs about negative consequences, the behaviours of family and friends and lack of planning. Important factors reported to enable engagement with healthy eating and physical activity behaviours were beliefs about benefits, the use of self-monitoring strategies, support from work colleagues, confidence, shift work, awareness of useful guidelines and strategies, good mood, future holidays and receiving compliments. This study used a theory-informed approach by applying the TDF to identify the key perceived determinants of nurses' eating and physical activity behaviour. The findings suggest that future efforts to change nurses' eating and physical activity behaviours should consider targeting a broad range of environmental, interpersonal and intrapersonal level factors, consistent with a socio-ecological perspective.
Ask not what physics can do for biology--ask what biology can do for physics.
Frauenfelder, Hans
2014-10-08
Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: 'Ask not what Physics can do for biology, ask what biology can do for physics'. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger's book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.
Group theoretical formulation of free fall and projectile motion
NASA Astrophysics Data System (ADS)
Düztaş, Koray
2018-07-01
In this work we formulate the group theoretical description of free fall and projectile motion. We show that the kinematic equations for constant acceleration form a one parameter group acting on a phase space. We define the group elements ϕ t by their action on the points in the phase space. We also generalize this approach to projectile motion. We evaluate the group orbits regarding their relations to the physical orbits of particles and unphysical solutions. We note that the group theoretical formulation does not apply to more general cases involving a time-dependent acceleration. This method improves our understanding of the constant acceleration problem with its global approach. It is especially beneficial for students who want to pursue a career in theoretical physics.
NASA Astrophysics Data System (ADS)
Somov, B. V.
If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics
Patients' mental models and adherence to outpatient physical therapy home exercise programs.
Rizzo, Jon
2015-05-01
Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.
ERIC Educational Resources Information Center
Jones, W. Paul
1980-01-01
Discusses the theoretical and practical applications of cosmetic behavior therapy in a private practice. Enhancement of physical appearance will frequently result in an enhancement of self-concept, and the client's attainment of physical attractiveness contributes to the probability of success in current culture. (Author/JAC)
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
Perspectives on theory at the interface of physics and biology.
Bialek, William
2018-01-01
Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.
NASA Technical Reports Server (NTRS)
Drachman, Richard J.
2003-01-01
I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Robert
2006-03-29
I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way inmore » which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.« less
Perspectives on theory at the interface of physics and biology
NASA Astrophysics Data System (ADS)
Bialek, William
2018-01-01
Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.
Biology is more theoretical than physics.
Gunawardena, Jeremy
2013-06-01
The word "theory" is used in at least two senses--to denote a body of widely accepted laws or principles, as in "Darwinian theory" or "quantum theory," and to suggest a speculative hypothesis, often relying on mathematical analysis, that has not been experimentally confirmed. It is often said that there is no place for the second kind of theory in biology and that biology is not theoretical but based on interpretation of data. Here, ideas from a previous essay are expanded upon to suggest, to the contrary, that the second kind of theory has always played a critical role and that biology, therefore, is a good deal more theoretical than physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, A. V.
A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.
Theoretical Problems in Materials Science
NASA Technical Reports Server (NTRS)
Langer, J. S.; Glicksman, M. E.
1985-01-01
Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.
NASA's space physics theory program - An opportunity for collaboration
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.
1990-01-01
The field of theoretical space physics offers a unique opportunity to Latin American scientists for collaborative participation in NASA programs where the greatly increased complexity of both experimental observations and theoretical simulations requires in-depth comparisons between theory and observational data. The key problem areas identified by NASA for aggressive work in the decade of the 1990s are the nature of flows and turbulence, acceleration and transport of particles, the coupling of microphysics and macrophysics, the coupling of local and global dynamics, and nonclassical plasmas.
2017-01-20
September 2016 PI and Co-PI information: Igor Bray; I.Bray@curtin.edu.au; Curtin University; Department of Physics , Astronomy and Medical Radiation... astrophysics , fusion energy through to cancer imaging and therapy. During the last two decades there has been immense progress in the field of...Theoretical Physics Division, at the Los Alamos National Laboratory. Theory: The underlying theoretical approach to collisions that we use is known as the
Becoming a Physicist: How Identities and Practices Shape Physics Trajectories
NASA Astrophysics Data System (ADS)
Quan, Gina M.
This dissertation studies the relationships and processes which shape students' participation within the discipline of physics. Studying this early disciplinary participation gives insight to how students are supported in or pushed out of physics, which is an important step in cultivating a diverse set of physics students. This research occurs within two learning environments that we co-developed: a physics camp for high school girls and a seminar for undergraduate physics majors to get started in physics research. Using situated learning theory, we conceptualized physics learning to be intertwined with participation in physics practices and identity development. This theoretical perspective draws our attention to relationships between students and the physics community. Specifically, we study how students come to engage in the practices of the community and who they are within the physics community. We find that students' interactions with faculty and peers impact the extent to which students engage in authentic physics practices. These interactions also impact the extent to which students develop identities as physicists. We present implications of these findings for the design of physics learning spaces. Understanding this process of how students become members of the physics community will provide valuable insights into fostering a diverse set of successful trajectories in physics.
Book review: Physics of tsunamis
Geist, Eric L.
2017-01-01
“Physics of Tsunamis”, second edition, provides a comprehensive analytical treatment of the hydrodynamics associated with the tsunami generation process. The book consists of seven chapters covering 388 pages. Because the subject matter within each chapter is distinct, an abstract appears at the beginning and references appear at the end of each chapter, rather than at the end of the book. Various topics of tsunami physics are examined largely from a theoretical perspective, although there is little information on how the physical descriptions are applied in numerical models.“Physics of Tsunamis”, by B. W. Levin and M. A. Nosov, Second Edition, Springer, 2016; ISBN-10: 33-1933106X, ISBN-13: 978-331933-1065
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
NASA Technical Reports Server (NTRS)
Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)
1987-01-01
The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.
The physics of proton therapy.
Newhauser, Wayne D; Zhang, Rui
2015-04-21
The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.
Newhauser, Wayne D; Zhang, Rui
2015-01-01
The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097
NASA Astrophysics Data System (ADS)
Pacheco, Jorge M.; Vasconcelos, Vítor V.; Santos, Francisco C.
2014-12-01
Mark Buchanan recently wrote that "Physics is not only about Physics anymore" [1]. We believe that the subject of our review provides a clear manifestation of this statement, and testifies for the possibility of using methods developed in the realm of theoretical physics to address problems that lie far beyond what conventional Physics thinking would conceive. It is thus rewarding (and we feel very honored) to have our manuscript commented by renowned scientists from a variety of fields.
Approximate solutions to Mathieu's equation
NASA Astrophysics Data System (ADS)
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
The physics of interstellar shock waves
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Draine, Bruce T.
1987-01-01
This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.
Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism
2016-06-09
Rodriguez1 1Department of Physics and Astronomy , California State University, Los Angeles, California 90032 Abstract The symmetry of a single Cooper pair in...2014. 7. J.P. Rodriguez, “Collective Modes in Iron Superconductors from the Local Moment Limit” (invited talk), Department of Physics and Astronomy ...Are the New Class of Iron-Pnictide Superconductors Doped Mott Insulators?” (invited talk), Department of Physics and Astronomy , California State
ERIC Educational Resources Information Center
Kulgemeyer, Christoph
2014-01-01
Hans Niedderer has contributed a lot to German physics education research. His work includes quantitative and qualitative studies about topics like the learning of physics concepts or the history and philosophy of science in science teaching, he has worked on theoretical issues as well as on textbooks. But it is not only his work that is…
The physics of the earth's core: An introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, P.
1986-01-01
This book is a reference text providing information on physical topics of recent developments in internal geophysics. The text summarizes papers covering theoretical geophysics. Basic formulae, definitions and theorems are not explained in detail due to the limited space. The contents include applications to geodesy, geophysics, astronomy, astrophysics, geophysics and planetary physics. The formal contents include: The Earth's model; Thermodynamics; Hydrodynamics; Geomagnetism; Geophysical implications in the Earth's core.
Oersted Lecture 2013: How should we think about how our students think?
NASA Astrophysics Data System (ADS)
Redish, Edward F.
2014-06-01
Physics Education Research (PER) applies a scientific approach to the question, "How do our students think about and learn physics?" PER allows us to explore such intellectually engaging questions as "What does it mean to understand something in physics?" and "What skills and competencies do we want our students to learn from our physics classes?" To address questions like these, we need to do more than observe student difficulties and build curricula. We need a theoretical framework—a structure for talking about, making sense of, and modeling how one thinks about, learns, and understands physics. In this paper, I outline some aspects of the Resources Framework, a structure that some of us are using to create a phenomenology of physics learning that ties closely to modern developments in neuroscience, psychology, and linguistics. As an example of how this framework gives new insights, I discuss epistemological framing—the role of students' perceptions of the nature of the knowledge they are learning and what knowledge is appropriate to bring to bear on a given task. I discuss how this foothold idea fits into our theoretical framework, show some classroom data on how it plays out in the classroom, and give some examples of how my awareness of the resources framework influences my approach to teaching.
The principle of finiteness - a guideline for physical laws
NASA Astrophysics Data System (ADS)
Sternlieb, Abraham
2013-04-01
I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.
Modern Fysics Phallacies: The Best Way Not to Unify Physics
NASA Astrophysics Data System (ADS)
Beichler, James E.
Too many physicists believe the `phallacy' that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general `phallacies in fysics' that were spread during the second quarter of the twentieth century, although serious `phallacies' exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained - a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension - and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm.
DNA, RNA and the Physical Basis of Life
ERIC Educational Resources Information Center
Fong, Peter
1969-01-01
Presents the application of knowledge in the physical sciences to biological science problems, including those in the behavioral sciences, social sciences, and the humanities. Examples are presented in the areas of molecular psychology and theoretical biology, besides the principal genetic discussion. (RR)
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
The Emergence of Mathematical Physics at the University of Leipzig
NASA Astrophysics Data System (ADS)
Schlote, Karl-Heinz
Except for the well-known blossoming of theoretical physics with the group around Werner Heisenberg at the University of Leipzig at the end of the 1920s, the tradition of mathematical physics had been analyzed in only a few aspects, in particular the work of Carl Neumann and his contributions to the shaping of mathematical physics in general and the theory of electrodynamics in particular. However, the establishment of mathematical physics and its strong position at the University of Leipzig, with Neumann as its leading figure in the last third of the nineteenth century, formed important preconditions for the later upswing. That process is analyzed in this article, focusing on the work of Neumann. It includes a discussion of his ideas on the structure of a physical theory and the role of mathematics in physics as well as his impact on the interaction of mathematics and physics.
Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.
Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude
2018-04-01
Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.
[Students' physical activity: an analysis according to Pender's health promotion model].
Guedes, Nirla Gomes; Moreira, Rafaella Pessoa; Cavalcante, Tahissa Frota; de Araujo, Thelma Leite; Ximenes, Lorena Barbosa
2009-12-01
The objective of this study was to describe the everyday physical activity habits of students and analyze the practice of physical activity and its determinants, based on the first component of Pender's health promotion model. This cross-sectional study was performed from 2004 to 2005 with 79 students in a public school in Fortaleza, Ceará, Brazil. Data collection was performed by interviews and physical examinations. The data were analyzed according to the referred theoretical model. Most students (n=60) were physically active. Proportionally, adolescents were the most active (80.4%). Those with a sedentary lifestyle had higher rates for overweight and obesity (21.1%). Many students practiced outdoor physical activities, which did not require any physical structure and good financial conditions. The results show that it is possible to associate the first component of Pender's health promotion model with the everyday lives of students in terms of the physical activity practice.
Theoretical aspects of the equivalence principle
NASA Astrophysics Data System (ADS)
Damour, Thibault
2012-09-01
We review several theoretical aspects of the equivalence principle (EP). We emphasize the unsatisfactory fact that the EP maintains the absolute character of the coupling constants of physics, while general relativity and its generalizations (Kaluza-Klein, …, string theory) suggest that all absolute structures should be replaced by dynamical entities. We discuss the EP-violation phenomenology of dilaton-like models, which is likely to be dominated by the linear superposition of two effects: a signal proportional to the nuclear Coulomb energy, related to the variation of the fine-structure constant, and a signal proportional to the surface nuclear binding energy, related to the variation of the light quark masses. We recall various theoretical arguments (including a recently proposed anthropic argument) suggesting that the EP be violated at a small, but not unmeasurably small level. This motivates the need for improved tests of the EP. These tests are probing new territories in physics that are related to deep, and mysterious, issues in fundamental physics.
Loucks, Eric B; Schuman-Olivier, Zev; Britton, Willoughby B; Fresco, David M; Desbordes, Gaelle; Brewer, Judson A; Fulwiler, Carl
2015-12-01
The purpose of this review is to provide (1) a synopsis on relations of mindfulness with cardiovascular disease (CVD) and major CVD risk factors, and (2) an initial consensus-based overview of mechanisms and theoretical framework by which mindfulness might influence CVD. Initial evidence, often of limited methodological quality, suggests possible impacts of mindfulness on CVD risk factors including physical activity, smoking, diet, obesity, blood pressure, and diabetes regulation. Plausible mechanisms include (1) improved attention control (e.g., ability to hold attention on experiences related to CVD risk, such as smoking, diet, physical activity, and medication adherence), (2) emotion regulation (e.g., improved stress response, self-efficacy, and skills to manage craving for cigarettes, palatable foods, and sedentary activities), and (3) self-awareness (e.g., self-referential processing and awareness of physical sensations due to CVD risk factors). Understanding mechanisms and theoretical framework should improve etiologic knowledge, providing customized mindfulness intervention targets that could enable greater mindfulness intervention efficacy.
Schuman-Olivier, Zev; Britton, Willoughby B.; Fresco, David M.; Desbordes, Gaelle; Brewer, Judson A.; Fulwiler, Carl
2016-01-01
The purpose of this review is to provide (1) a synopsis on relations of mindfulness with cardiovascular disease (CVD) and major CVD risk factors, and (2) an initial consensus-based overview of mechanisms and theoretical framework by which mindfulness might influence CVD. Initial evidence, often of limited methodological quality, suggests possible impacts of mindfulness on CVD risk factors including physical activity, smoking, diet, obesity, blood pressure, and diabetes regulation. Plausible mechanisms include (1) improved attention control (e.g., ability to hold attention on experiences related to CVD risk, such as smoking, diet, physical activity, and medication adherence), (2) emotion regulation (e.g., improved stress response, self-efficacy, and skills to manage craving for cigarettes, palatable foods, and sedentary activities), and (3) self-awareness (e.g., self-referential processing and awareness of physical sensations due to CVD risk factors). Understanding mechanisms and theoretical framework should improve etiologic knowledge, providing customized mindfulness intervention targets that could enable greater mindfulness intervention efficacy. PMID:26482755
Particle Physics at the Cosmic, Intensity, and Energy Frontiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Rouven
Major efforts at the Intensity, Cosmic, and Energy frontiers of particle physics are rapidly furthering our understanding of the fundamental constituents of Nature and their interactions. The overall objectives of this research project are (1) to interpret and develop the theoretical implications of the data collected at these frontiers and (2) to provide the theoretical motivation, basis, and ideas for new experiments and for new analyses of experimental data. Within the Intensity Frontier, an experimental search for a new force mediated by a GeV-scale gauge boson will be carried out with the $A'$ Experiment (APEX) and the Heavy Photon Searchmore » (HPS), both at Jefferson Laboratory. Within the Cosmic Frontier, contributions are planned to the search for dark matter particles with the Fermi Gamma-ray Space Telescope and other instruments. A detailed exploration will also be performed of new direct detection strategies for dark matter particles with sub-GeV masses to facilitate the development of new experiments. In addition, the theoretical implications of existing and future dark matter-related anomalies will be examined. Within the Energy Frontier, the implications of the data from the Large Hadron Collider will be investigated. Novel search strategies will be developed to aid the search for new phenomena not described by the Standard Model of particle physics. By combining insights from all three particle physics frontiers, this research aims to increase our understanding of fundamental particle physics.« less
Planinsec, Jurij; Fosnaric, Samo
2005-04-01
The aim of this study was to investigate the relationship between level of physical activity and perceived physical self-concept of young children. The sample comprised 364 children from Slovenia, aged 6.4 yr. (SD = 0.3), of which 179 were boys and 185 girls. Parents and teachers reported children's physical activity using the Harro questionnaire. We divided children into Low and High Activity groups based on their mean scores. The children completed Stein's Children's Physical Self-concept Scale, which assesses Global Physical Self-concept and the subdomains of Physical Performance, Physical Appearance, and Weight Control behavior. Two-way analysis of variance with both sex and physical activity levels, and their interaction were used to examine differences in Physical Self-concept. There were significant differences between the Low and High Activity groups on scores for global Physical Self-concept Scale, Physical Performance, and Weight Control, on which children from the High Activity group scored higher; whereas on the subscale Physical Appearance, there were no significant differences. There were no significant sex differences on the Physical Self-concept Scale. The most important conclusion of this research indicates the theoretical assumptions that Physical Activity and perceived Physical Self-concept are related. Direction of the relationship remains unclarified.
Physical Violence between Siblings: A Theoretical and Empirical Analysis
ERIC Educational Resources Information Center
Hoffman, Kristi L.; Kiecolt, K. Jill; Edwards, John N.
2005-01-01
This study develops and tests a theoretical model to explain sibling violence based on the feminist, conflict, and social learning theoretical perspectives and research in psychology and sociology. A multivariate analysis of data from 651 young adults generally supports hypotheses from all three theoretical perspectives. Males with brothers have…
New Physics Undercover at the LHC
NASA Astrophysics Data System (ADS)
Lou, Hou Keong
With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.
A review of the outcome expectancy construct in physical activity research.
Williams, David M; Anderson, Eileen S; Winett, Richard A
2005-02-01
Outcome expectancy is a central construct in social cognitive models of health behavior widely used as frameworks for physical activity research. This article provides a review of the outcome expectancy construct and its application to research on physical activity. Theoretical articles describing definitions and placement of outcome expectancy within social cognitive models, as well as empirical research on outcome expectancy and physical activity, were reviewed. Self-efficacy theory, the transtheoretical model, the theory of planned behavior, and protection motivation theory differ in their labeling and conceptualization of outcome expectancy but unanimously include expected outcomes of behavior. Preliminary empirical investigation of the role of outcome expectancy in understanding physical activity has yielded mixed results. Positive outcome expectancy appears to be more predictive of physical activity in older adults than in young to middle-aged adults, and personal barriers appear to be the most predictive subtype of negative outcome expectancy. In addition, a small number of studies indicate relations between outcome expectancy and other theoretical variables, including behavioral intention, stage of change, and self-efficacy. Further research on the role of outcome expectancy is necessary to design effective physical activity interventions. New directions in outcome expectancy research could involve (a) expanding the conceptualization of outcome expectancy to include expected outcomes of sedentary behavior and affective responses to physical activity, (b) further examination of potential moderators of the relation between outcome expectancy and physical activity (such as outcome value and outcome proximity), (c) distinguishing between the role of outcome expectancy in behavior onset versus behavior maintenance, (d) examining outcome expectancy as a mechanism of change in environmental intervention approaches, and (e) further analysis of interrelations between outcome expectancy and other social cognitive variables.
Concrete Geometry: Playing with Blocks
ERIC Educational Resources Information Center
Luescher, Andreas
2010-01-01
This article describes a design/build exercise conducted in an Architectural Materials and Methods class to achieve three interrelated objectives: (1) to apply physically the semester's theoretical focus on the constituent process and languages of architecture investigations, (2) to capitalise on the physical and aesthetic properties of concrete…
Preparing Prospective Physical Educators in Exercise Physiology.
ERIC Educational Resources Information Center
Bulger, Sean M.; Mohr, Derek J.; Carson, Linda M.; Robert, Darren L.; Wiegand, Robert L.
2000-01-01
Addresses the need for continued assessment of course content and instructional methods employed within physical education teacher education programs to deliver theoretical and applied information from the foundational subdiscipline of exercise physiology, describing an innovative course at one university (Exercise for School-Aged Children) which…
Rydberg phases of Hydrogen and low energy nuclear reactions
NASA Astrophysics Data System (ADS)
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.
Judge, Timothy A; Cable, Daniel M
2004-06-01
In this article, the authors propose a theoretical model of the relationship between physical height and career success. We then test several linkages in the model based on a meta-analysis of the literature, with results indicating that physical height is significantly related to measures of social esteem (rho =.41), leader emergence (rho =.24), and performance (rho =.18). Height was somewhat more strongly related to success for men (rho =.29) than for women (rho =.21), although this difference was not significant. Finally, given that almost no research has examined the relationship between individuals' physical height and their incomes, we present four large-sample studies (total N = 8,590) showing that height is positively related to income (beta =.26) after controlling for sex, age, and weight. Overall, this article presents the most comprehensive analysis of the relationship of height to workplace success to date, and the results suggest that tall individuals have advantages in several important aspects of their careers and organizational lives. (c) 2004 APA
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
NASA Astrophysics Data System (ADS)
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Global analysis of b → sℓℓ anomalies
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien; Hofer, Lars; Matias, Joaquim; Virto, Javier
2016-06-01
We present a detailed discussion of the current theoretical and experimental situation of the anomaly in the angular distribution of B → K * (→ Kπ) μ + μ -, observed at LHCb in the 1 fb-1 dataset and recently confirmed by the 3 fb-1 dataset. The impact of this data and other recent measurements on b → sℓ + ℓ - transitions ( ℓ = e, μ) is considered. We review the observables of interest, focusing on their theoretical uncertainties and their sensitivity to New Physics, based on an analysis employing the QCD factorisation approach including several sources of hadronic uncertainties (form factors, power corrections, charm-loop effects). We perform fits to New Physics contributions including experimental and theoretical correlations. The solution that we proposed in 2013 to solve the B → K * μ + μ - anomaly, with a contribution {mathcal{C}}_9^{NP}˜eq -1 , is confirmed and reinforced. A wider range of New-Physics scenarios with high significances (between 4 and 5 σ) emerges from the fit, some of them being particularly relevant for model building. More data is needed to discriminate among them conclusively. The inclusion of b → se + e - observables increases the significance of the favoured scenarios under the hypothesis of New Physics breaking lepton flavour universality. Several tests illustrate the robustness of our conclusions.
Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liu
This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novelmore » findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T.
Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less
Theoretical and experimental studies in ultraviolet solar physics
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Reeves, E. M.
1975-01-01
The processes and parameters in atomic and molecular physics that are relevant to solar physics are investigated. The areas covered include: (1) measurement of atomic and molecular parameters that contribute to discrete and continous sources of opacity and abundance determinations in the sun; (2) line broadening and scattering phenomena; and (3) development of an ion beam spectroscopic source which is used for the measurement of electron excitation cross sections of transition region and coronal ions.
Theoretical studies of the physics of the solar atmosphere
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1992-01-01
Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, George L.
1987-01-01
Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.
Research in Theoretical Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, John P.
This document is the final report on activity of the University of Kansas theory group supported under DOE Grant Number DE-FG02-04ER14308, ending April 30, 3013. The report covers the most recent three year period period May 1, 2010-April 30, 2013. Faculty supported by the grant during the period were Danny Marfatia (co-I), Douglas McKay (emeritus) and John Ralston (PI). The group's research topics and accomplishments covered numerous different topics subsumed under the {\\it the Energy Frontier, the Intensity Frontier}, and {\\it the Cosmic Frontier}. Many theoretical and experimental results related to the Standard Model and models of new physics weremore » published during the reporting period. The group's research emphasis has been on challenging and confronting {\\it Anything that is Observable} about the physical Universe.« less
Quantum key distribution with hacking countermeasures and long term field trial.
Dixon, A R; Dynes, J F; Lucamarini, M; Fröhlich, B; Sharpe, A W; Plews, A; Tam, W; Yuan, Z L; Tanizawa, Y; Sato, H; Kawamura, S; Fujiwara, M; Sasaki, M; Shields, A J
2017-05-16
Quantum key distribution's (QKD's) central and unique claim is information theoretic security. However there is an increasing understanding that the security of a QKD system relies not only on theoretical security proofs, but also on how closely the physical system matches the theoretical models and prevents attacks due to discrepancies. These side channel or hacking attacks exploit physical devices which do not necessarily behave precisely as the theory expects. As such there is a need for QKD systems to be demonstrated to provide security both in the theoretical and physical implementation. We report here a QKD system designed with this goal in mind, providing a more resilient target against possible hacking attacks including Trojan horse, detector blinding, phase randomisation and photon number splitting attacks. The QKD system was installed into a 45 km link of a metropolitan telecom network for a 2.5 month period, during which time the system operated continuously and distributed 1.33 Tbits of secure key data with a stable secure key rate over 200 kbit/s. In addition security is demonstrated against coherent attacks that are more general than the collective class of attacks usually considered.
A White Paper on keV sterile neutrino Dark Matter
Adhikari, R.
2017-01-13
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
[Long-term history of science: on the flexibility and fragility of scientific disciplines].
Wegener, Daan
2011-01-01
Most scientific disciplines, such as chemistry, biology and physics, are now about two centuries old. Using physics as a case study the present paper aims to account for this longevity. What kept the physics discipline together from the early nineteenth century onwards? Literature on the rise of physics suggests that the discipline was formed around energy, the ether, or other theoretical notions. Yet the twentieth-century revolutions in physics showed that the discipline could prosper without some of its most 'fundamental' concepts. Some scholars conclude that internal factors are therefore irrelevant and disciplinary identity and continuity are purely institutional. Drawing on the work of Thomas Kuhn, Peter Galison and Andrew Warwick, this paper defends a different point of view. Although there is no intellectual core of disciplines, the prolonged existence of disciplines cannot be explained without some degree of internal continuity. If there is a revolution of a theoretical level, there may still be continuity on the level of experimental practices (and vice versa). It is this flexibility that accounts for the fact that disciplines may adapt to different circumstances. In addition, an educational tradition is required to transmit knowledge from one generation to the next.
Vedana, Kelly Graziani Giacchero; da Silva, Danielle Maria; Ventura, Carla Aparecida Arena; Giacon, Bianca Cristina Ciccone; Zanetti, Ana Carolina Guidorizzi; Miasso, Adriana Inocenti; Borges, Tatiana Longo
2018-06-01
Physical restraint in psychiatric units is a common practice but extremely controversial and poorly evaluated by methodologically appropriate investigations. The cultural issues and professionals' perceptions and attitudes are substantial contributors to the frequency of restraint that tend to be elevated. Aim In this qualitative study, we aimed to understand the experiences and perceptions of nursing staff regarding physical restraint in psychiatric units. Through theoretical sampling, 29 nurses from two Brazilian psychiatric units participated in the study. Data were collected from 2014 to 2016 from individual interviews and analyzed through thematic analysis, employing theoretical presuppositions of symbolic interactionism. Physical restraint was considered unpleasant, challenging, risky, and associated with dilemmas and conflicts. The nursing staff was often exposed to the risks and injuries related to restraint. Professionals sought strategies to reduce restraint-related damages, but still considered it necessary due to the lack of effective options to control aggressive behavior. This study provides additional perspectives about physical restraint and reveals the need for safer, humanized and appropriate methods for the care of aggressive patients that consider the real needs and rights of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Goal setting frequency and the use of behavioral strategies related to diet and physical activity.
Nothwehr, Faryle; Yang, Jingzhen
2007-08-01
Goal setting is an effective way to focus attention on behavior change. Theoretically, frequency of goal setting may indicate the level of commitment to diet and physical activity behavior change. Yet, little is known about the association between goal setting frequency and use of specific diet or physical activity-related strategies. This study examines whether changes in goal setting frequency predict changes in use of behavioral strategies over time, controlling for baseline strategy use, demographics and whether a person was trying to lose weight. Data are from a baseline and 1-year follow-up survey of adults in rural Iowa (n = 385). Overall, goal setting frequency was positively associated with use of the strategies measured, at baseline and overtime. Frequent goal setting that is focused specifically on diet or physical activity was more predictive of using dietary or physical activity strategies, respectively, than goal setting focused on weight loss overall. The study provides empirical support for what has been assumed theoretically, that is, frequent goal setting for weight management is an indicator of use of specific behavioral strategies. Significant challenges remain in regard to maintenance of this activity and attainment of weight loss goals.
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
Self-regulation resources and physical activity participation among adults with type 2 diabetes.
Castonguay, Alexandre; Miquelon, Paule; Boudreau, François
2018-01-01
Physical activity plays a crucial role in the prevention and treatment of type 2 diabetes. Therefore, it is important to understand why so few adults with type 2 diabetes regularly engage in physical activity. The role of self-regulation in the context of health-related behavior adherence, especially in terms of physical activity engagement and adherence, has largely been reviewed based on the strength energy model. Building on this line of research, the aim of this theoretical work was to highlight how self-regulation and ego depletion can influence the lower rate of physical activity participation among adults with type 2 diabetes, compared to adults from the general population.
Self-regulation resources and physical activity participation among adults with type 2 diabetes
Castonguay, Alexandre; Miquelon, Paule; Boudreau, François
2018-01-01
Physical activity plays a crucial role in the prevention and treatment of type 2 diabetes. Therefore, it is important to understand why so few adults with type 2 diabetes regularly engage in physical activity. The role of self-regulation in the context of health-related behavior adherence, especially in terms of physical activity engagement and adherence, has largely been reviewed based on the strength energy model. Building on this line of research, the aim of this theoretical work was to highlight how self-regulation and ego depletion can influence the lower rate of physical activity participation among adults with type 2 diabetes, compared to adults from the general population. PMID:29372066
From quantum foundations to applications and back.
Gisin, Nicolas; Fröwis, Florian
2018-07-13
Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Intuitive Physics: Current Research and Controversies.
Kubricht, James R; Holyoak, Keith J; Lu, Hongjing
2017-10-01
Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.
PHYSICAL EDUCATION FOR BLIND CHILDREN.
ERIC Educational Resources Information Center
BUELL, CHARLES E.
A PRACTICAL RATHER THAN A THEORETICAL REFERENCE GUIDE, THE BOOK DISCUSSES THE NEED OF THE BLIND OR VISUALLY IMPAIRED CHILD FOR PHYSICAL EDUCATION. PAST AND PRESENT PROGRAMS IN PUBLIC AND RESIDENTIAL SCHOOLS, RECREATION AND LEISURE TIME ACTIVITIES (A GUIDE FOR PARENTS), SPORTS AND INTERSCHOLASTIC COMPETITION, ACTIVE GAMES, CONTESTS, RELAYS, AND…
NASA Astrophysics Data System (ADS)
Orlov, Yuri F.
2013-06-01
It happened that our careers in physics - that of Boris Lazarevich Ioffe and mine - started almost simultaneously at the Institute of Theoretical and Experimental Physics (ITEP) in Moscow.
EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Eastman, Michael P.
1982-01-01
Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
Health Behavior Theory in Physical Activity Game Apps: A Content Analysis
Moxley, Victor BA; MacDonald, Elizabeth
2015-01-01
Background Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). Objective The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. Methods We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. Results The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. Conclusions There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any constructs found in significant levels are coincidental. Health games developed for mobile phones could be potentially used in health interventions, but collaboration between app designers and behavioral specialists is crucial. Additionally, further research is needed to better characterize mobile phone health games and the relative importance of educational elements versus gamification elements in long-term behavior change. PMID:26168926
Health Behavior Theory in Physical Activity Game Apps: A Content Analysis.
Payne, Hannah E; Moxley, Victor Ba; MacDonald, Elizabeth
2015-07-13
Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any constructs found in significant levels are coincidental. Health games developed for mobile phones could be potentially used in health interventions, but collaboration between app designers and behavioral specialists is crucial. Additionally, further research is needed to better characterize mobile phone health games and the relative importance of educational elements versus gamification elements in long-term behavior change.
Computational manufacturing as a bridge between design and production.
Tikhonravov, Alexander V; Trubetskov, Michael K
2005-11-10
Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.
Computational manufacturing as a bridge between design and production
NASA Astrophysics Data System (ADS)
Tikhonravov, Alexander V.; Trubetskov, Michael K.
2005-11-01
Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.
Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
NASA Astrophysics Data System (ADS)
Jia, Li-Ping; Jasmina, T´; Duan, Wen-Shan
2015-04-01
Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No 2014GB104002, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA03030100, the National Natural Science Foundation of China under Grant Nos 11275156 and 11304324, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF201CJ1, and the Serbian Ministry of Education and Science under Grant No III-45010.
Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.
An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.
Editorial of the PCCP themed issue on "Solvation Science".
Morgenstern, Karina; Marx, Dominik; Havenith, Martina; Muhler, Martin
2015-04-07
The present special issue presents exciting experimental and theoretical results in the topic of "Solvation Science", a topic that emerges from physical, theoretical, and industrial chemistry, and is also of interest to a multitude of neighboring fields, such as inorganic and organic chemistry, biochemistry, physics and engineering. We hope that the articles will be highly useful for researchers who would like to enter this newly emerging area, and that it is a valuable source for the nucleation of new ideas and collaborations to better understand the active role of the solvent in reactions.
The Canadian Assessment of Physical Literacy: methods for children in grades 4 to 6 (8 to 12 years).
Longmuir, Patricia E; Boyer, Charles; Lloyd, Meghann; Yang, Yan; Boiarskaia, Elena; Zhu, Weimo; Tremblay, Mark S
2015-08-11
Physical literacy is described as the motivation, confidence, physical competence, knowledge and understanding to value and engage in a physically active lifestyle. As such, it is expected that those who have greater physical literacy would be more likely to obtain the health benefits offered by habitual physical activity. A theoretical model and assessment battery, the Canadian Assessment of Physical Literacy (CAPL), for the assessment of childhood physical literacy had been proposed in theory but validity data were lacking. The purpose of this study was to explore validity evidence for the CAPL among children in grades 4 to 6. CAPL validity was evaluated through three analyses that utilized cross-sectional data obtained through local schools in Eastern Ontario, Canada. A confirmatory factor analysis compared the data to the theoretical model. Patterns of association between self-reported age and gender and the CAPL total and domain scores were examined using regression models. Teacher ratings of participants' knowledge, attitude and physical activity competence were compared to assessment results. The CAPL was completed by 963 children (55 % female) in grades 4, 5 and 6. Children were 8 to 12 years of age (mean 10.1 years), with 85 % of children approached agreeing to participate. A confirmatory factor analysis using data from 489 children with complete raw scores supported a model with four domains: engagement in physical activity (active and sedentary), physical competence (fitness and motor skill), motivation and confidence, and knowledge and understanding. Raw domain scores followed expected patterns for age and gender, providing evidence for their validity. Interpretive categories, developed from age and gender adjusted normative data, were not associated with age indicating that the CAPL is suitable for use across this age range. Children's gender was associated with the physical competence, motivation and engagement in physical activity domain scores, indicating that further research is required regarding the gender adjustment of the raw CAPL scores. CAPL domain and total scores were statistically significantly associated with teacher ratings of the child's motivation, attitudes, fitness, skill and overall physical activity. CAPL offers a comprehensive assessment of engagement in physical activity, physical competence, motivation and confidence, and knowledge and understanding as components of childhood (grades 4 to 6, 8 to 12 years) physical literacy. Monitoring of these measures enhances our understanding of children's physical literacy, and assists with the identification of areas where additional supports are required.
Research in Theoretical High-Energy Physics at Southern Methodist University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olness, Fredrick; Nadolsky, Pavel
2016-08-05
The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
Kraus Receives 2012 Mineral and Rock Physics Graduate Research Award
NASA Astrophysics Data System (ADS)
2013-08-01
Richard Kraus received the 2012 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origins and physical properties. Kraus's thesis is entitled "On the thermodynamics of planetary impact events." He was formally presented with the award at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif.
NASA Technical Reports Server (NTRS)
Goldman, M. V.; Smith, D. F.
1981-01-01
Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.
Ask not what physics can do for biology—ask what biology can do for physics
NASA Astrophysics Data System (ADS)
Frauenfelder, Hans
2014-10-01
Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: ‘Ask not what Physics can do for biology, ask what biology can do for physics’. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger’s book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.
Achievement Evaluation within a Non-Conventional Framework: Some Experiences in Physics and Humour
ERIC Educational Resources Information Center
Worner, C. H.; Romero, A.; Bustamante, G.
2010-01-01
An achievement evaluation of a non-conventional physics course for liberal arts students is presented. The theoretical ground for this course focuses on the use of humour as a teaching tool. Preliminary evidence shows that a learning process is accomplished. (Contains 1 table and 3 figures.)
Using Achievement Goals and Interest to Predict Learning in Physical Education
ERIC Educational Resources Information Center
Shen, Bo; Chen, Ang; Guan, Jianmin
2007-01-01
On the basis of an integrated theoretical approach to achievement motivation, the authors designed this study to investigate the potential influence of mastery goal, performance-approach and avoidance-approach goals, individual interest, and situational interest on students' learning in a physical education softball unit. The authors collected and…
Attitude Research in Physical Education: A Review
ERIC Educational Resources Information Center
Silverman, Stephen
2017-01-01
This paper provides a comprehensive review of attitude research in physical education. The first section reviews theoretical models that are prevalent in attitude research. Then, the next section describes the methods that were used to locate the research used in the remainder of the paper. The third section discusses measurement issues in…
Fourth Graders' Motivation in an Elementary Physical Education Running Program
ERIC Educational Resources Information Center
Xiang, Ping; McBride, Ron E.; Bruene, April
2004-01-01
In this study we examined students' motivation in an elementary physical education running program using achievement goal theory and an expectancy-value model of achievement choice as theoretical frameworks. Fourth graders (N = 119) completed questionnaires assessing their achievement goals, expectancy-related beliefs, subjective task values, and…
What Is Physical Literacy, Really?
ERIC Educational Resources Information Center
Jurbala, Paul
2015-01-01
Physical literacy has become an increasingly influential concept in the past few decades, and is being woven into education, sport, and recreation policy and practice, particularly in Canada. The term is based on a metaphor that likens movement fluency to language literacy. Use of a metaphoric rather than a theoretical foundation has enabled…
Astrophysical Magnetic Fields and Topics in Galaxy Formation
NASA Technical Reports Server (NTRS)
Field, George B.
1997-01-01
The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.
Advanced Quantitative Measurement Methodology in Physics Education Research
ERIC Educational Resources Information Center
Wang, Jing
2009-01-01
The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…
The Conundrum of C/Cheerleading
ERIC Educational Resources Information Center
Lamb, Penny; Priyadharshini, Esther
2015-01-01
The growth of cheerleading as a popular school-based physical activity for people of both genders in the UK poses a challenge for physical education teachers in particular and educators in general. This paper draws on theoretical concepts and empirical research on gender, performance and cheerleading to highlight the multilayered, diverse, even…
Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience
ERIC Educational Resources Information Center
Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.
2013-01-01
Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.
2012-01-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the special issue to appear before the end of November 2012. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting 'JPhysA Special issue on quantum physics with non-Hermitian operators'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.
2012-01-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the special issue to appear before the end of November 2012. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org, or by email to jphysa@iop.org, quoting 'JPhysA Special issue on quantum physics with non-Hermitian operators'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
McNeill, Lorna Haughton; Wyrwich, Kathleen W; Brownson, Ross C; Clark, Eddie M; Kreuter, Matthew W
2006-02-01
Social ecological models suggest that conditions in the social and physical environment, in addition to individual factors, play important roles in health behavior change. Using structural equation modeling, this study tested a theoretically and empirically based explanatory model of physical activity to examine theorized direct and indirect effects of individual (e.g., motivation and self-efficacy), social environmental (e.g., social support), and physical environmental factors (e.g., neighborhood quality and availability of facilities). A community-based sample of adults (N = 910) was recruited from 2 public health centers (67% female, 43% African American, 43% < $20,000/year, M age = 33 years) and completed a self-administered survey assessing their current physical activity level, intrinsic and extrinsic motivation for physical activity, perceived social support, self-efficacy, and perceptions of the physical environment. Results indicated that (a) perceptions of the physical environment had direct effects on physical activity, (b) both the social and physical environments had indirect effects on physical activity through motivation and self-efficacy, and (c) social support influenced physical activity indirectly through intrinsic and extrinsic motivation. For all forms of activity, self-efficacy was the strongest direct correlate of physical activity, and evidence of a positive dose-response relation emerged between self-efficacy and intensity of physical activity. Findings from this research highlight the interactive role of individual and environmental influences on physical activity.
The Impact of SuperB on Flavor Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, B.; Blanke, M.; Stocchi, A.
2012-02-16
This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years. SuperB is an approved high luminosity e{sup +}e{sup -} collider intended to search for indirect and some direct signs of new physics (NP) at low energy, while at themore » same time, enabling precision tests of the Standard Model (SM). This experiment will be built at a new laboratory on the Tor Vergata campus near Rome, Italy named after Nicola Cabibbo. The project has been described in a Conceptual Design Report, and more recently by a set of three white papers on the accelerator, detector, and physics programme. The main focus of the physics programme rests in the study of so-called Golden Modes, these are decay channels that provide access to measurements of theoretically clean observables that can provide both stringent constraints on models of NP, and precision tests of the SM. A number of ancillary measurements that remain important include those with observables that may not be theoretically clean, and those that can be used to provide stringent constraints on the SM but are not sensitive to NP. The remainder of this section introduces SuperB before discussing the golden modes for SuperB, precision CKM measurement modes, and an outline of the rest of this report.« less
Subica, Andrew M; Claypoole, Keith H; Wylie, A Michael
2012-04-01
Following trauma exposure and PTSD, individuals with severe mental illness (SMI) frequently suffer a complex course of recovery complicated by reduced mental and physical health and increased substance abuse. The authors evaluated a theoretical PTSD-SMI model which theorizes that trauma, PTSD, depression, substance abuse, mental health, and physical health are interrelated and that PTSD mediates these relationships. Participants were ethnoracially diverse individuals diagnosed with SMI (N=175) who were assessed for trauma exposure, severity of PTSD and depression, substance abuse, and overall mental and physical health functioning. Pearson's correlations were utilized to examine the relationships between study domains. The mediating effects of PTSD were assessed using regression coefficients and the Sobel test for mediation. A majority of participants with SMI (89%) reported trauma exposure and 41% reported meeting diagnostic criteria for PTSD. On average, participants were exposed to over four types of traumatic events. Trauma, severity of PTSD and depression, substance abuse, and overall mental and physical health functioning were significantly interrelated. PTSD partially mediated the relationships between trauma and severity of depression and between trauma and overall mental health; PTSD fully mediated the trauma and overall physical health relationship. Within an ethnoracially diverse SMI sample, trauma exposure and PTSD comorbidity were high and associated with severity of depression, substance abuse, overall mental health and physical health functioning. Supporting our theoretical PTSD-SMI model, PTSD mediated the adverse effects of trauma exposure on participants' current severity of depression and overall mental and physical health functioning. Copyright © 2011 Elsevier B.V. All rights reserved.
Nathan, Nicole; Elton, Ben; Babic, Mark; McCarthy, Nicole; Sutherland, Rachel; Presseau, Justin; Seward, Kirsty; Hodder, Rebecca; Booth, Debbie; Yoong, Sze Lin; Wolfenden, Luke
2018-02-01
Research consistently indicates that schools fail to implement mandatory physical activity policies. This review aimed to describe factors (barriers and facilitators) that may influence the implementation of school physical activity policies which specify the time or intensity that physical activity should be implemented and to map these factors to a theoretical framework. A systematic search was undertaken in six databases for quantitative or qualitative studies published between 1995-March 2016 that examined teachers', principals' or school administrators' reported barriers and/or facilitators to implementing mandated school physical activity policies. Two independent reviewers screened texts, extracted and coded data from identified articles using the Theoretical Domains Framework (TDF). Of the 10,346 articles identified, 17 studies met the inclusion criteria (8 quantitative, 9 qualitative). Barriers and facilitators identified in qualitative studies covered 9 and 10 TDF domains respectively. Barriers and facilitators reported in quantitative studies covered 8 TDF domains each. The most common domains identified were: 'environmental context and resources' (e.g., availability of equipment, time or staff), 'goals' (e.g., the perceived priority of the policy in the school), 'social influences' (e.g., support from school boards), and 'skills' (e.g., teachers' ability to implement the policy). Implementation support strategies that target these factors may represent promising means to improve implementation of physical activity policies and increase physical activity among school-aged children. Future studies assessing factors that influence school implementation of physical activity policies would benefit from using a comprehensive framework to help identify if any domains have been overlooked in the current literature. This review was prospectively registered with PROSPERO (CRD42016051649) on the 8th December 2016. Copyright © 2017 Elsevier Inc. All rights reserved.
Some Historical Points of Interest in Göttingen
NASA Astrophysics Data System (ADS)
Hentschel, Klaus
The Georgia Augusta University of Göttingen, founded in 1737, was a child of the Enlightenment, and the new sciences have always played a major role here.1 Among the teachers of physics, physical chemistry, astronomy, and related subjects we find Johann Christian Polykarp Erxleben, Georg Christoph Lichtenberg, Johann Tobias Mayer, Carl Friedrich Gauss, Johann B. Listing, Wilhelm Eduard Weber, Woldemar Voigt, Friedrich Kohlrausch, Eduard Riecke, Walther Nernst and Peter Debye — the last two subsequently moved on to Berlin. In the 1920s, physics students were jestingly referred to as “Frankierte, Bornierte und Polierte” (loosely translated as stamped, limited and polished), in allusion to their teachers, the theoretical physicist Max Born and the experimentalists James Franck and Robert Wichard Pohl, the first two being important figures in the history of quantum theory, the third, one of the founding fathers of experimental solid state physics.2 The National Socialist’s rise to power had a devastating effect on this world-renowned center for physics and mathematics. Most of its high-caliber scientists either were dismissed on the basis of the racist “Law for the Restoration of the Professional Civil Service” or themselves felt compelled to emigrate: About a dozen members of the physics faculty, including Born and Franck, and ten from the mathematics faculty left Göttingen.3 After the war, Richard Becker, who in 1936 had received a compulsory order to take the chair for theoretical physics vacant since Born’s emigration, and Friedrich Hund, who was also an enthusiastic historian of science, distinguished themselves as physics teachers there but the university as a whole never recovered its international standing of before 1933 (see Figs. 1 and 2).
What Motivates Young Adults to Talk About Physical Activity on Social Network Sites?
Campo, Shelly; Yang, Jingzhen; Eckler, Petya; Snetselaar, Linda; Janz, Kathleen; Leary, Emily
2017-01-01
Background Electronic word-of-mouth on social network sites has been used successfully in marketing. In social marketing, electronic word-of-mouth about products as health behaviors has the potential to be more effective and reach more young adults than health education through traditional mass media. However, little is known about what motivates people to actively initiate electronic word-of-mouth about health behaviors on their personal pages or profiles on social network sites, thus potentially reaching all their contacts on those sites. Objective This study filled the gap by applying a marketing theoretical model to explore the factors associated with electronic word-of-mouth on social network sites about leisure-time physical activity. Methods A Web survey link was sent to undergraduate students at one of the Midwestern universities and 439 of them completed the survey. Results The average age of the 439 participants was 19 years (SD=1 year, range: 18-24). Results suggested that emotional engagement with leisure-time physical activity (ie, affective involvement in leisure-time physical activity) predicted providing relevant opinions or information on social network sites. Social network site users who perceived stronger ties with all their contacts were more likely to provide and seek leisure-time physical activity opinions and information. People who provided leisure-time physical activity opinions and information were more likely to seek opinions and information, and people who forwarded information about leisure-time physical activity were more likely to chat about it. Conclusions This study shed light on the application of the electronic word-of-mouth theoretical framework in promoting health behaviors. The findings can also guide the development of future social marketing interventions using social network sites to promote leisure-time physical activity. PMID:28642215
Jimenez-Pardo, J; Holmes, J D; Jenkins, M E; Johnson, A M
2015-07-01
Physical activity is generally thought to be beneficial to individuals with Parkinson's disease (PD). There is, however, limited information regarding current rates of physical activity among individuals with PD, possibly due to a lack of well-validated measurement tools. In the current study we sampled 63 individuals (31 women) living with PD between the ages of 52 and 87 (M = 70.97 years, SD = 7.53), and evaluated the amount of physical activity in which they engaged over a 7-day period using a modified form of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). The PASIPD was demonstrated to be a reliable measure within this population, with three theoretically defensible factors: (1) housework and home-based outdoor activities; (2) recreational and fitness activities; and (3) occupational activities. These results suggest that the PASIPD may be useful for monitoring physical activity involvement among individuals with PD, particularly within large-scale questionnaire-based studies.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry
Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities:more » I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation« less
NASA Astrophysics Data System (ADS)
Close, Eleanor W.; Conn, Jessica; Close, Hunter G.
2016-06-01
[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.
XXV IUPAP Conference on Computational Physics (CCP2013): Preface
NASA Astrophysics Data System (ADS)
2014-05-01
XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.
Theoretical Advanced Study Institute: 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGrand, Thomas
The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context andmore » on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.« less
Lattice Calculations and the Muon Anomalous Magnetic Moment
NASA Astrophysics Data System (ADS)
Marinković, Marina Krstić
2017-07-01
Anomalous magnetic moment of the muon, a_{μ }=(g_{μ }-2)/2, is one of the most precisely measured quantities in particle physics and it provides a stringent test of the Standard Model. The planned improvements of the experimental precision at Fermilab and at J-PARC propel further reduction of the theoretical uncertainty of a_{μ }. The hope is that the efforts on both sides will help resolve the current discrepancy between the experimental measurement of a_{μ } and its theoretical prediction, and potentially gain insight into new physics. The dominant sources of the uncertainty in the theoretical prediction of a_{μ } are the errors of the hadronic contributions. I will discuss recent progress on determination of hadronic contributions to a_{μ } from lattice calculations.
Toward a Physical Characterization of Raindrop Collision Outcome Regimes
NASA Technical Reports Server (NTRS)
Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.
2011-01-01
A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.
Maximum entropy models of ecosystem functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Jason, E-mail: jason.bertram@anu.edu.au
2014-12-05
Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on themore » information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.« less
Physics League Across Numerous Countries for Kick-ass Students (PLANCKS)
NASA Astrophysics Data System (ADS)
Haasnoot, Irene
2016-01-01
Physics League Across Numerous Countries for Kick-ass Students (PLANCKS) is an international theoretical physics competition for bachelor and master students. The intention of PLANCKS is to increase international collaboration and stimulate the personal development of individual contestants. This is done by organizing a three-day-event which take place every year and is hosted by different countries. Besides the contest, social and scientific activities will be organised, including an opening symposium where leading physicists give lectures to inspire the participants.
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
Current experiments in elementary particle physics. Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Wohl, C.G.; Armstrong, B.
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Ingram, Maia; Ruis, Maricruz; Mayorga, Maria Theresa; Rosales, Cecilia
2015-01-01
Purpose There is a dearth of information about factors related to physical activity among Mexican Americans with diabetes. Self efficacy and social support are associated with physical activity, however little is known about their role within different cultural groups. Design Focus groups were used to identify factors that motivate walking. Setting Two Mexican American communities located in Tucson, Arizona. Subjects Individuals who attended diabetes education. Intervention A community-based provider organized walking groups with people who previously attended diabetes classes. Walkers participated in focus groups exploring themes related to their experience. Measures Self efficacy, social support, and collective efficacy. Grounded theory was used to analyze focus group results using two rounds of analysis; the first identifying references to self efficacy and social support and the second adding collective efficacy as a theoretical basis for walking. Results Among 43 eligible participants, 20 participated in focus groups. Social support was expressed as commitment and companionship. Walkers demonstrated a high level of self efficacy for walking. Development of group identity/social cohesion was also a motivator to walk. Collective efficacy emerged as an applicable theoretical model encompassing these themes and their interrelationship. Conclusion Collective efficacy, or the belief that the group can improve their lives through collective effort, is a viable theoretical construct in the development of physical activity interventions targeting Mexican Americans with diabetes. PMID:19601479
ERIC Educational Resources Information Center
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
19 CFR 19.24 - Theoretical transfer without physical shipment of dutiable metal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... dutiable metal. 19.24 Section 19.24 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... dutiable metal. (a) Transfer may be made from one port of entry to another by a withdrawal for transportation and rewarehouse executed in regular form without physical shipment of the metal, provided enough...
My 50 years of research in particle physics.
Sugawara, Hirotaka
2010-01-01
Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible.
ERIC Educational Resources Information Center
Mäkelä, Tiina; Helfenstein, Sacha
2016-01-01
The present study shows how the mixed-methods approach can be used in capturing and organising learning environment (LE) characteristics for the participatory design of psychosocial and physical LEs involving learners. Theoretical constructs were tested and further elaborated on in the analysis of two similar educational design research studies:…
Students' Gender-Related Choices and Achievement in Physics
ERIC Educational Resources Information Center
Jugovic, Ivana
2017-01-01
The goal of the research was to explore the role of motivation, gender roles and stereotypes in the explanation of students' educational outcomes in a stereotypically male educational domain: physics. Eccles and colleagues' expectancy-value model was used as a theoretical framework for the research. The research sample included 736 grammar school…
ERIC Educational Resources Information Center
Amade-Escot, Chantal
This study investigated how and why students modified instructional tasks, explaining modifications using the concept of didactic contract. The study focused on two theoretical perspectives in physical education (PE) research: didactic and ecological. The didactic paradigm examines relationships among teachers, students, and the content embedded…
Jeans, Sir James Hopwood (1877-1946)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Astrophysicist, born in Ormskirk, Lancashire, England, worked at Cambridge, Princeton and Mount Wilson Observatory, and retired early to devote himself to research. Like CHANDRASEKHAR, Jeans worked on physical problems such as thermodynamics, applying the physics to astronomy, and writing lucid accounts of the whole field in books such as The Dynamical Theory of Gases (1904), Theoretical Mechanic...
Prospective Relationship between Social Cognitive Variables and Leisure Time Physical Activity
ERIC Educational Resources Information Center
Hortz, Brian; Winters, Eric; Grim, Melissa L.; Petosa, R. Lingyak
2017-01-01
Background: Evidence suggests that health promotion interventions that are based on behavioral theories are more effective than those lacking a theoretical base. Recent studies have begun to look at the relationship between social cognitive variables and physical activity in varied populations. Purpose: The purpose of this study is to determine…
ERIC Educational Resources Information Center
Leriche, Jérôme; Desbiens, Jean-François; Amade-Escot, Chantal; Tinning, Richard
2016-01-01
A large diversity of theoretical frameworks exists in the physical education literature. This article focuses on two of those frameworks to examine their compatibility and their complementarity. The classroom ecology paradigm concentrates on the balance between three task systems, two vectors, and programs of actions proposed by the physical…
Toward Active Living: "Comprehensive School Physical Activity Program" Research and Implications
ERIC Educational Resources Information Center
Chen, Senlin; Gu, Xiangli
2018-01-01
Comprehensive school physical activity program (CSPAP) holds much promise as a solution for youth PA promotion, due to its strong theoretical and political support. In this article, we review the current research on CSPAP. Fifty-four published articles that met the inclusion criteria were identified and retrieved using direct library database…
Utilizing Educational Theoretical Models to Support Effective Physical Education Pedagogy
ERIC Educational Resources Information Center
Usher, Wayne; Edwards, Allan; de Meyrick, Bianca
2015-01-01
Physical education (PE) pedagogy has traditionally been viewed as drillstyle teaching. Whilst this traditional pedagogical approach provides exposure to various skills, used within a school-based PE and sporting context, it does not demonstrate a student's competence associated with their ability to apply these skills in complex game situations.…
ERIC Educational Resources Information Center
Toumpaniari, Konstantina; Loyens, Sofie; Mavilidi, Myrto-Foteini; Paas, Fred
2015-01-01
Research has demonstrated that physical activity involving gross motor activities can lead to better cognitive functioning and higher academic achievement scores. In addition, research within the theoretical framework of embodied cognition has shown that embodying knowledge through the use of more subtle motor activities, such as task-relevant…
Predictors of Latent Trajectory Classes of Physical Dating Violence Victimization
ERIC Educational Resources Information Center
Brooks-Russell, Ashley; Foshee, Vangie A.; Ennett, Susan T.
2013-01-01
This study identified classes of developmental trajectories of physical dating violence victimization from grades 8 to 12 and examined theoretically-based risk factors that distinguished among trajectory classes. Data were from a multi-wave longitudinal study spanning 8th through 12th grade (n = 2,566; 51.9 % female). Growth mixture models were…
An Investigation of Students' Embodied Discourses in Physical Education: A Gender Project
ERIC Educational Resources Information Center
Azzarito, Laura; Solmon, Melinda
2009-01-01
Despite significant theoretical and practical progress over the past 20 years, the social construction of gender and its link to youths' participation in physical activity in school contexts remain critical issues that call for further socioeducational scrutiny. In this study, researchers investigated the ways students' embodiment of discursive…
ERIC Educational Resources Information Center
Sirna, K.; Tinning, R.; Rossi, T.
2010-01-01
This paper examines Initial Teacher Education students' experiences of participation in health and physical education (HPE) subject department offices and the impact on their understandings and identity formation. Pierre Bourdieu's concepts of habitus, field, and practice along with Wenger's communities of practice form the theoretical frame used…
Between the Prescribed and the Lived in Physical Education Lessons
ERIC Educational Resources Information Center
Figueiredo, Zenólia Christina Campos; Figueira, Janaína Esfalsini; Della Fonte, Sandra Soares; Caparróz, Francisco Eduardo
2016-01-01
This study examines physical education (PE) curriculum development in an elementary school. Our goal was to understand the daily construction of a curriculum. We sought to analyse the theoretical and methodological framework and documents that a PE teacher uses each day while putting a curriculum into practice (lived curriculum). The data…
ERIC Educational Resources Information Center
Hawley, Patricia H.; Johnson, Sarah E.; Mize, Jennifer A.; McNamara, Kelly A.
2007-01-01
Several lines of theory and research suggest that power (e.g., social dominance) and status (e.g., social prominence and positive peer regard) are enjoyed by those blessed with good looks. The present work addresses the relations among physical attractiveness, power, status, and aggression from a resource control theoretic perspective that…
Physical descriptions of the bacterial nucleoid at large scales, and their biological implications
NASA Astrophysics Data System (ADS)
Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2012-07-01
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
The Physics Teacher: The Four States of Matter—Solid, Squishy, Liquid, and Gas
NASA Astrophysics Data System (ADS)
Clark, Roy W.
2007-04-01
The featured article offers several demonstrations of substances that seem to be neither solid nor liquid, but somewhere in between. The authors suggest laboratory experiments that can be performed by beginning physics students, and suggest theoretical explanations for the strange viscosity behaviors. The subject is chemistry much more than physics, and it may require chemistry textbook authors to rethink the popular definitions of physical and chemical change. This reviewer then comments on the historical origins of squishiness, and on its unfortunate neglect, in their author's opinion, by general chemistry texts. The subject is properly called rheology, and is of considerable significance to industrial chemists.
Catalli, Sundberg receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2011-05-01
Krystle Catalli and Marshall Sundberg have been awarded the 2010 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Catalli's thesis is entitled “The effect of trivalent cation substitution on the major lower mantle silicates.” Sundberg's thesis is entitled “Chemical interactions amongst phases during diffusion creep: Applications to the Earth's upper mantle.”
Experimental physical methods and theories--then and now.
Schulte, Jurgen
2015-10-01
A first evaluation of fundamental research into the physics and physiology of Ultra high dilutions (UHDs) was conducted by the author in 1994(1). In this paper we revisit methods and theories from back then and follow their paths through their evolution and contribution to new knowledge in UHD research since then. Physical methods and theories discusses in our anthology on UHD in 1994(1) form the basis for tracing ideas and findings along their path of further development and impact on new knowledge in UHD. Experimental approaches to probe physical changes in homeopathic preparations have become more sophisticated over past two decades, so did the desire to report results to a scientific standard that is on par with those in specialist literature. The same cannot be said about underlying supporting theoretical models and simulations. Grant challenges in science often take a more targeted and more concerted approach to formulate a research question and then look for answers. A concerted effort to focus on one hypothesized physical aspect of a well-defined homeopathic preparation may help aligning experimental methods with theoretical models and, in doing so, help to gain a deeper understanding of the whole body of insights and data produced. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Summary: Special Session SpS15: Data Intensive Astronomy
NASA Astrophysics Data System (ADS)
Montmerle, Thierry
2015-03-01
A new paradigm in astronomical research has been emerging - ``Data Intensive Astronomy'' that utilizes large amounts of data combined with statistical data analyses. The first research method in astronomy was observations by our eyes. It is well known that the invention of telescope impacted the human view on our Universe (although it was almost limited to the solar system), and lead to Keplerfs law that was later used by Newton to derive his mechanics. Newtonian mechanics then enabled astronomers to provide the theoretical explanation to the motion of the planets. Thus astronomers obtained the second paradigm, theoretical astronomy. Astronomers succeeded to apply various laws of physics to reconcile phenomena in the Universe; e.g., nuclear fusion was found to be the energy source of a star. Theoretical astronomy has been paired with observational astronomy to better understand the background physics in observed phenomena in the Universe. Although theoretical astronomy succeeded to provide good physical explanations qualitatively, it was not easy to have quantitative agreements with observations in the Universe. Since the invention of high-performance computers, however, astronomers succeeded to have the third research method, simulations, to get better agreements with observations. Simulation astronomy developed so rapidly along with the development of computer hardware (CPUs, GPUs, memories, storage systems, networks, and others) and simulation codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre
2015-09-15
The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.
Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, J.R.; et al.
This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.
Theoretical aspects of antimatter and gravity
NASA Astrophysics Data System (ADS)
Blas, Diego
2018-03-01
In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Heinz-Dietrich Doebner — an accomplished octogenarian
NASA Astrophysics Data System (ADS)
Boyle, L. L.
2012-02-01
A scientific biography of Heinz-Dietrich Doebner is presented on the occasion of his 80th birthday. Doebner has been responsible for fostering the development of theoretical physics both in Germany and internationally. His scientific interests have centred around the quantum theory of both linear and non-linear systems moving on manifolds for which a technique known as Borel quantisation was developed in his group at Clausthal. He was responsible for establishing the Arnold Sommerfeld Institute within the Theoretical Physics Department at Clausthal. This provided a base for visiting scientists for many of whom funding was obtained from various sources.
NASA Astrophysics Data System (ADS)
Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre
2015-09-01
The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.
Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems
NASA Astrophysics Data System (ADS)
Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.
2017-02-01
Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.
A theoretical physicist's journey into biology: from quarks and strings to cells and whales.
West, Geoffrey B
2014-10-08
Biology will almost certainly be the predominant science of the twenty-first century but, for it to become successfully so, it will need to embrace some of the quantitative, analytic, predictive culture that has made physics so successful. This includes the search for underlying principles, systemic thinking at all scales, the development of coarse-grained models, and closer ongoing collaboration between theorists and experimentalists. This article presents a personal, slightly provocative, perspective of a theoretical physicist working in close collaboration with biologists at the interface between the physical and biological sciences.
NASA Astrophysics Data System (ADS)
2011-07-01
The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 742-749 • Nonclassical random walks and the phenomenology of fluctuations of securities returns in the stock market, P V Vidov, M Yu Romanovsky Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 749-753 • Econophysics and the fractal analysis of financial time series, M M Dubovikov, N V Starchenko Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 754-761
Miller, Lauren S; Gramzow, Richard H
2016-08-11
Although the mental and physical benefits of physical activity are well-established, there is a racial/ethnic disparity in activity such that minorities are much less likely to engage in physical activity than are White individuals. Research suggests that a lack of motivation may be an important barrier to physical activity for racial/ethnic minorities. Therefore, interventions that increase participants' motivation may be especially useful in promoting physical activity within these groups. Physical activity interventions that utilized the clinical technique of motivational interviewing (MI) in conjunction with the theoretical background of self-determination theory (SDT) have been effective in increasing White individuals' physical activity. Nevertheless, it remains unclear the extent to which these results apply to minority populations. The current study involves conducting a 12-week physical activity intervention based on SDT and MI to promote physical activity in a racially/ethnically-diverse sample. It is hypothesized that this intervention will successfully increase physical activity in participants. Specifically, it is expected that minorities will experience a greater relative increase in physical activity than Whites within the intervention group because minorities are expected to have lower baseline levels of activity. Results from this study will give us a greater understanding of the generalizability of SDT interventions designed to improve motivation for physical activity and level of physical activity. Clinical Trials Gov. Identifier NCT02250950 Registered 24 September 2014.
Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata
2015-01-01
A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.
Cavallo, David N; Brown, Jane D; Tate, Deborah F; DeVellis, Robert F; Zimmer, Catherine; Ammerman, Alice S
2014-10-01
The primary objective of the current study was to examine the relationship between social support and physical activity within the theory of planned behavior (TPB) theoretical framework. This study used data from the Internet Support for Healthy Associations Promoting Exercise randomized controlled trial. A total of 134 female undergraduate students participated in the study, which included baseline and post measures of perceived social support for physical activity (esteem, informational, and companionship), TPB variables related to physical activity (perceived behavioral control, intention, and attitude), and physical activity behavior. Path analysis revealed a significant indirect relationship between change in companionship support and physical activity mediated by change in intention (.13, p < .01) and a significant direct relationship between change in esteem support and change in physical activity (.26, p = .03). The model explained 27% of the variance in physical activity and 59% of the variance in intention. Overall, change in social support exerted a small to medium amount of influence on change in physical activity in this modified TPB model when controlling for traditional model constructs. Encouraging companionship and esteem support should be considered as a strategy for increasing physical activity in this population.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Stenflo, L.
2005-01-01
The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there were more than seventy poster papers in three sessions. The latter provided opportunities for younger physicists to display the results of their recent work and to obtain comments from the other participants. During the period 11 16 July 2004 at the Abdus Salam ICTP, we focused on nonlinear effects that are common in plasmas, fluids, nonlinear optics, and condensed matter physics. In addition, we concentrated on collective processes in space and dusty plasmas, as well as in astrophysics and intense laser-plasma interactions. Also presented were modern topics of nonlinear neutrino-plasma interactions, nonlinear quantum electrodynamics, quark-gluon plasmas, and high-energy astrophysics. This reflects that plasma physics is a truly cross-disciplinary and very fascinating science with many potential applications. The workshop was attended by several distinguished invited speakers. Most of the contributions from the second week of our Trieste workshop appear in this Topical Issue of Physica Scripta, which will be distributed to all the participants. The organizers are grateful to Professor Katepalli Raju Sreenivasan, the director of the Abdus Salam ICTP, for his generous support and warm hospitality in Trieste. The Editors appreciate their colleagues and co-organizers for their constant and wholehearted support in our endeavours of publishing this Topical Issue of Physica Scripta. We highly value the excellent work of Mrs Ave Lusenti and Dr. Brian Stewart at the Abdus Salam ICTP. Thanks are also due to the European Commission for supporting our activity through the Research Training Networks entitled "Complex Plasmas" and "Turbulent Boundary Layers". Finally, we would like to express our gratitude to the Abdus Salam ICTP for providing financial support to our workshop in Trieste. Besides, the workshop directors thank the speakers and the attendees for their contributions which resulted in the success of our Trieste workshop 2004. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the Abdus Salam ICTP.
Perrin, Paul B; Paredes, Alejandra Morlett; Olivera, Silvia Leonor; Lozano, Juan Esteban; Leal, Wendy Tatiana; Ahmad, Usman F; Arango-Lasprilla, Juan Carlos
2017-01-01
Research has begun to document the bivariate connections between pain in individuals with spinal cord injury (SCI) and various aspects of health related quality of life (HRQOL), such as fatigue, social functioning, mental health, and physical functioning. The purpose of this study was to construct and test a theoretical path model illuminating the stage-wise and sequential (cascading) HRQOL pathways through which pain increases physical disability in individuals with SCI in a sample from Colombia, South America. It was hypothesized that increased pain would lead to decreased energy, which would lead to decreased mental health and social functioning, which both would lead to emotional role limitations, which finally would lead to physical role limitations. A cross-sectional study assessed individuals with SCI (n = 40) in Neiva, Colombia. Participants completed a measure indexing various aspects of HRQOL. The path model overall showed excellent fit indices, and each individual path within the model was statistically significant. Pain exerted significant indirect effects through all possible mediators in the model, ultimately suggesting that energy, mental health, social functioning, and role limitations-emotional were likely pathways through which pain exerted its effects on physical disability in individuals with SCI. These findings uncover several potential nodes for clinical intervention which if targeted in the context of rehabilitation or outpatient services, could result in salubrious direct and indirect effects reverberating down the theoretical causal chain and ultimately reducing physical disability in individuals with SCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Charles D.; Cline, David B.; Byers, N.
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less
Physics through the 1990s: Plasmas and fluids
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.
Physical Processes in the MAGO/MFT Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garanin, Sergey F; Reinovsky, Robert E.
2015-03-23
The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach aremore » also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.« less
Improving physics instruction by analyzing video games
NASA Astrophysics Data System (ADS)
Beatty, Ian D.
2013-01-01
Video games can be very powerful teaching systems, and game designers have become adept at optimizing player engagement while scaffolding development of complex skills and situated knowledge. One implication is that we might create games to teach physics. Another, which I explore here, is that we might learn to improve classroom physics instruction by studying effective games. James Gee, in his book What Video Games Have to Teach Us About Learning and Literacy (2007), articulates 36 principles that make good video games highly effective as learning environments. In this theoretical work, I identify 16 themes running through Gee's principles, and explore how these themes and Gee's principles could be applied to the design of an on-campus physics course. I argue that the process pushes us to confront aspects of learning that physics instructors and even physics education researchers generally neglect, and suggest some novel ideas for course design.
Physics of Alfvén waves and energetic particles in burning plasmas
NASA Astrophysics Data System (ADS)
Chen, Liu; Zonca, Fulvio
2016-01-01
Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.
Geometric stability of topological lattice phases
Jackson, T. S.; Möller, Gunnar; Roy, Rahul
2015-01-01
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311
Improving nutrition and physical activity in the workplace: a meta-analysis of intervention studies.
Hutchinson, Amanda D; Wilson, Carlene
2012-06-01
A comprehensive search of the literature for studies examining physical activity or nutrition interventions in the workplace, published between 1999 and March 2009, was conducted. This search identified 29 relevant studies. Interventions were grouped according to the theoretical framework on which the interventions were based (e.g. education, cognitive-behavioural, motivation enhancement, social influence, exercise). Weighted Cohen's d effect sizes, percentage overlap statistics, confidence intervals and fail safe Ns were calculated. Most theoretical approaches were associated with small effects. However, large effects were found for some measures of interventions using motivation enhancement. Effect sizes were larger for studies focusing on one health behaviour and for randomized controlled trials. The workplace is a suitable environment for making modest changes in the physical activity, nutrition and health of employees. Further research is necessary to determine whether these changes can be maintained in the long term.
Opportunities in cosmic-ray physics and astrophysics
NASA Technical Reports Server (NTRS)
1995-01-01
The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.
Plasmonics of 2D Nanomaterials: Properties and Applications
Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng
2017-01-01
Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608
Outcome regimes of binary raindrop collisions
NASA Astrophysics Data System (ADS)
Testik, Firat Y.
2009-11-01
This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.
Say what you mean: rethinking disability language in Adapted Physical Activity Quarterly.
Peers, Danielle; Spencer-Cavaliere, Nancy; Eales, Lindsay
2014-07-01
Adapted Physical Activity Quarterly (APAQ) currently mandates that authors use person-first language in their publications. In this viewpoint article, we argue that although this policy is well intentioned, it betrays a very particular cultural and disciplinary approach to disability: one that is inappropriate given the international and multidisciplinary mandate of the journal. Further, we contend that APAQ's current language policy may serve to delimit the range of high-quality articles submitted and to encourage both theoretical inconsistency and the erasure of the ways in which research participants self-identify. The article begins with narrative accounts of each of our negotiations with disability terminology in adapted physical activity research and practice. We then provide historical and theoretical contexts for person-first language, as well as various other widely circulated alternative English-language disability terminology. We close with four suggested revisions to APAQ's language policy.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2003-12-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
PUBLISHER'S ANNOUNCEMENT: Editorial developments Editorial developments
NASA Astrophysics Data System (ADS)
Gillan, Rebecca
2009-01-01
We are delighted to announce that from January 2009, Professor Murray T Batchelor of the Australian National University, Canberra will be the new Editor-in-Chief of Journal of Physics A: Mathematical and Theoretical. Murray Batchelor has been Editor of the Mathematical Physics section of the journal since 2007. Prior to this, he served as a Board Member and an Advisory Panel member for the journal. His primary area of research is the statistical mechanics of exactly solved models. He holds a joint appointment in mathematics and physics and has held visiting positions at the Universities of Leiden, Amsterdam, Oxford and Tokyo. We very much look forward to working with Murray to continue to improve the journal's quality and interest to the readership. We would like to thank our outgoing Editor-in-Chief, Professor Carl M Bender. Carl has done a magnificent job as Editor-in-Chief and has worked tirelessly to improve the journal over the last five years. Carl has been instrumental in designing and implementing strategies that have enhanced the quality of papers published and service provided by Journal of Physics A: Mathematical and Theoretical. Notably, under his tenure, we have introduced the Fast Track Communications (FTC) section to the journal. This section provides a venue for outstanding short papers that report new and timely developments in mathematical and theoretical physics and offers accelerated publication and high visibility for our authors. During the last five years, we have raised the quality threshold for acceptance in the journal and now reject over 60% of submissions. As a result, papers published in Journal of Physics A: Mathematical and Theoretical are amongst the best in the field. We have also maintained and improved on our excellent receipt-to-first-decision times, which now average less than 50 days for papers. We have recently announced another innovation; the Journal of Physics A Best Paper Prize. These prizes will honour excellent papers that make outstanding contributions to the field and we look forward to awarding the inaugural prizes in May 2009. With the help of Murray Batchelor and our distinguished Editorial Board, we will be working to further improve the quality of the journal whilst continuing to offer excellent services to our readers, authors and referees. We hope that you benefit from reading the journal. If you have any comments or questions, please do not hesitate to contact us at jphysa@iop.org. Rebecca Gillan Publisher
PUBLISHER'S ANNOUNCEMENT: Editorial developments
NASA Astrophysics Data System (ADS)
2009-01-01
We are delighted to announce that from January 2009, Professor Murray T Batchelor of the Australian National University, Canberra will be the new Editor-in-Chief of Journal of Physics A: Mathematical and Theoretical. Murray Batchelor has been Editor of the Mathematical Physics section of the journal since 2007. Prior to this, he served as a Board Member and an Advisory Panel member for the journal. His primary area of research is the statistical mechanics of exactly solved models. He holds a joint appointment in mathematics and physics and has held visiting positions at the Universities of Leiden, Amsterdam, Oxford and Tokyo. We very much look forward to working with Murray to continue to improve the journal's quality and interest to the readership. We would like to thank our outgoing Editor-in-Chief, Professor Carl M Bender. Carl has done a magnificent job as Editor-in-Chief and has worked tirelessly to improve the journal over the last five years. Carl has been instrumental in designing and implementing strategies that have enhanced the quality of papers published and service provided by Journal of Physics A: Mathematical and Theoretical. Notably, under his tenure, we have introduced the Fast Track Communications (FTC) section to the journal. This section provides a venue for outstanding short papers that report new and timely developments in mathematical and theoretical physics and offers accelerated publication and high visibility for our authors. During the last five years, we have raised the quality threshold for acceptance in the journal and now reject over 60% of submissions. As a result, papers published in Journal of Physics A: Mathematical and Theoretical are amongst the best in the field. We have also maintained and improved on our excellent receipt-to-first-decision times, which now average less than 50 days for papers. We have recently announced another innovation; the Journal of Physics A Best Paper Prize. These prizes will honour excellent papers that make outstanding contributions to the field and we look forward to awarding the inaugural prizes in May 2009. With the help of Murray Batchelor and our distinguished Editorial Board, we will be working to further improve the quality of the journal whilst continuing to offer excellent services to our readers, authors and referees. We hope that you benefit from reading the journal. If you have any comments or questions, please do not hesitate to contact us at jphysa@iop.org. Rebecca Gillan Publisher
Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swordy, Simon
2009-03-04
These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI ismore » also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.« less
Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute
Swordy, Simon
2017-12-22
These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2014-03-01
A critical analysis of the foundations of standard vector calculus is proposed. The methodological basis of the analysis is the unity of formal logic and of rational dialectics. It is proved that the vector calculus is incorrect theory because: (a) it is not based on a correct methodological basis - the unity of formal logic and of rational dialectics; (b) it does not contain the correct definitions of ``movement,'' ``direction'' and ``vector'' (c) it does not take into consideration the dimensions of physical quantities (i.e., number names, denominate numbers, concrete numbers), characterizing the concept of ''physical vector,'' and, therefore, it has no natural-scientific meaning; (d) operations on ``physical vectors'' and the vector calculus propositions relating to the ''physical vectors'' are contrary to formal logic.
High energy physics at UC Riverside
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theorymore » Group are briefly discussed and a list of completed or published papers for this period is given.« less
Educating Scientifically - Advances in Physics Education Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Noah
It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse populationmore » of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.« less
Educating Scientifically - Advances in Physics Education Research
Finkelstein, Noah [University of Colorado, Colorado, USA
2017-12-09
It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.
Morris, Jacqui; Oliver, Tracey; Kroll, Thilo; Macgillivray, Steve
2012-01-01
Background. People with stroke are not maintaining adequate engagement in physical activity (PA) for health and functional benefit. This paper sought to describe any psychological and social factors that may influence physical activity engagement after stroke. Methods. A structured literature review of studies indexed in MEDLINE, CinAHL, P&BSC, and PsycINFO using search terms relevant to stroke, physical disabilities, and PA. Publications reporting empirical findings (quantitative or qualitative) regarding psychological and/or social factors were included. Results. Twenty studies from 19 publications (9 surveys, 1 RCT, and 10 qualitative studies) were included. Seventeen studies reported findings pertinent to psychological factors and fourteen findings pertinent to social factors. Conclusion. Self-efficacy, physical activity beliefs, and social support appear particularly relevant to physical activity behaviour after stroke and should be included in theoretically based physical interventions. The Transtheoretical Model and the Theory of Planned Behaviour are candidate behavioural models that may support intervention development.
Computerised decision support in physical activity interventions: A systematic literature review.
Triantafyllidis, Andreas; Filos, Dimitris; Claes, Jomme; Buys, Roselien; Cornelissen, Véronique; Kouidi, Evangelia; Chouvarda, Ioanna; Maglaveras, Nicos
2018-03-01
The benefits of regular physical activity for health and quality of life are unarguable. New information, sensing and communication technologies have the potential to play a critical role in computerised decision support and coaching for physical activity. We provide a literature review of recent research in the development of physical activity interventions employing computerised decision support, their feasibility and effectiveness in healthy and diseased individuals, and map out challenges and future research directions. We searched the bibliographic databases of PubMed and Scopus to identify physical activity interventions with computerised decision support utilised in a real-life context. Studies were synthesized according to the target user group, the technological format (e.g., web-based or mobile-based) and decision-support features of the intervention, the theoretical model for decision support in health behaviour change, the study design, the primary outcome, the number of participants and their engagement with the intervention, as well as the total follow-up duration. From the 24 studies included in the review, the highest percentage (n = 7, 29%) targeted sedentary healthy individuals followed by patients with prediabetes/diabetes (n = 4, 17%) or overweight individuals (n = 4, 17%). Most randomized controlled trials reported significantly positive effects of the interventions, i.e., increase in physical activity (n = 7, 100%) for 7 studies assessing physical activity measures, weight loss (n = 3, 75%) for 4 studies assessing diet, and reductions in glycosylated hemoglobin (n = 2, 66%) for 3 studies assessing glycose concentration. Accelerometers/pedometers were used in almost half of the studies (n = 11, 46%). Most adopted decision support features included personalised goal-setting (n = 16, 67%) and motivational feedback sent to the users (n = 15, 63%). Fewer adopted features were integration with electronic health records (n = 3, 13%) and alerts sent to caregivers (n = 4, 17%). Theoretical models of decision support in health behaviour to drive the development of the intervention were not reported in most studies (n = 14, 58%). Interventions employing computerised decision support have the potential to promote physical activity and result in health benefits for both diseased and healthy individuals, and help healthcare providers to monitor patients more closely. Objectively measured activity through sensing devices, integration with clinical systems used by healthcare providers and theoretical frameworks for health behaviour change need to be employed in a larger scale in future studies in order to realise the development of evidence-based computerised systems for physical activity monitoring and coaching. Copyright © 2017 Elsevier B.V. All rights reserved.
Theoretical Grounds for the Propagation of Uncertainties in Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Saracco, Paolo; Pia, Maria Grazia; Batic, Matej
2014-04-01
We introduce a theoretical framework for the calculation of uncertainties affecting observables produced by Monte Carlo particle transport, which derive from uncertainties in physical parameters input into simulation. The theoretical developments are complemented by a heuristic application, which illustrates the method of calculation in a streamlined simulation environment.
What We Don't Understand, We Explain to Each Other
ERIC Educational Resources Information Center
Pines, David
2015-01-01
"What we don't understand, we explain to each other" was Robert Oppenheimer's 1948 description of theoretical physics as a profession. Because the phrase connects research, teaching, and learning, it seemed the right approach for the talk I gave to the AAPT [American Association of Physics Teachers] on receiving the 2013 J.D. Jackson…
Doctor Julius Robert Mayer and Energy Processes in Living Systems
ERIC Educational Resources Information Center
Erlichson, Herman
2007-01-01
The overwhelming majority of important papers in physics are written by physicists. But the physician Julius Robert Mayer (1814-1878, see photo) did a valid theoretical calculation of the mechanical equivalent of heat just before Joule reported on his results from his well-known paddle-wheel experiments. Joule is well-known to physics people and…
Peers as Teachers in Physical Education Hip Hop Classes in Finnish High School
ERIC Educational Resources Information Center
Nurmi, Anna-Maria; Kokkonen, Marja
2015-01-01
In this case study, theoretically rooted in peer-assisted learning (PAL), ten female high school students, acting as peer teachers, taught hip hop dance in a voluntary physical education course. The data, derived from questionnaires and interviews with the peer teachers, were analysed using content analysis. The results showed that the peer…
ERIC Educational Resources Information Center
Kapucu, Serkan; Bahçivan, Eralp
2015-01-01
Background: There are some theoretical evidences that explain the relationships between core beliefs (i.e., epistemological beliefs) and peripheral beliefs (self-efficacy in learning) in the literature. The close relationships of such type of beliefs with attitudes are also discussed by some researchers. Constructing a model that investigates…
The Edges Of Dark Matter Halos: Theory And Observations
NASA Astrophysics Data System (ADS)
More, Surhud
2017-06-01
I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.
ERIC Educational Resources Information Center
Ingerman, Ake; Linder, Cedric; Marshall, Delia
2009-01-01
This article attempts to describe students' process of learning physics using the notion of experiencing variation as the basic mechanism for learning, and thus explores what variation, with respect to a particular object of learning, that students experience in their process of constituting understanding. Theoretically, the analysis relies on…
NASA Technical Reports Server (NTRS)
Cohen, M. H.
1973-01-01
The research activities from 1 March 1963 to 28 February 1973 are summarized. Major lectures are listed along with publications on superconductivity, superfluidity, electronic structures and Fermi surfaces of metals, optical spectra of solids, electronic structure of insulators and semiconductors, theory of magnetic metals, physics of surfaces, structures of metals, and molecular physics.
ERIC Educational Resources Information Center
Cutler, Lois J.; Kane, Rosalie A.; Degenholtz, Howard B.; Miller, Michael J.; Grant, Leslie
2006-01-01
Purpose: We developed and tested theoretically derived procedures to observe physical environments experienced by nursing home residents at three nested levels: their rooms, the nursing unit, and the overall facility. Illustrating with selected descriptive results, in this article we discuss the development of the approach. Design and Methods: On…
ERIC Educational Resources Information Center
Forsman, Jonas; Moll, Rachel; Linder, Cedric
2014-01-01
The viability of using complexity science in physics education research (PER) is exemplified by (1) situating central tenets of student persistence research in complexity science and (2) drawing on the methods that become available from this to illustrate analyzing the structural aspects of students' networked interactions as an important dynamic…
ERIC Educational Resources Information Center
Sulz, Lauren; Temple, Viviene; Gibbons, Sandra
2016-01-01
The aim of this research was to develop measures to provide valid and reliable representation of the motivational states and psychological needs proposed by the self-determination theory (Deci & Ryan, 1985, 2000) within a physical education context. Based on theoretical underpinnings of self-determination theory, two questionnaires were…
Vector Potential, Electromagnetic Induction and "Physical Meaning"
ERIC Educational Resources Information Center
Giuliani, G.
2010-01-01
A forgotten experiment by Andre Blondel (1914) proves, as held on the basis of theoretical arguments in a previous paper, that the time variation of the magnetic flux is not the cause of the induced emf; the physical agent is instead the vector potential through the term [equation omitted] (when the induced circuit is at rest). The "good…
THE ROLE AND DISTRIBUTION OF WRITTEN INFORMAL COMMUNICATION IN THEORETICAL HIGH ENERGY PHYSICS.
ERIC Educational Resources Information Center
LIBBEY, MILES A.; ZALTMAN, GERALD
THIS STUDY OF "PREPRINT" DISTRIBUTION IN THEORECTICAL HIGH ENERGY PHYSICS USED A QUESTIONNAIRE CIRCULATED TO ALL KNOWN HIGH ENERGY THEORISTS. A SECOND QUESTIONNAIRE WAS SENT TO A REPRESENTATIVE SAMPLE OF "PREPRINT LIBRARIANS" AT VARIOUS INSTITUTIONS IN THE U.S. AND ABROAD. BASED ON THIS DATA, THE STUDY CONCLUDED THAT AN EXPERIMENT WITH CENTRALIZED…
ERIC Educational Resources Information Center
Izadpanah, Shirin; Günçe, Kaðan
2014-01-01
Quality design and appropriate space organization in preschool settings can support preschool children's educational activities. Although the relationship between the well-being and development of children and physical settings has been emphasized by many early childhood researchers, there is still a need for theoretical design guidelines that are…
Study of a Variable Mass Atwood's Machine Using a Smartphone
ERIC Educational Resources Information Center
Lopez, Dany; Caprile, Isidora; Corvacho, Fernando; Reyes, Orfa
2018-01-01
The Atwood machine was invented in 1784 by George Atwood and this system has been widely studied both theoretically and experimentally over the years. Nowadays, it is commonplace that many experimental physics courses include both Atwood's machine and variable mass to introduce more complex concepts in physics. To study the dynamics of the masses…
ERIC Educational Resources Information Center
King, Gillian; McDougall, Janette; DeWit, David; Hong, Sungjin; Miller, Linda; Offord, David; Meyer, Katherine; LaPorta, John
2005-01-01
The objective of this article is to examine the pathways by which children's physical health status, environmental, family, and child factors affect children's academic performance and prosocial behaviour, using a theoretically-based and empirically-based model of competence development. The model proposes that 3 types of relational processes,…
ERIC Educational Resources Information Center
McCaughtry, Nate
2006-01-01
Background: As the conversation regarding gender and physical education has evolved, a great many suggestions have been offered that reflect ways of designing more gender sensitive environments. The problem now turns the transformation of theoretical suggestions into real change in the practices of schools. Purpose: The purpose of this study was…
ERIC Educational Resources Information Center
Audette, Jennifer Gail
2011-01-01
Purpose: International service-learning (ISL) is popular in higher education, and many physical therapy educational programs are adding ISL opportunities to their curricula because doing so aligns with student interest and the increasingly global nature of the profession. The faculty leading these experiences have not been studied. Nearly all…
ERIC Educational Resources Information Center
Thorpe, Holly
2014-01-01
In this paper I call for "new forms of thinking and new ways of theorizing" the complex relations between the biological and social in sport and physical culture. I illustrate the inseparability of our biological and social bodies in sport and physical culture via the case of exercise and female reproductive hormones. Inspired by…
Moving Souls: History Offers Insights into Physical Activity that Go beyond Fitness and Fun
ERIC Educational Resources Information Center
Sydnor, Synthia
2005-01-01
This article looks at four theoretical themes that scholars insist on when studying history. The themes--social memory, liminality, community, and critique--may be useful in stimulating the direction, planning, and practice of physical activity in young adults. These particular themes were chosen because they seem to match some of the…
Investigations into the Power MOSFET SEGR Phenomenon and its Physical Mechanism
NASA Technical Reports Server (NTRS)
Swift, G. M.; Edmonds, L. E.; Miyahira, T.; Nichols, D. K.; Johnston, A. H.
1997-01-01
The state of understanding of the destructive SEGR event in power MOSFETs is relatively mature with large published efforts, both experimental and theoretical. However, gasps remain in the uderstanding of the phenomenon, including unexplained anomalies, emperical-only dependencies on some important device and incident ion physical parameters, and limited insight into latent effets.
The role of mathematics for physics teaching and understanding
NASA Astrophysics Data System (ADS)
Pospiech, Gesche; Eylon, BatSheva; Bagno, Esther; Lehavi, Yaron; Geyer, Marie-Annette
2016-05-01
-1That mathematics is the "language of physics" implies that both areas are deeply interconnected, such that often no separation between "pure" mathematics and "pure" physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers' background and experiences. The results fit well into the derived model of PCK.
Abdi, Jalal; Eftekhar, Hassan; Mahmoodi, Mahmood; Shojayzadeh, Davood; Sadeghi, Roya
2015-02-24
Physical inactivity is the fourth leading risk factor for death worldwide. Given the key role of employees as valuable human resources and increasing sedentary life style among them, the aim of this study was to evaluate physical activity status and position of governmental employees in changing stage based on the Trans-Theoretical Model (TTM) in Hamadan, Iran, in 2014.This descriptive-analytical study was performed on 1200 government employees selected using proportional stratified random sampling. Data collection was performed using a three-section questionnaire containing demographic characteristics, SQUASH (Short questionnaire to assess health-enhancing physical activity) questionnaire and Marcus et al's five-part algoritm. Data were analyzed by multiple linear and logistic regression, Chi-square, T-test and ANOVA using SPSS-20. The mean age of the participants was 38.12±8.04 years. About a half of the employees were in the preparatory stage of TTM.49.2% and 50.8% of the sample were classified as active and inactive, respectively .Associations between physical activity status and exercise stage of change were found. The associations between exercise stage of change and age, sex, work experience, education and marital status were significant (p<0.05). Work experience and education were strongly predictors of physical activity (PA) status and accounted for 31.2% of variance in PA (adjusted R2=0.312, R2 change=0.01). The results of this study showed that TTM was useful to evaluate and predict physical activity behavior among the Iranian governmental employees and can be utilized by health planners to inform appropriate intervention strategies, specifically in work place.
Structure and structure-preserving algorithms for plasma physics
NASA Astrophysics Data System (ADS)
Morrison, P. J.
2016-10-01
Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.
NASA Astrophysics Data System (ADS)
Bigi, I. I.
2008-12-01
D oscillations, for which the B factories have found strong evidence, provide a new stage for our search for New Physics in heavy flavour dynamics. While the theoretical verdict on the observed values of x and y is ambiguous - they could be fully generated by SM dynamics, yet could contain also a sizable contribution from New Physics - such oscillations can enhance the observability of CP violation driven by New Physics. After emphasizing the unique role of charm among up-type quarks, I sketch the CP phenomenology for partial widths and final state distributions.
Solar Physics - Plasma Physics Workshop
NASA Technical Reports Server (NTRS)
Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.
1974-01-01
A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.
Searching for Physics Beyond the Standard Model and Beyond
NASA Astrophysics Data System (ADS)
Abdullah, Mohammad
The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.
Synthesis of discipline-based education research in physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Mestre, José P.
2014-12-01
This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1) conceptual understanding, (2) problem solving, (3) curriculum and instruction, (4) assessment, (5) cognitive psychology, and (6) attitudes and beliefs about teaching and learning. Each topical section includes sample research questions, theoretical frameworks, common research methodologies, a summary of key findings, strengths and limitations of the research, and areas for future study. Supplemental material proposes promising future directions in physics education research.
Advanced Propulsion Physics Lab: Eagleworks Investigations
NASA Technical Reports Server (NTRS)
Scogin, Tyler
2014-01-01
Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.
Who will study HSC physics? Relationships between motivation, engagement and choice
NASA Astrophysics Data System (ADS)
Abraham, Jessy
This study investigates the relationship between students' achievement motivation, sustained engagement and sustained enrolment intentions, in relation to senior secondary physics. Specifically, this study sought to determine the motivational factors that predict students' sustained engagement and sustained enrolment intentions in four physics modules, and tested whether there were gender differences. These issues were addressed through a multi-occasional exploration among senior secondary students in New South Wales during their first year of elective physics. This study pioneered an innovative approach to exploring sustained enrolment intentions in the enacted physics curriculum, since students were asked about their enrolment plans at a time when they were actually studying physics modules, rather than before they had studied the subject, which as has been the case for most research on science enrolment. An achievement motivation theoretical framework was employed to provide a more comprehensive explanation of students' sustained physics engagement and enrolment plans. A significant feature of this exploration is the topic (module) specificity of motivation. This study, based on Expectancy-Value (EV) theoretical underpinnings, has implications for strengthening physics enrolment research, and makes a significant contribution to advancing research and practice. While the declining trend in physics enrolment and the widening gender imbalance in physics participation have been explored widely, the retention of students in physics courses remains largely unexplored. The existing research mainly focuses on the main exit point from physics education, which is the transition from a general science course to non-compulsory, more specialised science courses that takes place during the transition from junior high school to senior high school in Australia. Another major exit point from physics education is the transition from senior high school to tertiary level. However, the Australian senior high school structure, where students can opt out of physics after the first year of senior secondary physics if they do not want to continue it to the final year, provides a unique exit point from physics education. This investigation examines the sustained enrolment intentions of students during their senior high school, and this adds an innovative variation to the enrolment research tradition. It further makes an original contribution to educational theory by fine-grained analysis of the retention motivations of physics students while they are studying the subject. The purpose of the study is to contribute to theory, practice and research knowledge of students' sustained engagement and enrolment plans in physics. The findings of the study inform educational practitioners and policy makers. A reliable, valid and gender invariant scale to measure the motivational and behavioural patterns of adolescent students across four physics modules was developed and tested specifically for this study. This provides researchers and educational practitioners with a sensitive measuring instrument of physics enrolment motivation. Furthermore, this study extends the current understanding of gender differences in major achievement motivational constructs and engagement constructs in relation to physics. Findings from this research hold important implications for understanding the motivational factors that affect student engagement, and also for educational practice and research relating to students' enrolment in physics.
Lightning Talks 2015: Theoretical Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack S.
2015-11-25
This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.
Moment of Inertia of a Ping-Pong Ball
ERIC Educational Resources Information Center
Cao, Xian-Sheng
2012-01-01
This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.
Kerner, Matthew S; Kurrant, Anthony B
2003-12-01
This study was designed to test the efficacy of the theory of planned behavior in predicting intention to engage in leisure-time physical activity and leisure-time physical activity behavior of high school girls. Rating scales were used for assessing attitude to leisure-time physical activity, subjective norm, perceived control, and intention to engage in leisure-time physical activity among 129 ninth through twelfth graders. Leisure-time physical activity was obtained from 3-wk. diaries. The first hierarchical multiple regression indicated that perceived control added (R2 change = .033) to the contributions of attitude to leisure-time physical activity and subjective norm in accounting for 50.7% of the total variance of intention to engage in leisure-time physical activity. The second regression analysis indicated that almost 10% of the variance of leisure-time physical activity was explicated by intention to engage in leisure-time physical activity and perceived control, with perceived control contributing 6.4%. From both academic and theoretical standpoints, our findings support the theory of planned behavior, although quantitatively the variance of leisure-time physical activity was not well-accounted for. In addition, considering the small percentage increase in variance explained by the addition of perceived control explaining variance of intention to engage in leisure-time physical activity, the pragmatism of implementing the measure of perceived control is questionable for this population.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, W. T.
1985-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, B.
1986-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Theoretical Problems in High Resolution Solar Physics, 2
NASA Technical Reports Server (NTRS)
Athay, G. (Editor); Spicer, D. S. (Editor)
1987-01-01
The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.
ICHEP 2014 Summary: Theory Status after the First LHC Run
NASA Astrophysics Data System (ADS)
Pich, Antonio
2016-04-01
A brief overview of the main highlights discussed at ICHEP 2014 is presented. The experimental data confirm that the scalar boson discovered at the LHC couples to other particles as predicted in the Standard Model. This constitutes a great success of the present theoretical paradigm, which has been confirmed as the correct description at the electroweak scale. At the same time, the negative searches for signals of new phenomena tightly constrain many new-physics scenarios, challenging previous theoretical wisdom and opening new perspectives in fundamental physics. Fresh ideas are needed to face the many pending questions unanswered within the Standard Model framework.
NASA Astrophysics Data System (ADS)
Hirsch, J. E.
2007-07-01
When a magnetic field is turned on, a superconducting body acquires an angular momentum in direction opposite to the applied field. This gyromagnetic effect has been established experimentally and is understood theoretically. However, the corresponding situation when a superconductor is cooled in a pre-existent field has not been examined. We argue that the conventional theory of superconductivity does not provide a prediction for the outcome of that experiment that does not violate fundamental laws of physics, either Lenz's law or conservation of angular momentum. The theory of hole superconductivity predicts an outcome of this experiment consistent with the laws of physics.
Theoretical aspects of antimatter and gravity.
Blas, Diego
2018-03-28
In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
Psychosocial factors and theory in physical activity studies in minorities.
Mama, Scherezade K; McNeill, Lorna H; McCurdy, Sheryl A; Evans, Alexandra E; Diamond, Pamela M; Adamus-Leach, Heather J; Lee, Rebecca E
2015-01-01
To summarize the effectiveness of interventions targeting psychosocial factors to increase physical activity (PA) among ethnic minority adults and explore theory use in PA interventions. Studies (N = 11) were identified through a systematic review and targeted African American/Hispanic adults, specific psychosocial factors, and PA. Data were extracted using a standard code sheet and the Theory Coding Scheme. Social support was the most common psychosocial factor reported, followed by motivational readiness, and self-efficacy, as being associated with increased PA. Only 7 studies explicitly reported using a theoretical framework. Future efforts should explore theory use in PA interventions and how integration of theoretical constructs, including psychosocial factors, increases PA.
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2013-04-01
Critical analysis of the standard foundations of differential and integral calculus -- as mathematical formalism of theoretical physics -- is proposed. Methodological basis of the analysis is the unity of formal logic and rational dialectics. It is shown that: (a) the foundations (i.e. d 1ptyd,;=;δ,;->;0,;δ,δ,, δ,;->;0;δ,δ,;=;δ,;->;0;f,( x;+;δ, );-;f,( x )δ,;, d,;=;δ,, d,;=;δ, where y;=;f,( x ) is a continuous function of one argument x; δ, and δ, are increments; d, and d, are differentials) not satisfy formal logic law -- the law of identity; (b) the infinitesimal quantities d,, d, are fictitious quantities. They have neither algebraic meaning, nor geometrical meaning because these quantities do not take numerical values and, therefore, have no a quantitative measure; (c) expressions of the kind x;+;d, are erroneous because x (i.e. finite quantity) and d, (i.e. infinitely diminished quantity) have different sense, different qualitative determinacy; since x;,;,,,,onst under δ,;,;,, a derivative does not contain variable quantity x and depends only on constant c. Consequently, the standard concepts ``infinitesimal quantity (uninterruptedly diminishing quantity)'', ``derivative'', ``derivative as function of variable quantity'' represent incorrect basis of mathematics and theoretical physics.
Baillie, Colin P.T.; Galaviz, Karla; Jarvis, Jocelyn W.; Latimer-Cheung, Amy E.
2015-01-01
Background: Physical activity can aid people with multiple sclerosis (MS) in managing symptoms and maintaining functional abilities. The Internet is a preferred source of physical activity information for people with MS and, therefore, a method for the dissemination of behavior change techniques. The purpose of this study was to examine the coverage and quality of physical activity behavior change techniques delivered on the Internet for adults with MS using Abraham and Michie's taxonomy of behavior change techniques. Methods: Using the taxonomy, 20 websites were coded for quality (ie, accuracy of information) and coverage (ie, completeness of information) of theoretical behavior change techniques. Results: Results indicated that most websites covered a mean of 8.05 (SD 3.86, range 3–16) techniques out of a possible 20. Only one of the techniques, provide information on behavior–health link and consequences, was delivered on all websites. The websites demonstrated low mean coverage and quality across all behavior change techniques, with means of 0.64 (SD 0.67) and 0.62 (SD 0.37) on a scale of 0 to 2, respectively. However, coverage and quality improved when websites were examined solely for the techniques that they covered, as opposed to all 20 techniques. Conclusions: This study, which examined quality and coverage of physical activity behavior change techniques described online for people with MS, illustrated that the dissemination of these techniques requires improvement. PMID:25892979
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
2009 Mineral and Rock Physics Graduate Research Award to Yu and Austin
NASA Astrophysics Data System (ADS)
2010-04-01
Yonggang Yu and Nicholas J. Austin have been awarded the Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Yu's thesis is entitled “Structure properties and phase transitions in earth minerals: A first principles study.” Austin's thesis is entitled “Grain size evolution and strain localization in deformed marbles.” They were both formally presented with the award at the Mineral and Rock Physics focus group reception during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif.
ERIC Educational Resources Information Center
Ornek, Funda
2008-01-01
One or more theoretical frameworks or orientations are used in qualitative education research. In this paper, the main tenets, the background and the appropriateness of phenomenography, which is one of the theoretical frameworks used in qualitative research, will be depicted. Further, the differences among phenomenography, phenomenology and…
NASA Astrophysics Data System (ADS)
Schiff, Dominique
I would like to write a few words, in memory of Volodya, for the occasion of this workshop which is organized under his name and will start by publicly remembering his essential presence in our theoretical physics world. We had in Orsay (LPT, theoretical physics laboratory) the incredible luck to meet him in 1992 for the first time when we could finally invite this famous and celebrated figure of modern particle physics. He gave a series of lectures this year: Orsay lectures on confinement-in which he mainly developed the picture of confinement based on light quarks that led to many discussions which contributed to open the road of the search actually still going on...The way he was giving his talks nobody will forget. He always started by describing the field he would talk about in a very passionate and extraordinary way: he would say: "I have a picture" which would force even the most far away spectators to participate in an actively engaged vision of the problem he was talking about. He was building with enthusiasm the theoretical image which led to the result he wanted to show. He will remain in our memory as a rare model of intellectual passion. This led him to formulate in a unique way precious theoretical results. Thank you Volodya... Note from Publisher: This article contains the abstract only.
The National Cancer Institute's Physical Sciences - Oncology Network
NASA Astrophysics Data System (ADS)
Espey, Michael Graham
In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.
NASA Astrophysics Data System (ADS)
2014-02-01
On 5 - 6 June 2013, an extended session of the all-institute seminar was held at the Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics' (ITEP). It was devoted to the 100th anniversary of the birth of Academician Isaak Yakovlevich Pomeranchuk, the founder of the Theory Department of ITEP. The announced agenda of the session on the ITEP website http://www.itep.ru/rus/Pomeranchuk100.html contained the following reports: (1) Gershtein S S (SRC 'Institute for High Energy Physics', Protvino, Moscow region) "I Ya Pomeranchuk and the large accelerator";(2) Keldysh L V (Lebedev Physical Institute, RAS (FIAN), Moscow) "Dynamic tunneling";(3) Vaks V G (National Research Centre 'Kurchatov Institute' (NRC KI), Moscow) "Brief reminiscences";(4) Smilga A V (Laboratoire Physique Subatomique et des technologies associées, Université de Nantes, France) "Vacuum structure in 3D supersymmetric gauge theories";(5) Khriplovich I B (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Gravitational four-fermion interaction and early Universe dynamics";(6) Dremin I M (FIAN, Moscow) "Elastic scattering of hadrons";(7) Belavin A A (Landau Institute of Theoretical Physics, RAS, Moscow) "Correlators in minimal string models";(8) Voloshin M B (Theoretical Physics Institute, University of Minnesota, USA) "Exotic quarkonium";(9) Nekrasov N A (Institut des hautes études scientifiques (IHES), France) "BPS/CFT correspondence";(10) Zarembo K (Uppsala Universitet, Sweden) "Exact results in supersymmetric theories and AdS/CFT correspondence";(11) Gorsky A S (ITEP, Moscow) "Baryon as a dyon instanton";(12) Blinnikov S I (ITEP, Moscow) "Mirror substance and other models for dark matter";(13) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Test-tube Universe";(14) Kancheli O V (ITEP, Moscow) "50 years of reggistics";(15) Shevchenko V I (NRC KI) "In search of the chiral magnetic effect";(16) Kirilin V P (ITEP, Moscow) "Anomalies and long-range action";(17) Narozhny N B (National Research Nuclear University 'MEPhI', Moscow) "Superpower lasers as instruments for studying the properties of vacuum";(18) Kerbikov B O (ITEP, Moscow) "Hadrons in strong magnetic fields";(19) Neznamov V P, Safronov I I (Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), Sarov, Nizhny Novgorod region) "A new method for solving the 'Z > 137' problem and determining hydrogen-like energy levels";(20) Vysotsky M I, Godunov S I (ITEP, Moscow) "Critical charge in a superstrong magnetic field";(21) Dolgov A D (Universitè degli Studi di Ferrara, Italy) "Cosmology: from Pomeranchuk to the present day".Papers written around the reports Nos 4, 5, 11, 12, 19 - 21 are published below. The content of report 6 in an extended form is reflected in I M Dremin's 2013 review of the same title published in Phys. Usp. 56 3 (2013). An extended version of report 13 is published in the present issue of Phys. Usp. 57 128 (2014). • Vacuum structure in 3D supersymmetric gauge theories, A V Smilga Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 155-166 • Gravitational four-fermion interaction in the early Universe, A S Rudenko, I B Khriplovich Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 167-170 • Limit cycles in renormalization group dynamics, K M Bulycheva, A S Gorsky Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 171-182 • Mirror matter and other dark matter models, S I Blinnikov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 183-188 • New method for solving the Z>137 problem and determining hydrogen-like energy levels, V P Neznamov, I I Safronov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 189-193 • Critical charge in a superstrong magnetic field, M I Vysotskii, S I Godunov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 194-198 • Cosmology: from Pomeranchuk to the present day, A D Dolgov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 199-208
Marine Renewable Energy: Resource Characterization and Physical Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Copping, Andrea E.
This complete reference to marine renewable energy covers aspects of resource characterization and physical effects of harvesting the ocean’s vast and powerful resources—from wave and tidal stream to ocean current energy. Experts in each of these areas contribute their insights to provide a cohesive overview of the marine renewable energy spectrum based on theoretical, numerical modeling, and field-measurement approaches.
ERIC Educational Resources Information Center
Reveles, John M.
2009-01-01
This paper provides a review of research that examines the development and expression of agency in and through high-school physics. The interchange offers realizations and questions brought to mind by the reading of the research and provides written comments connected to specific sections of the paper germane to my own theoretical perspective.…
Protection motivation theory: is this a worthwhile theory for physical activity promotion?
Plotnikoff, Ronald C; Trinh, Linda
2010-04-01
This article reviews the published studies in the physical activity domain, which include novel hypothesis from our laboratory, that have tested Rogers' Protection Motivation Theory. Across the various population groups, the theory's coping appraisal is generally supported; however, there is limited support for the theory's threat components. Implications of these findings are discussed from both theoretical and practical perspectives.
ERIC Educational Resources Information Center
Tse, C. Y. Andy; Pang, C. L.; Lee, Paul H.
2018-01-01
Considerable evidence has shown that physical exercise could be an effective treatment in reducing stereotypical autism spectrum disorder (ASD) behaviors in children. The present study seeks to examine the underlying mechanism by considering the theoretical operant nature of stereotypy. Children with ASD (n = 30) who exhibited hand-flapping and…
ERIC Educational Resources Information Center
Stolz, Steven; Pill, Shane
2014-01-01
Over 30 years ago the original teaching games for understanding (TGfU) proposition was published in a special edition of the Bulletin of Physical Education (Bunker and Thorpe, 1982). In that time TGfU has attracted significant attention from a theoretical and pedagogical perspective as an improved approach to games and sport teaching in physical…
ERIC Educational Resources Information Center
Carnus, Marie-France
2012-01-01
Background: My theoretical background draws on physical education (PE) clinical didactics. It questions the specific nature of this academic subject matter, how it is transmitted and how it is internalized considering teachers' individuality. I intend to describe and understand how newly qualified and experienced PE teachers interact with their…
Teaching Virtue through Physical Education: Some Comments and Reflections
ERIC Educational Resources Information Center
Jones, Carwyn
2008-01-01
In this paper I explore a number of important implications for a moral pedagogy through sport and physical education. In order to do so, I first reiterate the credentials of a virtue theoretical approach to moral action and moral agency and reinforce the claim that the philosophy and psychology of virtue are best suited to provide the firm ground…
Having Fun with Dumpling Skin: Material Physics Made Alive in the Kitchen
ERIC Educational Resources Information Center
Dewanto, Andreas; Hea, Roland Su Jong
2009-01-01
We report a school project which equips students with both theoretical and practical knowledge in material physics. We construct dumpling skins from a mixture of flour and water. A series of experiments is then conducted to quantify the toughness, hardness, and tensile strength of the skins, and how they are affected by adding other materials into…
Portent of Heine's Reciprocal Square Root Identity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohl, H W
Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.
ERIC Educational Resources Information Center
Cury, Francois; Biddle, Stuart; Famose, Jean-Pierre; Goudas, Marios; Sarrazin, Philippe; Durand, Marc
1996-01-01
Presents the results of a study that assessed the influence of individual and contextual factors on adolescent girls' interest in school physical education. Suggests that classroom environment is more important than individual goals in influencing pupil interest. Results are discussed in the context of theoretical propositions of goal perspectives…
ERIC Educational Resources Information Center
Gao, Zan; Lee, Amelia M.; Harrison, Louis, Jr.
2008-01-01
In this article, the roles of individuals' expectancy beliefs and incentives (i.e., task value, outcome expectancy) in sport and physical education are examined from expectancy-value model and self-efficacy theory perspectives. Overviews of the two theoretical frameworks and the conceptual and measurement issues are provided, followed by a review…
ARGOS/EUVIP Data Development and Utilization
2001-09-30
ARGOS/EUVIP Data Development and Utilization Everette Joseph Department of Physics and Astronomy Howard University 2355 Sixth Street NW...NOAA (formerly of NRL) will collaborate on the theoretical issues. Students at both Howard University and Embry-Riddle 1 Report Documentation Page...ADDRESS(ES) Department of Physics and Astronomy,, Howard University ,2355 Sixth Street NW,,Washington,,DC, 20059 8. PERFORMING ORGANIZATION REPORT NUMBER 9
ERIC Educational Resources Information Center
Wang, Lijuan; Wang, Min; Wen, Hongwei
2015-01-01
This study examines the teaching behavior of physical education (PE) teachers in teaching students with special needs and the factors that determine their teaching behaviour. An extended theory of planned behaviour (TPB) was utilised as the theoretical framework. Three secondary and two high school PE teachers participated in the study. Data…
ERIC Educational Resources Information Center
Kenworthy, Amy L.; Hrivnak, George A.
2012-01-01
In this article, a hands-on experiential exercise session in a fitness center is presented as a teaching tool for management instructors to facilitate a theoretically based discussion about the connection between individuals' physical and mental states. Before discussing the components of the exercise session itself, a rationale for integrating…
What Motivates Young Adults to Talk About Physical Activity on Social Network Sites?
Zhang, Ni; Campo, Shelly; Yang, Jingzhen; Eckler, Petya; Snetselaar, Linda; Janz, Kathleen; Leary, Emily
2017-06-22
Electronic word-of-mouth on social network sites has been used successfully in marketing. In social marketing, electronic word-of-mouth about products as health behaviors has the potential to be more effective and reach more young adults than health education through traditional mass media. However, little is known about what motivates people to actively initiate electronic word-of-mouth about health behaviors on their personal pages or profiles on social network sites, thus potentially reaching all their contacts on those sites. This study filled the gap by applying a marketing theoretical model to explore the factors associated with electronic word-of-mouth on social network sites about leisure-time physical activity. A Web survey link was sent to undergraduate students at one of the Midwestern universities and 439 of them completed the survey. The average age of the 439 participants was 19 years (SD=1 year, range: 18-24). Results suggested that emotional engagement with leisure-time physical activity (ie, affective involvement in leisure-time physical activity) predicted providing relevant opinions or information on social network sites. Social network site users who perceived stronger ties with all their contacts were more likely to provide and seek leisure-time physical activity opinions and information. People who provided leisure-time physical activity opinions and information were more likely to seek opinions and information, and people who forwarded information about leisure-time physical activity were more likely to chat about it. This study shed light on the application of the electronic word-of-mouth theoretical framework in promoting health behaviors. The findings can also guide the development of future social marketing interventions using social network sites to promote leisure-time physical activity. ©Ni Zhang, Shelly Campo, Jingzhen Yang, Petya Eckler, Linda Snetselaar, Kathleen Janz, Emily Leary. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.06.2017.
Model-Based Reasoning in Upper-division Lab Courses
NASA Astrophysics Data System (ADS)
Lewandowski, Heather
2015-05-01
Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.; Agostini, M.; Ky, N. Anh
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
Holism and structuralism in U(1) gauge theory
NASA Astrophysics Data System (ADS)
Lyre, Holger
After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.
A White Paper on keV sterile neutrino Dark Matter
NASA Astrophysics Data System (ADS)
Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.
2017-01-01
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
New mathematics for old physics: The case of lattice fluids
NASA Astrophysics Data System (ADS)
Barberousse, Anouk; Imbert, Cyrille
2013-08-01
We analyze the effects of the introduction of new mathematical tools on an old branch of physics by focusing on lattice fluids, which are cellular automata (CA)-based hydrodynamical models. We examine the nature of these discrete models, the type of novelty they bring about within scientific practice and the role they play in the field of fluid dynamics. We critically analyze Rohrlich's, Fox Keller's and Hughes' claims about CA-based models. We distinguish between different senses of the predicates "phenomenological" and "theoretical" for scientific models and argue that it is erroneous to conclude, as they do, that CA-based models are necessarily phenomenological in any sense of the term. We conversely claim that CA-based models of fluids, though at first sight blatantly misrepresenting fluids, are in fact conservative as far as the basic laws of statistical physics are concerned and not less theoretical than more traditional models in the field. Based on our case-study, we propose a general discussion of the prospect of CA for modeling in physics. We finally emphasize that lattice fluids are not just exotic oddities but do bring about new advantages in the investigation of fluids' behavior.
Thomson, Jessica L; Tussing-Humphreys, Lisa M; Zoellner, Jamie M; Goodman, Melissa H
2016-08-01
Evaluating an intervention's theoretical basis can inform design modifications to produce more effective interventions. Hence the present study's purpose was to determine if effects from a multicomponent lifestyle intervention were mediated by changes in the psychosocial constructs decisional balance, self-efficacy and social support. Delta Body and Soul III, conducted from August 2011 to May 2012, was a 6-month, church-based, lifestyle intervention designed to improve diet quality and increase physical activity. Primary outcomes, diet quality and aerobic and strength/flexibility physical activity, as well as psychosocial constructs, were assessed via self-report, interviewer-administered surveys at baseline and post intervention. Mediation analyses were conducted using ordinary least squares (continuous outcomes) and maximum likelihood logistic (dichotomous outcomes) regression path analysis. Churches (five intervention and three control) were recruited from four counties in the Lower Mississippi Delta region of the USA. Rural, Southern, primarily African-American adults (n 321). Based upon results from the multiple mediation models, there was no evidence that treatment (intervention v. control) indirectly influenced changes in diet quality or physical activity through its effects on decisional balance, self-efficacy and social support. However, there was evidence for direct effects of social support for exercise on physical activity and of self-efficacy for sugar-sweetened beverages on diet quality. Results do not support the hypothesis that the psychosocial constructs decisional balance, self-efficacy and social support were the theoretical mechanisms by which the Delta Body and Soul III intervention influenced changes in diet quality and physical activity.
The roots of physics students' motivations: Fear and integrity
NASA Astrophysics Data System (ADS)
Van Dusen, Ben
Too often, physics students are beset by feelings of failure and isolation rather than experiencing the creative joys of discovery that physics has to offer. This dissertation research was founded on the desire of a teacher to make physics class exciting and motivating to his students. This work explores how various aspects of learning environments interact with student motivation. This work uses qualitative and quantitative methods to explore how students are motivated to engage in physics and how they feel about themselves while engaging in physics. The collection of four studies in this dissertation culminates in a sociocultural perspective on motivation and identity. This perspective uses two extremes of how students experience physics as a lens for understanding motivation: fear and self-preservation versus integrity and self-expression. Rather than viewing motivation as a property of the student, or viewing students as inherently interested or disinterested in physics, the theoretical perspective on motivation and identity helps examine features of the learning environments that determine how students' experience themselves through physics class. This perspective highlights the importance of feeling a sense of belonging in the context of physics and the power that teachers have in shaping students' motivation through the construction of their classroom learning environments. Findings demonstrate how different ways that students experience themselves in physics class impact their performance and interest in physics. This dissertation concludes with a set of design principles that can foster integration and integrity among students in physics learning environments.
Lee, Ling-Ling; Kuo, Yu-Chi; Fanaw, Dilw; Perng, Shoa-Jen; Juang, Ian-Fei
2012-04-01
To study the effect of an intervention combining self-efficacy theory and pedometers on promoting physical activity among adolescents. The beneficial effects of regular physical activity on health in youths are well-documented. However, adolescence is found to be the age of greatest decline in physical activity participation. Physical activity participation among girls was generally less frequent and less intense than boys. Therefore, there is a strong need for effective interventions that can help promote physical activity in this population. An experimental design. Two classes of female junior college students (mean age = 16) were randomly sampled from a total of four classes and, of those, one each was randomly assigned to either the intervention (n = 46) or the control group (n = 48). Self-efficacy was used as a core theoretical foundation of the intervention design, and pedometers were provided to the students in the intervention group. Distances between each domestic scenic spot were illustrated graphically in a walking log for students to mark the extent of their walking or running. Students in the control group participated in a usual physical education programme. The primary outcome was a change in the number of aerobic steps. The secondary outcomes were changes in cardiopulmonary endurance and exercise self-efficacy. At 12-week follow-up, the mean change in aerobic steps was 371 steps and 108 steps in the intervention and control group, respectively. The difference in mean change between the two groups was 467 steps. Effects of the intervention on changes of cardiopulmonary endurance and perceived exercise self-efficacy scores were not found. Among adolescent girls, a 12-week intervention designed on the theoretical foundation of self-efficacy theory and provision of pedometers was found to have an effect on increasing their physical activity. The intervention, using graphs of domestic scenic spots to represent the distance of walking or running as monitored by pedometers, might enhance motivation regarding physical activity. It is important for health professionals, including school health nurses, involved in the care of adolescent health, to design and provide a physical activity intervention combining self-efficacy theory and provision of pedometer to promote physical activity. © 2011 Blackwell Publishing Ltd.
Thermoacoustics of solids: A pathway to solid state engines and refrigerators
NASA Astrophysics Data System (ADS)
Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio
2018-01-01
Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.
Physics Without Physics. The Power of Information-theoretical Principles
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2017-01-01
David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called "relativistic regime" of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.
PREFACE: The 5th International Symposium on Quantum Theory and Symmetries (QTS5)
NASA Astrophysics Data System (ADS)
Gadella, M.; Izquierdo, J. M.; Kuru, S.; Negro, J.; del Olmo, M. A.
2008-08-01
This special issue of Journal of Physics A: Mathematical and Theoretical appears on the occasion of the 5th International Symposium on Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, from 22-28 July 2007. This is the fith in a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3; and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields of theoretical physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in theoretical physics, as a way of making accessible recent results and the new lines of different fields. This is based on the feeling that it is good for a physicist to have a general overview as well as expertise in his/her own field. There are many other conferences devoted to specific topics, which are of interest to gain deeper insight in many technical aspects and that are quite suitable for discussions due to their small size. However, we believe that general conferences like this are interesting and worth keeping. We like the talks, in both plenary and parallel sessions, which are devoted to specific topics, to be prepared so as to be accessible to any researcher in any branch of theoretical physics. We think that this objective is compatible with rigour and high standards. As is well known, similar methods and techniques can be useful for many problems in different fields. We hope that this has been appreciated during the sessions of the QTS5 conference. The QTS5 conference offered the following list of topics: 1. Symmetries in string theory, quantum gravity and related topics 2. Symmetries in quantum field theories, conformal and related field theories, lattice and noncommutative theories, gauge theories 3.Quantum computing, information and control 4. Foundations of quantum theory 5. Quantum optics, coherent states, Wigner functions 6. Dynamical and integrable systems 7. Symmetries in condensed matter and statistical physics 8. Symmetries in particle physics, nuclear, atomic and molecular physics 9. Nonlinear quantum mechanics 10. Time asymmetric quantum mechanics 11. SUSY quantum mechanics, PT symmetries and pseudo-Hamiltonians 12. Mathematical methods for symmetries and quantum theories 13. Symmetries in chemistry, biology and other sciences Papers accepted for publication in this issue aim to provide a survey of the state of the art in different fields and contain contributions from plenary speakers. In addition, the issue contains contributions from other participants and it has also been open to other authors whose work fits into the topics of the conference. In any case, all the contributions have been refereed according to the high standards of Journal of Physics A: Mathematical and Theoretical. We are much indebted to several institutions; without their support the organization of the QTS5 symposium would not have been possible. In this respect we acknowledge the Ministerio de Educación of Spain and Junta de Castilla y León for general financial support; to Fundación Universidades de Castilla y León for a number of grants to young researchers who otherwise would not have attended the conference; also to the European Physical Society that provided a number of grants for eastern countries, and to the University of Valladolid where the event took place. We thank IOP Publishing and the staff of Journal of Physics A: Mathematical and Theoretical for the publication of this special issue. In addition, we want to express our gratitude to other members of the Local Organizing Committe of QTS5, who are not Editors of this special issue: Oscar Arratia, Juan A Calzada and Fernando Gómez. Finally, we would like to thank all the participants in the QTS5 conference for their presence, contributions, and for the good atmosphere achieved during their stay. We hope that the experience of spending these days in Valladolid has been most fruitful for all of them.
Theory of atomic spectral emission intensity
NASA Astrophysics Data System (ADS)
Yngström, Sten
1994-07-01
The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
If you have a computer and a grasp of algebra, you can learn physics. That is one of the messages behind the release of Physics—The Root Science, a new full-text version of a physics textbook available at no cost on the World Wide Web.The interactive textbook is the work of the International Institute of Theoretical and Applied Physics (IITAP) at Iowa State University, which was established in 1993 as a partnership with the United Nations Education, Scientific, and Cultural Organization (UNESCO). With subject matter equivalent to that of a 400-page volume, the text is designed to be completed in one school year. The textbook also will eventually include video clips of experiments and interactive learning modules, as well as links to appropriate cross-references about fundamental principles of physics.
Wrosch, Carsten; Dunne, Erin; Scheier, Michael F; Schulz, Richard
2006-06-01
This article addresses the role played by adaptive self-regulation in protecting older adults' psychological and physical health. A theoretical model is outlined illustrating how common age-related challenges (i.e., physical challenges and life regrets) can influence older adults' health. In addition, the proposed model suggests that older adults can avoid the adverse health effects of encountering these problems if they engage in adaptive self-regulation. Finally, this article reviews recent studies that examined the adaptive value of self-regulation processes for managing physical challenges and life regrets in the elderly. The findings from cross-sectional, longitudinal, and experimental studies document the importance of adaptive self-regulation for maintaining older adults' health.
XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin
2017-01-01
The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.
Transversality of electromagnetic waves in the calculus-based introductory physics course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Li, Chunxiao; Wang, Lijuan; Block, Martin E; Sum, Raymond K W; Wu, Yandan
2018-04-01
Teachers' self-efficacy is a critical predictor for successful inclusive physical education. However, little is known about preservice physical educators' self-efficacy toward teaching students with autism spectrum disorders in China. A sound instrument is necessary to measure their self-efficacy level. This validation study examined the psychometric properties of the Chinese version of the Physical Educators' Self-Efficacy Toward Including Students with Disabilities-Autism. A multisection survey form was administered to preservice physical educators in Mainland China (n = 205) and Hong Kong (n = 227). The results of confirmatory factor analysis confirmed the one-factor model of the scale in the total sample and each of the two samples. Invariance tests across the two samples supported configural and metric invariance but not scalar invariance. The scale scores showed good internal reliability and were correlated with theoretically relevant constructs (i.e., burnout and life satisfaction) in the total sample and subsamples. These findings generally support the utility of the scale for use among Chinese preservice physical educators.
Colloquium: Physics of the Riemann hypothesis
NASA Astrophysics Data System (ADS)
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
NASA Astrophysics Data System (ADS)
Tanabashi, M.
Shoichi Sakata and his Nagoya School made a lot of important achievements at the predawn of the particle physics revolution. The ``two-meson'' theory (introduction of the second generation leptons), the ``C-meson theory'' (a theory which inspired Tomonaga's renormalization theory), the ``Sakata model'' (a precursor to the quark model), and the ``Maki-Nakagawa-Sakata'' theory on the neutrino mixings are among them. These outputs are now regarded as essential ingredients in modern particle physics. Sakata also took his leadership in setting up democratic administration system in his theoretical particle physics group (E-ken). It was this democratic atmosphere in which many excellent physicists were brought up as Sakata's diciples. In this talk, I introduce Sakata and his achievements in physics, showing various materials archived in the Sakata Memorial Archival Library (SMAL), an archival repository of primary material showing Sakata's activities. These SMAL documents vividly show Sakata's way of thinking in his approach to the new physics.
Cahill, Abigail E; Juman, Alia Rehana; Pellman-Isaacs, Aaron; Bruno, William T
2015-12-01
The protandrous marine snail Crepidula fornicata has been a theoretical and empirical model for studies of sex change for many decades. We investigated the social conditions under which sex change occurs in this species by manipulating physical and chemical contact with conspecifics. Male snails were either in physical and chemical contact with females or in chemical contact with, but physically isolated from, females. Males were tested both with living females and with empty, sterilized shells. Males that were physically touching a living female were less likely to change sex than the isolated controls, while males in chemical (but not physical) contact with females changed sex no slower than the isolated controls. These results provide experimental evidence that the factor controlling sex change in C. fornicata is due to a contact-borne inhibitor associated with female conspecifics. These findings serve as a basis for future studies of sex change in this model system. © 2015 Marine Biological Laboratory.
Problematic Drinking, Impulsivity, and Physical IPV Perpetration: A Dyadic Analysis
Leone, Ruschelle M.; Crane, Cory A.; Parrott, Dominic J.; Eckhardt, Christopher I.
2016-01-01
Alcohol use and impulsivity are two known risk factors for intimate partner violence (IPV). The current study examined the independent and interactive effects of problematic drinking and five facets of impulsivity (i.e., negative urgency, positive urgency, sensation seeking, lack of premeditation, and lack of perseverance) on perpetration of physical IPV within a dyadic framework. Participants were 289 heavy drinking heterosexual couples (total N = 578) with a recent history of psychological and/or physical IPV recruited from two metropolitan U.S. cities. Parallel multilevel Actor Partner Interdependence Models were utilized and demonstrated Actor problematic drinking, negative urgency, and lack of perseverance were associated with physical IPV. Findings also revealed associations between Partner problematic drinking and physical IPV as well as significant Partner Problematic Drinking x Actor Impulsivity (Negative Urgency and Positive Urgency) interaction effects on physical IPV. Findings highlight the importance of examining IPV within a dyadic framework and are interpreted using the I3 meta-theoretical model. PMID:26828640
Ullrich-French, Sarah; Cox, Anne
2009-06-01
According to self-determination theory, motivation is multidimensional, with motivation regulations lying along a continuum of self-determination (Ryan & Deci, 2007). Accounting for the different types of motivation in physical activity research presents a challenge. This study used cluster analysis to identify motivation regulation profiles and examined their utility by testing profile differences in relative levels of self-determination (i.e., self-determination index), and theoretical antecedents (i.e., competence, autonomy, relatedness) and consequences (i.e., enjoyment, worry, effort, value, physical activity) of physical education motivation. Students (N= 386) in 6th- through 8th-grade physical education classes completed questionnaires of the variables listed above. Five profiles emerged, including average (n = 81), motivated (n = 82), self-determined (n = 91), low motivation (n = 73), and external (n = 59). Group difference analyses showed that students with greater levels of self-determined forms of motivation, regardless of non-self-determined motivation levels, reported the most adaptive physical education experiences.
Nuclear Physics in High School: what are the previous knowledge?
NASA Astrophysics Data System (ADS)
Pombo, F. de O.
2017-11-01
Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.
Laboratory for Nuclear Science. High Energy Physics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milner, Richard
High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less
Carmack Taylor, Cindy L; Demoor, Carl; Smith, Murray A; Dunn, Andrea L; Basen-Engquist, Karen; Nielsen, Ingrid; Pettaway, Curtis; Sellin, Rena; Massey, Pamela; Gritz, Ellen R
2006-10-01
Active for Life After Cancer is a randomized trial evaluating the efficacy of a 6-month group-based lifestyle physical activity program (Lifestyle) for prostate cancer patients to improve quality of life (QOL) including physical and emotional functioning compared to a group-based Educational Support Program and a Standard Care Program (no group). A total of 134 prostate cancer patients receiving continuous androgen-ablation were randomly assigned to one of the three study conditions. Results indicated no significant improvements in QOL at 6 or 12 months. Both group-based programs were positively received and yielded good attendance and retention. Lifestyle participants demonstrated significant improvements in most theoretical mediators proposed by the Transtheoretical Model and Social Cognitive Theory to affect physical activity. Despite these improvements, no significant changes were found for most physical activity measures. Results suggest a lifestyle program focusing on cognitive-behavioral skills training alone is insufficient for promoting routine physical activity in these patients.
[Reflections on physical spaces and mental spaces].
Chen, Hung-Yi
2013-08-01
This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.
Trauma and Victimization: A Model of Psychological Adaptation.
ERIC Educational Resources Information Center
McCann, I. Lisa; And Others
1988-01-01
Synthesizes theoretical and empirical findings about psychological responses to traumatization across survivors of rape, childhood sexual or physical abuse, domestic violence, crime, disasters, and the Vietnam War. Describes five major categories of response and presents new theoretical model for understanding individual variations in victim…
Sanctions as a tactic used in partner conflicts: theoretical, operational, and preliminary findings.
Winstok, Zeev; Smadar-Dror, Ronit
2015-07-01
Partner sanction in this study is a form/tactic of violence, much like verbal and physical violence, which partners use toward each other during their conflicts. The partner sanction embodies a temporary deprivation of a mutually agreed-on right. The purpose of this study is to develop a theoretical and operational framework of sanctions partners use. The study sampled 74 heterosexual couples from the general population (148 male and female participants). The findings support the validity and reliability of the sanction measurement. Furthermore, findings indicate that the use of sanctions between partners is highly prevalent among men and women in the general population; that the more one partner uses sanctions, the more the other partner uses it; and that sanctions are strongly associated with other violent tactics partners use in their conflict (i.e., verbal and physical). Theoretical and empirical implications of the theoretical framework and the findings are discussed, including the role of sanctions in partner conflicts that escalate to severe forms of violence. © The Author(s) 2014.
PREFACE: The International Conference on Theoretical Physics `Dubna-Nano2008'
NASA Astrophysics Data System (ADS)
Osipov, V. A.; Nesterenko, V. O.; Shukrinov, Y. M.
2008-07-01
The International Conference on Theoretical Physics `Dubna-Nano2008' was held on 7-11 July 2008 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of the nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (fullerenes, nanotubes, graphene), quantum dots, electron and spin transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, bio-complexes, and applications of nanosystems. Approximately 90 scientists from 16 countries participated in the conference. The program included 48 oral talks and 40 posters. The 51 contributions are included in this proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference so successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, S Datta, A V Eletskii, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about `Dubna-Nano2008' is available at the homepage http://theor.jinr.ru/~nano08. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors
PREFACE International Conference on Theoretical Physics Dubna-Nano 2010
NASA Astrophysics Data System (ADS)
Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury
2010-11-01
The International Conference on Theoretical Physics 'Dubna-Nano2010' was held on 5-10 July 2010, at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The previous conference of this series was at Dubna in 2008. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (graphene, nanotubes, fullerenes), quantum dots, quantum transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, modelling, applications and perspectives. Approximately 120 scientists from 26 countries participated in the conference. The program included 63 oral talks and 70 posters. The 62 contributions are included in these proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference indeed successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about 'Dubna-Nano2010' is available at the homepage http://theor.jinr.ru/~nano10. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors
Report in the Energy and Intensity Frontiers, and Theoretical at Northwestern University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco, Mayda; Schmitt, Michael; deGouvea, Andre
The Northwestern (NU) Particle Physics (PP) group involved in this report is active on all the following priority areas: Energy and Intensity Frontiers. The group is lead by 2 full profs. in experimental physics (Schmitt and Velasco), 3 full profs. in theoretical physics (de Gouvea, Low and Petriello), and Heidi Schellman who is now at Oregon State. Low and Petriello hold joint appointments with the HEP Division at Argonne National Laboratory. The theoretical PP research focuses on different aspects of PP phenomenology. de Gouvea dedicates a large fraction of his research efforts to understanding the origin of neutrino masses, neutrinomore » properties and uncovering other new phenomena, and investigating connections between neutrino physics and other aspects of PP. Low works on Higgs physics as well as new theories beyond the Standard Model. Petriello pursues a research program in precision QCD and its associated collider phenomenology. The main goal of this effort is to improve the Standard Model predictions for important LHC observables in order to enable discoveries of new physics. In recent years, the emphasis on experimental PP at NU has been in collider physics. NU expands its efforts in new directions in both the Intensity and the Cosmic Frontiers (not discussed in this report). In the Intensity Frontier, Schmitt has started a new effort on Mu2e. He was accepted as a collaborator in April 2015 and is identified with important projects. In the Energy Frontier, Hahn, Schmitt and Velasco continue to have a significant impact and expanded their CMS program to include R&D for the real-time L1 tracking trigger and the high granularity calorimeter needed for the high-luminosity LHC. Hahn is supported by an independent DOE Career Award and his work will not be discussed in this document. The NU analysis effort includes searches for rare and forbidden decays of the Higgs bosons, Z boson, top quark, dark matter and other physics beyond the standard model topics. Four students completed their PhD: Kubik is now contributing to the Cosmic Frontier program, Pollack to both the Intensity and Energy Frontiers and Pozdnyakov and Odell will continue in the Energy Frontier. All our research scientists, Anastassov, Oferzynski, Lusito, and Stoynev, have found new positions. The new post-docs are Trovato from Scuola Normale de Pisa, Odell from Northwestern and Bhattacharya from Brown. Trovato is now supported by Hahn, and so is Sung, previously at MIT.« less
A grounded-theory investigation of patient education in physical therapy practice.
Rindflesch, Aaron B
2009-04-01
Patient education is a critical component of physical therapy and is used frequently in practice. Research describing the practice of patient education in physical therapy is scarce, however. Qualitative research methods can be used to describe the practice of patient education in physical therapy and to identify supportive theory. This study describes the practice of patient education grounded in data obtained from nine physical therapists in three settings: outpatient, acute care, and inpatient rehabilitation. From the data common themes are reported. From the themes, supportive theory can be identified. Results show four primary themes regarding patient education in physical therapy. First, the physical therapists in this study were not able to easily differentiate patient education from primary interventions. Second, the purpose of patient education was to empower patients toward self-management and prevention. Third, therapists used a patient-centered approach to decide upon content. Finally, each therapist used function or demonstration to assess the outcome of patient education interventions. The results of this study can be used to inform current practitioners, for future research and to identify theoretical underpinnings to support the practice of patient education in physical therapy.
Niederdeppe, Jeff; Graham, Meredith; Olson, Christine; Gay, Geri
2015-01-01
Physical and psychological changes that occur during pregnancy present a unique challenge for women’s physical activity. Using a theory-based prospective design, this study examines effects of pregnant women’s (1) physical activity cognitions (self-efficacy, outcome expectancy, and safety beliefs) and (2) online self-regulation activities (goal-setting and self-monitoring) on subsequent changes in their physical activity intentions and behavior during pregnancy and immediately postpartum. We used data from three panel surveys administered to pregnant women enrolled in a web-based intervention to promote healthy pregnancy and postpartum weight, as well as log data on their use of self-regulatory features on the intervention website. Perceived self-efficacy and perceived safety of physical activity in pregnancy enhanced subsequent intentions to be physically active. Repeated goal-setting and monitoring of those goals helped to maintain positive intentions during pregnancy, but only repeated self-monitoring transferred positive intentions into actual behavior. Theoretically, this study offers a better understanding of the roles of self-regulation activities in the processes of goal-striving. We also discuss practical implications for encouraging physical activity among pregnant and early postpartum women. PMID:26132887
Kim, Hye Kyung; Niederdeppe, Jeff; Graham, Meredith; Olson, Christine; Gay, Geri
2015-01-01
Physical and psychological changes that occur during pregnancy present a unique challenge for women's physical activity. Using a theory-based prospective design, this study examines the effects of pregnant women's (a) physical activity cognitions (self-efficacy, outcome expectancy, and safety beliefs) and (b) online self-regulation activities (goal-setting and self-monitoring) on subsequent changes in their physical activity intentions and behavior during pregnancy and immediately postpartum. The authors used data from three panel surveys administered to pregnant women enrolled in a web-based intervention to promote healthy pregnancy and postpartum weight, as well as log data on their use of self-regulatory features on the intervention website. Perceived self-efficacy and perceived safety of physical activity in pregnancy enhanced subsequent intentions to be physically active. Repeated goal-setting and monitoring of those goals helped to maintain positive intentions during pregnancy, but only repeated self-monitoring transferred positive intentions into actual behavior. Theoretically, this study offers a better understanding of the roles of self-regulation activities in the processes of goal-striving. The authors also discuss practical implications for encouraging physical activity among pregnant and early postpartum women.
Ford, Michael T; Wiggins, Bryan K
2012-07-01
Interactions between occupational-level physical hazards and cognitive ability and skill requirements were examined as predictors of injury incidence rates as reported by the U. S. Bureau of Labor Statistics. Based on ratings provided in the Occupational Information Network (O*NET) database, results across 563 occupations indicate that physical hazards at the occupational level were strongly related to injury incidence rates. Also, as expected, the physical hazard-injury rate relationship was stronger among occupations with high cognitive ability and skill requirements. In addition, there was an unexpected main effect such that occupations with high cognitive ability and skill requirements had lower injury rates even after controlling for physical hazards. The main effect of cognitive ability and skill requirements, combined with the interaction with physical hazards, resulted in unexpectedly high injury rates for low-ability and low-skill occupations with low physical hazard levels. Substantive and methodological explanations for these interactions and their theoretical and practical implications are offered. Results suggest that organizations and occupational health and safety researchers and practitioners should consider the occupational level of analysis and interactions between physical hazards and cognitive requirements in future research and practice when attempting to understand and prevent injuries.
NASA Astrophysics Data System (ADS)
Hinko, Kathleen
2016-03-01
University educators (UEs) have a long history of teaching physics not only in formal classroom settings but also in informal outreach environments. The pedagogical practices of UEs in informal physics teaching have not been widely studied, and they may provide insight into formal practices and preparation. We investigate the interactions between UEs and children in an afterschool physics program facilitated by university physics students from the University of Colorado Boulder. In this program, physics undergraduates, graduate students and post-doctoral researchers work with K-8 children on hands-on physics activities on a weekly basis over the course of a semester. We use an Activity Theoretic framework as a tool to examine situational aspects of individuals' behavior in the complex structure of the afterschool program. Using this framework, we analyze video of UE-child interactions and identify three main pedagogical modalities that UEs display during activities: Instruction, Consultation and Participation modes. These modes are characterized by certain language, physical location, and objectives that establish differences in UE-child roles and division of labor. Based on this analysis, we discuss implications for promoting pedagogical strategies through purposeful curriculum development and university educator preparation.
Physical agents used in the management of chronic pain by physical therapists.
Allen, Roger J
2006-05-01
Evidence supporting the use of specific physical agents in the management of chronic pain conditions is not definitive; it is largely incomplete and sometimes contradictory. However, the use of agents in chronic pain management programs is common. Within the broad use of physical agents, they are rarely the sole modality of treatment. A 1995 American Physical Therapy Association position statement asserts that "Without documentation which justifies the necessity of the exclusive use of physical agents/modalities, the use of physical agents/modalities, in the absence of other skilled therapeutic or educational intervention, should not be considered physical therapy". Physical agents may serve as useful adjunctive modalities of pain relief or to enhance the effectiveness of other elements in therapy geared toward resolution of movement impairments and restoration of physical function. Given that a conclusive aggregate of findings is unlikely to exist for all permutations of patient conditions, combined with interacting therapeutic modalities, an evidence-based approach to pain management is not always possible or beneficial to the patient. In the face of inconclusive evidence, a theory-based approach may help determine if the therapeutic effect ofa given physical agent has the possibility of being a useful clinical tool in the context of treating a particular patient's mechanism of pain generation. Until controlled efficacy findings are definitive, careful individual patient response monitoring of thoughtful theoretical application of adjunctive physical agents may be a prudent approach to the management of chronic pain.
Physics Needs Philosophy. Philosophy Needs Physics
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2018-05-01
Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
The centenary of solar-terrestrial physics
NASA Astrophysics Data System (ADS)
Rishbeth, H.
2001-12-01
The years 1900-1902 saw important scientific landmarks, namely Marconi's transatlantic radio experiment and theoretical ideas of Lodge and Fitzgerald about what are now known as the solar wind, magnetosphere and ionosphere. These advances built on previous ideas put forward by several European scientists. Taking the discovery of the electron in 1897 as a prerequisite for real physical understanding of solar-terrestrial phenomena, the present time is the centenary of solar-terrestrial physics. Concentrating on the years around 1900, this paper also selects landmarks from 1600 onwards that led up to that time, and some from subsequent decades.
FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papenbrock, Thomas
FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.
Preface: Special Topic on Single-Molecule Biophysics
NASA Astrophysics Data System (ADS)
Makarov, Dmitrii E.; Schuler, Benjamin
2018-03-01
Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.
Solar Flares and Coronal Physics Using P/OF as a Research Tool
NASA Technical Reports Server (NTRS)
Tandberg, E. (Editor); Wilson, R. M. (Editor); Hudson, R. M. (Editor)
1986-01-01
This NASA Conference Publication contains the proceedings of the Workshop on Solar High-Resolution Astrophysics Using the Pinhole/Occulter Facility held at NASA Marshall Space Flight Center, Alabama, on May 8 to 10, 1985. These proceedings include primarily the invited tutorial papers, extended abstracts of contributed poster papers, and summaries of subpanel (X-Ray and Coronal Physics) discussions. Both observational and theoretical results are presented. Although the emphasis of the Workshop was focused primarily on topics peculiar to solar physics, one paper is included that discusses the P/0F as a tool for X-ray astronomy.
A Hierarchical Security Architecture for Cyber-Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanyan Zhu; Tamer Basar
2011-08-01
Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.
Large-x connections of nuclear and high-energy physics
Accardi, Alberto
2013-11-20
I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1974-01-01
Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-12-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
ERIC Educational Resources Information Center
Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral
2018-01-01
The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…
Astronomers Travel in Time and Space with Light
NASA Technical Reports Server (NTRS)
Mather, John C.
2016-01-01
This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.
Having fun with dumpling skin: material physics made alive in the kitchen
NASA Astrophysics Data System (ADS)
Dewanto, Andreas; Hea, Roland Su Jong
2009-03-01
We report a school project which equips students with both theoretical and practical knowledge in material physics. We construct dumpling skins from a mixture of flour and water. A series of experiments is then conducted to quantify the toughness, hardness, and tensile strength of the skins, and how they are affected by adding other materials into the original material to form composite materials.
Academician Nikolai Nikolaevich Bogolyubov (for the 100th anniversary of his birth)
NASA Astrophysics Data System (ADS)
Martynyuk, A. A.; Mishchenko, E. F.; Samoilenko, A. M.; Sukhanov, A. D.
2009-07-01
This paper is dedicated to the memory of N. N. Bogolyubov in recognition of his towering stature in nonlinear mechanics and theoretical physics, his remarkable many-sided genius, and the originality and depth of his contribution to the world's science. The paper briefly describes Bogolyubov's achievements in nonlinear mechanics, classical statistical physics, theory of superconductivity, quantum field theory, and strong interaction theory
ERIC Educational Resources Information Center
Metzler, Michael W.; McKenzie, Thomas L.; van der Mars, Hans; Barrett-Williams, Shannon L.; Ellis, Rebecca
2013-01-01
Part 1 of this article, which appeared in the April 2013 of JOPERD, presented the theoretical foundation and evidence-based needs for a main-theme curriculum model called Health Optimizing Physical Education (HOPE) for schools. It also described eight strands that could be used to plan, implement, and assess this version of a comprehensive school…
ERIC Educational Resources Information Center
Pérez-Samaniego, Víctor; Fuentes-Miguel, Jorge; Pereira-García, Sofía; Devís-Devís, José
2016-01-01
In physical education (PE) and sports there is little theoretical and empirical knowledge about transgender people, and particularly, on how they are and can be imagined within this context. In this paper, we present and analyze a pedagogical activity based on the reading and discussion of a fictional representation of a transgender person within…
ERIC Educational Resources Information Center
Maivorsdotter, Ninitha; Lundvall, Suzanne
2009-01-01
In this article we explore aesthetic experience as an aspect of embodied learning with focus on the moving body. Our theoretical framework is mainly based on the work of John Dewey. In the first part of the article we identify our understanding of central concepts and draw some lines to their implication for physical education (PE). In the second…
ERIC Educational Resources Information Center
Eckert, Michael
2007-01-01
Hydraulics is an engineering specialty and largely neglected as a topic in physics teaching. But the history of hydraulics from the Renaissance to the Baroque, merits our attention because hydraulics was then more broadly conceived as a practical "and" theoretical science; it served as a constant bone of contention for mechanics and…
The paraphysical principles of natural philosophy
NASA Astrophysics Data System (ADS)
Beichler, James Edward
The word `paraphysics' has never been precisely defined. To establish paraphysics as a true science, the word is first defined and its scope and limits identified. The natural phenomena which are studied in paraphysics, psi phenomena, are distinguished by their common physical properties. The historical roots of paraphysics are also discussed. Paraphysics can be defined, represented by a specific body of natural phenomena and it has a historical basis. Therefore, paraphysics is a distinguishable science. It only needs a theoretical foundation. Rather than using a quantum approach, a new theory of physical reality can be based upon a field theoretical point of view. This approach dispels philosophical questions regarding the continuity/discrete debate and the wave/particle paradox. Starting from a basic Einstein-Kaluza geometrical structure and assuming a real fifth dimension, a comprehensive and complete theory emerges. The four forces of nature are unified as are the quantum and relativity. Life, mind, consciousness and psi emerge as natural consequences of the physics. The scientific concept of consciousness, ambiguous at best, has become an increasingly important factor in modern physics. No one has ever defined consciousness in an acceptable manner let alone develop a workable theory of consciousness while no viable physical theories of life and mind are even being considered even though they are prerequisites of consciousness. In the five-dimensional model, life, mind and consciousness are explained as increasingly complex `entanglements' or patterns of density variation within the single unified field. Psi is intimately connected to consciousness, giving the science of paranormal phenomena a theoretical basis in the physics of hyperspace. Psi results from different modes of consciousness interacting non-locally via the fifth dimension. Several distinct areas of future research are suggested which will lead to falsification of the theory. A new theory of the atomic nucleus is clearly indicated as is a simple theory of the predominant spiral shape of galaxies. A quantifiable theory of life is also suggested. And finally, this model strongly implies a direct correspondence between emotional states and psi phenomena which should render the existence of psi verifiable.
NASA Astrophysics Data System (ADS)
2006-01-01
WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.
When Feeling Bad Can Be Good: Mixed Emotions Benefit Physical Health Across Adulthood.
Hershfield, Hal E; Scheibe, Susanne; Sims, Tamara L; Carstensen, Laura L
2013-01-01
Traditional models of emotion-health interactions have emphasized the deleterious effects of negative emotions on physical health. More recently, researchers have turned to potential benefits of positive emotions on physical health as well. Both lines of research, though, neglect the complex interplay between positive and negative emotions and how this interplay affects physical well-being. Indeed, recent theoretical work suggests that a strategy of "taking the good with the bad" may benefit health outcomes. In the present study, the authors assessed the impact of mixed emotional experiences on health outcomes in a 10-year longitudinal experience-sampling study across the adult life span. The authors found that not only were frequent experiences of mixed emotions (co-occurrences of positive and negative emotions) strongly associated with relatively good physical health, but that increases of mixed emotions over many years attenuated typical age-related health declines.
A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham Sternlieb
2010-06-25
In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less
Mujeres en accion: design and baseline data.
Keller, Colleen; Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G
2011-10-01
The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women.
Mujeres en Accion: Design and Baseline Data
Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G.
2015-01-01
The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women. PMID:21298400