Sample records for physics-physical cosmology interface

  1. Inner space/outer space - The interface between cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David

    A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.

  2. A century of general relativity: Astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2015-03-01

    One hundred years after its birth, general relativity has become a highly successful physical theory in the sense that it has passed a large number of experimental and observational tests and finds extensive application to a wide variety of cosmic phenomena. It remains an active area of research as new tests are on the way, epitomized by the exciting prospect of detecting gravitational waves from merging black holes. General relativity is the essential foundation of the standard model of cosmology and underlies our description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. Its interface with physics on the smallest and largest scales will continue to provide fertile areas of investigation in its next century.

  3. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov Websites

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.« less

  5. COSMO 09

    ScienceCinema

    None

    2018-02-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.

  6. A century of general relativity: astrophysics and cosmology.

    PubMed

    Blandford, R D

    2015-03-06

    One hundred years after its birth, general relativity has become a highly successful physical theory in the sense that it has passed a large number of experimental and observational tests and finds extensive application to a wide variety of cosmic phenomena. It remains an active area of research as new tests are on the way, epitomized by the exciting prospect of detecting gravitational waves from merging black holes. General relativity is the essential foundation of the standard model of cosmology and underlies our description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. Its interface with physics on the smallest and largest scales will continue to provide fertile areas of investigation in its next century. Copyright © 2015, American Association for the Advancement of Science.

  7. Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.

  8. On the physical Hilbert space of loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noui, Karim; Perez, Alejandro; Vandersloot, Kevin

    2005-02-15

    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.

  9. Regularizing cosmological singularities by varying physical constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dąbrowski, Mariusz P.; Marosek, Konrad, E-mail: mpdabfz@wmf.univ.szczecin.pl, E-mail: k.marosek@wmf.univ.szczecin.pl

    2013-02-01

    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.

  10. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    DTIC Science & Technology

    2012-04-20

    Observational Cosmology , NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA 31 Enrico Fermi Institute, Department of Physics, and Kavli...Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 32 Department of Physics and Astronomy, Rutgers, the State University...Austin, TX 78712, USA 59 Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

  11. Particle Accelerators Test Cosmological Theory.

    ERIC Educational Resources Information Center

    Schramm, David N.; Steigman, Gary

    1988-01-01

    Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

  12. Addressing Beyond Standard Model physics using cosmology

    NASA Astrophysics Data System (ADS)

    Ghalsasi, Akshay

    We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.

  13. On the contributions of astroparticle physics to cosmology

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    2014-05-01

    Studying astroparticle physics sheds new light on scientific explanation and on the ways in which cosmology is empirically underdetermined or not. Astroparticle physics extends the empirical domain of cosmology from purely astronomical data to "multi-messenger astrophysics", i.e., measurements of all kinds of cosmic rays including very high energetic gamma rays, neutrinos, and charged particles. My paper investigates the ways in which these measurements contribute to cosmology and compares them with philosophical views about scientific explanation, the relation between theory and data, and scientific realism. The "standard models" of cosmology and particle physics lack of unified foundations. Both are "piecemeal physics" in Cartwright's sense, but contrary to her metaphysics of a "dappled world" the work in both fields of research aims at unification. Cosmology proceeds "top-down", from models to data and from large scale to small-scale structures of the universe. Astroparticle physics proceeds "bottom-up", from data taking to models and from subatomic particles to large-scale structures of the universe. In order to reconstruct the causal stories of cosmic rays and the nature of their sources, several pragmatic unifying strategies are employed. Standard views about scientific explanation and scientific realism do not cope with these "bottom-up" strategies and the way in which they contribute to cosmology. In addition it has to be noted that the shift to "multi-messenger astrophysics" transforms the relation between cosmological theory and astrophysical data in a mutually holistic way.

  14. The Fermi Large Area Telescope on Orbit: Event Classification, Instrument Response Functions, and Calibration

    DTIC Science & Technology

    2012-11-01

    Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics

  15. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    DTIC Science & Technology

    2012-05-02

    D-15738 Zeuthen, Germany 2W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics...and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA 3Department of Physics, Center for Cosmology and Astro...Greenbelt, Maryland 20771, USA 57Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy E. Komatsu{ Texas Cosmology Center

  16. Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    NASA Technical Reports Server (NTRS)

    Akerib, Daniel S.; Carroll, Sean M.; Kaminokowski, Marc; Ritz, Steven; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problems in astrophysics and cosmology, ripe for major advances, the resolution of which will likely require new physics.

  17. Cosmology: A research briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.

  18. Harmonizing Physics & Cosmology With Everything Else in the Universe(s)

    NASA Astrophysics Data System (ADS)

    Asija, Pal

    2006-03-01

    This paper postulates a theory of everything including our known finite physical universe within and as sub-set of an infinite virtual invisible universe occupying some of the same space and time. It attempts to harmonize astrophysics with everything else including life. It compares and contrasts properties, similarities, differences and relationships between the two universe(s). A particular attention is paid to the interface between the two and the challenges of building and/or traversing bridges between them. A number of inflection points between the two are identified. The paper also delineates their relationship to big bang, theory of evolution, gravity, dark matter, black holes, time travel, speed of light, theory of relativity and string theory just to name a few. Several new terms are introduced and defined to discuss proper relationship, transition and interface between the body, soul and spirit as well as their relationship to brain and mind. Physical bodies & beings are compared with virtual, meta and ultra bodies and beings and how the ``Virtual Inside'' relates to people, pets, plants and particles and their micro constituents as well as macro sets. The past, present, and potential of the concurrent universe(s) is compared and contrasted along with many myths and misconceptions of the meta physics as well as modern physics.

  19. The New Physics and Cosmology - Dialogues with the Dalai Lama

    NASA Astrophysics Data System (ADS)

    Zajonc, Arthur; Houshmand, Zara

    2004-03-01

    What happens when the Dalai Lama meets with leading physicists and a historian? This book is the carefully edited record of the fascinating discussions at a Mind and Life conference in which five leading physicists and a historian (David Finkelstein, George Greenstein, Piet Hut, Arthur Zajonc, Anton Zeilinger, and Tu Weiming) discussed with the Dalai Lama current thought in theoretical quantum physics, in the context of Buddhist philosophy. A contribution to the science-religion interface, and a useful explanation of our basic understanding of quantum reality, couched at a level that intelligent readers without a deep involvement in science can grasp. In the tradition of other popular books on resonances between modern quantum physics and Zen or Buddhist mystical traditions--notably The Dancing Wu Li Masters and The Tao of Physics , this book gives a clear and useful update of the genuine correspondences between these two rather disparate approaches to understanding the nature of reality.

  20. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, ourmore » opinion of the overall status of the theme area, and challenges and issues.« less

  1. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  2. Superheavy magnetic monopoles and the standard cosmology

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    1984-10-01

    The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.

  3. Astrophysics today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  4. Participation in High Energy Physics at the University of Chicago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinec, Emil J.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.

    The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenancemore » and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive involvement in electronics required for sophisticated new detectors at the LHC and are developing electronics for the LSST camera. Theoretical Physics - We are carrying out a broad program studying the fundamental forces of nature and early universe cosmology and mathematical physics. Our activities span the range from model building, formal field theory, and string theory to new paradigms for cosmology and the interface of string theory with mathematics. Our effort combines extensive development of the formal aspects of string theory with a focus on real phenomena in particle physics, cosmology and gravity.« less

  6. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  7. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  8. Cosmological history in York time: inflation and perturbations

    NASA Astrophysics Data System (ADS)

    Roser, Philipp; Valentini, Antony

    2017-02-01

    The constant mean extrinsic curvature on a spacelike slice may constitute a physically preferred time coordinate, `York time'. One line of enquiry to probe this idea is to understand processes in our cosmological history in terms of York time. Following a review of the theoretical motivations, we focus on slow-roll inflation and the freezing and Hubble re-entry of cosmological perturbations. While the physics is, of course, observationally equivalent, we show how the mathematical account of these processes is distinct from the conventional account in terms of standard cosmological or conformal time. We also consider the cosmological York-timeline more broadly and contrast it with the conventional cosmological timeline.

  9. Higgs cosmology

    NASA Astrophysics Data System (ADS)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  10. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  11. Precision Cosmology: The First Half Million Years

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-06-01

    Cosmology seeks to characterise our Universe in terms of models based on well-understood and tested physics. Today we know our Universe with a precision that once would have been unthinkable. This book develops the entire mathematical, physical and statistical framework within which this has been achieved. It tells the story of how we arrive at our profound conclusions, starting from the early twentieth century and following developments up to the latest data analysis of big astronomical datasets. It provides an enlightening description of the mathematical, physical and statistical basis for understanding and interpreting the results of key space- and ground-based data. Subjects covered include general relativity, cosmological models, the inhomogeneous Universe, physics of the cosmic background radiation, and methods and results of data analysis. Extensive online supplementary notes, exercises, teaching materials, and exercises in Python make this the perfect companion for researchers, teachers and students in physics, mathematics, and astrophysics.

  12. Standard Model Background of the Cosmological Collider.

    PubMed

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-06-30

    The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.

  13. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  14. Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab

    Science.gov Websites

    TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  15. Quantum vacuum energy in general relativity

    NASA Astrophysics Data System (ADS)

    Henke, Christian

    2018-02-01

    The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ (a)=Λ_0+Λ_1 a^{-(4-ɛ)}, 0 < ɛ ≪ 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter.

  16. Cosmological evolution of the Higgs boson's vacuum expectation value

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier

    2017-11-01

    We point out that the expansion of the universe leads to a cosmological time evolution of the vacuum expectation of the Higgs boson. Within the standard model of particle physics, the cosmological time evolution of the vacuum expectation of the Higgs leads to a cosmological time evolution of the masses of the fermions and of the electroweak gauge bosons, while the scale of Quantum Chromodynamics (QCD) remains constant. Precise measurements of the cosmological time evolution of μ =m_e/m_p, where m_e and m_p are, respectively, the electron and proton mass (which is essentially determined by the QCD scale), therefore provide a test of the standard models of particle physics and of cosmology. This ratio can be measured using modern atomic clocks.

  17. Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies. Present statuts of observational and experimental Cosmology. Open questions and potentialities of alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2016-11-01

    A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern based on a physical vacuum made of superbradyons with the spinorial space-time (SST) geometry we introduced in 1996-97. In particular, the SST automatically generates a local privileged space direction (PSD) for earch comoving observer and such a signature may have been confirmed by Planck data. Both superluminal preons and the existence of the PSD would have strong cosmological implications. Planck 2016 results will be particularly relevant as a step in the study of present open questions. This paper is dedicated to the memory of Yoichiro Nambu

  18. Higgs cosmology.

    PubMed

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  19. PREFACE: International Conference on Modern Perspectives of Cosmology and Gravitation (COSGRAV 12)

    NASA Astrophysics Data System (ADS)

    Pal, Supratik; Basu, Banasri

    2012-12-01

    This volume of Journal of Physics: Conference Series is dedicated to the International Conference on Modern Perspectives of Cosmology and Gravitation (COSGRAV 12) organized by Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, held on 7-11 February 2012. The conference, which focused exclusively on recent trends of research in Cosmology and Gravitation, was the first in the series held in this institute of great repute. The ultimate plan is to make it a regular event every two or three years based on the very positive response we received which was beyond our expectation. The immediate purpose of this conference was to bring together experienced as well as young scientists who are interested in working actively on various aspects of Cosmology and Gravitation. The lectures addressed major theoretical issues, current and forthcoming observational data as well as upcoming ideas in both theoretical and observational sectors. Keeping in mind the 'academic exchange first' approach the lectures were arranged in such a way that the young researchers had ample scope to interact with the stalwarts who are internationally leading experts in their respective fields of research. The major topics covered in the conference are: Early Universe: Inflation, Alternatives and Links to Fundamental Physics Present Universe: Dark Matter, Dark Energy, Alternatives Observational Cosmology: CMB, Supernovae, Lensing, Galaxies and Clusters Quantum Aspects of Gravity Black Hole Physics Interface of Gravitation with Information Theory and Condensed Matter Physics. Besides the invited talks a good proportion of the participants also presented their work through contributory talks and posters on this big platform. This was particularly encouraging and of benefit to the young participants, given that there were a number of scientists of international repute among the participants, the feedback from whom could guide them in the right direction. All the contributions were refereed by experts. This set a standard of its own. We are indebted to the Indian Statistical Institute for providing us with generous funding that covered all the expenses required to organize such a huge conference, and for providing us with the support staff facilities. We gratefully acknowledge encouragement from Professor Bimal K Roy, Director, Indian Statistical Institute, and his constant support in all aspects of the conference which made the program function so well. We thank the Scientific Advisory Committee for their valuable suggestions on technical aspects of the conference. We thank all the members of Local Organizing Committee as well as the volunteering students who contributed their hard labour to make the conference a great success. Special thanks to Sudipta Das, Barun Kumar Pal and Sayantan Choudhury for their help during every stage of the conference. We sincerely thank IOP Publishing and the staff of Journal of Physics: Conference Series for the publication of this issue. Last but not least, we thank all the speakers and participants without whom the program would not have been such as success. We hope we will your active participation in future versions of the conference as well. Supratik Pal and Banasri Basu (Editors) Physics and Applied Mathematics Unit Indian Statistical Institute 203 B.T.Road Kolkata 700108 INDIA Conference photograph

  20. Ancient Cosmology, superfine structure of the Universe and Anthropological Principle

    NASA Astrophysics Data System (ADS)

    Arakelyan, Hrant; Vardanyan, Susan

    2015-07-01

    The modern cosmology by its spirit, conception of the Big Bang is closer to the ancient cosmology, than to the cosmological paradigm of the XIX century. Repeating the speculations of the ancients, but using at the same time subtle mathematical methods and relying on the steadily accumulating empirical material, the modern theory tends to a quantitative description of nature, in which increasing role are playing the numerical ratios between the physical constants. The detailed analysis of the influence of the numerical values -- of physical quantities on the physical state of the universe revealed amazing relations called fine and hyperfine tuning. In order to explain, why the observable universe comes to be a certain set of interrelated fundamental parameters, in fact a speculative anthropic principle was proposed, which focuses on the fact of the existence of sentient beings.

  1. Large numbers hypothesis. IV - The cosmological constant and quantum physics

    NASA Technical Reports Server (NTRS)

    Adams, P. J.

    1983-01-01

    In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.

  2. Cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Barrow, J. D.

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters.

  3. Theological misinterpretations of current physical cosmology

    NASA Astrophysics Data System (ADS)

    Grünbaum, Adolf

    1996-04-01

    In earlier writings, I argued that neither of the two major physical cosmologies of the 20th century support divine creation, so that atheism has nothing to fear from the explanations required by these cosmologies. Yet theists ranging from Augustine, Aquinas, Descartes, and Leibniz to Richard Swinburne and Philip Quinn have maintained that, at every instant anew, the existence of the world requires divine creation ex nihilo as its cause. Indeed, according to some such theists, for any given moment t. God's volition that the-world-should-exist-at-t supposedly brings about its actual existence at t. In an effort to reestablish the current viability of this doctrine of perpetual divine conservation. Philip Quinn argued (1993) that it is entirely compatible with physical energy conservation in the Big Bang cosmology, as well as with the physics of the steady-state theories. But I now contend that instead, there is a logical incompatibility on both counts. Besides, the stated tenet of divine conservation has an additional defect: It speciously purchases plausibility by trading on the multiply disanalogous volitional explanations of human actions.

  4. Primordial alchemy: from the Big Bang to the present universe

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.

  5. Curved spaces before Einstein: Karl Schwarzschild's cosmological speculations and the beginnings of relativistic cosmology (German Title: Gekrümmte Universen vor Einstein: Karl Schwarzschilds kosmologische Spekulationen und die Anfänge der relativistischen Kosmologie)

    NASA Astrophysics Data System (ADS)

    Schemmel, Matthias

    In contrast to most of his collegues in astronomy and physics, the German astronomer Karl Schwarzschild immediately recognized the significance of general relativity for physics and astronomy, and played a pioneering role in its early development. In this contribution, it is argued that the clue for understanding Schwarzschild's exceptional reaction to general relativity lies in the study of his prerelativistic work. Long before the rise of general relativity, Schwarzschild occupied himself with foundational problems on the borderline of physics, astronomy, and mathematics that, from today's perspective, belong to the field of problems of that theory. In this contribution, the example of Schwarzschild's early speculations about the non-Euclidean nature of physical space on cosmological scales is presented and their reflection in his reception of general relativity is discussed.

  6. Physics, Astrophysics and Cosmology with Gravitational Waves.

    PubMed

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  7. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Feroz, F.; Hobson, M. P.; Bridges, M.

    2009-10-01

    We present further development and the first public release of our multimodal nested sampling algorithm, called MULTINEST. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson, which itself significantly outperformed existing Markov chain Monte Carlo techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MULTINEST algorithm are demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla Λ cold dark matter model to include spatial curvature and a varying equation of state for dark energy. The MULTINEST software, which is fully parallelized using MPI and includes an interface to COSMOMC, is available at http://www.mrao.cam.ac.uk/software/multinest/. It will also be released as part of the SUPERBAYES package, for the analysis of supersymmetric theories of particle physics, at http://www.superbayes.org.

  8. Physics of the very early Universe: what can we learn from cosmological observations?

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo

    Cosmological observations are starting to probe the evolution of the Universe before nucleosyn- thesis. The observed fluctuations in the cosmic microwave background and in the distribution of matter can be traced back to their origin during inflation, and the inflaton potential has begun to be unraveled. A future probe of the first microseconds would be the detection of weakly-interacting massive particles as dark matter. Discovery of supersymmetric particles at odds with the standard cosmological lore may open an experimental window on the physics at the highest energies, per- haps as far as superstring theory. This presentation will overview two topics on the physics of the Universe before nucleosynthesis: (1) slow-roll, natural and chain inflation in the landscape, and

  9. Aspects of string phenomenology in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  10. Precision Cosmology

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  11. Higgs cosmology

    PubMed Central

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue ‘Higgs cosmology’. PMID:29358352

  12. Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash; Pal, Santanu; Raha, Sibaji

    Quark-Gluon Plasma (QGP) is a state of matter predicted by the theory of strong interactions - Quantum Chromodynamics (QCD). The area of QGP lies at the interface of particle physics, field theory, nuclear physics and many-body theory, statistical physics, cosmology and astrophysics. In its brief history (about a decade), QGP has seen a rapid convergence of ideas from these previously diverging disciplines. This volume includes the lectures delivered by eminent specialists to students without prior experience in QGP. Each course thus starts from the basics and takes the students by steps to the current problems. The chapters are self-contained and pedagogic in style. The book may therefore serve as an introduction for advanced graduate students intending to enter this field or for physicists working in other areas. Experts in QGP may also find this volume a handy reference. Specific examples, used to elucidate how theoretical predictions and experimentally accessible quantities may not always correspond to one another, make this book ideal for self-study for beginners. This feature will also make the volume thought-provoking for QGP practitioners.

  13. Cosmology of Universe Particles and Beyond

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2016-06-01

    For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...

  14. Cosmology. A first course

    NASA Astrophysics Data System (ADS)

    Lachieze-Rey, Marc

    This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.

  15. A hundred years with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Grøn, Øyvind G.

    2018-07-01

    The main points in the history of the cosmological constant are briefly discussed. As a conceptual background, useful for teaching of physics at an elementary college and university level, Newton’s theory formulated locally in terms of the Poisson equation is presented, and it is shown how it is modified by the introduction of the cosmological constant. The different physical interpretations of the cosmological constant, as introduced by Einstein in 1917 and interpreted by Lemaître in 1934, are presented. Energy conservation in an expanding universe dominated by vacuum energy is discussed. The connection between the cosmological constant and the quantum mechanical vacuum energy is mentioned, together with the problem that a quantum mechanical calculation of the density of the vacuum energy gives a vastly too large value of the cosmological constant. The article is concluded by reviewing a solution of this problem that was presented on May 11, 2017.

  16. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  17. Philosophical midwifery and the birthpangs of modern cosmology

    NASA Astrophysics Data System (ADS)

    Gale, George; Urani, John

    1993-01-01

    Philosophical considerations sometimes direct developments in physics. Such influence most frequently operates during the genesis of new fields. The birth of modern cosmology provides clear evidence of the interaction between philosophical issues and the shape and direction of a new physical discipline. Philosophical controversy between E. A. Milne and other astrophysicists, including A. S. Eddington, James Jeans, and H. P. Robertson, directly affected the models, methods, and very nature of cosmological science for future generations. Today's standard space-time metric, for example, resulted from responses by Robertson and A. G. Walker to philosophical challenges presented in Milne's proposals to scrap the very idea of expanding ``space.'' Analysis of published works, unpublished manuscripts and correspondence, and personal interviews illustrates the role philosophical considerations played in development of this new field in physics.

  18. Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.

    2013-12-01

    We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.

  19. Cosmological Models and Stability

    NASA Astrophysics Data System (ADS)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  20. Squeezed States, Uncertainty Relations and the Pauli Principle in Composite and Cosmological Models

    NASA Technical Reports Server (NTRS)

    Terazawa, Hidezumi

    1996-01-01

    The importance of not only uncertainty relations but also the Pauli exclusion principle is emphasized in discussing various 'squeezed states' existing in the universe. The contents of this paper include: (1) Introduction; (2) Nuclear Physics in the Quark-Shell Model; (3) Hadron Physics in the Standard Quark-Gluon Model; (4) Quark-Lepton-Gauge-Boson Physics in Composite Models; (5) Astrophysics and Space-Time Physics in Cosmological Models; and (6) Conclusion. Also, not only the possible breakdown of (or deviation from) uncertainty relations but also the superficial violation of the Pauli principle at short distances (or high energies) in composite (and string) models is discussed in some detail.

  1. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  2. BOOK REVIEW: Cosmology

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most recent, and comprehensive, is Cosmology, in which the University of Texas physicist and Nobel Laureate, Steven Weinberg provides a concise introduction to modern cosmology. The book is aimed at the level of a final year physics undergraduate, or a first year graduate student. The discussion is self-contained, with numerous derivations. It begins with an overview of the standard cosmological model, and presents a detailed treatment of fluctuation growth. There are sections on gravitational lensing and inflationary cosmology, on microwave background fluctuations and structure growth. There are aspects however where a supplementary book is essential for the physicist being introduced to cosmology. The text is lacking in physical cosmology. The baryon physics of galaxy formation is barely mentioned, apart from a discussion of the Jeans mass. And it ignores one of the greatest contributions to the field by Russian cosmologist Yaakov Zel'dovich, who discovered the only nonspherical solution to the nonlinear evolution of density fluctuations, one that has since dominated our understanding of the large-scale structure of the universe via the cosmic web. But these are minor quibbles about what provides an outstanding introduction to modern cosmology, and one that takes us from the physics fundamentals up to the cosmic frontier. I recommend Cosmology for anyone wishing to enter the field and with a good physics background. It is ideal for the astronomer who may only have a sketchy knowledge of general relativity or particle physics. She will learn about vielbeins and scalar fields, gauge-invariant fluctuation theory and inflation. Steven Weinberg is a leading physicist who has also made important contributions to cosmology. The text provides a rigorous treatment of the standard model of cosmology, and of structure formation. Numerous exercises are provided. It provides an excellent core for a course on cosmology.

  3. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  4. Deforming black hole and cosmological solutions by quasiperiodic and/or pattern forming structures in modified and Einstein gravity

    NASA Astrophysics Data System (ADS)

    Bubuianu, Laurenţiu; Vacaru, Sergiu I.

    2018-05-01

    We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.

  5. Prospects for Physics in the 1990's Surveyed.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1986-01-01

    A National Academy of Science report ("Physics Through the 1990's") says that American physics has been a highly diversified and productive enterprise, but continued excellence cannot be taken for granted. Progress in six subfields (elementary particle, nuclear, condensed-matter, atomic/molecular, plasma/fluid, and gravitation/cosmology physics)…

  6. Proceedings of the 22nd Texas Symposium On Relativistic Astrophysics At Stanford University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.,; Bloom, Elliott D.,; Madejski, G.,

    2005-09-19

    The XXII Texas Symposium on Relativistic Astrophysics, jointly organized by the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), the Stanford Linear Accelerator Center, and the Physics Department of Stanford University, was held on December 13-17, 2004. Following the tradition of past Texas Symposia the presentations emphasized recent developments in Cosmology, High Energy Astrophysics and the frontiers between these and Gravitation and Particle Physics.

  7. Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2013-09-01

    During the two decades before World War I, many physicists, astronomers and earth scientists engaged in interdisciplinary research projects with the aim of integrating terrestrial, solar and astronomical phenomena. Under the umbrella label "cosmical physics" they studied, for example, geomagnetic storms, atmospheric electricity, cometary tails and the aurora borealis. According to a few of the cosmical physicists, insights in solar-terrestrial and related phenomena might be extrapolated to the entire solar system or beyond it. Inspired by their research in the origin and nature of the aurora, Kristian Birkeland from Norway and Svante Arrhenius from Sweden proposed new theories of the universe that were of a physical rather than astronomical nature. Whereas Birkeland argued that electrons and other charged particles penetrated the entire universe - and generally that electromagnetism was of no less importance to cosmology than gravitation - Arrhenius built his cosmology on the hypothesis of dust particles being propelled throughout the cosmos by stellar radiation pressure. Both of the Scandinavian scientists suggested that the universe was infinitely filled with matter and without a beginning or an end in time. Although their cosmological speculations did not survive for long, they are interesting early attempts to establish physical cosmologies and for a while they attracted a good deal of attention.

  8. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  9. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. Introduction. Cosmology meets condensed matter.

    PubMed

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  11. Towards realistic singularity-free cosmological models

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    1996-02-01

    We present an explicit general family of inhomogeneous cosmological models. The family contains an arbitrary function of comoving time (interpretable as the cosmological scale factor) and four arbitrary parameters. In general, it is a solution of Einstein's field equations for a fluid with anisotropic pressures, but it also includes a big subfamily of perfect-fluid metrics. The most interesting feature of this family is that it contains both all the diagonal separable singularity-free cosmological models recently found and all the Friedmann-Lemaître-Robertson-Walker standard models. This property allows one to speculate on the construction of some interesting models in which the Universe has been FLRW-like from some time on (for instance, since the nucleeosynthesis time), but it also went through primordial singularity-free inhomogeneous epochs (in fact, there are quite natural possibilities in which these primordial epochs are inflationary) without ever violating energy conditions or other physical properties. Nevertheless, the physical processes leading to the isotropization and homogenization of the Universe are not fixed nor indicated by the models themselves. The interesting properties of the general model are studied in some detail. ¢ 1996 The American Physical Society.

  12. Multiple angles on the sterile neutrino - a combined view of cosmological and oscillation limits

    NASA Astrophysics Data System (ADS)

    Guzowski, Pawel

    2017-09-01

    The possible existence of sterile neutrinos is an important unresolved question for both particle physics and cosmology. Data sensitive to a sterile neutrino is coming from both particle physics experiments and from astrophysical measurements of the Cosmic Microwave Background. In this study, we address the question whether these two contrasting data sets provide complementary information about sterile neutrinos. We focus on the muon disappearance oscillation channel, taking data from the MINOS, ICECUBE and Planck experiments, converting the limits into particle physics and cosmological parameter spaces, to illustrate the different regions of parameter space where the data sets have the best sensitivity. For the first time, we combine the data sets into a single analysis to illustrate how the limits on the parameters of the sterile-neutrino model are strengthened. We investigate how data from a future accelerator neutrino experiment (SBN) will be able to further constrain this picture.

  13. Modelling baryonic effects on galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  14. Some Consequences of a Time Dependent Speed of Light

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2007-06-01

    For reasons connected with both cosmology (the flatness and horizon problems) and atomic physics (n-body Dirac equation, etc.), various proposals have been made to modify general or special relativity(SR) to accommodate a cosmologically decreasing light speed [J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003)]. Two such theories, projective SR [S.N. Manida, gr-qc/9905046; S. S. Stepanov, physics/9909009 and Phys. Rev. D, 62, 023507 (2000)] and symmetric SR [F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005)] adapt special relativity to in different ways to an expanding, hyperbolically curved position space and predict time-dependences of c within reach of measurement but differing by a factor of two. Both theories bring in a new constant λ-1=σ=c^2H0-1. As Magueijo points, out the role of c in physics and cosmology is so profound that many deep changes must follow if is not absolutely invariant in space and time. In particular, symmetric SR brings a new light to the Dirac large-number relationship between the constants of gravitation and atomic physics.

  15. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  16. Progress Report to the U.S. Department of Energy, Grant DE-FG02-91ER40626: Neutrino Physics, Particle Theory and Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafi, Qaisar; Barr, Stephen M; Gaisser, Thomas K

    2009-07-30

    Research conducted under this grant over the past year has been driven by the impending operation of the Large Hadron Collider (LHC), and by the ongoing developments in neutrino physics and cosmology. The recent launch of the Planck satellite should have far reaching implications for cosmology in the coming years. Research topics include particle astrophysics, neutrino physics, grand unified theories, Higgs and sparticle spectroscopy, dark energy and dark matter, inflationary cosmology, and baryo/lepto-genesis. Faculty members on the grant are Stephen Barr, Thomas Gaisser, Qaisar Shafi and Todor Stanev. Ilia Gogoladze and Hasan Yuksel are the two postdoctoral scientists supported bymore » the DOE grant. There are currently several excellent students in our research program. One of them, Mansoor Rehman, has been awarded a competitive university fellowship on which he will be supported from September 1, 2009 – June 30, 2010. Another student, Joshua Wickman, has been awarded a fellowship by the Delaware Space Grant Consortium (in affiliation with NASA), and will be supported by this fellowship from September 1, 2009 – August 31, 2010. Both of these students also attended the TASI Summer School in June 2009, at which they each presented a student talk on topics in inflationary cosmology.« less

  17. An Ancient Revisits Cosmology

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  18. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    ERIC Educational Resources Information Center

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  19. Challenges in 21st Century Physics

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2007-01-01

    We are truly fortunate to live in one of the great epochs of human discovery, a time when science is providing new visions and understanding about ourselves and the world in which we live. At last, we are beginning to explore the Universe itself. One particularly exciting area of advancement is high-energy physics where several existing concepts will be put to the test. A brief survey will be given of accomplishments in 20th Century physics. These include relativity and quantum physics which have produced breakthroughs in cosmology, astrophysics, and high-energy particle physics. The current situation is then assessed, combining the last 100 years of progress with new 21st Century challenges about unification and where to go next. Finally, the future is upon us. The next frontier in experimental high-energy physics, the Large Hadron Collider (LHC) at CERN in Geneva, is scheduled to begin coming online this year (2007). The potential for the LHC to address several of the significant problems in physics today will be discussed, as this great accelerator examines the predictions of the Standard Model of particle physics and even cosmology. New physics and new science will surely emerge and a better vision of the world will unfold.

  20. atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.

    2011-10-01

    atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.

  1. Commemoration of the 90th anniversary of the birth of Andrei Dmitrievich Sakharov (Scientific session of the Physical Sciences Division, Russian Academy of Sciences, 25 May 2011)

    NASA Astrophysics Data System (ADS)

    2012-02-01

    On 25 May 2011, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 90th anniversary of Andrei Dmitrievich Sakharov's birthday, was held at the conference hall of the Lebedev Physical Institute, RAS.The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the following reports: (1) Mesyats G A (Lebedev Physical Institute, RAS, Moscow) "Introduction. Greetings"; (2) Ritus V I (Lebedev Physical Institute, RAS, Moscow) "A D Sakharov: personality and fate"; (3) Altshuler B L (Lebedev Physical Institute, RAS, Moscow) "Scientific and public legacy of A D Sakharov today"; (4) Ilkaev R I (Russian Federal Nuclear Center 'All-Russian Research Institute of Experimental Physics', Sarov, Nizhny Novgorod region) "The path of a genius: Sakharov at KB-11"; (5) Novikov I D (Astrocosmic Center, Lebedev Physical Institute, RAS, Moscow) "Wormholes and the multielement Universe"; (6) Azizov E A (National Research Centre 'Kurchatov Institute', Moscow) "Tokamaks: 60 years later"; (7) Kardashev N S (Astrocosmic Center, Lebedev Physical Institute, RAS, Moscow) "Cosmic interferometers"; (8) Lukash V I (Lebedev Physical Institute, RAS, Moscow) "From the cosmological model to the Hubble flux formation"; (9) Grishchuk L P (Shternberg State Astronomical Institute, Lomonosov Moscow State University, Moscow; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom) "Cosmological Sakharov oscillations and quantum mechanics of the early Universe". Articles based on reports 2-4, 6, 8, and 9 are published below. The content of report 5 is close to papers "Multicomponent Universe and astrophysics of wormholes" by I D Novikov, N S Kardashev, A A Shatskii [Phys. Usp. 50 965 (2007)] and "Dynamic model of a wormhole and the Multiuniverse model" by A A Shatskii, I D Novikov, N S Kardashev [Phys. Usp. 51 457 (2008)]. The content of report 7 is close to the paper "Radioastron - a radio telescope much larger than the Earth: scientific program" by N S Kardashev [Phys. Usp. 52 1127 (2009)]. • A D Sakharov: personality and fate, V I Ritus Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 170-175 • Andrei Sakharov today: lasting impact on science and society, B L Altshuler Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 176-182 • Sakharov at KB-11. The path of a genius, R I Ilkaev Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 183-189 • Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks), E A Azizov Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 190-203 • From the Cosmological Model to the generation of the Hubble flow, V N Lukash, E V Mikheeva, V N Strokov Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 204-209 • Cosmological Sakharov oscillations and quantum mechanics of the early Universe, L P Grishchuk Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 210-216

  2. Research in High Energy Physics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  3. Light and dark: A survey of new physics ideas in the 1-100 MeV window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pospelov, Maxim

    2013-11-07

    I review the set of theoretical ideas motivating experimental searches of light physics beyond Standard Model using the high-intensity electron beams. While 'dark photon' is the chief example of such physics, the other 'light and dark' states (e.g. 'Dark Higgses') are also of interest. I discuss particle physics, cosmology and astrophysics applications.

  4. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  5. Smoot Cosmology Group

    Science.gov Websites

    . Interview with 2006 Nobel Laureates in Physics: George Smoot and John Mather Interview excerpt with 2006 Nobel Prize Laureates in Physics John Mather and George Smoot answer a question from the public on how has their research effects everyday life. Nobel Prize in Physics, 2006 Cosmologist George F. Smoot led

  6. Arthur E. Haas, His Life and Cosmologies

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2017-04-01

    This paper describes the life and scientific development of Arthur E. Haas, from his early career as young, ambitious Jewish-Austrian scientist at the University of Vienna to his later career in exile at the University of Notre Dame. Haas is known for his early contributions to quantum physics and as the author of several textbooks on topics of modern physics. During the last decade of his life, he turned his attention to cosmology. In 1935 he emigrated from Austria to the United States. There he assumed, on recommendation of Albert Einstein, a faculty position at the University of Notre Dame. He continued his work on cosmology and tried to establish relationships between the mass of the universe and the fundamental cosmological constants to develop concepts for the early universe. Together with Georges Lemaître he organized in 1938 the first international conference on cosmology, which drew more than one hundred attendants to Notre Dame. Haas died in February 1941 after suffering a stroke during a visit in Chicago.

  7. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE PAGES

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    2018-04-17

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  8. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  9. Recent results and perspectives on cosmology and fundamental physics from microwave surveys

    NASA Astrophysics Data System (ADS)

    Burigana, Carlo; Battistelli, Elia Stefano; Benetti, Micol; Cabass, Giovanni; de Bernardis, Paolo; di Serego Alighieri, Sperello; di Valentino, Eleonora; Gerbino, Martina; Giusarma, Elena; Gruppuso, Alessandro; Liguori, Michele; Masi, Silvia; Norgaard-Nielsen, Hans Ulrik; Rosati, Piero; Salvati, Laura; Trombetti, Tiziana; Vielva, Patricio

    2016-04-01

    Recent cosmic microwave background (CMB) data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe (ISW) effect from CMB anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the CMB, such as the lack of power at low multipoles, the primordial power spectrum (PPS) and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation (CPR) analyses aimed at testing the Einstein equivalence principle (EEP) are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future CMB spectral distortion experiments.

  10. Anisotropic deformations of spatially open cosmology in massive gravity theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuet, Charles; Volkov, Mikhail S.; Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr

    We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards amore » fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.« less

  11. The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams

    NASA Astrophysics Data System (ADS)

    Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.

    2017-11-01

    Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.

  12. Review of particle physics

    DOE PAGES

    Olive, K. A.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders,more » Probability and Statistics. As a result, among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation.« less

  13. Review of particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, K. A.

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders,more » Probability and Statistics. As a result, among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation.« less

  14. Steven Weinberg, Weak Interactions, and Electromagnetic Interactions

    Science.gov Websites

    a professor of physics and astronomy at UT [The University of Texas] Austin and is founding director to physics and cosmology ... Weinberg's work has been honored with numerous prizes, including the Nobel Prize in Physics in 1979 and the National Medal of Science in 1991. Weinberg is the author of the

  15. String cosmology and the landscape

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Graña, Mariana

    2017-03-01

    String Theory is believed to have a landscape of 10500 vacua with properties that resemble those of our Universe. The existence of these vacua can be combined with anthropic reasoning to explain some of the hardest problems in cosmology and high-energy physics: the cosmological constant problem, the hierarchy problem, and the un-natural almost-flatness of the inflationary potential. We will explain the construction of these vacua, focusing on the challenges of obtaining vacua with a positive cosmological constant.

  16. BMS in cosmology

    NASA Astrophysics Data System (ADS)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  17. BMS in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, A.; Riotto, A.; Center for Astroparticle Physics

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformationsmore » which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.« less

  18. Cosmological Hydrodynamics on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Hernquist, Lars

    We propose to construct a model for the visible Universe using cosmological simulations of structure formation. Our simulations will include both dark matter and baryons, and will employ two entirely different schemes for evolving the gas: smoothed particle hydrodynamics (SPH) and a moving mesh approach as incorporated in the new code, AREPO. By performing simulations that are otherwise nearly identical, except for the hydrodynamics solver, we will isolate and understand differences in the properties of galaxies, galaxy groups and clusters, and the intergalactic medium caused by the computational approach that have plagued efforts to understand galaxy formation for nearly two decades. By performing simulations at different levels of resolution and with increasingly complex treatments of the gas physics, we will identify the results that are converged numerically and that are robust with respect to variations in unresolved physical processes, especially those related to star formation, black hole growth, and related feedback effects. In this manner, we aim to undertake a research program that will redefine the state of the art in cosmological hydrodynamics and galaxy formation. In particular, we will focus our scientific efforts on understanding: 1) the formation of galactic disks in a cosmological context; 2) the physical state of diffuse gas in galaxy clusters and groups so that they can be used as high-precision probes of cosmology; 3) the nature of gas inflows into galaxy halos and the subsequent accretion of gas by forming disks; 4) the co-evolution of galaxies and galaxy clusters with their central supermassive black holes and the implications of related feedback for galaxy evolution and the dichotomy between blue and red galaxies; 5) the physical state of the intergalactic medium (IGM) and the evolution of the metallicity of the IGM; and 6) the reaction of dark matter around galaxies to galaxy formation. Our proposed work will be of immediate significance for several NASA missions. Our simulations will allow a detailed comparison of observed CHANDRA X-ray groups and clusters with state-of-the-art theoretical models. Scaling relations and their evolution with redshift can constrain the processes occurring in cluster centers. At higher energies, data from the FERMI gamma-ray satellite combined with our simulated data set will permit us to estimate the non- thermal pressure support in clusters due to cosmic rays. Another science goal of FERMI is the search for annihilation radiation produced by dark matter. The high resolution of our proposed calculations gives us the capability of making predictions for the annihilation signature from large-scale structure. Our proposed work is also relevant to upcoming missions like the James Webb Space Telescope (JWST). With our scheme, we will study the morphological evolution of galaxies in a full cosmological setting for the first time. JWST is specifically designed to observe the high redshift structure of emerging galaxies and their subsequent evolution. Our simulations will thus provide an indispensable tool for understanding JWST observations. We will make our simulations available to the community, accessible through a web-based interface, including the simulation data as well as galaxy catalogs, images, and videos generated during the course of the calculations. This will be the first time that such a dataset, drawn from a hydrodynamical model of the Universe, will be made public. As we anticipate that our simulations will have numerous applications in addition to those listed above, this will ensure that our work will have the greatest possible impact by fostering research on diverse problems related to the formation of galaxies and larger-scale structures.

  19. William Fowler and Elements in the Stars

    Science.gov Websites

    some of the most central issues in modern physics and cosmology: the formation of the chemical elements . Documents: Energy Levels of Light Nuclei. III; Review of Modern Physics, Vol 22, Issue 4:291-372; October

  20. Space-Time, Relativity, and Cosmology

    NASA Astrophysics Data System (ADS)

    Wudka, Jose

    2006-07-01

    Space-Time, Relativity and Cosmology provides a historical introduction to modern relativistic cosmology and traces its historical roots and evolution from antiquity to Einstein. The topics are presented in a non-mathematical manner, with the emphasis on the ideas that underlie each theory rather than their detailed quantitative consequences. A significant part of the book focuses on the Special and General theories of relativity. The tests and experimental evidence supporting the theories are explained together with their predictions and their confirmation. Other topics include a discussion of modern relativistic cosmology, the consequences of Hubble's observations leading to the Big Bang hypothesis, and an overview of the most exciting research topics in relativistic cosmology. This textbook is intended for introductory undergraduate courses on the foundations of modern physics. It is also accessible to advanced high school students, as well as non-science majors who are concerned with science issues.• Uses a historical perspective to describe the evolution of modern ideas about space and time • The main arguments are described using a completely non-mathematical approach • Ideal for physics undergraduates and high-school students, non-science majors and general readers

  1. REVIEWS OF TOPICAL PROBLEMS: Cosmological branes and macroscopic extra dimensions

    NASA Astrophysics Data System (ADS)

    Barvinsky, Andrei O.

    2005-06-01

    The idea of adding extra dimensions to the physical world — thus making the observable universe a timelike surface (or brane) embedded in a higher-dimensional space-time — is briefly reviewed, which is believed to hold serious promise for solving fundamental problems concerning the hierarchy of physical interactions and the cosmological constant. Brane localization of massless gravitons is discussed as a mechanism leading to the effective four-dimensional Einstein gravity theory on the brane in the low-energy limit. It is shown that this mechanism is a corollary of the AdS/CFT correspondence principle well-known from string theory. Inflation and other cosmological evolution scenarios induced by the local and nonlocal structures of the effective action of the gravitational brane are considered, as are the effects that enable the developing gravitational-wave astronomy to be used in the search for extra dimensions. Finally, a new approach to the cosmological constant and cosmological acceleration problems is discussed, which involves variable local and nonlocal gravitational 'constants' arising in the infrared modifications of the Einstein theory that incorporate brane-induced gravity models and models of massive gravitons.

  2. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  3. 100th anniversary of the birth of E M Lifshitz (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 March 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905

  4. Reviews Book: The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book: Quantitative Understanding of Biosystems: An Introduction to Biophysics Book: Edison's Electric Light: The Art of Invention Book: The Edge of Physics: Dispatches from the Frontiers of Cosmology Equipment: Voicebox Equipment: Tracker 4 Books: Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Places to Visit: Discovery Museum Book: Philosophy of Science: A Very Short Introduction Web Watch

    NASA Astrophysics Data System (ADS)

    2011-11-01

    WE RECOMMEND Quantitative Understanding of Biosystems: An Introduction to Biophysics Text applies physics to biology concepts Edison's Electric Light: The Art of Invention Edison's light still shines brightly The Edge of Physics: Dispatches from the Frontiers of Cosmology Anecdotes explore cosmology Voicebox Voicebox kit discovers the physics and evolution of speech Tracker 4 Free software tracks motion analysis Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Books support the LabVIEW software Discovery Museum Newcastle museum offers science enjoyment for all Philosophy of Science: A Very Short Introduction Philosophy opens up science questions WORTH A LOOK The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book researches the universe WEB WATCH Superconductivity websites are popular

  5. The Philosophy of Cosmology

    NASA Astrophysics Data System (ADS)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O'Raifeartaigh; 24. The nature of the past hypothesis David Wallace; 25. Big and small David Albert.

  6. Exploring New Physics Frontiers Through Numerical Relativity.

    PubMed

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  7. Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos

    2017-08-01

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos Ni, a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value vσ ~ 1011 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CP problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs, and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model—axion—seesaw—Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  8. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  9. PASCOS 2012 - 18th International Symposium on Particles Strings and Cosmology

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The XVII International Conference on Strings, Particles and Cosmology, PASCOS 2012, was held in the City of Mérida, Mexico, from June 3-8, 2012. The conference series is aimed at exploring the interface and interplay between particle physics, string theory and cosmology. With the advent of new data, the emphasis of the XVIII edition of PASCOS was on phenomenology and the interpretation of recent observational and experimental results. The conference followed the format of previous conferences in this series, with plenary reviews and contributed presentations in parallel sessions. The lectures covered a wide range of subjects which included: Dark matter and dark energy, flavor physics and CP violation, neutrino physics, supersymmetry, Higgs physics, baryogenesis and EDMs, supergravity, high energy cosmic rays, string and F-theory GUTs, and string phenomenology. This is the first time that PASCOS was held in Latin America. The aim to do it in Mexico was to engage the Latin American community and thus to bring the conference to a wider and different audience, a goal which was thoroughly achieved. The venue was held at the Hotel Fiesta Americana in the beautiful city of Mérida. The social events included a reception with typical local food at the Katun restaurant, conference dinner at the historical Quinta Montes Molina, and an excursion to the archeological site of Dzibilchaltún including a swim at the famous cenote. PASCOS 2012 was possible thanks to the generous support of the following sponsors: CONACyT (Consejo Nacional de Ciencia y Tecnología), UNAM (Universidad Nacional Autónoma de México: Consejo Técnico de la Investigación Científica, Instituto de Ciencias Nucleares, Instituto de Física), Cinvestav, (Centro de Estudios Avanzados del IPN: U. Zacatanco, U. Mérida and Secretaría General), ICyTDF (Instituto Científico y Tecnológico del D.F.), PIFI (Programa Integral de Fortalecimiento Institucional, Universidad de Guanajuato, Campus León), SMF (Sociedad Mexicana de Física), ICTP (International Centre for Theoretical Physics), BUAP (Benemérita Universidad Autónoma de Puebla), the Government of the State of Yucatán, the University of Hamburg, and Telmex. We also want to acknowledge the invaluable help of the staff of the Mexican Physical Society, in particular Lic. Santos Zúñniga Sánchez and Ms. Claudia Velasco Marín, and of the conference secretaries, Ms. Lizette Ramírez Bermúdez (UNAM) and Ms. Mariana del Castillo Sánchez (Cinvestav), for their support before, during and after the organization of PASCOS 2012. Last but not least, we would like to thank all the PASCOS 2012 participants for their attendance and for contributing to make the conference an engaging and stimulating event. The organizers, Myriam Mondragón, Adnan Bashir, David Delepine, Francisco Larios, Oscar Loaiza, Axel de la Macorra, Lukas Nellen, Sarira Sahu, Humberto Salazar and Liliana Velasco-Sevilla.

  10. C-field cosmological models: revisited

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar

    2016-12-01

    We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.

  11. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  12. Dark energy two decades after: observables, probes, consistency tests.

    PubMed

    Huterer, Dragan; Shafer, Daniel L

    2018-01-01

    The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

  13. BOOK REVIEW: The Physics of the Early Universe

    NASA Astrophysics Data System (ADS)

    Scott, Douglas

    2007-11-01

    The physics of the very small and the very large were successfully brought together in the 1980s through the idea of 'the universe as a particle accelerator'. The manifesto of this new campaign was laid out in the book 'The Early Universe' by Kolb and Turner in 1990. For at least the next decade that book was to be found on the shelves of every theorist (and many experimentalists) who professed an interest in this topic. But science marches on, and the last 10 15 years has seen an explosion in our understanding of the physics of the very earliest times and the very largest scales. Experimentally our world-view has changed utterly, through exquisitely precise measurements of the cosmic microwave background, galaxy clustering and supernova distances, with a refinement of the basic inflationary big bang paradigm into the new 'standard cosmological model'. And in tandem with these changes has been the development of new theoretical ideas, particularly involving dark energy and connections between string/brane theory and cosmology. So what is the new book for the shelves of today's cohort of young Rockys and Mikes? Despite a recent number of promising-sounding cosmology books, there is nothing at the advanced level which is broad enough to be a general introduction to the 'early universe' topic. Perhaps the best of the bunch is 'The Physics of the Early Universe', edited by E Papantonopoulos as part of Springer's series 'Lecture notes in physics'. This is a set of 9 review articles given as part of a 2003 summer school on Syros Island, Greece. Although far from perfect, the core of this book provides a solid introduction to current research in early universe physics, which should be useful for PhD students or postdoctoral researchers who want the real thing. The book starts with a competent introduction by Kyriakos Tamvakis, serving essentially as a summary of where we were in Kolb and Turner's text. We have learned since then, however, that inflation is really all about perturbations, and so we get a summary of cosmological perturbation theory by Ruth Durrer—more background and physical explanations would have been helpful, but this is a nice compact summary. The cosmic microwave background has been the cornerstone for making experimental progress, and we get an excellent overview from Anthony Challinor—although again there are several sections where more explanation would have been useful for the novice. Next comes a broad survey of other aspects of observational cosmology by Robert Sanders, which is clear and succinct. The only slight blemishes are caused by the author desperately seeking discord, and only apparently finding it in places where it isn't made clear that his views are unconventional. Dark energy, i.e. the generalization of the cosmological constant to a dynamic fluid, is a huge area of current theoretical study, where one can uncharitably say that there are no well-motivated theories! It is therefore crucial to have the views of a clear-thinking expert to help us navigate this topic, and Varun Sahni does an excellent job here. We then find ourselves in the territory of string and brane cosmology, where there are 2 reviews, presented in the wrong order. Roy Maartens (whose article comes second) does a reasonable job of building on the ideas of inflation and cosmological perturbations to describe brane-world views of the early universe, perhaps just becoming slightly too heavy on technical detail and light on physical discussion in the middle part. But the string cosmology review by André Lukas (which comes first), is unfortunately nothing like an introduction to that topic, since much of the jargon and even some of the symbols will be quite unfamiliar to anyone who hasn't already taken graduate level courses on string theory. The book ends with 2 competent (and fairly short) summaries relevant to gravitational wave astronomy, which are really quite unconnected with the main topic of the book—it would have been more useful to have focussed on gravity waves from the cosmological perspective, rather than discussing neutron stars and black holes. This, then, is a useful book for someone wanting to leap right into modern theoretical ideas of early universe physics. Since it is a summer school proceedings, rather than explicitly a textbook, it suffers from a lack of coherence, and some more discursive text would also have been helpful. But despite these flaws, it is still a book to be recommended as a concise but technical introduction to this rapidly changing topic.

  14. Nuclear Physics Laboratory 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelberger, E.G.

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  15. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.

  16. Precision cosmology with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.

    In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my outlook on the future of weak lensing studies of cosmology.

  17. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; ...

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  18. Sociology of Modern Cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  19. Quantum Gravity and Cosmology: an intimate interplay

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  20. The Cosmology of Edgar Allan Poe

    NASA Astrophysics Data System (ADS)

    Cappi, Alberto

    2011-06-01

    Eureka is a ``prose poem'' published in 1848, where Edgar Allan Poe presents his original cosmology. While starting from metaphysical assumptions, Poe develops an evolving Newtonian model of the Universe which has many and non casual analogies with modern cosmology. Poe was well informed about astronomical and physical discoveries, and he was influenced by both contemporary science and ancient ideas. For these reasons, Eureka is a unique synthesis of metaphysics, art and science.

  1. Constraints on massive gravity theory from big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambiase, G., E-mail: lambiase@sa.infn.it

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  2. Gravitational Physics: the birth of a new era

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-11-01

    We live the golden age of cosmology, while the era of gravitational astronomy has finally begun. Still, fundamental puzzles remain. Standard cosmology is formulated within the framework of Einstein's General theory of Relativity. Notwithstanding, General Relativity is not adequate to explain the earliest stages of cosmic existence, and cannot provide an explanation for the Big Bang itself. Modern early universe cosmology is in need of a rigorous underpinning in Quantum Gravity.

  3. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  4. Testability and epistemic shifts in modern cosmology

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2014-05-01

    During the last decade new developments in theoretical and speculative cosmology have reopened the old discussion of cosmology's scientific status and the more general question of the demarcation between science and non-science. The multiverse hypothesis, in particular, is central to this discussion and controversial because it seems to disagree with methodological and epistemic standards traditionally accepted in the physical sciences. But what are these standards and how sacrosanct are they? Does anthropic multiverse cosmology rest on evaluation criteria that conflict with and go beyond those ordinarily accepted, so that it constitutes an "epistemic shift" in fundamental physics? The paper offers a brief characterization of the modern multiverse and also refers to a few earlier attempts to introduce epistemic shifts in the science of the universe. It further discusses the several meanings of testability, addresses the question of falsifiability as a sine qua non for a theory being scientific, and briefly compares the situation in cosmology with the one in systematic biology. Multiverse theory is not generally falsifiable, which has led to proposals from some physicists to overrule not only Popperian standards but also other evaluation criteria of a philosophical nature. However, this is hardly possible and nor is it possible to get rid of explicit philosophical considerations in some other aspects of cosmological research, however advanced it becomes.

  5. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  6. Teaching Physics and Feeling Good about It.

    ERIC Educational Resources Information Center

    Prokop, Charles F.

    1988-01-01

    Describes a high school physics teaching sequence including more modern topics. The first quarter covers cosmology, astronomy, optics, wave mechanics, relativity, gravity, and quantum theory. The second quarter covers classical mechanics. The third quarter covers electromagnetism and electronics. The fourth quarter consists of thermodynamics and…

  7. On Space and Time

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Connes, With contributions by Alain; Heller, Michael; Penrose, Roger; Polkinghorne, John; Taylor, Andrew

    2008-09-01

    Preface; 1. The dark universe A. N. Taylor; 2. Quantum spacetime and physical reality S. Majid; 3. Causality, quantum theory and cosmology R. Penrose; 4. On the fine structure of spacetime A. Connes; 5. Where physics meets metaphysics M. Heller; 6. The nature of time J. C. Polkinghorne; Index.

  8. On Space and Time

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Polkinghorne, With contributions by John; Penrose, Roger; Taylor, Andrew; Connes, Alain; Heller, Michael

    2012-03-01

    Preface; 1. The dark universe A. N. Taylor; 2. Quantum spacetime and physical reality S. Majid; 3. Causality, quantum theory and cosmology R. Penrose; 4. On the fine structure of spacetime A. Connes; 5. Where physics meets metaphysics M. Heller; 6. The nature of time J. C. Polkinghorne; Index.

  9. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but theymore » will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP* in the time between the Dark Matter and Neutrino workshops (June 29 – July 3) covering the subjects of dark matter, dark energy, neutrino physics, gravitational waves, collider physics and many others. PPC brought about 90 national and international participants. Started at Texas A&M University in 2007, PPC travelled to many places which include Geneva (Switzerland), Turin (Italy), Seoul (South Korea) and Leon (Mexico) over last few years. The objectives of CETUP*2015 and PPC2015 were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments.« less

  10. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are the constituents of the physical vacuum, as postulated two decades ago with the superbradyon (superluminal preon) hypothesis, the strongest implication would be the possibility that vacuum actually drives the expansion of the Universe. If an unstable (metastable) vacuum permanently expands, it can release energy in the form of conventional matter and of its associated kinetic energy. The SST can be the expression of such an expanding vacuum at cosmic level. We briefly discuss these and related issues, as well as relevant open questions including the problematics of the initial singularity and the cosmic vacuum dynamics in a pre-Big Bang era. The possibility to obtain experimental information on the preonic internal structure of vacuum is also considered.

  11. The cosmological constant and dark energy

    NASA Astrophysics Data System (ADS)

    Peebles, P. J.; Ratra, Bharat

    2003-04-01

    Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

  12. Improved Cosmological Constraints from New, Old, and Combined Supernova

    Science.gov Websites

    Data Set SAO/NASA ADS Astronomy Abstract Service Title: Improved Cosmological Constraints from , Harvard University, 60 Garden Street, Cambridge, MA 02138), AK(Department of Astronomy and Astrophysics Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720), BI(Department of Physics and Astronomy

  13. Gauge-invariant formalism of cosmological weak lensing

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre

    2018-04-01

    We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.

  14. Big-Bang-Gate Cosmic Titanic: Why Aren't Physics Journal's Editors Bringing It To The Center of Scientific Attention

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2010-02-01

    Until now science's greatest debacle occurred when Copernicus exposed Ptolemaic cosmologists' 1300 hundred year-long fraud that it must be true because observations fit theory so well, while they ignored the untested state of its central assumption of Earth centered planetary motion. With much hubris modern physicists are confident this could never happen again, that the integrity of physics journals editors suffices to guarantee that a challenge to the reigning cosmological theory -- big bang cosmology -- would immediately be brought to the center of scientific attention for analysis and discussion. In fact a decade ago it was reported [MPLA 2619 (1997); arXiv:gr-gc/9806061] that, like Ptolemaic cosmology before it, big bang's central assumption that GR expansion effects cause in-flight expansion had never been tested and, further, that experimental testing of it using GR operation of the GPS showed it to be false. This result proves it is impossible for the 2.73 K CBR to be fireball relic radiation. These results were expanded in CERN reports EXT-2003-021;022, but have been uniformly rejected by physics journals, one of which accepted a paper similar to CERN EXT-2003-022, only to reject it a few days later with the admission not to publish it because of fearing reaction of the worldwide physics community. For update on my PRL submission see http://www.alphacosmos.net. )

  15. Quarks, Leptons, and Bosons: A Particle Physics Primer.

    ERIC Educational Resources Information Center

    Wagoner, Robert; Goldsmith, Donald

    1983-01-01

    Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)

  16. Fully covariant cosmology and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Wesson, Paul S.; Liu, Hongya

    1995-01-01

    We present a cosmological model with good physical properties which is invariant not only under changes of the space and time coordinates but also under changes of an extra (Kaluza-Klein) coordinate related to rest mass. In frames where the latter is chosen to be constant we recover standard cosmology. In frames where it is chosen to be variable we obtain new astrophysical effects and gain insight into the nature of the big bang.

  17. Republication of: Relativistic cosmology

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.

    2009-03-01

    This is a republication of a paper by G.F.R. Ellis first published in Proceedings of the International School of Physics: General Relativity and Cosmology, 1971, in which he formulated the framework for relativistic cosmology with an arbitrary background geometry. The article has been selected for publication in the Golden Oldies series of General Relativity and Gravitation. The paper is accompanied by a Golden Oldie Editorial comprising an editorial note written by Bill Stoeger and Ellis’ brief autobiography.

  18. Cosmology with the Square Kilometre Array by SKA-Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA wouldmore » have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. Furthermore, the cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.« less

  19. Cosmology with the Square Kilometre Array by SKA-Japan

    DOE PAGES

    Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; ...

    2016-10-17

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA wouldmore » have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. Furthermore, the cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.« less

  20. The Large, the Small and the Human Mind

    NASA Astrophysics Data System (ADS)

    Penrose, Roger; Longair, Malcolm; Abner Shimony, With; Cartwright, Nancy; Hawking, Stephen

    2000-05-01

    Foreword Malcolm Longair; 1. Space-time and cosmology Roger Penrose; 2. The mysteries of quantum physics Roger Penrose; 3. Physics and the mind Roger Penrose; 4. On mentality, quantum mechanics and the actualization of potentialities Abner Shimony; 5. Why physics? Nancy Cartwright; 6. The objections of an unashamed reductionist Stephen Hawking; 7. Response Roger Penrose; Appendix I: Goodstein's theorm and mathematical thinking; Appendix II: Experiments to test gravitationally induced state reduction.

  1. The status of varying constants: a review of the physics, searches and implications.

    PubMed

    Martins, C J A P

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete-if not incorrect-and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature's fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  2. The status of varying constants: a review of the physics, searches and implications

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete—if not incorrect—and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature’s fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  3. Direct and Indirect Dark Matter Detection in Gauge Theories (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, Farinaldo

    The Dark matter (DM) problem constitutes a key question at the interface among Particle Physics, Astrophysics and Cosmology. The observational data which have been accumulated in the last years point to an existence of non baryonic amount of DM. Since the Standard Model (SM) does not provide any candidate for such non-baryonic DM, the evidence of DM is a major indication for new physics beyond the SM. We will study in this work one of the most popular DM candidates, the so called WIMPs (Weakly Interacting Massive Particles) from a direct and indirect detection perspective. In order to approach themore » direct and indirect dection of DM in the context of Particle Physics in a more pedagogic way, we will begin our discussion talking about a minimal extension of the SM. Later we will work on the subject in a 3-3-1 model. Next, we will study the role of WIMPs in the Big Bang Nucleosynthesis. Lastly, we will look for indirect DM signals in the center of our galaxy using the NASA Satellite, called Fermi-LAT. Through a comprehensive analysis of the data events observed by Fermi-LAT and some background models, we will constrain the dark matter annihilation cross section for several annihilation channels and dark matter halo profiles.« less

  4. An Integrated Higgs Force Theory

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2016-03-01

    An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).

  5. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Aaron

    This award provided partial support for the Michigan Center for Theoretical Physics to host two workshops "Beyond the Standard Model 2016" in October 2016, and the "5th MCTP Symposium: Foundations of String Cosmology" in April 2017 on the University of Michigan campus.

  6. Late time cosmological phase transitions 1: Particle physics models and cosmic evolution

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Hill, Christopher T.; Watkins, Richard

    1991-01-01

    We described a natural particle physics basis for late-time phase transitions in the universe. Such a transition can seed the formation of large-scale structure while leaving a minimal imprint upon the microwave background anisotropy. The key ingredient is an ultra-light pseudo-Nambu-Goldstone boson with an astronomically large (O(kpc-Mpc)) Compton wavelength. We analyze the cosmological signatures of and constraints upon a wide class of scenarios which do not involve domain walls. In addition to seeding structure, coherent ultra-light bosons may also provide unclustered dark matter in a spatially flat universe, omega sub phi approx. = 1.

  7. Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies

    NASA Astrophysics Data System (ADS)

    Tomassini, Luca; Viaggiu, Stefano

    2014-09-01

    We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.

  8. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  9. Standard Model–axion–seesaw–Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos N {sub i} , a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value v {sub σ} ∼ 10{sup 11} GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CPmore » problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs, and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model—axion—seesaw—Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.« less

  10. General Relativity Today

    NASA Astrophysics Data System (ADS)

    Blandford, Roger D.

    2016-01-01

    A hundred years after its birth, general relativity has become a highly successful theory in the sese that it has passed many experimental and observational tests and finds widespread application to diverse set of cosmic phenomena. It remains an accurate research field as more tests are deployed, epitomized by the exciting prospect of detecting gravitational radiation directly. General realtivity is the essential foundation of modern cosmology and underlies our detailed description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. The interface with physics on both the largest and the smallest scales continues to be very fertile. In this talk I will attempt to highlight some key steps along the way to general relativity today.

  11. Zöllner's Universe

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2012-12-01

    The idea that space is not Euclidean by necessity, and that there are other kinds of "curved" spaces, diffused slowly to the physical and astronomical sciences. Until Einstein's general theory of relativity, only a handful of astronomers contemplated a connection between non-Euclidean geometry and real space. One of them, the German astrophysicist Johann Carl Friedrich Zöllner (1834-1882), suggested in 1872 a remarkable cosmological model describing a finite universe in closed space. I examine Zöllner's little-known contribution to cosmology and also his even more unorthodox speculations of a four-dimensional space including both physical and spiritual phenomena. I provide an overview of Zöllner's scientific work, of his status in the German scientific community, and of the controversies caused by his polemical style of science. Zöllner's cosmology was effectively forgotten, but there is no reason why it should remain an unwritten chapter in the history of science.

  12. Swedish Upper Secondary Students' Views of the Origin and Development of the Universe

    NASA Astrophysics Data System (ADS)

    Hansson, Lena; Redfors, Andreas

    2006-12-01

    The article is addressing how students reason about the origin and development of the universe. Students’ own views as well as their descriptions of physical models are analysed. Data consists of written surveys, and interviews of a subset of the students. Most of the students relate to the Big Bang model when describing the origin of the universe. The study however shows that this can mean different things to the students. The article also addresses views of whether or not the universe changes and of the origin of the elements. When comparing students’ own views with their views of the physics view this study shows that there are students who have a different view of their own than the view they connect with physics. This shows that students, in the area of cosmology, do not necessarily take the view they connect with physics to be their own. Examples of students who handle the physics view in different ways are discussed. There are students who relate not only to science but also to a religious worldview when describing their own view. This shows that when discussing cosmology in class, also a religious worldview can be relevant for parts of the student group.

  13. A White Paper on keV sterile neutrino Dark Matter

    DOE PAGES

    Adhikari, R.

    2017-01-13

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  14. Unifying Quantum Physics with Biology

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2014-09-01

    We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.

  15. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall

    2017-01-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.

  16. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  17. Tilted Kantowski-Sachs cosmological model in Brans-Dicke theory of gravitation

    NASA Astrophysics Data System (ADS)

    Pawar, D. D.; Shahare, S. P.; Dagwal, V. J.

    2018-02-01

    Tilted Kantowski-Sachs cosmological model in Brans-Dicke theory for perfect fluid has been investigated. The general solution of field equations in Brans-Dicke theory for the combined scalar and tensor field are obtained by using power law relation. Also, some physical and geometrical parameters are obtained and discussed.

  18. Ex-Nihilo II: Examination Syllabi and the Sequencing of Cosmology Education

    ERIC Educational Resources Information Center

    Pimbblet, Kevin A.; Newman, John C.

    2003-01-01

    Cosmology education has become an integral part of modern physics courses. Directed by National Curricula, major UK examination boards have developed syllabi that contain explicit statements about the model of the Big Bang and the strong observational evidence that supports it. This work examines the similarities and differences in these…

  19. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    PubMed

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  20. Tilted Bianchi type-I wet dark fluid model in Saez and Ballester theory

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Tole, T. T.; Balcha, M.

    2018-06-01

    Tilted Bianchi-I wet dark fluid cosmological model is investigated in Saez and Ballester scalar theory of gravitation. Background cosmologies are obtained for a constant deceleration parameter. We consider a linear relationship between the shear scalar and the expansion scalar. We have discussed some physical and geometrical properties of the models. In our models, equation of state of the dark energy is observed to behave like a cosmological constant at late times.

  1. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    DTIC Science & Technology

    2012-05-11

    Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator Laboratory, Stanford University...and that they represent only ∼0.1% of the parent population. Key words: cosmology : observations – diffuse radiation – galaxies: active – galaxies: jets...is determined and discussed in Section 6. Throughout this paper, we assume a standard concordance cosmology (H0 = 71 km s−1 Mpc−1 and ΩM = 1−ΩΛ = 0.27

  2. The Eighth Data Release Of The Sloan Digital Sky Survey: First Data From SDSS-3

    DTIC Science & Technology

    2011-04-01

    Sunspot, NM 88349, USA 14 Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003, USA 15 Department of...Park, PA 16802, USA 18 Institute of Cosmology and Gravitation (ICG), Dennis Sciama Building, Burnaby Road, University of Portsmouth, Portsmouth, PO1 3FX... Cosmology , Carnegie Mellon University, Pittsburgh, P.A. 15213, USA 26 Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520

  3. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  4. New Phenomena in Propagation of Radio Polarizations due to Magnetic Fields on Cosmological Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, J.P.; Jain, P.; Nodland, B.

    1998-07-01

    We discuss a new mechanism which could cause a rotation of polarization of electromagnetic waves due to magnetic fields on cosmological scales. The effect hinges on the geometrical phase of Pancharatnam and Berry, and causes a corkscrew twisting of the plane of polarization. The new effect represents an additional tool that allows possible intergalactic and cosmological magnetic fields to be studied using radio propagation. {copyright} {ital 1998} {ital The American Physical Society}

  5. The Milky Way's Mass Inferered by Satellite Kinematics from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Lazar, Alexander; Boylan-Kolchin, Michael

    2017-06-01

    A precise interpretion of the Milky Way’s dark matter halo mass has limited our ability to depict the Milky Way in cosmological context. One of the noteworthy issues is that only a handful of tracers — satellite galaxies — probe the gravitational potential at large radii, and converting observed velocities into a constraint on the mass profile requires significant assumptions. High resolution cosmological simulations provide a powerful tool for interpreting data, but most results to date rely on dark-matter-only simulations that neglect the effects of galaxy formation physics. We compare the orbital kinematics of satellite galaxies in the Illustris simulation with its dark-matter-only counterpart, which allows us to compare, on an object-by-object basis, the differences influenced in orbits from baryonic physics. We quantify the effects of galaxy formation physics on orbital distributions of satellites and describe how these differences affect inferences for the mass of the Milky Way.

  6. Particle physics in the very early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  7. A de Sitter tachyonic braneworld revisited

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  8. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  9. Support for the 38th International Conference on High Energy Physics, 3-10 August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Kee

    The 38th International Conference on High Energy Physics (ICHEP) held in Chicago from August 3 to 10, 2016 was for physicists from around the world to gather to share the latest advancements in particle physics, astrophysics/cosmology, and accelerator science and to discuss plans for major future facilities. DOE funding provided partial support for space rental audio-visual services for scientific presentations at the conference.

  10. A Solution to the Cosmological Problem of Relativity Theory

    NASA Astrophysics Data System (ADS)

    Janzen, Daryl

    After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big Bang singularity, to appeal to the need for a quantum theory of gravity. This thesis takes a very different approach to the problem, in hypothesising that, because our physical model really does appear to do a very good job of describing the observed cosmic expansion rate, and all the data indicate that our Universe might well expand precisely according to the flat ΛCDM scale-factor, it may not be the model, but our basic expectations that need to be modified in order to derive a physical theory that stands in reasonable agreement with the empirical results; i.e., that it may actually be that we need to re-examine, and rationally modify our expectations of what should theoretically be, so that we might derive a theory to explain the empirical results of cosmology, which would be based solely on reasonably acceptable first principles. Therefore, a self-consistent theory is constructed here, upon re-consideration of the cosmological foundations of relativity theory, which eventually does afford an explanation of the cosmological problem, as it provides good reason to actually expect observations in the fundamental rest-frame to be described precisely by the flat ΛCDM scale-factor which has been empirically constrained.

  11. Why there is something rather than nothing: cosmological constant from summing over everything in lorentzian quantum gravity.

    PubMed

    Barvinsky, A O

    2007-08-17

    The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.

  12. Globally baryon symmetric cosmology, GUT spontaneous symmetry breaking, and the structure of the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Brown, R. W.

    1979-01-01

    Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.

  13. Lorenz, Gödel and Penrose: new perspectives on determinism and causality in fundamental physics

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.

    2014-07-01

    Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe ? can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set ? in its state space. Symbolic representations of ? are constructed explicitly based on permutation representations of quaternions. The resulting 'invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of ?, with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.

  14. Lithium Gadolinium Borate in Plastic Scintillator as an Antineutrino Detection Material

    DTIC Science & Technology

    2010-06-01

    advancement of fundamental particle physics, development of the standard model of particle physics and our understanding many cosmological processes...MeVee). Where the light produced by by a 1MeV electron is 1 MeVee by definition , but a heavy charged particle would have a kinetic energy of several

  15. A New Viewpoint (The expanding universe, Dark energy and Dark matter)

    NASA Astrophysics Data System (ADS)

    Cwele, Daniel

    2011-10-01

    Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.

  16. Physics in perspective, volume 2. Part B: The interfaces

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed information of physics subfields and interface areas are presented. Topics discussed include: astrophysics and relativity, earth and planetary physics, physics in chemistry, physics in biology, instrumentation, education, and dissemination and use of the information of physics. For Vol. 1, see N72-28706; for excerpt from Vol. 1, see N72-29689; for Vol. 2, Pt. A, see N73-15706.

  17. Oxford dictionary of Physics

    NASA Astrophysics Data System (ADS)

    Isaacs, Alan

    The dictionary is derived from the Concise Science Dictionary, first published by Oxford University Press in 1984 (third edition, 1996). It consists of all the entries relating to physics in that dictionary, together with some of those entries relating to astronomy that are required for an understanding of astrophysics and many entries that relate to physical chemistry. It also contains a selection of the words used in mathematics that are relevant to physics, as well as the key words in metal science, computing, and electronics. For this third edition a number of words from quantum field physics and statistical mechanics have been added. Cosmology and particle physics have been updated and a number of general entries have been expanded.

  18. Approaches to linear local gauge-invariant observables in inflationary cosmologies

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Hack, Thomas-Paul; Khavkine, Igor

    2018-06-01

    We review and relate two recent complementary constructions of linear local gauge-invariant observables for cosmological perturbations in generic spatially flat single-field inflationary cosmologies. After briefly discussing their physical significance, we give explicit, covariant and mutually invertible transformations between the two sets of observables, thus resolving any doubts about their equivalence. In this way, we get a geometric interpretation and show the completeness of both sets of observables, while previously each of these properties was available only for one of them.

  19. Degravitation of the cosmological constant in bigravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platscher, Moritz; Smirnov, Juri, E-mail: moritz.platscher@mpi-hd.mpg.de, E-mail: juri.smirnov@mpi-hd.mpg.de

    2017-03-01

    In this article the phenomenon of degravitation of the cosmological constant is studied in the framework of bigravity. It is demonstrated that despite a sizable value of the cosmological constant its gravitational effect can be only mild. The bigravity framework is chosen for this demonstration as it leads to a consistent, ghost-free theory of massive gravity. We show that degravitation takes place in the limit where the physical graviton is dominantly a gauge invariant metric combination. We present and discuss several phenomenological consequences expected in this regime.

  20. Whitehead's Multiverse

    NASA Astrophysics Data System (ADS)

    McHenry, Leemon

    2012-09-01

    Alfred North Whitehead advanced a version of multiverse theory in 19291 that bears a remarkable affinity to the revolutionary ideas of current cosmological speculation.2 He postulated his theory for some of the very same reasons as those advanced today by leading cosmologists and physicists such as Martin Rees, Lee Smolin, Stephen Hawking, Max Tegmark and Steven Weinberg, but his theory has largely gone unnoticed. While Whitehead knew nothing of the great advances in big bang theory, expansion, inflation and the unification of physics in post-Hubble cosmology when he wrote Process and Reality in the 1920s, he sought to explain the origin of our universe from its predecessor and to unify the fragmentary theories of physics into a grand theory.

  1. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  2. European Physical Society Conference on High Energy Physics

    NASA Astrophysics Data System (ADS)

    The European Physical Society Conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, is a major international conference that reviews biennially since 1971 the state of our knowledge of the fundamental constituents of matter and their interactions. The latest conferences in this series were held in Stockholm, Grenoble, Krakow, Manchester, Lisbon, and Aachen. Jointly organized by the Institute of High Energy Physics of the Austrian Academy of Sciences, the University of Vienna, the Vienna University of Technology, and the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, the 23rd edition of this conference took place in Vienna, Austria. Among the topics covered were Accelerators, Astroparticle Physics, Cosmology and Gravitation, Detector R&D and Data Handling, Education and Outreach, Flavour Physics and Fundamental Symmetries, Heavy Ion Physics, Higgs and New Physics, Neutrino Physics, Non-Perturbative Field Theory and String Theory, QCD and Hadronic Physics, as well as Top and Electroweak Physics.

  3. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 9)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  4. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 5)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  5. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 6)

    ScienceCinema

    None

    2018-06-28

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  6. Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

    NASA Astrophysics Data System (ADS)

    Dalianis, Ioannis; Watanabe, Yuki

    2018-02-01

    The cosmic history before the BBN is highly determined by the physics that operates beyond the Standard Model (BSM) of particle physics and it is poorly constrained observationally. Ongoing and future precision measurements of the CMB observables can provide us with significant information about the pre-BBN era and hence possibly test the cosmological predictions of different BSM scenarios. Supersymmetry is a particularly motivated BSM theory and it is often the case that different superymmetry breaking schemes require different cosmic histories with specific reheating temperatures or low entropy production in order to be cosmologically viable. In this paper we quantify the effects of the possible alternative cosmic histories on the n s and r CMB observables assuming a generic non-thermal stage after cosmic inflation. We analyze TeV and especially multi-TeV super-symmetry breaking schemes assuming the neutralino and gravitino dark matter scenarios. We complement our analysis considering the Starobinsky R 2 inflation model to exemplify the improved CMB predictions that a unified description of the early universe cosmic evolution yields. Our analysis underlines the importance of the CMB precision measurements that can be viewed, to some extend, as complementary to the laboratory experimental searches for supersymmetry or other BSM theories.

  7. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  8. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    ERIC Educational Resources Information Center

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  9. Explaining the Supernova Data Without Accelerating Expansion

    NASA Astrophysics Data System (ADS)

    Stuckey, W. M.; McDevitt, T. J.; Silberstein, M.

    2012-10-01

    The 2011 Nobel Prize in Physics was awarded "for the discovery of the accelerating expansion of the universe through observations of distant supernovae." However, it is not the case that the type Ia supernova data necessitates accelerating expansion. Since we do not have a successful theory of quantum gravity, we should not assume general relativity (GR) will survive unification intact, especially on cosmological scales where tests are scarce. We provide a simple example of how GR cosmology may be modified to produce a decelerating Einstein-de Sitter cosmology (EdS) that accounts for the Union2 Compilation data as well as the accelerating ΛCDM (EdS plus a cosmological constant).

  10. From "~" to Precision Science: Cosmology from 1995 to 2025

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Spergel, David N.

    2016-01-01

    Over the past decade and a half, astronomical measurements, primarily of fluctuations in the cosmic microwave background, have transformed cosmology from an order-of-magnitude game into a paragon of precision science. From these measurements has emerged a 6-parameter cosmological "standard model": a flat universe filled with dark matter and dark energy and seeded by a nearly scale-invariant spectrum of Gaussian random-phase density perturbations. The striking resemblance between these perturbations and those expected from inflation motivates the search for a unique "B-mode" signature of inflation in the polarization of the cosmic microwave background. While the fluctuation spectrum is close to scale invariant, WMAP, Planck and ground-based CMB experiments now have strong evidence for a departure from scale invariance in primordial perturbations. This suggests, in simple models of inflation that these B modes should be within striking distance within the next 5-10 years. The advent of a new generation of galaxy surveys will, over similar timescales, shed additional light not only on the physics of inflation, but also the nature of the dark matter and dark energy required by the current cosmological standard model, and perhaps on the new physics that determines the baryon density.

  11. Millikan Award Lecture, 2006: Physics For All

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2006-12-01

    We physics teachers must broaden our focus from physics for physicists and other scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is that "[w]ithout a scientifically literate population, the outlook for a better world is not promising." Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, nuclear physics, the standard model of particles and interactions, and quantum fields. Many science writers have shown that this description is possible. It should emphasize the scientific process and include such societal topics as global warming, nuclear weapons, and pseudoscience, because citizens need to vote intelligently on such issues.

  12. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  13. Neutrino mass priors for cosmology from random matrices

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; Dodelson, Scott

    2018-02-01

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σ mν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π (Σ mν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σ mν that we interpret as a Bayesian prior probability π (Σ mν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π (Σ mν) peaks close to the smallest Σ mν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π (Σ mν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π (Σ mν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.

  14. Architectures and methodologies for future deployment of multi-site Zettabyte-Exascale data handling platforms

    NASA Astrophysics Data System (ADS)

    Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.

    2015-12-01

    Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several

  15. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  16. Interacting quantum fields and the chronometric principle

    PubMed Central

    Segal, I. E.

    1976-01-01

    A form of interaction in quantum field theory is described that is physically intrinsic rather than superimposed via a postulated nonlinearity on a hypothetical free field. It derives from the extension to general symmetries of the distinction basic for the chronometric cosmology between the physical (driving) and the observed energies, together with general precepts of quantum field theory applicable to nonunitary representations. The resulting interacting field is covariant, causal, involves real particle production, and is devoid of nontrivial ultraviolet divergences. Possible physical applications are discussed. PMID:16592353

  17. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda

    2016-04-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less

  18. YRMR Organizing Committee

    NASA Astrophysics Data System (ADS)

    2011-02-01

    Elena Cannuccia graduated in physics at the University of Rome Tor Vergata in the Condensed Matter Theory Group (1http://www.fisica.uniroma2.it/?cmtheo-group/). She is currently finishing her PhD in the same research group. Her research project focused on the investigation of the role played by electron-phonon coupling on the electronic properties of polymers. Through completing her research she made a contribution to the development of YAMBO (http://www.yambo-code.org/), a FORTRAN/C code for Many-Body calculations in solid state and molecular physics. Luca Mazzaferro is a PhD student at the University of Rome "Tor Vergata". He works on the ATLAS experiment and is a member of the ATLAS Calibration group. He gratuated from the University of Rome "La Sapienza" in May 2010, and worked with the local ATLAS group, developing the LCDS routines for the calibration of the ATLAS MDT Chambers. This software is now a standard for managing the calibration analysis of ATLAS chambers. He also works in the administrative group of "Tor Vergata" grid-computing farm. Marina Migliaccio graduated in Universe Science at the University of Rome "Tor Vergata", and she is now a PhD student in Astronomy. During her PhD she has spent eight months as a visiting scholar at the Kavli Institute for Cosmology in Cambridge (UK). The focus of her research is precision cosmology. In this context, her work so far has been devoted to the study of Cosmic Microwave Background (CMB) radiation in order to constrain cosmological models and early universe physics. She has analyzed the BOOMERanG balloon-borne experiment data, searching for a primordial non-Gaussian signature. Since 2008, she has been involved in the Planck mission Core Cosmology program, where her major contribution deals with measuring the statistical properties of CMB intensity and polarization fields in view of realistic (both instrumental and astrophysical) effects. Davide Pietrobon graduated in Astronomy, sharing the PhD between the University of Roma "Tor Vergata" and the Institute of Cosmology and Gravitation at the University of Portsmouth, within the context of the European Cotutela project. His thesis represents a detailed analysis of the cosmological perturbations through needlets, a statistical tool he developed together with his colleagues in Rome. In particular he focused on two main open questions in cosmology: dark energy and non-Gaussianity. He gained his Bachelors degree in physics from the University of Modena and Reggio Emilia, and his Masters in physics at the University of Roma "Tor Vergata". He spent three months at the University of California Irvine as a visiting student and is now a postdoc at the Jet Propulsion Laboratory. Francesco Stellato has studied the role of metals in the pathogenesis of neurodegenerative diseases such as Parkinsons and Alzheimers during his PhD. To this purpose, he mainly used synchrotron radiation-based techniques, e.g. X-ray Absorption Spectroscopy. He is interested in the development of new-generation light sources such as high-brilliance synchrotron and Free Electron Lasers, and in their application to the structural and dynamical study of biomolecules. Marcella Veneziani is a postdoc fellow at the California Institute of Technology and the University of Rome "La Sapienza". In February 2009 she gained her PhD in Astronomy at the University of Rome "La Sapienza", and in Physics, Particles and Matter at the University of Paris Diderot. Her fields of interest are: physics of the interstellar medium and star formation; cosmic microwave background radiation; analysis of data from orbital and suborbital experiments, and instrumental calibration. She is a member of the Herschel-HiGal, the Planck-HFI and the BOOMERanG collaborations. Part of her work has been undertaken at the European Space Agency Astronomy Center and at the University of California Irvine.

  19. Exactly solvable quantum cosmologies from two killing field reductions of general relativity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Smolin, Lee

    1989-11-01

    An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.

  20. Can compactifications solve the cosmological constant problem?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.; Center for Theoretical Physics, Department of Physics,Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139; Masoumi, Ali

    2016-06-30

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain whymore » Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.« less

  1. Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World

    NASA Astrophysics Data System (ADS)

    Kane, Gordon

    2012-03-01

    In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''

  2. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.

    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.

  3. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Pal, Sridip; Banerjee, Narayan

    2018-06-01

    The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.

  4. Cosmological implications of Higgs near-criticality

    NASA Astrophysics Data System (ADS)

    Espinosa, J. R.

    2018-01-01

    The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called `near-criticality' are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  5. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology

    NASA Astrophysics Data System (ADS)

    Hall, Michael J. W.

    2018-03-01

    General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology provides readers with a solid understanding of the underlying physical concepts of general relativity. It also shows how they may derive important applications of the theory and is a solid grounding for those wishing to pursue further study. This thorough primer is based on class-tested undergraduate lectures from Griffith University, Brisbane. It develops the basic elements of general relativity with applications to the gravitational deflection of light, GPS, black holes, gravitational waves, and cosmology.

  6. Sixfold improved single particle measurement of the magnetic moment of the antiproton.

    PubMed

    Nagahama, H; Smorra, C; Sellner, S; Harrington, J; Higuchi, T; Borchert, M J; Tanaka, T; Besirli, M; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-01-18

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement g p /2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.

  7. Sixfold improved single particle measurement of the magnetic moment of the antiproton

    PubMed Central

    Nagahama, H.; Smorra, C.; Sellner, S.; Harrington, J.; Higuchi, T.; Borchert, M. J.; Tanaka, T.; Besirli, M.; Mooser, A.; Schneider, G.; Blaum, K.; Matsuda, Y.; Ospelkaus, C.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2017-01-01

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20. PMID:28098156

  8. Multiple Discipline science assessment. [considering astronomy, astrophysics, cosmology, gravitation and geophysics when planning planetary missions

    NASA Technical Reports Server (NTRS)

    Wells, W. C.

    1978-01-01

    Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.

  9. REVIEWS OF TOPICAL PROBLEMS: The neutrino mass in elementary-particle physics and in big bang cosmology

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Ya B.; Khlopov, M. Yu

    1981-09-01

    Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis.

  10. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  11. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.; Agostini, M.; Ky, N. Anh

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  12. Nuclear physics and cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  13. A White Paper on keV sterile neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.

    2017-01-01

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

  14. Perspectives of cross-sectional scanning tunneling microscopy and spectroscopy for complex oxide physics

    NASA Astrophysics Data System (ADS)

    Wang, Aaron; Chien, TeYu

    2018-03-01

    Complex oxide heterostructure interfaces have shown novel physical phenomena which do not exist in bulk materials. These heterostructures can be used in the potential applications in the next generation devices and served as the playgrounds for the fundamental physics research. The direct measurements of the interfaces with excellent spatial resolution and physical property information is rather difficult to achieve with the existing tools. Recently developed cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) for complex oxide interfaces have proven to be capable of providing local electronic density of states (LDOS) information at the interface with spatial resolution down to nanometer scale. In this perspective, we will briefly introduce the basic idea and some recent achievements in using XSTM/S to study complex oxide interfaces. We will also discuss the future of this technique and the field of the interfacial physics.

  15. Universe or Multiverse?

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2009-08-01

    Part I. Overviews: 1. Introduction and overview Bernard Carr; 2. Living in the multiverse Steven Weinberg; 3. Enlightenment, knowledge, ignorance, temptation Frank Wilczek; Part II. Cosmology and Astrophysics: 4. Cosmology and the multiverse Martin J. Rees; 5. The anthropic principle revisited Bernard Carr; 6. Cosmology from the top down Stephen Hawking; 7. The multiverse hierarchy Max Tegmark; 8. The inflationary universe Andrei Linde; 9. A model of anthropic reasoning: the dark to ordinary matter ratio Frank Wilczek; 10. Anthropic predictions: the case of the cosmological constant Alexander Vilenkin; 11. The definition and classification of universes James D. Bjorken; 12. M/string theory and anthropic reasoning Renata Kallosh; 13. The anthropic principle, dark energy and the LHC Savas Dimopoulos and Scott Thomas; Part III. Particle Physics and Quantum Theory: 14. Quarks, electrons and atoms in closely related universes Craig J. Hogan; 15. The fine-tuning problems of particle physics and anthropic mechanisms John F. Donoghue; 16. The anthropic landscape of string theory Leonard Susskind; 17. Cosmology and the many worlds interpretation of quantum mechanics Viatcheslav Mukhanov; 18. Anthropic reasoning and quantum cosmology James B. Hartle; 19. Micro-anthropic principle for quantum theory Brandon Carter; Part IV. More General Philosophical Issues: 20. Scientific alternatives to the anthropic principle Lee Smolin; 21. Making predictions in a multiverse: conundrums, dangers, coincidences Anthony Aguirre; 22. Multiverses: description, uniqueness and testing George Ellis; 23. Predictions and tests of multiverse theories Don N. Page; 24. Observation selection theory and cosmological fine-tuning Nick Bostrom; 25. Are anthropic arguments, involving multiverses and beyond, legitimate? William R. Stoeger; 26. The multiverse hypothesis: a theistic perspective Robin Collins; 27. Living in a simulated universe John D. Barrow; 28. Universes galore: where will it all end? Paul Davies; Index.

  16. Microscopic approach to string gas cosmology

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg

    2014-03-01

    In this contribution to the proceedings of the Conference on Modern Physics of Compact Stars and Relativistic Gravity in Yerevan, Armenia (September 18-21, 2013), I review recent work attempting to give a fundamental definition to string evolution in a dynamical, fully compact universe, and present a sketch of how the resulting formalism can be used for addressing questions of phenomenological significance in the field of string gas cosmology.

  17. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  18. Some current themes in physical hydrology of the land-atmosphere interface

    USGS Publications Warehouse

    Milly, P.C.D.

    1991-01-01

    Certain themes arise repeatedly in current literature dealing with the physical hydrology of the interface between the atmosphere and the continents. Papers contributed to the 1991 International Association of Hydrological Sciences Symposium on Hydrological Interactions between Atmosphere, Soil and Vegetation echo these themes, which are discussed in this paper. The land-atmosphere interface is the region where atmosphere, soil, and vegetation have mutual physical contact, and a description of exchanges of matter or energy among these domains must often consider the physical properties and states of the entire system. A difficult family of problems is associated with the reconciliation of the wide range of spatial scales that arise in the course of observational, theoretical, and modeling activities. These scales are determined by some of the physical elements of the interface, by patterns of natural variability of the physical composition of the interface, by the dynamics of the processes at the interface, and by methods of measurement and computation. Global environmental problems are seen by many hydrologists as a major driving force for development of the science. The challenge for hydrologists will be to respond to this force as scientists rather than problem-solvers.

  19. Causality from the Cosmological Perspective in Vedanta and Western Physics.

    NASA Astrophysics Data System (ADS)

    Hawley, Danny Lee

    The relation between Western physics and Indian Vedanta philosophy is investigated through the topic of causality, taken in the sense of explanatory theories of the origin of the universe and the relations among its physical, mental, and spiritual aspects. Both physics and Vedanta have a common goal of explanation by means of a unitary principle. While physics has long been separated from metaphysics, its discoveries indicate that consciousness must be included in a complete explanation. Consciousness is taken as the fundamental basis and source of all phenomena in Vedanta. This work traces the developments of causal explanation in Western physics and Indian philosophy, and considers how these views may relate to each other and how they may together suggest a comprehensive view of reality. Approaches typically applied by historians of religion to the study of creation myths, especially the psychological approach which considers myths from the perspective or cyclical stages of conscious development, are applied to the causal theories of the two cultures. The question of how causal explanations attempt to bridge the gap between cause and effect, unity and multiplicity, absolute and relative, conscious and unconscious, etc., is addressed. Though the investigation begins from the earliest causal explanations, viz., creation myths, emphasis is placed upon Samkara's commentaries of Advaita Vedanta, examined in the original Sanskrit, and upon the convergence of modern field theory, astrophysics, and cosmology, seen from the perspective of a previous doctorate in physics. Consideration is given to the comparison between physics and Vedanta as to goals, methods, and domains, to the question of the incompleteness of physics and the extent to which it nevertheless points beyond itself, to the possibility of a synthetic view and how it might be effected, and to analogies and metaphors through which physics and Vedanta may illuminate each other. An intuitive picture is presented which uses an analogy between higher dimensions and levels of consciousness to suggest a comprehensive view.

  20. Cosmological Constant: A Lesson from Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-01

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  1. Cosmological constant: a lesson from Bose-Einstein condensates.

    PubMed

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-17

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  2. Principle of Spacetime and Black Hole Equivalence

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2016-06-01

    Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.

  3. The Pythagorean Roots of Introductory Physics

    NASA Astrophysics Data System (ADS)

    Clarage, James B.

    2013-03-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on proportion, music, geometry, harmony, the golden ratio, and cosmology. Examples are drawn from mechanics, electricity, sound, optics, energy conservation and relativity. An awareness of the primary sources of the mathematical techniques employed in the physics classroom could especially benefit students and educators at schools which encourage integration of their various courses in history, science, philosophy, and the arts.

  4. Science and Ultimate Reality

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Davies, Paul C. W.; Harper, Charles L., Jr.

    2004-06-01

    This preview of the future of physics comprises contributions from recognized authorities inspired by the pioneering work of John Wheeler. Quantum theory represents a unifying theme within the book, as it relates to the topics of the nature of physical reality, cosmic inflation, the arrow of time, models of the universe, superstrings, quantum gravity and cosmology. Attempts to formulate a final unification theory of physics are also considered, along with the existence of hidden dimensions of space, hidden cosmic matter, and the strange world of quantum technology. John Archibald Wheeler is one of the most influential scientists of the twentieth century. His extraordinary career has spanned momentous advances in physics, from the birth of the nuclear age to the conception of the quantum computer. Famous for coining the term "black hole," Professor Wheeler helped lay the foundations for the rebirth of gravitation as a mainstream branch of science, triggering the explosive growth in astrophysics and cosmology that followed. His early contributions to physics include the S matrix, the theory of nuclear rotation (with Edward Teller), the theory of nuclear fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), positrons as backward-in-time electrons, the universal Fermi interaction (with Jayme Tiomno), muonic atoms, and the collective model of the nucleus. His inimitable style of thinking, quirky wit, and love of the bizarre have inspired generations of physicists.

  5. On nonlocally interacting metrics, and a simple proposal for cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra

    2018-03-01

    We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.

  6. Neutrino mass priors for cosmology from random matrices

    DOE PAGES

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; ...

    2018-02-13

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σm ν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σm ν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix M ν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution overmore » M ν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σm ν that we interpret as a Bayesian prior probability π(Σm ν). Assuming a basis-invariant probability distribution on M ν, also known as the anarchy hypothesis, we find that π(Σm ν) peaks close to the smallest Σm ν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σm ν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. In conclusion, we present fitting functions for π(Σm ν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.« less

  7. Neutrino mass priors for cosmology from random matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σm ν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σm ν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix M ν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution overmore » M ν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σm ν that we interpret as a Bayesian prior probability π(Σm ν). Assuming a basis-invariant probability distribution on M ν, also known as the anarchy hypothesis, we find that π(Σm ν) peaks close to the smallest Σm ν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σm ν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. In conclusion, we present fitting functions for π(Σm ν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.« less

  8. Non-standard models and the sociology of cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2014-05-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  9. Certain problems in the current theory of gravitation

    NASA Astrophysics Data System (ADS)

    Markov, M. A.

    1984-04-01

    A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.

  10. Tests and prospects of new physics at very high energy. Beyond the standard basic principles, and beyond conventional matter and space-time. On the possible origin of Quantum Mechanics.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2015-05-01

    Recent results and announcements by Planck and BICEP2 have led to important controversies in the fields of Cosmology and Particle Physics. As new ideas and alternative approaches can since then more easily emerge, the link between the Mathematical Physics aspects of theories and the interpretation of experimental results becomes more direct. This evolution is also relevant for Particle Physics experiments at very high energy, where the interpretation of data on the highest-energy cosmic rays remains a major theoretical and phenomenological challenge. Alternative particle physics and cosmology can raise fundamental questions such as that of the structure of vacuum and space-time. In particular, the simplified description of the physical vacuum contained in standard quantum field theory does not necessarily correspond to reality at a deeper level, and similarly for the relativistic space-time based on four real variables. In a more general approach, the definition itself of vacuum can be a difficult task. The spinorial space-time (SST) we suggested in 1996-97 automatically incorporates a local privileged space direction (PSD) for each comoving observer, possibly leading to a locally anisotropic vacuum structure. As the existence of the PSD may have been confirmed by Planck, and a possible discovery of primordial B-modes in the polarization of the cosmic microwave background radiation (CMB) may turn out to contain new evidence for the SST, we explore other possible implications of this approach to space-time. The SST structure can naturally be at the origin of Quantum Mechanics at distance scales larger than the fundamental one if standard particles are dealt with as vacuum excitations. We also discuss possible implications of our lack of knowledge of the structure of vacuum, as well as related theoretical, phenomenological and cosmological uncertainties. Pre-Big Bang scenarios and new ultimate constituents of matter (including superbradyons) are crucial open subjects, together with vacuum structure and the interaction between vacuum and standard matter.

  11. Creation of the universe

    NASA Astrophysics Data System (ADS)

    Fang, Li Zhi; Li, Shu Xian

    Philosophical aspects of current cosmological theories are explored in an introduction for general readers. Chapters are devoted to the physical implications of an ancient Chinese story, expansion without a center, the age of the universe, the finiteness or infiniteness of space, visible and invisible matter, the birth of order from chaos, and the thermal history of the universe. Consideration is given to the synthesis of elements, the origin of asymmetry, the inflation of vacuum, the physics of the first move, and the anthropic principle and physical constants. Diagrams and drawings are provided.

  12. From ought to is physics and the naturalistic fallacy.

    PubMed

    Stanley, Matthew

    2014-09-01

    In the eighteenth and nineteenth centuries there were many attempts to justify political and social systems on the basis of physics and astronomy. By the early twentieth century such moves increasingly also integrated the life and social sciences. The physical sciences gradually became less appealing as a sole source for sociopolitical thought. The details of this transition help explain the contemporary reluctance to capitalize on an ostensibly rich opportunity for naturalistic social reasoning: the anthropic principle in cosmology, which deals with the apparent "fine-tuning" of the universe for life.

  13. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  14. Tell Me How to Do This Thing Called Design! Practical Application of Complexity Theory to Military Operations

    DTIC Science & Technology

    2011-04-08

    into how economics, information theory and computer science, psychology, sociology, evolutionary biology, physics (quantum mechanics) and cosmology ...include knowledge and definition of “self” (as “self” is part of the environment) and the shared experience and perspective of others  That...including information, entropy, quantum behavior, and cosmological progress In short I assume the above and therefore my recommendations could be

  15. Conformally flat tilted Bianchi Type-V cosmological models in general relativity

    NASA Astrophysics Data System (ADS)

    Bali, Raj; Meena, B. L.

    2004-05-01

    We have investigated two conformally flat tilted Bianchi Type-V cosmological models in general relativity. To get a determinate solution, we have assumed a supplementary condition A = B^n between metric potentials where n is a constant. The behaviour of the model for n=2 is discussed in detail. Various physical and geometrical aspects of the models are also discussed.

  16. End of Century State of Science

    DTIC Science & Technology

    1998-09-12

    the first cosmological objects. There have been several calculations of the molecular abundance as functions of the red shift with some differences...Compact Muon Solenoid) experiment, with the prospects for Higgs boson searches, for electroweak scale Supersymmetry and CP violation studies in the B...1.2.3] in a very down to earth way, and then consider the consequences for and relationships to biology, physics and cosmology in a somewhat less down to

  17. Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP)

    DTIC Science & Technology

    1997-03-01

    sources cannot be distant cosmological sources because of the energy loss resulting from interactions with the cosmic microwave background radiation...least as importantly, it appears necessary for the development of a consistent picture of cosmology e.g. primordial nucleosynthesis) that there is a...Goldstone boson associated with this symmetry breaking is called the axion. This process is analogous to the mechanism leading to the Higgs particle

  18. On the Foundations of the Two Measures Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2006-11-03

    Two Measures Field Theory (TMT) uses both the Riemannian volume element {radical}(-g)d{sup 4}x and a new one Fcy d4x where the new measure of integration Fcy can be build of four scalar fields. Arguments in favor of TMT, both from the point of view of first principles and from the TMT results are summarized. Possible origin of the TMT and symmetries that protect the structure of TMT are reviewed. It appears that four measure scalar fields treated as 'physical coordinates' allow to define local observables in quantum gravity. The resolution of the old cosmological constant problem as a possible directmore » consequence of the TMT structure is discussed. Other applications of TMT to cosmology and particle physics are also mentioned.« less

  19. Ricci polynomial gravity

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Zhao, Liu

    2017-12-01

    We study a novel class of higher-curvature gravity models in n spacetime dimensions which we call Ricci polynomial gravity. The action consists purely of a polynomial in Ricci curvature of order N . In the absence of the second-order terms in the action, the models are ghost free around the Minkowski vacuum. By appropriately choosing the coupling coefficients in front of each term in the action, it is shown that the models can have multiple vacua with different effective cosmological constants, and can be made free of ghost and scalar degrees of freedom around at least one of the maximally symmetric vacua for any n >2 and any N ≥4 . We also discuss some of the physical implications of the existence of multiple vacua in the contexts of black hole physics and cosmology.

  20. Quantum Consciousness - The Road to Reality

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell\\x9D? The question boils down to information created by quantum particles blinking ON and OFF analogous to 'Ying and Yang' or some more complex ways that may include dark matter. Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE (Theory of Everything) for any one thing.

  1. Particle physics meets cosmology - The search for decaying neutrinos

    NASA Technical Reports Server (NTRS)

    Henry, R. C.

    1982-01-01

    The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.

  2. Windows on Our Universe: Breakthroughs in Observational Cosmology

    NASA Astrophysics Data System (ADS)

    Ruhl, John; Faber, Sandy; Weinberg, David

    2009-03-01

    Clusters and Cosmology with the South Pole Telescope[0pt] John Ruhl, Case Western Reserve University[4pt] The Formation of Galaxies[0pt] Sandra Faber, University of California, Santa Cruz[4pt] Cosmology from the Sloan Digital Sky Survey[0pt] David Weinberg, The Ohio State University[4pt] In the past decade, the study of our Universe has entered a data- driven era. Indeed, observational advances indicate that cosmologists can understand the evolution of our Universe in exquisite detail and use our Universe as a laboratory with which to make profound statements about the laws of physics. Cosmologists have mapped out the relic radiation from the big bang itself and have succeeded in enormous projects to map the patterns of galaxies and the evolution of galaxies over ten billion years. Researchers are beginning to understand how the initial conditions depicted in the relic radiation evolve to form such rich galactic structure. And of course, with new data new mysteries have arisen that strike at the heart of fundamental physics and drive another generation of ambitious observational projects. The three speakers will discuss recent breakthroughs in observational cosmology: what has been learned about our Universe, the mysteries that have been uncovered, and what they see for the future.

  3. Is there a connection between “dark” and “light” physics?

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.

    2017-08-01

    In the early-mid 20th century Dirac and Zel’dovich were among the first scientists to suggest an intimate connection between cosmology and atomic physics. Though a revolutionary proposal for its time, Dirac’s Large Number Hypothesis (1937) adopted a standard assumption of the day, namely, the non-existence of the cosmological constant term (Λ = 0). As a result, its implementation necessitated extreme violence to the theory of general relativity - something few physicists were prepared to sacrifice in favour of ‘numerology’ - requiring a time-dependent gravitational coupling of the form G(t) ˜ 1/t. Zel’dovich’s insight (1968) was to realise that a small but nonzero cosmological term (Λ > 0) allowed the present day radius of the Universe to be identified with the de Sitter radius, {r}{{U}}≃ {l}{{dS}}≃ 1/\\sqrt{{{Λ }}}, which removed the need for time-dependence in the fundamental couplings. Thus, he obtained the formula Λ ≃ m 6 G 2/ℏ4, where m is a mass scale characterising the relative strengths of the gravitational and electromagnetic interactions, which he identified with the proton mass m p. In this paper, we review a number of recent arguments which, instead, suggest the identification m = m e/α e, where m e is the electron mass and α e = e 2/ℏc ≃ 1/137 is the usual fine structure constant. We note that these are of a physical nature and, therefore, represent an attempt to lift previous arguments à la Dirac from the realm of numerology into the realm of empirical science. If valid, such arguments suggest an intimate connection, not only between the macroscopic and microscopic worlds, but, perhaps even more surprisingly, between the very essence of “dark” and “light” physics.

  4. Laws of nature and the universe: Philosophical implications of modern cosmology

    NASA Astrophysics Data System (ADS)

    Balashov, Yuri V.

    1998-11-01

    Are the laws of nature real? Do they belong to the world or merely reflect the way we speak about it? If they are real, what sort of entity are they? This study contributes to the ongoing discussion of these questions by emphasizing the importance of a cosmological perspective on them. I argue that the evidence coming from modern evolutionary cosmology presents difficulties for certain currently fashionable philosophical accounts of laws, in particular, for the Dretske-Tooley-Armstrong theory. I defend, in light of this evidence, the idea of laws as grounded in irreducible nomic properties of basic objects and examine its cosmological implications and consequences for the philosophy of modality. If the laws of nature are real, they must represent an integral aspect of the universe as a whole. From a cosmological point of view, these two totalities, the laws of nature and the universe, may be related. I begin by showing that a concern about the consequences of such possible relationship was an important factor in the historical rivalry between the steady-state and big bang cosmologies (1948-1965). The cosmological perspective on laws has still more striking implications in the context of the contemporary interplay between big-bang cosmology and high energy physics in the effort to understand the processes at work during the first moments of cosmic evolution. In a sense, the evolution of the physical state of the universe as a whole may have 'carried' with it the evolution of certain nomic properties of matter. I contend that this poses problems for some nomic ontologies, such as the relations-between-universals theory, and favors the view of laws as grounded in causal powers of particulars. I show how the universe of causally powerful basic substances provides a natural framework for an interesting sense of modality characteristic of laws and how this illuminates the notoriously difficult problems of essential properties and natural kinds.

  5. A proposed application programming interface for a physical volume repository

    NASA Technical Reports Server (NTRS)

    Jones, Merritt; Williams, Joel; Wrenn, Richard

    1996-01-01

    The IEEE Storage System Standards Working Group (SSSWG) has developed the Reference Model for Open Storage Systems Interconnection, Mass Storage System Reference Model Version 5. This document, provides the framework for a series of standards for application and user interfaces to open storage systems. More recently, the SSSWG has been developing Application Programming Interfaces (APIs) for the individual components defined by the model. The API for the Physical Volume Repository is the most fully developed, but work is being done on APIs for the Physical Volume Library and for the Mover also. The SSSWG meets every other month, and meetings are open to all interested parties. The Physical Volume Repository (PVR) is responsible for managing the storage of removable media cartridges and for mounting and dismounting these cartridges onto drives. This document describes a model which defines a Physical Volume Repository, and gives a brief summary of the Application Programming Interface (API) which the IEEE Storage Systems Standards Working Group (SSSWG) is proposing as the standard interface for the PVR.

  6. Nonlinear phenomena in general relativity

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  7. Cosmological implications of Higgs near-criticality.

    PubMed

    Espinosa, J R

    2018-03-06

    The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called 'near-criticality' are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  8. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  9. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  10. Physics Literacy for All Students

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-03-01

    Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''

  11. Extreme data compression for the CMB

    NASA Astrophysics Data System (ADS)

    Zablocki, Alan; Dodelson, Scott

    2016-04-01

    We apply the Karhunen-Loéve methods to cosmic microwave background (CMB) data sets, and show that we can recover the input cosmology and obtain the marginalized likelihoods in Λ cold dark matter cosmologies in under a minute, much faster than Markov chain Monte Carlo methods. This is achieved by forming a linear combination of the power spectra at each multipole l , and solving a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the likelihood only for the parameter of interest, with the data compression effectively marginalizing over all other parameters. The weighting vectors contain insight about the physical effects of the parameters on the CMB anisotropy power spectrum Cl . The shape and amplitude of these vectors give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmological parameters, and the relative sensitivity of different experiments to cosmological parameters. We test this method on exact theory Cl as well as on a Wilkinson Microwave Anisotropy Probe (WMAP)-like CMB data set generated from a random realization of a fiducial cosmology, comparing the compression results to those from a full likelihood analysis using CosmoMC. After showing that the method works, we apply it to the temperature power spectrum from the WMAP seven-year data release, and discuss the successes and limitations of our method as applied to a real data set.

  12. (2+1)-dimensional stars

    NASA Astrophysics Data System (ADS)

    Lubo, M.; Rooman, M.; Spindel, Ph.

    1999-02-01

    We investigate, in the framework of (2+1)-dimensional gravity, stationary rotationally symmetric gravitational sources of the perfect fluid type, embedded in a space of an arbitrary cosmological constant. We show that the matching conditions between the interior and exterior geometries imply restrictions on the physical parameters of the solutions. In particular, imposing finite sources and the absence of closed timelike curves privileges negative values of the cosmological constant, yielding exterior vacuum geometries of rotating black hole type. In the special case of static sources, we prove the complete integrability of the field equations and show that the sources' masses are bounded from above and, for a vanishing cosmological constant, generally equal to 1. We also discuss and illustrate the stationary configurations by explicitly solving the field equations for constant mass-energy densities. If the pressure vanishes, we recover as interior geometries Gödel-like metrics defined on causally well behaved domains, but with unphysical values of the mass to angular momentum ratio. The introduction of pressure in the sources cures the latter problem and leads to physically more relevant models.

  13. Cosmology and fundamental physics with the Euclid satellite.

    PubMed

    Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2018-01-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  14. Cosmology and fundamental physics with the Euclid satellite

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P.; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G.; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D.; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F.; Nunes, Nelson J.; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2018-04-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  15. Cosmology and Fundamental Physics with the Euclid Satellite.

    PubMed

    Amendola, Luca; Appleby, Stephen; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Di Porto, Cinzia; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Horst, Ole; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; March, Marisa; Majerotto, Elisabetta; Markovic, Katarina; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2013-01-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  16. Non-extensive Statistics to the Cosmological Lithium Problem

    NASA Astrophysics Data System (ADS)

    Hou, S. Q.; He, J. J.; Parikh, A.; Kahl, D.; Bertulani, C. A.; Kajino, T.; Mathews, G. J.; Zhao, G.

    2017-01-01

    Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, 3He, 4He, and 7Li produced in the early universe. The primordial abundances of D and 4He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial 7Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q, and reduces to the usually assumed Maxwell-Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, 4He, and 7Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.

  17. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2008-01-01

    We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.

  18. Cosmology and unified gauge theory

    NASA Astrophysics Data System (ADS)

    Oraifeartaigh, L.

    1981-09-01

    Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.

  19. Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Genel, Shy; Bryan, Greg

    2017-08-01

    Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.

  20. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  1. Cosmological perturbations during the Bose-Einstein condensation of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br

    In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less

  2. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less

  3. Investigating the roles of touchscreen and physical control interface characteristics on driver distraction and multitasking performance.

    DOT National Transportation Integrated Search

    2016-01-01

    This study aimed to assess the potential of driver distraction, task performance, orientation of : attention, and perceived workload in a multitasking situation involving interaction with touchscreen : interface, compared to physical interface. Autho...

  4. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  5. A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems

    NASA Astrophysics Data System (ADS)

    Singh, A.

    2009-12-01

    A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.

  6. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  7. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  8. Physics at the FQMT'11 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th M.; Keefe, P. D.

    2012-11-01

    This paper deals with the recent state of the art of the following topics presented at the FQMT'11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation, dephasing, noise, and decoherence; quantum optics; macroscopic quantum behavior; e.g. cold atoms; Bose-Einstein condensates; physics of quantum computing and quantum information; mesoscopic, nano-electro-mechanical systems and nano-optical systems; spin systems and their dynamics; biological systems and molecular motors; and cosmology, gravitation and astrophysics. The lectures and discussions at the FQMT'11 conference, as well as the contributions to the related topical issue, reveal important themes for future development. The recent literature is included.

  9. Searching for Physics Beyond the Standard Model and Beyond

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammad

    The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.

  10. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  11. Continuity and Change in Cosmological Ideas in Spain Between the Sixteenth and Seventeenth Centuries: The Impact of Celestial Novelties

    NASA Astrophysics Data System (ADS)

    Navarro Brotóns, Víctor

    The star which became visible in 1572 in the constellation of Cassiopeia (identified by twentieth-century astronomers as a Type I supernova), and the works and polemics to which it gave rise, marked an important stage in the abandonment of Aristotelian and medieval cosmology and their replacement by the idea of the infinite - or indefinite - universe of modern physics and astronomy.

  12. Helium synthesis, neutrino flavors, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    The problem of the production of helium in big bang cosmology is re-examined in the light of several recent astrophysical observations. These data, and theoretical particle physics considerations, lead to some important inconsistencies in the standard big bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid.

  13. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swordy, Simon

    2009-03-04

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI ismore » also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.« less

  14. Particle physics today, tomorrow and beyond

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  15. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Swordy, Simon

    2017-12-22

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  16. Smoot Cosmology Group

    Science.gov Websites

    Fuzz, FORBES ASAP article on the Arrow of Time by George Smoot. Lecture Archives: The relic radiation from the big bang begining of the Universe. Antimatter in the Universe (Physics 24 Lecture by George

  17. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  18. Λ CDM is Consistent with SPARC Radial Acceleration Relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca

    2017-01-20

    Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data.more » These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.« less

  19. Cosmological structure formation

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    A summary of the current forefront problem of physical cosmology, the formation of structures (galaxies, clusters, great walls, etc.) in the universe is presented. Solutions require two key ingredients: (1) matter; and (2) seeds. Regarding the matter, it now seems clear that both baryonic and non-baryonic matter are required. Whether the non-baryonic matter is hot or cold depends on the choice of seeds. Regarding the seeds, both density fluctuations and topological defects are discussed. The combination of isotropy of the microwave background and the recent observations indicating more power on large scales have severly constrained, if not eliminated, Gaussian fluctuations with equal power on all scales, regardless of the eventual resolution of both the matter and seed questions. It is important to note that all current structure formation ideas require new physics beyond SU(3) x SU(2) x U(1).

  20. A Mathematical Model for Plasticity and Cosmology

    NASA Astrophysics Data System (ADS)

    Muñoz-Andrade, Juan Daniel

    2007-05-01

    In the scenery of a crystalline universe, embedded and related in a spatially extended polycrystalline system, with a relativistic framework, the constancy of the speed of light is the cosmic connection between the Planck length and the Hubble length, As a matter of fact, in the general relativity theory the gravitational interaction is propagated at the speed of light and when the gravitational field changed, the gravitational waves are produced in a similar form of an elastic field with dislocations in a crystal during plastic flow. Moreover, the nature role of a field in relativistic physics shows that it is an independent physical entity that should be considered on the same grounds as matter particles and it possesses energy and momentum. Consequently, in this work a mathematical model for plasticity and cosmology is proposed and some properties of the universe are obtained.

  1. On the phantom barrier crossing and the bounds on the speed of sound in non-minimal derivative coupling theories

    NASA Astrophysics Data System (ADS)

    Quiros, Israel; Gonzalez, Tame; Nucamendi, Ulises; García-Salcedo, Ricardo; Horta-Rangel, Francisco Antonio; Saavedra, Joel

    2018-04-01

    In this paper we investigate the so-called ‘phantom barrier crossing’ issue in a cosmological model based on the scalar–tensor theory with non-minimal derivative coupling to the Einstein tensor. Special attention will be paid to the physical bounds on the squared sound speed. The numeric results are geometrically illustrated by means of a qualitative procedure of analysis that is based on the mapping of the orbits in the phase plane onto the surfaces that represent physical quantities in the extended phase space, that is: the phase plane complemented with an additional dimension relative to the given physical parameter. We find that the cosmological model based on the non-minimal derivative coupling theory—this includes both the quintessence and the pure derivative coupling cases—has serious causality problems related to superluminal propagation of the scalar and tensor perturbations. Even more disturbing is the finding that, despite the fact that the underlying theory is free of the Ostrogradsky instability, the corresponding cosmological model is plagued by the Laplacian (classical) instability related with negative squared sound speed. This instability leads to an uncontrollable growth of the energy density of the perturbations that is inversely proportional to their wavelength. We show that, independent of the self-interaction potential, for positive coupling the tensor perturbations propagate superluminally, while for negative coupling a Laplacian instability arises. This latter instability invalidates the possibility for the model to describe the primordial inflation.

  2. Cosmology Without Finality

    NASA Astrophysics Data System (ADS)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  3. Design Dimensions Enabling Divergent Behaviour across Physical, Digital, and Social Library Interfaces

    NASA Astrophysics Data System (ADS)

    Björneborn, Lennart

    What design dimensions across physical, digital, and social library interfaces may enable and trigger users to find more information resources than planned or known in advance? The paper outlines a conceptual framework with libraries as integrative interfaces across physical, digital, and social affordances and users that mix convergent (goal-directed) and divergent (exploratory) information behaviour. Ten design dimensions that enable and trigger divergent behaviour are outlined. Implications for persuasive design are discussed.

  4. De Sitter Invariant Special Relativity

    NASA Astrophysics Data System (ADS)

    Yan, Mu-Lin

    2015-06-01

    Einstein's Special Relativity is one of the cornerstones of modern physics. There is one universal parameter c (i.e., speed of light) in the Einstein's Special Relativity (E-SR), which serves as the maximal velocity of physics. One might be curious about whether there is another universal parameter R that serves as the maximal length in physics besides the universal maximal velocity limit c. The answer is yes. This book intends to describe a special theory of relativity with two universal parameters c and R. Such a theory is called the de Sitter Invariant Special Relativity, or the Special Relativity with Cosmology Constant...

  5. Bruno, Galileo, Einstein: The Value of Myths in Physics

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2015-03-01

    Usually, historical myths are portrayed as something to be avoided in a physics classroom. Instead, I will discuss the positive function of myths and how they can be used to improve physics education. First, on the basis of historical research from primary sources and significant new findings about the Catholic Inquisition, I will discuss how to use the inspirational story of Giordano Bruno when discussing cosmology. Next, I will discuss the recurring story about Galileo and the Leaning Tower of Pisa. Finally, I will discuss how neglected stories about the young Albert Einstein can help to inspire students.

  6. PelePhysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.

  7. Universal interface of TAUOLA: Technical and physics documentation

    NASA Astrophysics Data System (ADS)

    Davidson, N.; Nanava, G.; Przedziński, T.; Richter-Waş, E.; Waş, Z.

    2012-03-01

    Because of their narrow width, τ decays can be well separated from their production process. Only spin degrees of freedom connect these two parts of the physics process of interest for high energy collision experiments. In the following, we present a Monte Carlo algorithm which is based on that property. The interface supplements events generated by other programs, with τ decays. Effects of spin, including transverse degrees of freedom, genuine weak corrections or of new physics may be taken into account at the time when a τ decay is generated and written into an event record. The physics content of the C++ interface is already now richer than its FORTRAN predecessor.

  8. COSMO 09

    ScienceCinema

    None

    2018-06-20

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  9. COSMO 09

    ScienceCinema

    Peiris, Hiranya

    2018-06-12

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  10. COSMO 09

    ScienceCinema

    Knapp, Johannes

    2018-06-14

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  11. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  12. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  13. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiris, Hiranya

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  14. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salati, Pierre

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, themore » Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  15. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, Johannes

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  16. COSMO 09

    ScienceCinema

    None

    2018-06-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  17. COSMO 09

    ScienceCinema

    Salati, Pierre

    2018-05-24

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  18. Bianchi type-II String Cosmological Model with Magnetic Field in Scale-Covariant Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-12-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of scale-covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39, 429, 1977). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento 74, 182, 1983) string cosmological model is obtained in this theory. We use the power law relation between scalar field ϕ and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.

  19. The use of minimal spanning trees in particle physics

    DOE PAGES

    Rainbolt, J. Lovelace; Schmitt, M.

    2017-02-14

    Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.

  20. The use of minimal spanning trees in particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainbolt, J. Lovelace; Schmitt, M.

    Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.

  1. What are science teacher's ideas about the universe?

    NASA Astrophysics Data System (ADS)

    Novotný, Jan; Svobodová, Jindřiška

    2017-01-01

    The new cosmological discoveries over the past two decades have a great impact on physics. We have prepared a new university course The Introduction to Cosmology available for students without deeper math background. The results of research study and the cosmology lecturers' experiences in two years are presented. We have prepared a questionnaire and the case study to find out how students think about the Universe, how they can accept cosmology theoretical ideas. Then we use it for design follow-up activities that help students to improve their understanding. We have observed the students' views on the presented science concept and on the nature of scientific knowledge. We have prepared a questionnaire to find out how students can accept theoretical ideas. This survey was designed especially for future and contemporary science teachers. Then we use the obtained results for design follow-up activities that help students to improve their understanding. Finally the most frequented cosmology misconceptions are discussed.

  2. Axion cosmology

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected, and the axion mass and relic density measured from cosmological observables.

  3. Q and A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop

    ScienceCinema

    Smoot, George

    2018-01-24

    July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.

  4. Q&A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop

    ScienceCinema

    George Smoot

    2017-12-09

    July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.

  5. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Espinosa, J. R.; Racco, D.; Riotto, A.

    2018-03-01

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  6. Q&A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Smoot

    2010-06-02

    July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.

  7. Q and A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoot, George

    2010-01-01

    July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.

  8. Final Report for "Non-Accelerator Physics – Research in High Energy Physics: Dark Energy Research on DES"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritz, Steve; Jeltema, Tesla

    One of the greatest mysteries in modern cosmology is the fact that the expansion of the universe is observed to be accelerating. This acceleration may stem from dark energy, an additional energy component of the universe, or may indicate that the theory of general relativity is incomplete on cosmological scales. The growth rate of large-scale structure in the universe and particularly the largest collapsed structures, clusters of galaxies, is highly sensitive to the underlying cosmology. Clusters will provide one of the single most precise methods of constraining dark energy with the ongoing Dark Energy Survey (DES). The accuracy of themore » cosmological constraints derived from DES clusters necessarily depends on having an optimized and well-calibrated algorithm for selecting clusters as well as an optical richness estimator whose mean relation and scatter compared to cluster mass are precisely known. Calibrating the galaxy cluster richness-mass relation and its scatter was the focus of the funded work. Specifically, we employ X-ray observations and optical spectroscopy with the Keck telescopes of optically-selected clusters to calibrate the relationship between optical richness (the number of galaxies in a cluster) and underlying mass. This work also probes aspects of cluster selection like the accuracy of cluster centering which are critical to weak lensing cluster studies.« less

  9. Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science,more » but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance the knowledge in particle and nuclear physics, astrophysics and cosmology. The scientific program usually consisted of 2-3 hour-long talks on selected subjects in dark matter and neutrino physics from both theoretical and experimental perspective and followed by extended in depth discussions. The format of the program accommodated separate discussion sessions where the outstanding issues of the disciplines were explored, for example: The Future of Large Physics Projects in the US, and the Role of Theory in the Future of US Physics. 2016 CETUP* summer program was attended by over 70 national and international scientists (including 17 graduate students, 16 postdocs and 39 senior scientists) from over 48 different universities and laboratories. CETUP* participants were very active senior and junior members of the community in order to make the discussions informative and productive. CETUP* 2016 provided a stimulating venue for the exchange of scientific ideas among experts in dark matter, neutrino physics, particle physics, astrophysics and cosmology. During Dark Matter session thirty-seven scientific talks and extended discussions were presented. Twenty-nine talks and discussions were conducted during the Neutrino Physics sessions by international Neutrino Physics experts. The power point presentations for the talks and discussions can be found on the CETUP* website: http://research.dsu.edu/cetup/agenda.aspx. Based on the collaborations established during CETUP* already ten preprints were published and many more are in preparation: https://research.dsu.edu/cetup/preprints.aspx?cetupYear=2016. The proceedings from CETUP*2016 are in preparation to be published by American Institute of Physics in summer 2017. Multiple outreach efforts aimed to share the excitement of the research with K-12, teachers, undergraduate and graduate students as well as the general public.« less

  10. Adding Spice to Vanilla LCDM simulations: Alternative Cosmologies & Lighting up Simulations

    NASA Astrophysics Data System (ADS)

    Jahan Elahi, Pascal

    2015-08-01

    Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, where the Universe contains two dark components, namely Dark Matter & Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Finally, I will discuss how all of these predictions are affected by uncertain galaxy formation physics. I will present results from a major comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project. This comparison aims to understand the code-to-code scatter in the properties of dark matter haloes and the galaxies that reside in them. We find that even in purely adiabatic simulations, different codes form clusters with very different X-ray profiles. The galaxies that form in these simulations, which all use codes that attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, vary in stellar mass, morphology and gas fraction, sometimes by an order of magnitude. I will end with a discussion of precision cosmology in light of these results.

  11. Extreme data compression for the CMB

    DOE PAGES

    Zablocki, Alan; Dodelson, Scott

    2016-04-28

    We apply the Karhunen-Loéve methods to cosmic microwave background (CMB) data sets, and show that we can recover the input cosmology and obtain the marginalized likelihoods in Λ cold dark matter cosmologies in under a minute, much faster than Markov chain Monte Carlo methods. This is achieved by forming a linear combination of the power spectra at each multipole l, and solving a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the likelihood only for the parameter of interest, with themore » data compression effectively marginalizing over all other parameters. The weighting vectors contain insight about the physical effects of the parameters on the CMB anisotropy power spectrum C l. The shape and amplitude of these vectors give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmological parameters, and the relative sensitivity of different experiments to cosmological parameters. We test this method on exact theory C l as well as on a Wilkinson Microwave Anisotropy Probe (WMAP)-like CMB data set generated from a random realization of a fiducial cosmology, comparing the compression results to those from a full likelihood analysis using CosmoMC. Furthermore, after showing that the method works, we apply it to the temperature power spectrum from the WMAP seven-year data release, and discuss the successes and limitations of our method as applied to a real data set.« less

  12. Smoot Cosmology Group

    Science.gov Websites

    Nobel Prize for physics. He led a team that mapped the early universe, revealing its primal form and the said these fifteen billion-year-old fossils are the primordial seeds that grew into the galaxies and

  13. Debates of science vs. religion in undergraduate general education cosmology courses

    NASA Astrophysics Data System (ADS)

    Lopez-Aleman, Ramon

    2015-04-01

    Recent advances in theoretical physics such as the discovery of the Higgs boson or the BICEP2 data supporting inflation can be part of the general science curriculum of non-science majors in a cosmology course designed as part of the General Education component. Yet to be a truly interdisciplinary experience one must deal with the religious background and faith of most of our students. Religious faith seems to be important in their lives, but the philosophical outlook of sciences like cosmology or evolutionary biology is one in which God is an unnecessary component in explaining the nature and origin of the universe. We will review recent advances in cosmology and suggestions on how to establish a respectful and intelligent science vs. religion debate in a transdisciplinary general education setting.

  14. Redshift Space Distortion on the Small Scale Clustering of Structure

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Sabiu, Cristiano; Li, Xiao-dong; Park, Changbom; Kim, Juhan

    2018-01-01

    The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  15. Reheating and the asymmetric production of matter

    NASA Astrophysics Data System (ADS)

    Adshead, Peter

    The early thermal history of the universe, from the end of inflation until the light elements are produced at big-bang nucleosynthesis, remains one of the most poorly understood periods of our cosmic history. We do not understand how inflation ends, and the connection between the physics that drives inflation and the standard model is poorly constrained. Consequently, the mechanism by which the Universe is reheated from its super-cooled post-inflationary state into a thermalized plasma is unknown. Furthermore, the precise mechanism responsible for the matter-antimatter asymmetry and the detailed particle origin of dark matter are, as yet, unknown. However, it is precisely during this epoch that abundant phenomenology from fundamental physics beyond the standard model is anticipated. The objective of the proposed research is to address this gap in our understanding of the history of the Universe by exploring the connection between the physics that drives the inflationary epoch, and the physics that ignites the hot big-bang. This will be achieved by two detailed studies of the physics of reheating. The first study examines the cosmic history of dark sectors, and addresses the cosmological question of how these sectors are populated in the early universe. The second study examines detailed particle physics models of reheating where the inflaton couples to gauge fields. NASA's strategic objectives in astrophysics are to discover how the universe works and to explore how it began and evolved. The primary goal of this proposal is to address these questions by developing a deeper understanding of the history of the post-inflationary universe through cosmological observations and fundamental theory. Specifically, this proposal will advance NASA's science goal to probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity

  16. Open problems in mathematical physics

    NASA Astrophysics Data System (ADS)

    Coley, Alan A.

    2017-09-01

    We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr. 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that.

  17. Paraphysics: Physics Misused and Misinterpreted

    NASA Astrophysics Data System (ADS)

    Stenger, Victor J.

    2000-03-01

    Today we find physics being misused and misinterpreted in support of a wide range of paranormal and paranatural claims. In alternative medicine, we hear the terms ``energy" and ``quantum" used to suggest a scientific basis for ``energy therapies" and mind-over-matter healing. Quantum mechanics is also misinterpreted as implying the reality of purported psychic phenomena such as extrasensory perception. On the cosmic scale, a sophisticated form of the theological design argument is now being widely disseminated among some scholars and the press: the laws and constants of physics are said to be so finely tuned for the production of life as to provide strong evidence for intelligent design in the universe. However, such an interpretation is not necessitated by data or theory, in physics and cosmology.

  18. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGES

    Brambilla, N.; Eidelman, S.; Foka, P.; ...

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  19. QCD and strongly coupled gauge theories: challenges and perspectives.

    PubMed

    Brambilla, N; Eidelman, S; Foka, P; Gardner, S; Kronfeld, A S; Alford, M G; Alkofer, R; Butenschoen, M; Cohen, T D; Erdmenger, J; Fabbietti, L; Faber, M; Goity, J L; Ketzer, B; Lin, H W; Llanes-Estrada, F J; Meyer, H B; Pakhlov, P; Pallante, E; Polikarpov, M I; Sazdjian, H; Schmitt, A; Snow, W M; Vairo, A; Vogt, R; Vuorinen, A; Wittig, H; Arnold, P; Christakoglou, P; Di Nezza, P; Fodor, Z; Garcia I Tormo, X; Höllwieser, R; Janik, M A; Kalweit, A; Keane, D; Kiritsis, E; Mischke, A; Mizuk, R; Odyniec, G; Papadodimas, K; Pich, A; Pittau, R; Qiu, J-W; Ricciardi, G; Salgado, C A; Schwenzer, K; Stefanis, N G; von Hippel, G M; Zakharov, V I

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  20. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.

  1. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less

  2. Particle Theory & Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafi, Qaisar; Barr, Steven; Gaisser, Thomas

    1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of themore » group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his investigations in cosmology, specifically on supergravity and GUT infl models, primordial gravity waves, dark matter models. The origin of baryon and dark matter in the universe has been explored by Professors Barr and Shafi The research program of Professors Gaisser and Stanev address current research topics in Particle Astrophysics, in particular atmospheric and cosmogenic neutrinos and ultra-high energy cosmic rays. Work also included use of LHC data to improve tools for interpreting cascades generated in the atmosphere by high-energy particles from the cosmos. Cosmogenic neutrinos produced by interactions of ultra-high energy cosmic rays as they propagate through the cosmic microwave background radiation provides insight into the origin of the highest energy particles in nature. Overall, the research covered topics in the energy, cosmic and intensity frontiers.« less

  3. Extracting Primordial Non-Gaussianity from Large Scale Structure in the Post-Planck Era

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Astronomical observations have become a unique tool to probe fundamental physics. Cosmology, in particular, emerged as a data-driven science whose phenomenological modeling has achieved great success: in the post-Planck era, key cosmological parameters are measured to percent precision. A single model reproduces a wealth of astronomical observations involving very distinct physical processes at different times. This success leads to fundamental physical questions. One of the most salient is the origin of the primordial perturbations that grew to form the large-scale structures we now observe. More and more cosmological observables point to inflationary physics as the origin of the structure observed in the universe. Inflationary physics predict the statistical properties of the primordial perturbations and it is thought to be slightly non-Gaussian. The detection of this small deviation from Gaussianity represents the next frontier in early Universe physics. To measure it would provide direct, unique and quantitative insights about the physics at play when the Universe was only a fraction of a second old, thus probing energies untouchable otherwise. En par with the well-known relic gravitational wave radiation -- the famous ``B-modes'' -- it is one the few probes of inflation. This departure from Gaussianity leads to very specific signature in the large scale clustering of galaxies. Observing large-scale structure, we can thus establish a direct connection with fundamental theories of the early universe. In the post-Planck era, large-scale structures are our most promising pathway to measuring this primordial signal. Current estimates suggests that the next generation of space or ground based large scale structure surveys (e.g. the ESA EUCLID or NASA WFIRST missions) might enable a detection of this signal. This potential huge payoff requires us to solidify the theoretical predictions supporting these measurements. Even if the exact signal we are looking for is of unknown amplitude, it is obvious that we must measure it as well as these ground breaking data set will permit. We propose to develop the supporting theoretical work to the point where the complete non-gaussianian signature can be extracted from these data sets. We will do so by developing three complementary directions: - We will develop the appropriate formalism to measure and model galaxy clustering on the largest scales. - We will study the impact of non-Gaussianity on higher-order statistics, the most promising statistics for our purpose.. - We will explicit the connection between these observables and the microphysics of a large class of inflation models, but also identify fundamental limitations to this interpretation.

  4. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  5. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  6. Space and time in the quantum universe.

    NASA Astrophysics Data System (ADS)

    Smolin, L.

    This paper is devoted to the problem of constructing a quantum theory that could describe a closed system - a quantum cosmology. The author argues that this problem is an aspect of a much older problem - that of how to eliminate from the physical theories "ideal elements", which are elements of the mathematical structure whose interpretation requires the existence of things outside the dynamical system described by the theory. This discussion is aimed at uncovering criteria that a theory of quantum cosmology must satisfy, if it is to give physically sensible predictions. The author proposes three such criteria and shows that conventional quantum cosmology can only satisfy them, if there is an intrinsic time coordinate on the phase space of the theory. It is shown that approaches based on correlations in the wave function, that do not use an inner product, cannot satisfy these criteria. As example, the author discusses the problem of quantizing a class of relational dynamical models invented by Barbour and Bertotti. The dynamical structure of these theories is closely analogous to general relativity, and the problem of their measurement theory is also similar. It is concluded that these theories can only be sensibly quantized if they contain an intrinsic time.

  7. NON-EXTENSIVE STATISTICS TO THE COSMOLOGICAL LITHIUM PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, S. Q.; He, J. J.; Parikh, A.

    Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, {sup 3}He, {sup 4}He, and {sup 7}Li produced in the early universe. The primordial abundances of D and {sup 4}He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial {sup 7}Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated themore » impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q , and reduces to the usually assumed Maxwell–Boltzmann distribution for q  = 1. We find excellent agreement between predicted and observed primordial abundances of D, {sup 4}He, and {sup 7}Li for 1.069 ≤  q  ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.« less

  8. Dynamical dark matter: A new framework for dark-matter physics

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Thomas, Brooks

    2013-05-01

    Although much remains unknown about the dark matter of the universe, one property is normally considered sacrosanct: dark matter must be stable well beyond cosmological time scales. However, a new framework for dark-matter physics has recently been proposed which challenges this assumption. In the "dynamical dark matter" (DDM) framework, the dark sector consists of a vast ensemble of individual dark-matter components with differing masses, lifetimes, and cosmological abundances. Moreover, the usual requirement of stability is replaced by a delicate balancing between lifetimes and cosmological abundances across the ensemble as a whole. As a result, it is possible for the DDM ensemble to remain consistent with all experimental and observational bounds on dark matter while nevertheless giving rise to collective behaviors which transcend those normally associated with traditional dark-matter candidates. These include a new, non-trivial darkmatter equation of state as well as potentially distinctive signatures in collider and direct-detection experiments. In this review article, we provide a self-contained introduction to the DDM framework and summarize some of the work which has recently been done in this area. We also present an explicit model within the DDM framework, and outline a number of ideas for future investigation.

  9. Effective action for noncommutative Bianchi I model

    NASA Astrophysics Data System (ADS)

    Rosenbaum, M.; Vergara, J. D.; Minzoni, A. A.

    2013-06-01

    Quantum Mechanics, as a mini-superspace of Field Theory has been assumed to provide physically relevant information on quantum processes in Field Theory. In the case of Quantum Gravity this would imply using Cosmological models to investigate quantum processes at distances of the order of the Planck scale. However because of the Stone-von Neuman Theorem, it is well known that quantization of Cosmological models by the Wheeler-DeWitt procedure in the context of a Heisenberg-Weyl group with piecewise continuous parameters leads irremediably to a volume singularity. In order to avoid this information catastrophe it has been suggested recently the need to introduce in an effective theory of the quantization some form of reticulation in 3-space. On the other hand, since in the geometry of the General Relativistic formulation of Gravitation space can not be visualized as some underlying static manifold in which the physical system evolves, it would be interesting to investigate whether the effective reticulation which removes the singularity in such simple cosmologies as the Bianchi models has a dynamical origin manifested by a noncommutativity of the generators of the Heisenberg-Weyl algebra, as would be expected from an operational point of view at the Planck length scale.

  10. Testing for a cosmological influence on local physics using atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.

    1983-01-01

    The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.

  11. A Cosmologist's Tour Through the New Particle Zoo / Candy Shop

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    Recent developments in elementary particle physics have led to a renaissance in cosmology, in general, and in the study of structure formation, in particular. Already, the study of the very early (t ≤ 10-2s) history of the Universe has provided valuable hints as to the 'initial data' for the structure formation problem - the nature and origin of the primeval density inhomogeneities, the quantity and composition of matter in the Universe today, and numerous candidates for the constituents of the ubiquitous dark matter. The author reviews the multitude of WIMP candidates for the dark matter provided by modern particle physics theories, putting them into context by briefly discussing the theories which predict them. He reviews their various birth sites and birth processes in the early Universe. The author also mentions some very exotic possibilities - unstable WIMPs, cosmic strings, and even the possibility of a relic cosmological term.

  12. Paradigm transition in cosmic plasma physics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  13. Princeton University High Energy Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Daniel R.

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement ofmore » $$\\sin^22\\theta_{13}$$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.« less

  14. Reviews Book: The Quantum Story: A History in 40 Moments Resource: Down2Earth Equipment: Irwin Signal Generator/Power Amplifier Book: Laboratory Experiments in Physics for Modern Astronomy Book: Heart of Darkness Book: The Long Road to Stockholm Book: The Address Book: Our Place in the Scheme of Things Equipment: TI-Nspire Datalogger/Calculator Web Watch

    NASA Astrophysics Data System (ADS)

    2013-07-01

    WE RECOMMEND The Quantum Story: A History in 40 Moments Dip into this useful and accessible guide to quantum theory Down2Earth Astronomical-science resource enables students to pursue real, hands-on science, whatever the weather Irwin Signal Generator/Power Amplifier Students enjoy the novelty factor of versatile, affordable kit Laboratory Experiments in Physics for Modern Astronomy Book of experiments would make good supplementary material Heart of Darkness: Unravelling the Mysteries of the Invisible Universe Accessible and distinctive account of cosmology impresses The Long Road to Stockholm: The Story of MRI—An Autobiography Fascinating book tells personal and scientific stories side by side WORTH A LOOK The Address Book: Our Place in the Scheme of Things Entertaining and well-written essays offer insights and anecdotes TI-Nspire Datalogger/Calculator Challenging interface gives this kit a steep learning curve, but once overcome, results are good WEB WATCH Light-beam app game leaves little impression, while astronomy and astrophysics projects provide much-needed resources

  15. Meta II: Multi-Model Language Suite for Cyber Physical Systems

    DTIC Science & Technology

    2013-03-01

    AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling

  16. Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.

    PubMed

    Riveline, Daniel; Kruse, Karsten

    2017-08-01

    Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Obituary: Edward R. (Ted) Harrison, 1919-2007

    NASA Astrophysics Data System (ADS)

    Irvine, William M.; Arny, Thomas T.; Trimble, Virginia

    2007-12-01

    Cosmologist Edward R. (Ted) Harrison, emeritus Distinguished University Professor of Physics and Astronomy at the University of Massachusetts Amherst, died on 29 January 2007 in his retirement city of Tucson, Arizona, where he was adjunct professor at the Steward Observatory, University of Arizona. The cause of death was colon cancer. He is survived by a sister, brother, and daughter. (A son died in 2000.) Perhaps best known for his work on the growth of fluctuations in the expanding universe and his books on cosmology for the dedicated layperson, Ted had extremely broad interests, and he published more than 200 papers in space sciences, plasma physics, high-energy physics, physical chemistry, and, principally, many aspects of astrophysics. He was a Fellow of the American Physical Society, the American Association for the Advancement of Science, the Royal Astronomical Society, and the Institute of Physics (UK). Ted Harrison was born 8 January 1919 in London, England. His parents were Robert Harrison and Daisy Harrison (nee White). His education at Sir John Cass College, London University, was interrupted by the Second World War, during which he served for six years with the British Army in various campaigns, ultimately acting as Radar Adviser to the Northern Area of the Egyptian Army. It was during the latter service that he met his wife Photeni (nee Marangas). Following the War, Ted became a British Civil Servant, at first with the Atomic Energy Research Establishment in Harwell and then at the Rutherford High Energy Laboratory. During this period he acquired the equivalent of university degrees, becoming a graduate, then an Associate, and finally a Fellow of the Institute of Physics. His somewhat unorthodox education may have contributed to his broad interests and his very intuitive and physical approach to scientific problems. The latter became the bane of generations of graduate students, who might find themselves asked on their physics qualifying exams to calculate "the length of a wild goose chase" (how far do you think a goose can fly on a meal?) or "the inductance of a wedding ring." Ted came to the USA in 1965 as a NAS-NRC Senior Research Associate in the Theoretical Division at NASA's Goddard Space Flight Center. In 1966 he became one of the three founders of the Astronomy Program within the Department of Physics and Astronomy at the University of Massachusetts. Over the next 30 years he also was instrumental in the revival of the Five College Astronomy Department, which links the University to Amherst, Hampshire, Smith, and Mount Holyoke Colleges, and he played a key role in the growth of the corresponding astronomy graduate program to international recognition. His two PhD students remain active in academia, Allan Walstad at the University of Pittsburgh, Johnstown, and Alice Argon at the Center for Astrophysics. Ted loved to play chess and was a very skilled player. He was also a remarkably talented oil painter. Ted's research in cosmology included a series of papers discussing the physics of the early universe and the evolution of galaxies from primordial fluctuations, in which he was the first person to identify several of the key processes. His work led to what came to be called the Harrison-Zeldovich spectrum for density fluctuations. But Ted turned his hand to any physical problem that caught his interest, from thermonuclear power, to the origin of galactic magnetic fields, to the acceleration of pulsars, to the diffusion of dust in molecular clouds. He even managed to combine cosmology and astrobiology, suggesting that if there exist a multitude of "universes," those like our own with intelligent life may be the result of natural selection (QJRAS, 36, p. 193, 1995). Ted was a wonderful writer, whose books frequently illustrate points of physics or cosmology with references to poetry or to classical history and philosophy. They have been translated into several languages, including German, French, Finnish, and Japanese. He was fascinated with Olbers' Paradox (which he pointed out had not been discovered by Olbers and was not really a paradox, but a riddle), the question of why the sky is dark at night if the universe is filled with bright stars and galaxies. His book, Darkness at Night, points out that this is not primarily because the universe is expanding, nor because light is absorbed, but rather because the stars and galaxies have had only about 15 billion years to radiate and indeed do not have enough energy to keep radiating for much longer. He points out that this conclusion was anticipated in the writings of Edgar Allan Poe! Ted's monograph, Cosmology: The Science of the Universe, has gone through some seven printings and two editions. Again typical of his command of the history of science, he describes the problem of the "cosmic edge" of the universe by quoting fifth-century BCE soldier-philosopher Archytas of Tarentum, who asked what happens to a spear that is hurled across the outer boundary of the universe? But to many of us, Ted's most intriguing book is Masks of the Universe (second edition published just three years ago). Is our present cosmology, with ordinary matter, dark matter, and dark energy, but another mask obscuring a Universe which will remain perforce forever unknown? Will the ?CDM model be looked upon some day in the same way that we now view the medieval, the geometric, or the mythic universes of earlier eras? Read the book and form your own opinion!

  18. Asymptotics with a positive cosmological constant II

    NASA Astrophysics Data System (ADS)

    Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice

    2015-04-01

    The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.

  19. Supersymmetric k-defects

    DOE PAGES

    Koehn, Michael; Trodden, Mark

    2016-03-03

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. Furthermore, we find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  20. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  1. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter.

    PubMed

    Espinosa, J R; Racco, D; Riotto, A

    2018-03-23

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11}  GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  2. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  3. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema

    Krauss, Lawrence

    2018-01-11

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  4. Adding Spice to Vanilla LCDM simulations: From Alternative Cosmologies to Lighting up Galaxies

    NASA Astrophysics Data System (ADS)

    Jahan Elahi, Pascal

    2015-08-01

    Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, in which the Universe contains two major dark components, namely Dark Matter and Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Of course, all of these predictions are unfortunately affected by uncertain galaxy formation physics. I will end by presenting results from a comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project, and how even how purely adiabatic simulations run with different codes give in quite different galaxy populations. The galaxies that form in these simulations, which all attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, can and do vary in stellar mass, morphology and gas fraction.

  5. Software Tools for Stochastic Simulations of Turbulence

    DTIC Science & Technology

    2015-08-28

    client interface to FTI. Specefic client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH...client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH; and two locally constructed fluid...45 4.4.2.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.2.3 WRF

  6. The Cosmologic continuum from physics to consciousness.

    PubMed

    Torday, John S; Miller, William B

    2018-04-13

    Reduction of developmental biology to self-referential cell-cell communication offers a portal for understanding fundamental mechanisms of physiology as derived from physics through quantum mechanics. It is argued that self-referential organization is implicit to the Big Bang and its further expression is a recoil reaction to that Singularity. When such a frame is considered, in combination with experimental evidence for the importance of epigenetic inheritance, the unicellular state can be reappraised as the primary object of selection. This framework provides a significant shift in understanding the relationship between physics and biology, providing novel insights to the nature and origin of consciousness. Copyright © 2018. Published by Elsevier Ltd.

  7. Teaching of transcendence in physics

    NASA Astrophysics Data System (ADS)

    Jaki, Stanley L.

    1987-10-01

    Efforts aimed at showing that modern physics points to a truly transcendental factor as the explanation of the universe should be welcomed by those who have urged the teaching of physics in a broad cultural context. Those efforts may profit from the following guidelines: avoid the antiontological basis of the Copenhagen interpretation of quantum mechanics; make much of the reality of the universe and its enormous degree of specificity as revealed by general relativity and the cosmic background radiation; exploit Gödel's incompleteness theorems against any grand unified theory proposed as if it were true a priori and necessarily; and realize that the design argument always presupposes the validity of the cosmological argument.

  8. New Worlds in Astroparticle Physics: Proceedings of the Fifth International Workshop

    NASA Astrophysics Data System (ADS)

    Mourão, Ana M.; Pimenta, Mário; Potting, Robertus; Sá, Paulo M.

    Preface -- Group photo -- pt. 1. Overviews in astroparticle physics. An overview of the status of work on ultra high energy cosmic rays / A. A. Watson. Gravitational waves from compact sources / K. D. Kokkotas and N. Stergioulas. Neutrino physics and astrophysics / E. Fernandez. Black holes and fundamental physics / J. P. S. Lemos -- pt. 2. Contributions. Cosmic ray physics. Phenomenology of cosmic ray air showers / M. T. Dova. First results from the MAGIC experiment / A. de Angelis. How to select UHECR in EUSO - the trigger system / P. Assis. Pressure and temperature dependence of the primary scintillation in air / M. Fraga ... [et al.]. Overview of the GLAST physics / N. Giglietto ... [et al.]. Velocity and charge reconstruction with the AMS/RICH detector / L. Arruda ... [et al.]. Isotope separation with the RICH detector of the AMS experiment / L. Arruda ... [et al.]. Gravitational waves and compact sources. Gravitational radiation from 3D collapse to rotating black holes / L. Baiotti ... [et al.]. The role of differential rotation in the evolution of the r-mode instability / P. M. Sá and B. Tomé. Analytical r-mode solution with gravitational radiation reaction force / Ó. J. C. Dias and P. M. Sá. Space radiation: effects and monitoring. Particles from the sun / D. Maia. Simulations of space radiation monitors / B. Tomé. GEANT4 detector simulations: radiation interaction simulations for the high-energy astrophysics experiments EUSO and AMS / P. Goncalves. Software for radiological risk assessment in space missions / A. Trindade, P. Rodrigues. Neutrino physics. Results from K2K / S. Andringa. SNO: salt phase results and NCD phase status / J. Maneira. The ICARUS experiment / S. Navas-Concha. Cosmological parameters measurements. High redshift supernova surveys / S. Fabbro. SNFactory: nearby supernova factory / P. Antilogus. A polarized galactic emission mapping experiment at 5-10 GHz / D. Barbosa ... [et al.]. Galaxy clusters as probes of dark energy / P. T. P. Viana. Black hole physics. Acoustic black holes / V. Cardoso. Superradiant instabilities in black hole systems / Á. J. C. Dias ... [et al.]. Microscopic black hole detection in UHECR: the double bang signature / M. Paulos. Generalized uncertainty principle and holography / F. Scardiali and R. Casadio. Testing covariant entropy bounds / S. Gao and J. P. S. Lemos. Dark matter and dark energy. Dark energy - dark matter unification: generalized Chaplygin gas model / O. Bertolami. Cosmology and spacetime symmetries / R. Lehnert. Scalar field models: from the pioneer anomaly to astrophysical constraints / J. Páramos. Braneworlds, conformal fields and dark energy / R. Neves. Sun and stars as cosmological tools: probing supersymmetric dark matter / I. Lopes. ZEPLIN III: xenon detector for WIMP searches / H. Araújo. Dark matter detectability with Čerenkov telescopes -- List of participants.

  9. Protons at the speed of sound: Predicting specific biological signaling from physics.

    PubMed

    Fichtl, Bernhard; Shrivastava, Shamit; Schneider, Matthias F

    2016-05-24

    Local changes in pH are known to significantly alter the state and activity of proteins and enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. membranes) would therefore constitute an important pillar towards a physical mechanism of biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physicochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification and propagate - in analogy to sound - at velocities controlled by the interface's compressibility. With transient local pH changes of 0.6 directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface are detected, exposing the thermodynamic nature of these pulses. Finally, these pulses are excitable only beyond a threshold for protonation, determined by the pKa of the lipid head groups. This protonation-transition plus the existence of an enzymatic pH-optimum offer a physical basis for intra- and intercellular signaling via sound waves at interfaces, where not molecular structure and mechano-enyzmatic couplings, but interface thermodynamics and thermodynamic transitions are the origin of the observations.

  10. Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, C.

    2014-03-01

    The second-generation interferometric gravitational wave detectors, currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science, and will open up a new era in astrophysics, cosmology, and fundamental physics. Already with the first detections, we will be able to, among other things, establish the nature of short-hard gamma ray bursts, definitively confirm the existence of black holes, measure the Hubble constant in a completely independent way, and for the first time gain access to the genuinely strong-field dynamics of gravity. Hence, it is time to consider the longer-term future of this new field. The Einstein Telescope (ET) is a concrete conceptual proposal for a third-generation gravitational wave observatory, which will be ~ 10 times more sensitive in strain than the second-generation detectors. This will give access to sources at cosmological distances, with a correspondingly higher detection rate. We have given an overview of the science case for ET, with a focus on what can be learned from signals emitted by coalescing compact binaries. Third-generation observatories will allow us to map the coalescence rate out to redshifts z ~ 3, determine the mass functions of neutron stars and black holes, and perform precision measurements of the neutron star equation of state. ET will enable us to study the large-scale structure and evolution of the Universe without recourse to a cosmic distance ladder. Finally, we have discussed how it will allow for high-precision measurements of strong-field, dynamical gravity.

  11. Bianchi-III cosmological model with BVDP in modified f(R,T) theory

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Dua, Heena; Chand, Avtar

    2018-06-01

    In present paper, we have investigated Bianchi type-III cosmological model in modified f(R,T) theory of gravity as proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). To find the solution of field equations, we have used i) bilinear varying deceleration parameter (BVDP) (Mishra et al. in Astrophys. Space Sci. 361:259, 2016b) ii) the fact that expansion scalar of the space-time is proportional to the one of the components of the shear scalar. Physical and geometrical properties of the model have also been discussed along with the pictorial representation of various parameters. We have observed that presented model is compatible with the recent cosmological observations.

  12. A General No-Cloning Theorem for an infinite Multiverse

    NASA Astrophysics Data System (ADS)

    Gauthier, Yvon

    2013-10-01

    In this paper, I formulate a general no-cloning theorem which covers the quantum-mechanical and the theoretical quantum information cases as well as the cosmological multiverse theory. However, the main argument is topological and does not involve the peculiar copier devices of the quantum-mechanical and information-theoretic approaches to the no-cloning thesis. It is shown that a combinatorial set-theoretic treatment of the mathematical and physical spacetime continuum in cosmological or quantum-mechanical terms forbids an infinite (countable or uncountable) number of exact copies of finite elements (states) in the uncountable multiverse cosmology. The historical background draws on ideas from Weyl to Conway and Kochen on the free will theorem in quantum mechanics.

  13. Haptic interface for vehicular touch screens.

    DOT National Transportation Integrated Search

    2013-02-01

    Once the domain of purely physical controls such as knobs, : levers, buttons, and sliders, the vehicle dash is rapidly : transforming into a computer interface. This presents a : challenge for drivers, because the physics-based cues which : make trad...

  14. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  15. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  16. Are cosmological data sets consistent with each other within the Λ cold dark matter model?

    NASA Astrophysics Data System (ADS)

    Raveri, Marco

    2016-02-01

    We use a complete and rigorous statistical indicator to measure the level of concordance between cosmological data sets, without relying on the inspection of the marginal posterior distribution of some selected parameters. We apply this test to state of the art cosmological data sets, to assess their agreement within the Λ cold dark matter model. We find that there is a good level of concordance between all the experiments with one noticeable exception. There is substantial evidence of tension between the cosmic microwave background temperature and polarization measurements of the Planck satellite and the data from the CFHTLenS weak lensing survey even when applying ultraconservative cuts. These results robustly point toward the possibility of having unaccounted systematic effects in the data, an incomplete modeling of the cosmological predictions or hints toward new physical phenomena.

  17. Fabrication of Superconducting Detectors for Studying the Universe

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David

    2012-01-01

    Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.

  18. Experimental And Theoretical High Energy Physics Research At UCLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describesmore » frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.« less

  19. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2006-04-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  20. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2009-08-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  1. Analytic prediction of baryonic effects from the EFT of large scale structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Perko, Ashley; Senatore, Leonardo, E-mail: mattlew@stanford.edu, E-mail: perko@stanford.edu, E-mail: senatore@stanford.edu

    2015-05-01

    The large scale structures of the universe will likely be the next leading source of cosmological information. It is therefore crucial to understand their behavior. The Effective Field Theory of Large Scale Structures provides a consistent way to perturbatively predict the clustering of dark matter at large distances. The fact that baryons move distances comparable to dark matter allows us to infer that baryons at large distances can be described in a similar formalism: the backreaction of short-distance non-linearities and of star-formation physics at long distances can be encapsulated in an effective stress tensor, characterized by a few parameters. Themore » functional form of baryonic effects can therefore be predicted. In the power spectrum the leading contribution goes as ∝ k{sup 2} P(k), with P(k) being the linear power spectrum and with the numerical prefactor depending on the details of the star-formation physics. We also perform the resummation of the contribution of the long-wavelength displacements, allowing us to consistently predict the effect of the relative motion of baryons and dark matter. We compare our predictions with simulations that contain several implementations of baryonic physics, finding percent agreement up to relatively high wavenumbers such as k ≅ 0.3 hMpc{sup −1} or k ≅ 0.6 hMpc{sup −1}, depending on the order of the calculation. Our results open a novel way to understand baryonic effects analytically, as well as to interface with simulations.« less

  2. REVIEWS OF TOPICAL PROBLEMS: Experimental tests of general relativity: recent progress and future directions

    NASA Astrophysics Data System (ADS)

    Turyshev, S. G.

    2009-01-01

    Einstein's general theory of relativity is the standard theory of gravity, especially where the needs of astronomy, astrophysics, cosmology, and fundamental physics are concerned. As such, this theory is used for many practical purposes involving spacecraft navigation, geodesy, and time transfer. We review the foundations of general relativity, discuss recent progress in tests of relativistic gravity, and present motivations for the new generation of high-accuracy tests of new physics beyond general relativity. Space-based experiments in fundamental physics are presently capable of uniquely addressing important questions related to the fundamental laws of nature. We discuss the advances in our understanding of fundamental physics that are anticipated in the near future and evaluate the discovery potential of a number of recently proposed space-based gravitational experiments.

  3. Physics Division annual report, 1 January-31 December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-10-01

    A brief overview of each of the several areas of research is given with a list of resulting publications. Areas of research include electron-positron annihilation, neutrino interactions, neutrinoless double beta decay of /sup 100/Mo, double beta decay of /sup 76/Ge, antiproton-proton interactions, right-handed gauge boson effects, muon decay asymmetry parameter measurements, supernovae detection, Nemesis search, and detector development. Areas of theoretical research include electroweak interactions, strong interactions, nonperturbative dynamics, supersymmetry, and cosmology and particle physics. 34 figs. (WRF)

  4. Changes in concepts of time from Aristotle to Einstein

    NASA Astrophysics Data System (ADS)

    Sachs, Mendel

    1996-03-01

    The meaning of time and motion is discussed, at first tracing conceptual changes from Aristotle to Galileo/Newton to Einstein. Different views of ‘time’ in 20th century physics are then examined, with primary focus on the revolutionary changes that came with the theory of general relativity. Implications of its new view in all domains of physics are discussed — from elementary particles to cosmology. The special role of Hamilton's quaternion calculus in equations of motion in general relativity is shown.

  5. Gravity with free initial conditions: A solution to the cosmological constant problem testable by CMB B -mode polarization

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori

    2017-10-01

    In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.

  6. Cosmology in Mr. Tompkins' Lifetime

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi Paul

    2016-01-01

    Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.

  7. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  8. Nonsingular bouncing cosmology: Consistency of the effective description

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    2016-05-01

    We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.

  9. On Rosen's theory of gravity and cosmology

    NASA Technical Reports Server (NTRS)

    Barnes, R. C.

    1980-01-01

    Formal similarities between general relativity and Rosen's bimetric theory of gravity were used to analyze various bimetric cosmologies. The following results were found: (1) physically plausible model universes which have a flat static background metric, have a Robertson-Walker fundamental metric, and which allow co-moving coordinates do not exist in bimetric cosmology. (2) it is difficult to use the Robertson-Walker metric for both the background metric (gamma mu nu) and the fundamental metric tensor of Riemannian geometry( g mu nu) and require that g mu nu and gamma mu nu have different time dependences. (3) A consistency relation for using co-moving coordinates in bimetric cosmology was derived. (4) Certain spatially flat bimetric cosmologies of Babala were tested for the presence of particle horizons. (5) An analytic solution for Rosen's k = +1 model was found. (6) Rosen's singularity free k = +1 model arises from what appears to be an arbitary choice for the time dependent part of gamma mu nu.

  10. Theoretical Research at the High Energy Frontier: Cosmology and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence M.

    The forefront of particle physics has focused on possible physics beyond the standard model which might help explain its peculiarities, including the nature of the spectrum of masses of elementary particles, the peculiar hierarchy between the Planck scale and the electroweak scale, and the possible manner in which the standard model might be embedded in a quantum theory which incorporates gravity. Over the past several decades it has become clear that several of the key out-standing problems associated with our understanding of fundamental interactions are inextricably tied to questions that are also of current interest in cosmology and astrophysics. Atmore » the same time, remarkable new data is being gathered that will allow empirical testing of theoretical ideas that have been around for a generation, from the discovery of the Higgs at the LHC to the possible detection of gravitational waves from Inflation at the GUT scale. The questions of the origin of mass, and possible grand unification are both tied to the possible existence of phase transitions in the early universe. Neutrino masses, as probed from astrophysical sources, may play a key role in elucidating the physics associated with the generation of baryon number. It is also possible that new physics at the electroweak scale may play a role in the nature of primordial cosmological magnetic fields. Low Energy Supersymmetry as a solution to the hierarchy problem can predict, besides events detectable at the LHC, stable weakly interacting particles that might make up the dark matter of the universe. The possible existence of large extra dimensions might also impact upon the hierarchy problem, but these could also dramatically affect our picture of the evolution of the Universe both at early times, and possibly on large scales. Inflation may depend upon new physics at the GUT scale, but its detection may now be imminent with the possible detection of a gravitational wave signature in the Cosmic Microwave Background Radiation. Undoubtedly the most significant outstanding problem in high-energy physics is also a problem in cosmology, and indeed originated not from accelerators but from astrophysical observations: What is the origin and nature of the dark energy that appears to dominate the Universe? An understanding of quantum gravity, and perhaps a new understanding of quantum mechanics or quantum field theory may be required to fully address this problem. At the moment, the physics of black holes may provide the best opportunity to explore these issues, while the discovery of the Higgs suggests several new possible connections to physics that might be relevant for dark energy. Finally, pending confirmation of a gravitational wave signal from inflation, to date the only direct evidence for fundamental particle physics beyond the standard model comes, at least in part, from astrophysical neutrino observations. A remarkable convergence of theory, observation and experiment has been taking place that is allowing great strides to be made in our knowledge of the parameters that describe the universe, if not the origin of these parameters. Given the new discoveries now being made, and the incredible capabilities of future instruments, it is an exciting time to make progress in our fundamental understanding the origin and evolution of the Universe and the fundamental forces that guide that evolution. As a result, it is natural that our DOE theory research program at Arizona State University focuses in large part on the connections between particle physics and cosmology and astrophysics in order to improve our understanding of fundamental physics. Our areas of research cover all of the areas described above. Our group now consists of four faculty PI’s and their postdocs and students, complemented by long term visitor Frank Wilczek, and physics faculty colleagues Cecilia Lunardini, Richard Lebed, and Andrei Belitsky, whose interests overlap in areas ranging from particle theory and phenomenology to neutrino astrophysics. In addition, we interact with astronomers, and experimentalists in both Physics and the School of Earth and Space Exploration. In addition, Krauss and Parikh are associated, respectively, with the ASU Origins Project and the ASU Beyond Center. Both of these groups have helped us leverage DOE funds by supporting workshops associated with our activities from time to time. To continue the active program we have built up here, we are asking for support for 3 graduate students, and 3 postdocs (note that the PI will forego summer salary support in order to support one additional postdoc beyond the request in our last proposal for 2 postdocs). We have been fortunate to build a vibrant group based in part on University startup support for our program. Now that that support is coming to a close for most of our group, we are hoping that the exciting program we have created motivates continued DOE support at a level that, while not as great as the level we enjoyed with startup support, will nevertheless allow us to maintain our momentum.« less

  11. Research in Theoretical High Energy Physics- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika

    PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less

  12. Texas Symposium on Relativistic Astrophysics, 11th, Austin, TX, December 12-17, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Evans, D. S. (Editor)

    1984-01-01

    Various papers on relativistic astrophysics are presented. The general subjects addressed include: particle physics and astrophysics, general relativity, large-scale structure, big bang cosmology, new-generation telescopes, pulsars, supernovae, high-energy astrophysics, and active galaxies.

  13. The physics of bread

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2017-10-01

    Nathan Myhrvold - the polymath physicist whose passions range from cosmology to cooking - is this month publishing a massive, five-volume book about the science of bread and bread-making. Robert P Crease catches up with this intellectual livewire at his Cooking Lab headquarters in Seattle

  14. Nontechnical Astronomy Books of 1989.

    ERIC Educational Resources Information Center

    Mercury, 1990

    1990-01-01

    Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…

  15. Emergent Phenomena at Mott Interfaces

    DTIC Science & Technology

    2016-11-03

    from a two-dimensional electron gas at a Mott/band insulator interface, Applied Physics Letters, (10 2012): 151604. doi: 10.1063/1.4758989...coefficient of a quantum confined, high-electron-density electron gas in SrTiO3, Applied Physics Letters, (04 2012): 161601. doi: 10.1063...Jalan, Susanne Stemmer, Shawn Mack, S. James Allen. Two-dimensional electron gas in delta- doped SrTiO3, Physical Review B, (08 2010): . doi: A

  16. Quasar populations in a cosmological constant-dominated flat universe

    NASA Technical Reports Server (NTRS)

    Malhotra, Sangeeta; Turner, Edwin L.

    1995-01-01

    Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.

  17. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the Standard Model of particle physics. The various contributions covered in this scientific meeting lie between oral and posters presentations including many specialized topics like neutrinos' oscillations, the various large experiments like Borexino and Opera, the geo-neutrinos, as more theoretical topics like Majorana neutrinos and the double beta decay, anomalies in neutrino physics, neutrino models beyond the standard model and in curved space-time. We hope that putting in print the various contributions to this exciting meeting will be a valuable contribution to the literature to both professional as well as young researchers in neutrino physics. This workshop couldn't have taken place without the generous and unfaltering support of the DGRSTD which fully financed it through its various stages. Editors Profs. The editors: Mebarki N., Mimouni J., Vanucci F., Aissaoui H.

  18. BOOK REVIEW: Physics for Scientists and Engineers Third Edition

    NASA Astrophysics Data System (ADS)

    Giancoli, Douglas C.

    2000-09-01

    There are a large number of textbooks for the college and university student produced in the USA and here is one that I had not seen before even though it is now in the third edition. But it is so similar to many others. The standard version as reviewed here covers the usual topics of classical physics, namely kinematics, energy, waves and oscillations, thermodynamics, electricity and magnetism and light. Also, as is usual with the American coverage, it includes fluids, special relativity and a short chapter on quantum theory and the atom. An extended version is available covering modern physics, astrophysics and cosmology. There is also available back-up material such as instructor's manual, CD-ROM, video and other extra teaching material Full colour is used and the book is lavishly illustrated with diagrams and photographs. Calculus is used throughout the book, although this is limited to basic differentiation and integration. There is an extensive range of worked examples plus end-of-chapter questions and problems, with numerical answers given to the odd-numbered problems. The physics is illustrated with many everyday examples. The styles of course presentation and hence the styles of book used in the USA and the UK seem to be diverging. It is unlikely such a book as this would be used at A-level. This is not only because of the calculus, albeit simple, but because of the detailed coverage of classical topics. Increasingly there has been a trend in this country to be more selective in content, and yet at the same time to incorporate more modern topics such as solids, environmental and atmospheric physics, particle physics and cosmology, but described in a fairly elementary way. The book would be suitable for preliminary year and first-year university physics courses but its size and weight are daunting. I am not sure why physics described in such an encyclopaedic way is popular in the US but less so here. However, of its type this book is both attractive and comprehensive. David Lovett

  19. Atmospheric effects in astroparticle physics experiments and the challenge of ever greater precision in measurements

    NASA Astrophysics Data System (ADS)

    Louedec, Karim

    2015-01-01

    Astroparticle physics and cosmology allow us to scan the universe through multiple messengers. It is the combination of these probes that improves our understanding of the universe, both in its composition and its dynamics. Unlike other areas in science, research in astroparticle physics has a real originality in detection techniques, in infrastructure locations, and in the observed physical phenomenon that is not created directly by humans. It is these features that make the minimisation of statistical and systematic errors a perpetual challenge. In all these projects, the environment is turned into a detector medium or a target. The atmosphere is probably the environment component the most common in astroparticle physics and requires a continuous monitoring of its properties to minimise as much as possible the systematic uncertainties associated. This paper introduces the different atmospheric effects to take into account in astroparticle physics measurements and provides a non-exhaustive list of techniques and instruments to monitor the different elements composing the atmosphere. A discussion on the close link between astroparticle physics and Earth sciences ends this paper.

  20. Self-organized pattern formation at organic-inorganic interfaces during deposition: Experiment versus modeling

    NASA Astrophysics Data System (ADS)

    Szillat, F.; Mayr, S. G.

    2011-09-01

    Self-organized pattern formation during physical vapor deposition of organic materials onto rough inorganic substrates is characterized by a complex morphological evolution as a function of film thickness. We employ a combined experimental-theoretical study using atomic force microscopy and numerically solved continuum rate equations to address morphological evolution in the model system: poly(bisphenol A carbonate) on polycrystalline Cu. As the key ingredients for pattern formation, (i) curvature and interface potential driven surface diffusion, (ii) deposition noise, and (iii) interface boundary effects are identified. Good agreement of experiments and theory, fitting only the Hamaker constant and diffusivity within narrow physical parameter windows, corroborates the underlying physics and paves the way for computer-assisted interface engineering.

  1. Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Gregorcic, Bor; Bodin, Madelen

    2017-01-01

    Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve physics problems, investigate phenomena and processes, and engage in out-of-school activities and projects. Algodoo, with its approachable interface, inhabits a middle ground between computer games and "serious" computer modeling. It is suitable as an entry-level modeling tool for students of all ages and can facilitate discussions about the role of computer modeling in physics.

  2. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  3. Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-09-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

  4. The Great Copernican Cliché

    NASA Astrophysics Data System (ADS)

    Danielson, D. R.

    2000-12-01

    Almost all the school science texts say what Britain's Astronomer Royal also recently reasserted: ``Copernicus dethroned the Earth from the privileged position that Ptolemy's cosmology accorded it." This non-scientific equation of geocentrism with anthropocentrism does an injustice to medieval cosmology, obscures some genuinely anthropocentric aspects of Copernican theory, and impedes a critical evaluation of what modern cosmology does and does not actually impy concerning the ``place" of humankind in the cosmos. By means of a cheerful but serious guided tour of Aristotelian cosmological physics and of Copernican enthusiasm at humankind's *exaltation* to the dance of the stars--with brief visits to Chalcidius, Martianus Capella, Moses Maimonides, and the poet Dante, as well as to Copernicus himself, Digges, Galileo, Kepler, le Bouvier de Fontenelle, and Huygens--this lecture will dismantle the Great Copernican Cliché and show how much richer our account of Copernicanism can be without it.

  5. Cosmology on a cosmic ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedermann, Florian; Schneider, Robert, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de

    We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4Dmore » Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.« less

  6. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  7. [Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1993-12-31

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less

  8. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  9. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.

  10. Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  11. Do massive compact objects without event horizon exist in infinite derivative gravity?

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Mazumdar, Anupam

    2017-10-01

    Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.

  12. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  13. Astrophysical cosmology

    NASA Astrophysics Data System (ADS)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  14. An Atomic Clock with 10 (exp -18) Instability

    DTIC Science & Technology

    2013-09-13

    experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and

  15. Astronomy Books of 1984: The Non-Technical List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1985-01-01

    Presents an annotated list of nontechnical astronomy books in these categories: amateur astronomy; children's books; cosmology; galaxies; general astronomy; history of astronomy; life in the universe; physics and astronomy; pseudoscience; quasars and active galaxies; solar system; space exploration; stars/stellar evolution; sun; astronomy…

  16. Cosmic vacuum energy decay and creation of cosmic matter.

    PubMed

    Fahr, Hans-Jörg; Heyl, Michael

    2007-09-01

    In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

  17. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anzhong

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articlesmore » in the prestigious national/international journals, which have already received about 1000 citations so far.« less

  18. Supernovas y Cosmología

    NASA Astrophysics Data System (ADS)

    Folatelli, G.

    Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH

  19. Competing explanations for cosmic acceleration or why is the expansion of the universe accelerating?

    NASA Astrophysics Data System (ADS)

    Ishak, Mustapha

    2012-06-01

    For more than a decade, a number of cosmological observations have been indicating that the expansion of the universe is accelerating. Cosmic acceleration and the questions associated with it have become one of the most challenging and puzzling problems in cosmology and physics. Cosmic acceleration can be caused by (i) a repulsive dark energy pervading the universe, (ii) an extension to General Relativity that takes effect at cosmological scales of distance, or (iii) the acceleration may be an apparent effect due to the fact that the expansion rate of space-time is uneven from one region to another in the universe. I will review the basics of these possibilities and provide some recent results including ours on these questions.

  20. General solution of a cosmological model induced from higher dimensions using a kinematical constraint

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin; Katırcı, Nihan; Sheftel, Mikhail B.

    2015-05-01

    In a recent study Akarsu and Dereli (Gen. Relativ. Gravit. 45:1211, 2013) discussed the dynamical reduction of a higher dimensional cosmological model which is augmented by a kinematical constraint characterized by a single real parameter, correlating and controlling the expansion of both the external (physical) and internal spaces. In that paper explicit solutions were found only for the case of three dimensional internal space (). Here we derive a general solution of the system using Lie group symmetry properties, in parametric form for arbitrary number of internal dimensions. We also investigate the dynamical reduction of the model as a function of cosmic time for various values of and generate parametric plots to discuss cosmologically relevant results.

  1. Dark-energy cosmological models in f(G) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk

    We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2}more » do not favor the current expansion.« less

  2. Experiences from Participants in Large-Scale Group Practice of the Maharishi Transcendental Meditation and TM-Sidhi Programs and Parallel Principles of Quantum Theory, Astrophysics, Quantum Cosmology, and String Theory: Interdisciplinary Qualitative Correspondences

    NASA Astrophysics Data System (ADS)

    Svenson, Eric Johan

    Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.

  3. DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Kovacs, Eve; Heitmann, Katrin; Uram, Thomas D.; Benson, Andrew J.; Campbell, Duncan; Cora, Sofía A.; DeRose, Joseph; Di Matteo, Tiziana; Habib, Salman; Hearin, Andrew P.; Bryce Kalmbach, J.; Krughoff, K. Simon; Lanusse, François; Lukić, Zarija; Mandelbaum, Rachel; Newman, Jeffrey A.; Padilla, Nelson; Paillas, Enrique; Pope, Adrian; Ricker, Paul M.; Ruiz, Andrés N.; Tenneti, Ananth; Vega-Martínez, Cristian A.; Wechsler, Risa H.; Zhou, Rongpu; Zu, Ying; The LSST Dark Energy Science Collaboration

    2018-02-01

    The use of high-quality simulated sky catalogs is essential for the success of cosmological surveys. The catalogs have diverse applications, such as investigating signatures of fundamental physics in cosmological observables, understanding the effect of systematic uncertainties on measured signals and testing mitigation strategies for reducing these uncertainties, aiding analysis pipeline development and testing, and survey strategy optimization. The list of applications is growing with improvements in the quality of the catalogs and the details that they can provide. Given the importance of simulated catalogs, it is critical to provide rigorous validation protocols that enable both catalog providers and users to assess the quality of the catalogs in a straightforward and comprehensive way. For this purpose, we have developed the DESCQA framework for the Large Synoptic Survey Telescope Dark Energy Science Collaboration as well as for the broader community. The goal of DESCQA is to enable the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. In this paper, we present the design concept and first implementation of DESCQA. In order to establish and demonstrate its full functionality we use a set of interim catalogs and validation tests. We highlight several important aspects, both technical and scientific, that require thoughtful consideration when designing a validation framework, including validation metrics and how these metrics impose requirements on the synthetic sky catalogs.

  4. Time: The Biggest Pattern in Natural History Research

    NASA Astrophysics Data System (ADS)

    Gontier, Nathalie

    2016-10-01

    We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.

  5. Neutrino physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.

    2015-03-01

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν) = 16 meV and σ (Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν , whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046 .

  6. Through the big bang: Continuing Einstein's equations beyond a cosmological singularity

    NASA Astrophysics Data System (ADS)

    Koslowski, Tim A.; Mercati, Flavio; Sloan, David

    2018-03-01

    All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are dimensionless ratios. The objective description of the universe as a whole thus predicts only how these ratios change collectively as one of them is changed. Here we develop a description for classical Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from the volume and its expansion degree of freedom. We use the relational description to investigate both vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-trivial prediction of the relational description; the big bang/crunch is not the end of physics - it is instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy Einstein's equations, we find that the relational dynamical system predicts two singular solutions of GR that are connected at the hypersurface of the singularity such that relational DOFs are continuous and the orientation of the spatial frame is inverted.

  7. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  8. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2017-01-01

    Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.

  9. PREFACE: The Third 21COE Symposium: Astrophysics as Interdisciplinary Science

    NASA Astrophysics Data System (ADS)

    Maeda, Kei-ichi; Yamada, Shoichi; Daishido, Tsuneaki

    2006-03-01

    In the last decade, we have seen a remarkable progress in observations by air-borne and satellite-loaded detectors as well as large ground-based telescopes. Cosmological parameters have been precisely determined. For example, the age of the Universe is about 14 Gyrs and the curvature of our 3-space is almost zero. We have also recognized that most of the matter content of the Universe is unknown, the mystery of Dark Energy and Dark Matter. When we look at compact objects in the Universe, recent observations of supernovae and gamma ray bursts (up to cosmological distances) have revealed a variety of high energy astrophysical phenomena much beyond our expectations. Also found are quite exotic astrophysical objects such as magnetars and probably quark stars. Now we have a lot of new observational data. The present theoretical understanding, on the other hand, is far behind such observational advances. We may need new ideas to solve such problems. In the late 20th century, astrophysicists have learned much from particle physics and nuclear physics, resulting in the deeper understanding of how the big bang universe expands and stars evolve. Then we would like to extend this practice in different directions. This volume contains lectures and contributed papers presented at ``The Third 21COE Symposium: Astrophysics as Interdisciplinary Science'', which was held at Waseda University, Tokyo, Japan, on September 1 3, 2005. The aim of the symposium is to obtain new insights into the important themes mentioned above by bringing together the latest ideas from various fields. In the symposium, we have discussed not only such mysterious and important astrophysical or cosmological objects but also some subjects closely related with other fields such as nonlinear dynamics, statistical physics and condensed matter physics. Hence the main topics in the symposium have included formations of large-scale structures, galaxies, stellar clusters as well as the nature of condensed matter in high energy compact objects, and that of dark matter and dark energy of the universe. This is in accord with the purpose of The 21st century COE program, "Holistic Research and Education Center for Physics of Self-organization Systems". We hope that the symposium and the discussions therein will be the first step for the productive collaborations in the 21st century. The symposium was sponsored by the Waseda University Grant for International Conference Operation and the 21st century COE program of Waseda University, "the Holistic Research and Education Center for Physics of Self-organization Systems". Tokyo, January, 2006

  10. Resolving the Small-Scale Structure of the Circumgalactic Medium in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren

    2017-08-01

    We propose to resolve the circumgalactic medium (CGM) of L* galaxies down to 100 Msun (250 pc) in a full cosmological simulation to examine how mixing and cooling shape the physical nature of this gas on the scales expected from observations. COS has provided the best characterization of the low-z CGM to date, revealing the extent and amount of low- and high-ions and hinting at the kinematic relations between them. Yet cosmological galaxy simulations that can reproduce the stellar properties of galaxies have all struggled to reproduce these results even qualitatively. However, while the COS data imply that the low-ion absorption is occurring on sub-kpc scales, such scales can not be traced by simulations with resolution between 1-5 kpc in the CGM. Our proposed simulations will, for the first time, reach the resolution required to resolve these structures in the outer halo of L* galaxies. Using the adaptive mesh refinement code enzo, we will experiment with the size, shape, and resolution of an enforced high refinement region extending from the disk into the CGM to identify the best configuration for probing the flows of gas throughout the CGM. Our test case has found that increasing the resolution alone can have dramatic consequences for the density, temperature, and kinematics along a line of sight. Coupling this technique with an independent feedback study already underway will help disentangle the roles of global and small scale physics in setting the physical state of the CGM. Finally, we will use the MISTY pipeline to generate realistic mock spectra for direct comparison with COS data which will be made available through MAST.

  11. SKYZOME: Public Art to Promote Science

    NASA Astrophysics Data System (ADS)

    Landsberg, Randall H.; Pancoast, D.; Frieman, J. A.; Kravtsov, A. V.; Manning, J.

    2007-12-01

    SkyZome is the joint creation of artists from the Departments of Architecture, Interior Architecture & Designed Objects and Art & Technology at the School of the Art Institute of Chicago, and scientists from the Department of Astronomy & Astrophysics and Kavli Institute for Cosmological Physics at the University of Chicago. SkyZome is urban-sized, outdoor, environmental installation that gives figurative form to astrophysical research. The installation contains 10,000 interconnected programmable light elements filling a (45'x35'x120') volumetric display that is located in Chicago's Millennium Park. This 3-dimensional display instrument is capable of "playing” a variety of light and time based diagrammatic forms including visual descriptions of cosmological data. This evocative environment focuses on three science narratives: the Large Scale Structure of the Universe (SDSS data), Evolution of Dark Matter (A. Kravtsov simulations), and Ultra High Energy Cosmic Rays UHECRs (Pierre Auger Observatory & Veritas). Public programming, on site signage, and a companion website provide opportunities for more in-depth explorations. Skyzome is a new means for engaging the public in current research. It is an art installation that uses dynamic materials, media and technology to give didactic form to the astrophysical research. As an environmental exhibit inspired by real data, it allows people to richly experience, to participate in, and to more fully connect with fantastic observational science. (see www.skyzome.com ) This research was carried out at the University of Chicago, Kavli Institute for Cosmological Physics and at the School of the Art Institute of Chicago. It was supported (in part) by grant NSF PHY-0114422 and by the Festival of Maps: Chicago. KICP is a NSF Physics Frontier Center.

  12. Digital lock-in amplifier based on soundcard interface for physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.

  13. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  14. Science Fiction Stories with Reasonable Astronomy.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1990-01-01

    This resource list contains stories on the following topics: antimatter, asteroids, astronomers, black holes, comets, cosmology, jupiter, life elsewhere, mars, mercury, meteors, the moon, particle physics, pluto, quantum mechanics, quasars and active galaxies, relativity, saturn, stars, the sun, supernovae and neutron stars, time travel, uranus,…

  15. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  16. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    PubMed

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.

  17. PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, J. Berian, E-mail: berian@berkeley.edu

    2012-05-20

    We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity thatmore » appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.« less

  18. Statistical inconsistencies in the KiDS-450 data set

    NASA Astrophysics Data System (ADS)

    Efstathiou, George; Lemos, Pablo

    2018-05-01

    The Kilo-Degree Survey (KiDS) has been used in several recent papers to infer constraints on the amplitude of the matter power spectrum and matter density at low redshift. Some of these analyses have claimed tension with the Planck Λ cold dark matter cosmology at the ˜2σ-3σ level, perhaps indicative of new physics. However, Planck is consistent with other low-redshift probes of the matter power spectrum such as redshift-space distortions and the combined galaxy-mass and galaxy-galaxy power spectra. Here, we perform consistency tests of the KiDS data, finding internal tensions for various cuts of the data at ˜2.2σ-3.5σ significance. Until these internal tensions are understood, we argue that it is premature to claim evidence for new physics from KiDS. We review the consistency between KiDS and other weak lensing measurements of S8, highlighting the importance of intrinsic alignments for precision cosmology.

  19. Conformal Fermi Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian, E-mail: ldai@ias.edu, E-mail: Enrico.pajer@gmail.com, E-mail: fabians@mpa-garching.mpg.de

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, bymore » removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.« less

  20. Quantum Cause of Gravity Waves and Dark Matter

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal; Goradia Team

    2016-09-01

    Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?

  1. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  2. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2009-08-01

    Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.

  3. Super-Kamiokande [CETUP 2015: Workshop on dark matter, neutrino physics and astrophysics; PPC 2015: 9. international conference on interconnections between particle physics and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magro, Lluís Martí, E-mail: martillu@suketto.icrr.u-tokyo.ac.jp

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  4. On the observability of the gamma-ray line flux from dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  5. From black holes to quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, N.

    1987-01-01

    Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.

  6. Origin of probabilities and their application to the multiverse

    NASA Astrophysics Data System (ADS)

    Albrecht, Andreas; Phillips, Daniel

    2014-12-01

    We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We comment on the general implications of this view, and specifically question the application of purely classical probabilities to cosmology in cases where key questions are known to have no quantum answer. We argue that the ideas developed here may offer a way out of the notorious measure problems of eternal inflation.

  7. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  8. Space shuttle/food system study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This document establishes the Functional, physical and performance interface requirements are studied between the space shuttle orbiter and the galley water system, the orbiter and the galley electrical system, and the orbiter and the galley structural system. Control of the configuration and design of the applicable interfacing items is intended to maintain compatibility between co-functioning and physically mating items and to assure those performance criteria that are dependent upon the interfacing items.

  9. JetWeb: A WWW interface and database for Monte Carlo tuning and validation

    NASA Astrophysics Data System (ADS)

    Butterworth, J. M.; Butterworth, S.

    2003-06-01

    A World Wide Web interface to a Monte Carlo tuning facility is described. The aim of the package is to allow rapid and reproducible comparisons to be made between detailed measurements at high-energy physics colliders and general physics simulation packages. The package includes a relational database, a Java servlet query and display facility, and clean interfaces to simulation packages and their parameters.

  10. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2017-01-01

    Evaporation and condensation at a liquid-vapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of inter-facial physics does not consistently predict behavior of evaporation or condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrage's equation, which demonstrates thin thermal layers at the fluid vapor interface.

  11. Dynamics and phenomenology of higher order gravity cosmological models

    NASA Astrophysics Data System (ADS)

    Moldenhauer, Jacob Andrew

    2010-10-01

    I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and observational constraints and give fits to the data that are almost as good as those of the standard Lambda-Cold-Dark-Matter model. Finding accelerating HOG models with late-time acceleration that pass physical acceptability conditions, solar system tests, and cosmological constraints will constitute serious contenders to explain cosmic acceleration.

  12. XIII Modave Summer School in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The Modave Summer School on Mathematical Physics is a yearly summer school in topics of theoretical physics. Various topics ranging from quantum gravity and cosmology to theoretical particle physics and string theory. The school takes place in Modave, a charming village in the Belgian Ardennes close to Huy. Modave School is organised by PhD students for PhD students, and this makes it rather unique. The courses are taught by Post-Docs or late PhD students, and they are all made of pedagogical, basic blackboard lectures about recent topics in theoretical physics. Participants and lecturers eat and sleep in the same place where the lectures are given. The absence of senior members, and the fact of spending day and night together in an isolated, peaceful place contribute to creating an informal atmosphere and facilitating interactions. Lectures of the thirteenth edition are centered around the following subjects: bulk reconstruction in AdS/CFT, twistor theory, AdS_2/CFT_1 and SYK, geometry and topology, and asymptotic charges.

  13. Unifying Physics

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2013-04-01

    Century old GR fails to unify quantum physics, nuclear force or distinguish between the mass of living bodies from inert mass. Probabilistic gravity [1] explains strong coupling (nuclear force). The natural log of the age of the universe, 10E60 in Planck times, equaling 137 (1/Alpha) extends physics to deeper science, if we stand on the shoulders of giants like Feynman and Gamow. Implications of [1] are that it is not the earth, but M and S numbers of the particles of the earth are remotely interacting with corresponding numbers of the particles of the moon and the sun respectively, neglecting other heavenly bodies in this short draft. This new physics is likely to enable creative scientific minds to throw light on a theoretical basis for an otherwise arbitrary cosmological constant, uniformity of microwave background, further vindication of Boltzmann, quantum informatics, Einstein’s later publicized views and more, eliminating the need to spend money for implicitly nonexistent quantum gravity and graviton.[4pt] [1] Journal of Physical Science and Applications 2 (7) (2012) 265-268.

  14. Planck 2010

    ScienceCinema

    None

    2017-12-09

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  15. First star formation in ultralight particle dark matter cosmology

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Sullivan, James M.; Bromm, Volker

    2018-01-01

    The formation of the first stars in the high-redshift Universe is a sensitive probe of the small-scale, particle physics nature of dark matter (DM). We carry out cosmological simulations of primordial star formation in ultralight, axion-like particle DM cosmology, with masses of 10-22 and 10-21 eV, with de Broglie wavelengths approaching galactic scales (˜ kpc). The onset of star formation is delayed, and shifted to more massive host structures. For the lightest DM particle mass explored here, first stars form at z ˜ 7 in structures with ˜109 M⊙, compared to the standard minihalo environment within the Λ cold dark matter (ΛCDM) cosmology, where z ˜ 20-30 and ˜105-106 M⊙. Despite this greatly altered DM host environment, the thermodynamic behaviour of the metal-free gas as it collapses into the DM potential well asymptotically approaches a very similar evolutionary track. Thus, the fragmentation properties are predicted to remain the same as in ΛCDM cosmology, implying a similar mass scale for the first stars. These results predict intense starbursts in the axion cosmologies, which may be amenable to observations with the James Webb Space Telescope.

  16. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  17. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Vikhlinin, Alexey; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    We have worked on the analysis of the Chandra observations of the nearby and distant clusters of galaxies, and on the expansion of the sample of distant X-ray clusters based on the archival ROSAT PSPC data. Some of the scientific results are discussed.

  18. Visions of Discovery

    NASA Astrophysics Data System (ADS)

    Chiao, Raymond Y.; Cohen, Marvin L.; Leggett, Anthony J.; Phillips, William D.; Harper, Charles L., Jr.

    2010-10-01

    List of contributors; Foreword Charles H. Townes; Editors' preface; Preface Freeman J. Dyson; Laureates' preface: reflections from four physics Nobelists Roy J. Glauber, John L. Hall, Theodore W. Hänsch and Wolfgang Ketterle; Acknowledgments; Part I. Illumination: The History and Future of Physical Science and Technology: 1. A short history of light in the Western world John L. Heilbron; 2. Tools and innovation Peter L. Galison; 3. The future of science Freeman J. Dyson; 4. The end of everything: will AI replace humans? Will everything die when the universe freezes over? Michio Kaku; Part II. Fundamental Physics and Quantum Mechanics: 5. Fundamental constants Frank Wilczek; 6. New insights on time symmetry in quantum mechanics Yakir Aharonov and Jeffrey Tollaksen; 7. The major unknowns in particle physics and cosmology David J. Gross; 8. The major unknown in quantum mechanics: Is it the whole truth? Anthony J. Leggett; 9. Precision cosmology and the landscape Raphael Bousso; 10. Hairy black holes, phase transitions, and AdS/CFT Steven S. Gubser; Part III. Astrophysics and Astronomy: 11. The microwave background: a cosmic time machine Adrian T. Lee; 12. Dark matter and dark energy Marc Kamionkowski; 13. New directions and intersections for observational cosmology: the case of dark energy Saul Perlmutter; 14. Inward bound: high-resolution astronomy and the quest for black holes and extrasolar planets Reinhard Genzel; 15. Searching for signatures of life beyond the solar system: astrophysical interferometry and the 150 km Exo-Earth Imager Antoine Labeyrie; 16. New directions for gravitational wave physics via 'Millikan oil drops' Raymond Y. Chiao; 17. An 'ultrasonic' image of the embryonic universe: CMB polarization tests of the inflationary paradigm Brian G. Keating; Part IV. New Approaches in Technology and Science: 18. Visualizing complexity: development of 4D microscopy and diffraction for imaging in space and time Ahmed H. Zewail; 19. Is life based on laws of physics? Steven Chu; 20. Quantum information J. Ignacio Cirac; 21. Emergence in condensed matter physics Marvin L. Cohen; 22. Achieving the highest spectral resolution over the widest spectral bandwidth: precision measurement meets ultrafast science Jun Ye; 23. Wireless non-radiative energy transfer Marin Soljačić; Part V. Consciousness and Free Will: 24. The big picture: exploring questions on the boundaries of science - consciousness and free will George F. R. Ellis; 25. Quantum entanglement: from fundamental questions to quantum communication and quantum computation and back Anton Zeilinger; 26. Consciousness, body, and brain: the matter of the mind Gerald M. Edelman; 27. The relation between quantum mechanics and higher brain functions: lessons from quantum computation and neurobiology Christof Koch and Klaus Hepp; 28. Free will and the causal closure of physics Robert C. Bishop; 29. Natural laws and the closure of physics Nancy L. Cartwright; 30. Anti-Cartesianism and downward causation: reshaping the free-will debate Nancey Murphy; 31. Can we understand free will? Charles H. Townes; Part VI. Reflections on the Big Questions: Mind, Matter. Mathematics, and Ultimate Reality: 32. The big picture: exploring questions on the boundaries of science - mind, matter, mathematics George F. R. Ellis; 33. The mathematical universe Max Tegmark; 34. Where do the laws of physics come from? Paul C. W. Davies; 35. Science, energy, ethics, and civilization Vaclav Smil; 36. Life of science, life of faith William T. Newsome; 37. The science of light and the light of science: an appreciative theological reflection on the life and work of Charles Hard Townes Robert J. Russell; 38. Two quibbles about 'ultimate' Gerald Gabrielse; Index.

  19. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  20. Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  1. TOPICAL REVIEW: Knot theory and a physical state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Liko, Tomás; Kauffman, Louis H.

    2006-02-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.

  2. Impact of baryonic physics on intrinsic alignments

    DOE PAGES

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2017-01-11

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less

  3. Supersymmetry and fermionic modes in an oscillon background

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Ospedal, L. P. R.; de Paula, W.; Helayël-Neto, J. A.

    2018-05-01

    The excitations referred to as oscillons are long-lived time-dependent field configurations which emerge dynamically from non-linear field theories. Such long-lived solutions are of interest in applications that include systems of Condensed Matter Physics, the Standard Model of Particle Physics, Lorentz-symmetry violating scenarios and Cosmology. In this work, we show how oscillons may be accommodated in a supersymmetric scenario. We adopt as our framework simple (N = 1) supersymmetry in D = 1 + 1 dimensions. We focus on the bosonic sector with oscillon configurations and their (classical) effects on the corresponding fermionic modes, (supersymmetric) partners of the oscillons. The particular model we adopt to pursue our investigation displays cubic superfield which, in the physical scalar sector, corresponds to the usual quartic self-coupling.

  4. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  5. Where is particle physics going?

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2017-12-01

    The answer to the question in the title is: in search of new physics beyond the Standard Model, for which there are many motivations, including the likely instability of the electroweak vacuum, dark matter, the origin of matter, the masses of neutrinos, the naturalness of the hierarchy of mass scales, cosmological inflation and the search for quantum gravity. So far, however, there are no clear indications about the theoretical solutions to these problems, nor the experimental strategies to resolve them. It makes sense now to prepare various projects for possible future accelerators, so as to be ready for decisions when the physics outlook becomes clearer. Paraphrasing George Harrison, “If you don’t yet know where you’re going, any road may take you there.”

  6. MultiNest: Efficient and Robust Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Feroz, F.; Hobson, M. P.; Bridges, M.

    2011-09-01

    We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla LambdaCDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.

  7. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008)

    NASA Astrophysics Data System (ADS)

    Sunyaev, R. A.; Chluba, J.

    2009-07-01

    The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well-understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two-fold: The associated release of photons during this epoch leads to interesting and unique deviations of the Cosmic Microwave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre-stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may allow us to distinguish between Compton y-distortions that were created by energy release before or after the recombination of the Universe finished. With the advent of high precision CMB data, e.g. as will be available using the PLANCK Surveyor or CMBPOL, a very accurate theoretical understanding of the ionization history of the Universe becomes necessary for the interpretation of the CMB temperature and polarization anisotropies. Here we show that the uncertainty in the ionization history due to several processes, which until now were not taken in to account in the standard recombination code RECFAST, reaches the percent level. In particular He II->He I recombination occurs significantly faster because of the presence of a tiny fraction of neutral hydrogen at {z⪉ 2400}. Also recently it was demonstrated that in the case of H I Lyman α photons the time-dependence of the emission process and the asymmetry between the emission and absorption profile cannot be ignored. However, it is indeed surprising how inert the cosmological recombination history is even at percent-level accuracy. Observing the cosmological recombination spectrum should in principle allow us to directly check this conclusion, which until now is purely theoretical. Also it may allow to reconstruct the ionization history using observational data.

  8. Topological interface physics in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus; Ruostekoski, Janne

    2013-05-01

    We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.

  9. Cosmological constraints on pseudo-Nambu-Goldstone bosons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Jaffe, Andrew H.

    1991-01-01

    Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized by two mass scales: a global spontaneous symmetry breaking scale, f, and a soft (explicit) symmetry breaking scale, Lambda. General model insensitive constraints were studied on this 2-D parameter space arising from the cosmological and astrophysical effects of PNGBs. In particular, constraints were studied arising from vacuum misalignment and thermal production of PNGBs, topological defects, and the cosmological effects of PNGB decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds on the Peccei-Quinn axion scale, 10(exp 10) GeV approx. = or less than f sub pq approx. = or less than 10(exp 10) to 10(exp 12) GeV, emerge as a special case, where the soft breaking scale is fixed at Lambda sub QCD approx. = 100 MeV.

  10. Lyra’s cosmology of hybrid universe in Bianchi-V space-time

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar; Bhardwaj, Vinod Kumar

    2018-06-01

    In this paper we have searched for the existence of Lyra’s cosmology in a hybrid universe with minimal interaction between dark energy and normal matter using Bianchi-V space-time. To derive the exact solution, the average scale factor is taken as a={({t}n{e}kt)}\\frac{1{m}} which describes the hybrid nature of the scale factor and generates a model of the transitioning universe from the early deceleration phase to the present acceleration phase. The quintessence model makes the matter content of the derived universe remarkably able to satisfy the null, dominant and strong energy condition. It has been found that the time varying displacement β(t) co-relates with the nature of cosmological constant Λ(t). We also discuss some physical and geometrical features of the universe.

  11. Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.

    PubMed

    Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony

    2003-06-06

    We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today.

  12. Adaptive Motor Resistance Video Game Exercise Apparatus and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2015-01-01

    The invention comprises a method and/or an apparatus using computer configured exercise equipment and an electric motor provided physical resistance in conjunction with a game system, such as a video game system, where the exercise system provides real physical resistance to a user interface. Results of user interaction with the user interface are integrated into a video game, such as running on a game console. The resistance system comprises: a subject interface, software control, a controller, an electric servo assist/resist motor, an actuator, and/or a subject sensor. The system provides actual physical interaction with a resistance device as input to the game console and game run thereon.

  13. Cosmology in time asymmetric extensions of general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Genly; Saridakis, Emmanuel N., E-mail: genly.leon@ucv.cl, E-mail: Emmanuel_Saridakis@baylor.edu

    We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we performmore » a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.« less

  14. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.

    2006-08-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less

  15. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Lykken, Joseph D.

    2006-12-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

  16. Introduction to Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    The Standard Model is the most comprehensive physical theory ever developed. This textbook conveys the basic elements of the Standard Model using elementary concepts, without the theoretical rigor found in most other texts on this subject. It contains examples of basic experiments, allowing readers to see how measurements and theory interplay in the development of physics. The author examines leptons, hadrons and quarks, before presenting the dynamics and the surprising properties of the charges of the different forces. The textbook concludes with a brief discussion on the recent discoveries of physics beyond the Standard Model, and its connections with cosmology. Quantitative examples are given, and the reader is guided through the necessary calculations. Each chapter ends in the exercises, and solutions to some problems are included in the book. Complete solutions are available to instructors at www.cambridge.org/9780521880213. This textbook is suitable for advanced undergraduate students and graduate students.

  17. Circling motion and screen edges as an alternative input method for on-screen target manipulation.

    PubMed

    Ka, Hyun W; Simpson, Richard C

    2017-04-01

    To investigate a new alternative interaction method, called circling interface, for manipulating on-screen objects. To specify a target, the user makes a circling motion around the target. To specify a desired pointing command with the circling interface, each edge of the screen is used. The user selects a command before circling the target. To evaluate the circling interface, we conducted an experiment with 16 participants, comparing the performance on pointing tasks with different combinations of selection method (circling interface, physical mouse and dwelling interface) and input device (normal computer mouse, head pointer and joystick mouse emulator). A circling interface is compatible with many types of pointing devices, not requiring physical activation of mouse buttons, and is more efficient than dwell-clicking. Across all common pointing operations, the circling interface had a tendency to produce faster performance with a head-mounted mouse emulator than with a joystick mouse. The performance accuracy of the circling interface outperformed the dwelling interface. It was demonstrated that the circling interface has the potential as another alternative pointing method for selecting and manipulating objects in a graphical user interface. Implications for Rehabilitation A circling interface will improve clinical practice by providing an alternative pointing method that does not require physically activating mouse buttons and is more efficient than dwell-clicking. The Circling interface can also work with AAC devices.

  18. The Good, the Bad and the Ugly - Interacting Physical, Biogeochemical and Biolological Controls of Nutrient Cycling at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.

    2016-12-01

    The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.

  19. Lectures on General Relativity, Cosmology and Quantum Black Holes

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    2017-07-01

    This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q&A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices.

  20. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Tretyakova, Daria; Latosh, Boris

    2018-02-01

    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  1. Primordial perturbations with pre-inflationary bounce

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Wang, Yu-Tong; Zhao, Jin-Yun; Piao, Yun-Song

    2018-05-01

    Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without the ghost and gradient instabilities, of bounce-inflation (inflation is preceded by a cosmological bounce). We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows itself one marked lower valley. The depth of valley is relevant with the physics around the bounce scale, which is model-dependent.

  2. Final Scientific/Technical Report-Quantum Field Theories for Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolis, Alberto

    The research funded by this award spanned a wide range of subjects in theoretical cosmology and in field theory. In the first part, the PI and his collaborators applied effective field theory techniques to the study of macroscopic media and of cosmological perturbations. Such an approach—now standard in particle physics—is quite unconventional for theoretical cosmology. They addressed several concrete questions where this formalism proved valuable, both within and outside the cosmological context, concerning for instance macroscopic physical phenomena for fluids, superfluids, and solids, and their relationship to the dynamics of cosmological perturbations. A particularly successful outcome of this line ofmore » research has been the development of “solid inflation”: a cosmological model for primordial inflation where the expansion of the universe is driven by an exotic solid substance. In the second part, the PI and his collaborators investigated more fundamental questions and ideas, for the present universe as well as for the very early one, using quantum field theory as a guide. The questions addressed include: Is the present cosmic acceleration due to a new, ‘dark’ form of energy, or are we instead observing a breakdown of Einstein’s general relativity at cosmological distances? Is the cosmic acceleration accelerating? Is the Big Bang unavoidable? Related to this, is early inflation the only sensible cure for the shortcomings of the standard Big Bang model, and the only possible source for the observed scale-invariant cosmological perturbations?« less

  3. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  4. Other Cosmic Ray Links

    Science.gov Websites

    curriculum for its course Physics In and Through Cosmology. The Distributed Observatory aims to become the world's largest cosmic ray telescope, using the distributed sensing and computing power of the world's cell phones. Modeled after the distributed computing efforts of SETI@Home and Folding@Home, the

  5. On cosmology in the laboratory

    PubMed Central

    Leonhardt, Ulf

    2015-01-01

    In transformation optics, ideas from general relativity have been put to practical use for engineering problems. This article asks the question how this debt can be repaid. In discussing a series of recent laboratory experiments, it shows how insights from wave phenomena shed light on the quantum physics of the event horizon. PMID:26217062

  6. Reconciling Indigenous and Western Knowing.

    ERIC Educational Resources Information Center

    Hooley, Neil

    Being able to consider the full range of social and economic issues from different cultural perspectives while maintaining respect and an open mind is a difficult task. The similarities between the latest thinking of Western cosmology and theoretical physics and Indigenous understandings of the bush and its components are striking and provide a…

  7. On cosmology in the laboratory.

    PubMed

    Leonhardt, Ulf

    2015-08-28

    In transformation optics, ideas from general relativity have been put to practical use for engineering problems. This article asks the question how this debt can be repaid. In discussing a series of recent laboratory experiments, it shows how insights from wave phenomena shed light on the quantum physics of the event horizon.

  8. Temperature and Density Conditions for Nucleogenesis by Fusion Processes in Stars

    DOE R&D Accomplishments Database

    Fowler, W. A.

    1958-06-01

    An attempt is made to correlate nuclear findings with what is known about stellar evolution. Some discussion is given to present research in nuclear physics and astrophysics which may lead to further elucidation of the problem of nucleogenesis and of its cosmological implications. (M.H.R.)

  9. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  10. The Physical Education and Sport Interface: Models, Maxims and Maelstrom

    ERIC Educational Resources Information Center

    Pope, Clive C.

    2011-01-01

    Within many school contexts physical education and sport have historically been positioned as polemic, and while there has been plenty of rhetoric about physical education as well as sport within education, there has seldom been engaged debate or discussion about the relationship between physical education and sport in school settings. This…

  11. 100th anniversary of the birth of B M Pontecorvo (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 September 2013)

    NASA Astrophysics Data System (ADS)

    2014-05-01

    A scientific session "Prospects of Studies in Neutrino Particle Physics and Astrophysics," of the Physical Sciences Division of the Russian Academy of Sciences (DPS RAS), devoted to the centenary of B M Pontecorvo, was held on 2-3 September 2014 at the JINR international conference hall (Dubna, Moscow region).The following reports were put on the session agenda as posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow; Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region; National Research Nuclear University MEPhI, Moscow) "Long-baseline neutrino accelerator experiments: results and prospects";(2) Spiering Ch (Deutsches Elektronen-Synchrotron (DESY), Germany) "Results obtained by ICECUBE and prospects of neutrino astronomy";(3) Barabash A S (Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "Double beta decay experiments: current status and prospects";(4) Bilenky S M (Joint Institute for Nuclear Research, Dubna, Moscow region; Technische Universitat M'unchen, Garching, Germany) "Bruno Pontecorvo and the neutrino";(5) Olshevskiy A G (Joint Institute for Nuclear Research, Dubna, Moscow region) "Reactor neutrino experiments: results and prospects";(6) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Low-energy neutrino research at the Baksan Neutrino Laboratory";(7) Gorbunov D S (Institute for Nuclear Research, RAS, Moscow): "Sterile neutrinos and their role in particle physics and cosmology";(8) Derbin A V (Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad region) "Solar neutrino experiments";(9) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Prospects of studies in the field of neutrino particle physics and astrophysics." An article by V N Gavrin, close in essence to talk 6, was published in Usp. Fiz. Nauk 181 (9), 975 (2011) [Phys. Usp. 54 (9) 941 (2011)]. Articles by V A Rubakov, close in essence to talk 9, were published in Usp. Fiz. Nauk 182 (10) 1017 (2012); 181 (6) 655 (2011) [Phys. Usp. 55 (10) 949 (2012); 54 (6) 633 (2011)]. Articles based on talks 1-5, 7, and 8 are published below. • Long-baseline neutrino accelerator experiments: results and prospects, Yu G Kudenko Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 462-469 • High-energy neutrino astronomy: a glimpse of the promised land, Ch Spiering Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 470-481 • Double beta decay experiments: current status and prospects, A S Barabash Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 482-488 • Bruno Pontecorvo and the neutrino, S M Bilenky Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 489-496 • Reactor neutrino experiments: results and prospects, A G Olshevskiy Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 497-502 • Sterile neutrinos and their role in particle physics and cosmology, D S Gorbunov Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 503-511 • Solar neutrino experiments, A V Derbin Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 512-524

  12. Fundamental Particle Structure in the Cosmological Dark Matter

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim

    2013-11-01

    The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying fundamental relationship of micro- and macro-worlds, the problem of cosmological dark matter implies cross disciplinary theoretical, experimental and observational studies for its solution.

  13. Constraining cosmologies with fundamental constants - I. Quintessence and K-essence

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.

    2013-01-01

    Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.

  14. PREFACE: 1st-2nd Young Researchers Meetings in Rome - Proceedings

    NASA Astrophysics Data System (ADS)

    YRMR Organizing Committee; Cannuccia, E.; Mazzaferro, L.; Migliaccio, M.; Pietrobon, D.; Stellato, F.; Veneziani, M.

    2011-03-01

    Students in science, particularly in physics, face a fascinating and challenging future. Scientists have proposed very interesting theories, which describe the microscopic and macroscopic world fairly well, trying to match the quantum regime with cosmological scales. Between the extremes of this scenario, biological phenomena in all their complexity take place, challenging the laws we observe in the atomic and sub-atomic world. More and more accurate and complex experiments have been devised and these are now going to test the paradigms of physics. Notable experiments include: the Large Hadronic Collider (LHC), which is going to shed light on the physics of the Standard Model of Particles and its extensions; the Planck-Herschel satellites, which target a very precise measurement of the properties of our Universe; and the Free Electron Lasers facilities, which produce high-brilliance, ultrafast X-ray pulses, allowing the investigation of the fundamental processes of solid state physics, chemistry, and biology. These projects are the result of huge collaborations spread across the world, involving scientists belonging to different and complementary research fields: physicists, chemists, biologists and others, keen to make the best of these extraordinary laboratories. Even though each branch of science is experiencing a process of growing specialization, it is very important to keep an eye on the global picture, remaining aware of the deep interconnections between inherent fields. This is even more crucial for students who are beginning their research careers. These considerations motivated PhD students and young post-docs connected to the Roman scientific research area to organize a conference, to establish the background and the network for interactions and collaborations. This resulted in the 1st and 2nd Young Researchers Meetings in Rome (http://ryrm.roma2.infn.it), one day conferences aimed primarily at graduate students and post-docs, working in physics in Italy and abroad. In its first two editions, the meeting was held at the Universities of Roma "Tor Vergata" (July 2009) and "LaSapienza" (February 2010), and organized in sections dedicated to up-to-date topics spanning broad research fields: Astrophysics-Cosmology, Soft-Condensed Matter Physics, Theoretical-Particle Physics, and Medical Physics. In these proceedings we have collected some of the contributions which were presented during the meetings.

  15. The Sensitive Side of Galaxy Formation: How sub-L* Galaxies Accrete, Form Stars, and Enrich the IGM

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin

    2012-10-01

    We propose a series of cosmological zoom simulations specifically targeting the formation and evolution of dwarf and sub-L* galaxies living in halos of 10^11- 10^12 solar masses. The shallow potential wells and low-density environments of these halos provide uniquely sensitive laboratories to understand the physics of galactic feedback, as well as the thermal history of the intergalactic medium, from which these galaxies accrete. Given that 129 orbits of Cycle 18 COS data probing such halos is now being completed, combined with the insufficiency of current cosmological simulations to resolve these halos, the theory is lagging the data. We will remedy this by running zoom simulations of individual halos with 1000-10,000 times greater mass resolution than current cosmological simulations used for similar studies. We aim to resolve the sub-kpc scale of high-velocity cloud-like structures and <100 pc scales of the interstellar medium. We will simulate circumgalactic quasar absorption metal-line and H I statistics using our novel non-equilibrium ionization solver that follows individual ionic states. We will also investigate the delicate balance of accretion, star formation, and feedback required to reproduce the observed stellar properties of these small galaxies. In the spirit of transparency, we will make our simulation results available on a public website to encourage new projects and collaborations with observers and theorists understanding the physics regulating galaxy growth.

  16. What is general relativity?

    NASA Astrophysics Data System (ADS)

    Coley, Alan A.; Wiltshire, David L.

    2017-05-01

    General relativity is a set of physical and geometric principles, which lead to a set of (Einstein) field equations that determine the gravitational field and to the geodesic equations that describe light propagation and the motion of particles on the background. But open questions remain, including: what is the scale on which matter and geometry are dynamically coupled in the Einstein equations? Are the field equations valid on small and large scales? What is the largest scale on which matter can be coarse grained while following a geodesic of a solution to Einstein’s equations? We address these questions. If the field equations are causal evolution equations, whose average on cosmological scales is not an exact solution of the Einstein equations, then some simplifying physical principle is required to explain the statistical homogeneity of the late epoch Universe. Such a principle may have its origin in the dynamical coupling between matter and geometry at the quantum level in the early Universe. This possibility is hinted at by diverse approaches to quantum gravity which find a dynamical reduction to two effective dimensions at high energies on one hand, and by cosmological observations which are beginning to strongly restrict the class of viable inflationary phenomenologies on the other. We suggest that the foundational principles of general relativity will play a central role in reformulating the theory of spacetime structure to meet the challenges of cosmology in the 21st century.

  17. Inflation in the standard cosmological model

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  18. GRB physics and cosmology with peak energy-intensity correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawant, Disha, E-mail: sawant@fe.infn.it; University of Nice, 28 Avenue Valrose, Nice 06103; IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is amore » positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.« less

  19. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE PAGES

    Abazajian, K. N.; Arnold, K.; Austermann, J.; ...

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σ mv) = 16 meV and σ (Neff)(N eff)more » = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of N eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N eff = 3.046.« less

  20. J. J. Sakurai Prize: Astrophysics, Cosmology and PQ Symmetry--Linking the Very Small and the Very Large

    NASA Astrophysics Data System (ADS)

    Quinn, Helen

    2013-04-01

    The symmetry between the laws of physics for matter and those for antimatter (technically known as CP symmetry) is broken in the weak interaction but maintained to a high level of precision in the strong interaction. In the context of the Standard Model theory of particles and their interactions this is a puzzle --what protects the strong interaction from being more ``infected'' by the lack of a symmetry of the weak interaction? I will review the history of the idea we had to solve this puzzle, its consequences, and its evolution into the versions still viable today. Our answer to this puzzle, adding a further symmetry now known as PQ symmetry, arose from thinking about the effects of quark-Higgs couplings as in the early Universe, in the phase transition that gives quarks their masses. Not only did this modification of the Standard Model arise from cosmological thinking, it turns out to have possible cosmological consequences in the form of a light, weakly-coupled particle known as the axion, a possible dark matter candidate. Furthermore astrophysical constraints on such a particle have played a role in the subsequent evolution of theories with PQ symmetry. I will review the early history of this fascinating linkage of large scale and small scale physics, leaving later developments for my collaborator and co-recipient of this prize, Roberto Peccei, to talk about.

  1. BOOK REVIEW: The Legacy of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics

    NASA Astrophysics Data System (ADS)

    Straumann, Norbert

    2007-10-01

    During the 'World Year of Physics' much has been written on the epoch-making 1905 papers of Albert Einstein and his later great contributions to physics. Why another book on the enormous impact of Einstein's work on 20th-century physics? The short answer is that the present collection of 13 relatively short essays on the legacy of Einstein by outstanding scientists is very pleasant to read and should be of interest to physicists of all branches. Beside looking back, most articles present later and topical developments, whose initiation began with the work of Einstein. During the year 2005, the growing recognition among physicists, historians, and philosophers of Einstein's revolutionary role in quantum theory was often emphasized. It is truly astonishing that most active physicists were largely unaware of this before. Fortunately, the article 'Einstein and the quantum' by V Singh puts the subject in perspective and describes all the main steps, beginning with the truly revolutionary 1905 paper on the light-quantum hypothesis and ending with Einstein's extension of the particle-wave duality to atoms and other particles in 1924 1925. The only point which, in my opinion, is not sufficiently emphasized in the discussion of the 1916 1917 papers on absorption and emission of radiation is the part on the momentum transfer in each elementary process. Einstein's result that there is a directed recoil hν/c—also for spontaneous emission—in complete contrast to classical theory, was particularly important to him. I enjoyed reading the articles on Brownian motion (S Majumdar), Bose Einstein condensation (N Kumar) and strongly correlated electrons (T Ramakrishnan), which are all written for non-experts. Connected with Einstein's most lasting work—general relativity—there are two articles on cosmology. The one by J Narlikar gives a brief historical account of the development that was initiated by the 1917 paper of Einstein. S Sarkar's essay emphasizes the remarkable recent observational progress in cosmology and the emergence of the 'cosmic concordance model', with dark matter and dark energy as the dominant components of the current universe. Their discovery is widely considered as the most direct evidence for fundamental physics beyond the standard model of particle physics. In an introductory section Sarkar recalls the main reasons why the cosmological constant (vacuum energy) problem is of a very profound nature. In spite of some interesting ideas, no satisfactory solution is in sight. The article by B Sathyapakhash on gravitational radiation provides a readable introduction to the status of current detectors and astronomical sources of gravitational radiation. Of great cosmological interest are planned searches for a stochastic background of gravitational waves that is expected to have been produced by quantum processes in the very early universe. More than the first third of the book is devoted to current speculative attempts at creating a quantum theory of gravity, possibly within a unified coherent description of the known four fundamental interactions. Thanks to the enormously large value of the Planck energy in comparison to elementary particle masses, physicists may maintain for a long time, with success, a schizophrenic attitude in working within the framework of our present understanding, based on quantum field theory and classical general relativity. That physics cannot stay with that was already pointed out by Einstein in 1916, as A Ashtekar recalls in his essay. 'Einstein and the search for unification' by D Gross is the first article of the present book. In this he describes the reasons why, for those working in speculative areas, 'Einstein remains an inspiration for his foresight, and his unyielding determination and courage'. This inspiration is also manifest in the essays by M Atiyah, A Sen, and A Dabholkar on string theory. Hopefully, this book will find many readers, especially among graduate students, who can get valuable impressions of what is interesting in physics and what some of the main open problems for future research are.

  2. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  3. Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-02-01

    The results from Planck2015, when combined with earlier observations from the Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope and other experiments, were the first observations to disfavor the ‘classic’ inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new ‘unlikeliness problem’. Some propose turning instead to a ‘postmodern’ inflationary paradigm in which the cosmological properties in our observable Universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the Universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.

  4. The trace anomaly and dynamical vacuum energy in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottola, Emil

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effectivemore » action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.« less

  5. Multiverse understanding of cosmological coincidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant,more » the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.« less

  6. Castles in the Air: The Einstein-De Sitter Debate, 1916-1918

    NASA Astrophysics Data System (ADS)

    Midwinter, Charles; Janssen, Michel

    2011-03-01

    The Einstein De Sitter debate marked the birth of modern cosmology and the infamous cosmological constant. For Einstein, the controversy was essentially a philosophical one. Einstein's insistence on a static Universe and Mach's Principle guided him in the construction of his own cosmological model, and compelled him to criticize De Sitter's. For De Sitter, the debate began as idle conjecture. Before long, however, he began to wonder if the "spacious castles" he and Einstein had constructed might actually represent physical reality. We plan to write a volume that reproduces the documents relevant to the debate. Our commentary will retrace and explain the arguments of the historical players, complete with calculations. For the first time readers will be able to follow the arguments of Einstein and De Sitter in a detailed exploration of the first two relativistic cosmological models. Readers will see how Einstein's flawed criticisms of De Sitter were supported by Herman Weyl, and finally how Felix Klein settled the whole matter with a coordinate transformation.

  7. The best-fit universe. [cosmological models

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.

  8. Enabling electroweak baryogenesis through dark matter

    DOE PAGES

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-09

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimensionmore » six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.« less

  9. A two-fluid approximation for calculating the cosmic microwave background anisotropies

    NASA Technical Reports Server (NTRS)

    Seljak, Uros

    1994-01-01

    We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.

  10. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface.

    PubMed

    Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-13

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  11. Embedded Process Modeling, Analogy-Based Option Generation and Analytical Graphic Interaction for Enhanced User-Computer Interaction: An Interactive Storyboard of Next Generation User-Computer Interface Technology. Phase 1

    DTIC Science & Technology

    1988-03-01

    structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN

  12. Space Physics Data Facility Web Services

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  13. Standard interface files and procedures for reactor physics codes, version III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, B.M.

    Standards and procedures for promoting the exchange of reactor physics codes are updated to Version-III status. Standards covering program structure, interface files, file handling subroutines, and card input format are included. The implementation status of the standards in codes and the extension of the standards to new code areas are summarized. (15 references) (auth)

  14. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our proposed work will elucidate the poorly understood CR and anisotropic transport processes in the weakly collisional ICM and shed light on the long-standing mystery of AGN heating in CC clusters. Our investigation, which incorporates plasma effects into fluid models and provides physical foundation for cosmological simulations, will serve as an important bridge between physics on both micro and macro scales. This study will enable robust modeling of the radio-mode feedback of AGN in cosmological simulations of cluster and galaxy formation. It will also directly impact observational studies of clusters including NASA missions such as Chandra, XMM-Newton, Astro-H/Hitomi, Fermi, HST, and Planck.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Gary; Everett, Lisa

    The Tenth Annual International String Phenomenology Conference was held at the University of Wisconsin, Madison on August 22-26, 2011. The Conference was organized by Profs. Gary Shiu and Lisa Everett, with the help of two postdoctoral fellows Heng-Yu Chen and Jiajun Xu. The scientific subjects of the talks and discussions were chosen to be widely interdisciplinary, reflecting the scope and maturity of the field. The conference brought together researchers of diverse subfields in physics and mathematics to present and discuss recent developments in connecting observable particle physics and cosmology with the domain of fundamental theory. This report summarizes the outcomemore » of this conference.« less

  16. Intermittency and random matrices

    NASA Astrophysics Data System (ADS)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  17. Learning physics in a water park

    NASA Astrophysics Data System (ADS)

    Cabeza, Cecilia; Rubido, Nicolás; Martí, Arturo C.

    2014-03-01

    Entertaining and educational experiments that can be conducted in a water park, illustrating physics concepts, principles and fundamental laws, are described. These experiments are suitable for students ranging from senior secondary school to junior university level. Newton’s laws of motion, Bernoulli’s equation, based on the conservation of energy, buoyancy, linear and non-linear wave propagation, turbulence, thermodynamics, optics and cosmology are among the topics that can be discussed. Commonly available devices like smartphones, digital cameras, laptop computers and tablets, can be used conveniently to enable accurate calculation and a greater degree of engagement on the part of students.

  18. Constraints on operator ordering from third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkuwa, Yoshiaki; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  19. Teaching General Relativity to the Layperson

    NASA Astrophysics Data System (ADS)

    Egdall, Mark

    2009-11-01

    This paper describes a lay course on general relativity (GR) given at the Osher Lifelong Learning Institute at Florida International University. It is presented in six hour-and-a-half weekly sessions. Other courses offered by the author include special relativity (which precedes the course described here), quantum theory, and cosmology. Students are people 50 and older, mostly retired or semi-retired like me. They come from all walks of life, including medical doctors, ballet directors, educators, cruise line executives, and poets. Most are college educated, but with little or no formal physics education. A few have technical backgrounds, e.g., chemistry or physics.

  20. Critical Issues in the Philosophy of Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2016-01-01

    Although the philosophy of science and of specific sciences such as physics, chemistry, and biology are well-developed fields with their own books and journals, the philosophy of astronomy and cosmology have received little systematic attention. At least six categories of problems may be identified in the astronomical context: 1) the nature of reasoning, including the roles of observation, theory, simulation, and analogy, as well as the limits of reasoning, starkly evident in the anthropic principle, fine-tuning, and multiverse controversies; 2) the often problematic nature of evidence and inference, especially since the objects of astronomical interest are for the most part beyond experiment and experience;3) the influence of metaphysical preconceptions and non-scientific worldviews on astronomy, evidenced, for example in the work of Arthur S. Eddington and many other astronomers; 4) the epistemological status of astronomy and its central concepts, including the process of discovery, the problems of classification, and the pitfalls of definition (as in planets); 5) the role of technology in shaping the discipline of astronomy and our view of the universe; and 6) the mutual interactions of astronomy and cosmology with society over time. Discussion of these issues should draw heavily on the history of astronomy as well as current research, and may reveal an evolution in approaches, techniques, and goals, perhaps with policy relevance. This endeavor should also utilize and synergize approaches and results from philosophy of science and of related sciences such as physics (e.g. discussions on the nature of space and time). Philosophers, historians and scientists should join this new endeavor. A Journal of the Philosophy of Astronomy and Cosmology (JPAC) could help focus attention on their studies.

Top