Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.
Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra
2014-01-01
Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.
Cole, James H; Franke, Katja
2017-12-01
The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kutilin, D S; Bondarenko, T I; Kornienko, I V; Mikhaleva, I I
2014-09-01
Subcutaneous injections of exogenous delta sleep-inducing peptide in a dose of 100 μg/kg (monthly, 5-day courses) to rats of various age groups (2-24 months) were followed by an increase in the expression of genes for SOD 1 (Sod1) and glutathione peroxidase 1 (Gpx1) in the brain and nucleated blood cells. The expression of these genes was shown to decrease during physiological aging of the body.
Aging in the Brain: New Roles of Epigenetics in Cognitive Decline.
Barter, Jolie D; Foster, Thomas C
2018-06-01
Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.
Steffener, Jason; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Bherer, Louis; Stern, Yaakov
2016-04-01
This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age (CA). Cortical and subcortical gray matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting CA (R(2) = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed (FOSC) were the only 2 significant predictors of decreased BA. Effect sizes demonstrated that BA decreased by 0.95 years for each year of education and by 0.58 years for 1 additional FOSC daily. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by CA which supports the utility of regional gray matter volume as a biomarker of healthy brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice.
Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Noda, Setsuko; Onouchi, Hiromi; Hartman, Philip S; Ishii, Naoaki
2009-01-01
Much attention has been focused on the mitochondrial superoxide anion (O2(-)), which is also a critical free radial produced by ionizing radiation. The specific role of the mitochondrial O2(-) on physiological aging in mammals is still unclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O2(-) is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O2(-)relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O2(-) production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O2(-) levels. Mitochondrial O2(-) production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O2(-) production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O2(-) production has high organ specificity, and oxidative damage by O2(-) from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O2(-) from mitochondria plays a core role in physiological aging.
Lessard-Beaudoin, Mélissa; Laroche, Mélissa; Demers, Marie-Josée; Grenier, Guillaume; Graham, Rona K
2015-03-01
In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.
Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A
2017-11-01
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.
BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.
Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-08-30
BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo
2017-03-01
Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.
Xu, Xiaojun; Wang, Qidong; Zhang, Minming
2008-03-01
It is well known that iron accumulates in the brains of patients with various neurodegenerative diseases. To better understand disease-related iron changes, it is necessary to know the physiological distribution and accumulation of iron in the human brain. Studies have shown that brain iron levels increase with aging. However, the effects of gender and hemispheric laterality on iron accumulation and distribution are not well established. In this study, we estimated the brain iron levels in vivo in 78 healthy adults ranging in age 22 to 78 years using magnetic susceptibility-weighted phase imaging. The effects of age, gender, and hemispheric location on brain iron levels were evaluated within the framework of a general linear model. We found that the left hemisphere had higher iron levels than the right in the putamen, globus pallidus, substantia nigra, thalamus, and frontal white matter. We argue that the hemispheric asymmetry of iron content may underlie that of the dopaminergic system and may be related to motor lateralization in humans. In addition, significant age-related iron accumulation occurred in the putamen, red nucleus, and frontal white matter, but no gender-related differences in iron levels were detected. The results of this study extend our knowledge of the physiological distribution and accumulation of iron in the human brain.
Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.
Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano
2016-08-01
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Global and regional annual brain volume loss rates in physiological aging.
Schippling, Sven; Ostwaldt, Ann-Christin; Suppa, Per; Spies, Lothar; Manogaran, Praveena; Gocke, Carola; Huppertz, Hans-Jürgen; Opfer, Roland
2017-03-01
The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age-volume data. For each age, the BVL/year was derived from the age-volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35-70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.
Neuron-astrocyte signaling is preserved in the aging brain.
Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso
2017-04-01
Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley Periodicals, Inc.
Zhang, Dijun; Han, Jiaojiao; Li, Yanyan; Yuan, Bei; Zhou, Jun; Cheong, Lingzhi; Li, Ye; Lu, Chenyang; Su, Xiurong
2018-06-06
To discern whether tuna oil modulates the expression of brain proteins and the gut microbiota structure during aging induced by d-galactose, we generated an aging mouse model with d-galactose treatment, and the mice showed aging and memory deterioration symptoms according to physiological and biochemical indices. Treatment with different doses of tuna oil alleviated the symptoms; the high dose showed a better effect. Subsequently, brain proteomic analysis showed the differentially expressed proteins were involved in damaged synaptic system repairment and signal transduction system enhancement. In addition, tuna oil treatment restored the diversity of gut microbiota, 27 key operational taxonomic units, which were identified using a redundancy analysis and were significantly correlated with at least one physiological index and three proteins or genes. These findings suggest that the combination of proteomics and gut microbiota is an effective strategy to gain novel insights regarding the effect of tuna oil treatment on the microbiota-gut-brain axis.
Horng, Lin-Yea; Hsu, Pei-Lun; Chen, Li-Wen; Tseng, Wang-Zou; Hsu, Kai-Tin; Wu, Chia-Ling; Wu, Rong-Tsun
2015-10-01
Memory impairment can be progressive in neurodegenerative diseases, and physiological ageing or brain injury, mitochondrial dysfunction and oxidative stress are critical components of these issues. An early clinical study has demonstrated cognitive improvement during erythropoietin treatment in patients with chronic renal failure. As erythropoietin cannot freely cross the blood-brain barrier, we tested EH-201 (2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, also known as TSG), a low MW inducer of erythropoietin, for its therapeutic effects on memory impairment in models of neurodegenerative diseases, physiological ageing or brain injury. The effects of EH-201 were investigated in astrocytes and PC12 neuronal-like cells. In vivo, we used sleep-deprived (SD) mice as a stress model, amyloid-β (Aβ)-injected mice as a physiological ageing model and kainic acid (KA)-injected mice as a brain damage model to assess the therapeutic effects of EH-201. EH-201 induced expression of erythropoietin, PPAR-γ coactivator 1α (PGC-1α) and haemoglobin in astrocytes and PC12 neuronal-like cells. In vivo, EH-201 treatment restored memory impairment, as assessed by the passive avoidance test, in SD, Aβ and KA mouse models. In the hippocampus of mice given EH-201 in their diet, levels of erythropoietin, PGC-1α and haemoglobin were increased The induction of endogenous erythropoietin in neuronal cells by inducers such as EH-201 might be a therapeutic strategy for memory impairment in neurodegenerative disease, physiological ageing or traumatic brain injury. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.
Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi
2017-09-10
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2013-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes. PMID:24478697
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2014-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.
Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco
2015-01-01
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.
Uduma, Uduma Felix; Pius, Fokam; Mathieu, Motah
2012-01-01
Objective: Intracranial calcifications underlie certain brain diseases which may be de novo or systemic. But calclfications un-connected to pathologies are classified physiological. Aim: To evaluate physiological intracranial calcifications in Douala with establishment of earliest age range of detection. Materials and Methods: Prospective study of brain computed tomograms was done from April to October 2009 using Schumadzu CT Scan machine. Axial, reconstructed and bone window images as well Hounsfield unit measurements were used for final evaluations. Results were analysed with SSPS 3. Results: 132 patients with 75 males and 57 females were studied and 163 separate calcifications were identified due to co-existent calcifications. The highest calcification was in choroid plexi, constituiting 56.82% of the studied population. This was followed by pineal gland. Both were commonly co-existent with advancing age. These calcifications were first seen at 10-19years. No type of physiological intracranial calcification was seen below age 10. The least calcification of 0.76% of population was in dentate nucleus. Conclusion: No intra-cranial physiological calcifications started earlier than 9years in Douala, a city in Cameroon, Central Africa. PMID:22980109
Uduma, Felix Uduma; Pius, Fokam; Mathieu, Motah
2011-12-29
Intracranial calcifications underlie certain brain diseases which may be de novo or systemic. But calcifications un-connected to pathologies are classified physiological. To evaluate physiological intracranial calcifications in Douala with establishment of earliest age range of detection. Prospective study of brain computed tomograms was done from April to October 2009 using Schumadzu CT Scan machine. Axial, reconstructed and bone window images as well Hounsfield unit measurements were used for final evaluations. RESULTS were analysed with SSPS 3. 132 patients with 75 males and 57 females were studied and 163 separate calcifications were identified due to co-existent calcifications. The highest calcification was in choroid plexi, constituting 56.82% of the studied population. This was followed by pineal gland. Both were commonly co-existent with advancing age. These calcifications were first seen at 10-19 years. No type of physiological intracranial calcification was seen below age 10. The least calcification of 0.76% of population was in dentate nucleus. No intra-cranial physiological calcifications started earlier than 9 years in Douala, a city in Cameroon, Central Africa.
PPARγ and Stress: Implications for Aging
Ulrich-Lai, Yvonne M.; Ryan, Karen K.
2012-01-01
Complex interactions link psychological stress and aging - stress generally promotes aging processes, and conversely, aging can contribute to stress dysregulation. Stress and aging have remarkably similar effects on brain. Both induce neuroinflammation and alter neuronal metabolism and activity, which to varying extents are causally-linked to the development of stress and aging pathology. As such, induction of one or more of these brain disturbances by either stress or aging could predispose for the development of dysfunction in the other. Notably, peroxisome proliferator-activated receptor γ (PPARγ) is expressed in brain regions that regulate both stress and aging (e.g., hippocampus) and can act to prevent the consequences of aging and stress on the brain. In addition, PPARγ agonists reduce the physiological stress response itself. Thus, PPARγ may represent a critical mechanistic link between brain aging and stress that could hold therapeutic potential for the prevention and treatment of age-related cognitive and mood disorders. PMID:22960592
Genome instability: Linking ageing and brain degeneration.
Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef
2017-01-01
Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.
Neuronal glycogen synthesis contributes to physiological aging
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-01-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425
Physiological and pathological clinical conditions and light scattering in brain
NASA Astrophysics Data System (ADS)
Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke
2016-08-01
MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3- at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3- at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.
Physiological assessment of tongue function in dysarthria following traumatic brain injury.
Goozée, J V; Murdoch, B E; Theodoros, D G
2001-01-01
A tongue pressure transducer system was used to assess tongue strength, endurance, fine pressure control and rate of repetitive movement in a group of 20 individuals, aged 17 to 60 years, with dysarthria following severe traumatic brain injury (TBI). Comparison of the TBI group's results against data obtained from a group of 20 age and sex matched control subjects revealed reductions in tongue endurance and rate of repetitive movement. Tongue strength and fine pressure control, however, were found not to differ significantly from the control group. Pearson's product-moment correlations indicated there to be only weak correlations between the physiological nonspeech tongue parameters and the deviant perceptual articulatory features exhibited by the TBI group. Further analysis of the results on an individual subject basis revealed no clear relationships between the physiological and perceptual parameters suggesting that the TBI subjects may have been compensating in different ways for the physiological impairments.
Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama
2014-01-01
Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = -.322, p = .009; r= -.381, p= .002), lower mean albumin (r = -.276, p= .029; r= -.385, p= .002), and lower mean bilirubin (r = -.293, p= .020; r= -.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants.
Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A
2014-01-01
Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.
Neuronal glycogen synthesis contributes to physiological aging.
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-10-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.
Arbelaez, Ana Maria; Semenkovich, Katherine; Hershey, Tamara
2013-12-01
The adult brain accounts for a disproportionally large percentage of the body’s total energy consumption (1). However, during brain development,energy demand is even higher, reaching the adult rate by age 2 and increasing to nearly twice the adult rate by age 10, followed by gradual reduction toward adult levels in the next decade (1,2). The dramatic changes in brain metabolism occurring over the first two decades of life coincide with the initial proliferation and then pruning of synapses to adult levels.The brain derives its energy almost exclusively from glucose and is largely driven by neuronal signaling, biosynthesis, and neuroprotection (3–6).Glucose homeostasis in the body is tightly regulated by a series of hormones and physiologic responses. As a result, hypoglycemia and hyperglycemia are rare occurrences in normal individuals, but they occur commonly inpatients with type 1 diabetes mellitus (T1DM) due to a dysfunction of peripheral glucose-insulin-glucagon responses and non-physiologic doses of exogenous insulin, which imperfectly mimic normal physiology. These extremes can occur more frequently in children and adolescents with T1DM due to the inadequacies of insulin replacement therapy, events leading to the diagnosis [prolonged untreated hyperglycemia and diabetic ketoacidosis (DKA)], and to behavioral factors interfering with optimal treatment. When faced with fluctuations in glucose supply the metabolism of the body and brain change dramatically, largely to conserve resources and, at a cost to other organs, to preserve brain function (7). However,if the normal physiological mechanisms that prevent these severe glucose fluctuations and maintain homeostasis are impaired, neuronal function and potentially viability can be affected (8–11).
Brain aging and neurodegeneration: from a mitochondrial point of view.
Grimm, Amandine; Eckert, Anne
2017-11-01
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A
2014-01-01
The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.
Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.
Villa, R F; Ferrari, F; Gorini, A
2012-12-27
Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Peterson, Candida C
2005-08-01
This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.
Promoting brain health through exercise and diet in older adults: a physiological perspective
Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I.; Eskes, Gail A.
2016-01-01
Abstract The rise in incidence of age‐related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter‐individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote ‘brain health’. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792
de Marco, G; Menuel, C; Guillevin, R; Vallée, J-N; Lehmann, P; Fall, S; Quaglino, V; Bourdin, B; Devauchelle, B; Chiras, J
2008-07-01
After having provided a brief reminder of the principle of the blood oxygen level-dependent (BOLD) contrast effect, the physiological bases of brain activity and the concepts of functional integration and effective connectivity, we describe the most recent approaches, which permit to explore brain activity and putative networks of interconnected active areas in order to examine the normal brain physiology and its dysfunctions. We present various methods and studies of brain activity analysis clinically applicable, and we detail the concepts of functional and effective connectivity, which allow to study the cerebral plasticity which occurs at the child's during the maturation (e.g., dyslexia), at the adult during the ageing (e.g., Alzheimer disease), or still in schizophrenia or Parkinson disease. The study of specific circuits in networks has to allow defining in a more realistic way the dynamic of the central nervous system, which underlies various cerebral functions, both in physiological and pathological conditions. This connectivity approach should improve the diagnostic and facilitate the development of new therapeutic strategies.
Metabolomics of human brain aging and age-related neurodegenerative diseases.
Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald
2014-07-01
Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.
Menopausal Hot Flashes and White Matter Hyperintensities
Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.
2015-01-01
Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
Circulatory miR-34a as an RNA-based, noninvasive biomarker for brain aging
Li, Xiaoli; Khanna, Amit; Li, Na; Wang, Eugenia
2011-01-01
MicroRNAs in blood samples have been identified as an important class of biomarkers, which can reflect physiological changes from cancer to brain dysfunction. In this report we identify concordant increases in levels of expression of miR-34a in brain and two components of mouse blood samples, peripheral blood mononuclear cells (PBMCs) and plasma, from 2 day old neonates through young adulthood and mid-life to old age at 25 months. Levels of this microRNA's prime target, silent information regulator 1 (SIRT1), in brain and the two blood-derived specimens decrease with age inversely to miR-34a, starting as early as 4 months old, when appreciable tissue aging has not yet begun. Our results suggest that: 1. Increased miR-34a and the reciprocal decrease of its target, SIRT1, in blood specimens are the accessible biomarkers for age-dependent changes in brain; and 2. these changes are predictors of impending decline in brain function, as early as in young adult mice. PMID:22064828
Effects of Age and Age-Related Hearing Loss on the Brain
ERIC Educational Resources Information Center
Tremblay, Kelly; Ross, Bernhard
2007-01-01
It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…
NASA Astrophysics Data System (ADS)
Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully
2018-05-01
Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To conclude, the meat extract of snakehead fish can be used as antiaging material to improve the function of the hippocampus, to improve the capability of learning and memory, to improve motoric activity, and to prevent aging. These findings are expected to provide comprehensive information for the development of antiaging research as an effort to improve public health and to improve learning-memory capability and motoric activity.
de Boer, Antina; Ter Horst, Gert J; Lorist, Monicque M
2013-01-01
Dietary intake changes during the course of aging. Normally an increase in food intake is observed around 55 years of age, which is followed by a reduction in food intake in individuals over 65 years of age. This reduction in dietary intake results in lowered levels of body fat and body weight, a phenomenon known as anorexia of aging. Anorexia of aging has a variety of consequences, including a decline in functional status, impaired muscle function, decreased bone mass, micronutrient deficiencies, reduced cognitive functions, increased hospital admission and even premature death. Several changes during lifetime have been implicated to play a role in the reduction in food intake and the development of anorexia of aging. These changes are both physiological, involving peripheral hormones, senses and central brain regulation and non-physiological, with differences in psychological and social factors. In the present review, we will focus on age-related changes in physiological and especially non-physiological factors, that play a role in the age-related changes in food intake and in the etiology of anorexia of aging. At the end we conclude with suggestions for future nutritional research to gain greater understanding of the development of anorexia of aging which could lead to earlier detection and better prevention. Copyright © 2012 Elsevier B.V. All rights reserved.
Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M
2015-12-01
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Khalifa, Abdel Rahman M; Abdel-Rahman, Engy A; Mahmoud, Ali M; Ali, Mohamed H; Noureldin, Maha; Saber, Saber H; Mohsen, Mahmoud; Ali, Sameh S
2017-03-01
Sex-specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well-established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H 2 O 2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P = 0.049, N = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P = 0.001, N = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex-dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O 2 -consuming/H 2 O 2 -producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR-detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order-of-magnitude lower reactive oxygen species (ROS) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex-dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity
Lin, Ai-Ling; Coman, Daniel; Jiang, Lihong; Rothman, Douglas L; Hyder, Fahmeed
2014-01-01
Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology. PMID:24984898
Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco
2016-09-01
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.
'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus.
Shivarama Shetty, Mahesh; Sajikumar, Sreedharan
2017-05-01
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging. Copyright © 2017 National University of Singapore. Published by Elsevier B.V. All rights reserved.
Redox Biology in Neurological Function, Dysfunction, and Aging.
Franco, Rodrigo; Vargas, Marcelo R
2018-04-23
Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.
Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska
2018-05-01
Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria
2014-01-01
Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.
Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.
2018-01-01
The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.
Spectral Variability in the Aged Brain during Fine Motor Control
Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.
2016-01-01
Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231
Ashraf, Azhaar; Clark, Maryam; So, Po-Wah
2018-01-01
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases. PMID:29593525
Age-related changes in the thermoregulatory capacity of tryptophan-deficient rats.
Segall, P E; Timiras, P S
1975-01-01
From a larger study seeking to develop indexes of physiological aging, the present experiment was designed 1) to test thermoregulatory capacity in the aging and old rat subjected to 3 minutes of whole-body ice water immersion, and 2) using this index of physiological age, to determine whether tryptophan deficiency from time of weaning can retard the onset of senescence. Results indicate a progressive prolongation of temperature recovery time from young to middle age to old, and tryptophan-deficient animals restored to commercial diet at middle age show the thermoregulatory capacity of young adults. The implications of tryptophan deficiency with respect to brain development, serotonin metabolism, and temperature regulation are also discussed in terms of the possibility of intervening with the aging process.
Neuroimaging of Cerebrovascular Disease in the Aging Brain
Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.
2012-01-01
Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721
Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.
Viessmann, Olivia; Möller, Harald E; Jezzard, Peter
2018-02-02
Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.
Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain.
Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora
2015-07-01
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain
Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina
2017-01-01
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377
Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair
Zárate, Sandra; Stevnsner, Tinna; Gredilla, Ricardo
2017-01-01
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain. PMID:29311911
Henry, G K; Gross, H S; Herndon, C A; Furst, C J
2000-01-01
This retrospective clinical study investigated the neuropsychological, physiological, and behavioral functioning of 32 adult outpatients up to 65 months following nonimpact brain injury (i.e., whiplash). All participants were administered a flexible battery of cognitive tests, and some underwent neurodiagnostic procedures and sleep studies. Compared with published norms, neuropsychological data revealed significant and persistent age-adjusted cognitive deficits, primarily in the area of executive functioning. Participants frequently complained of problems with behavioral control, sleep, and sexuality. Although structural neuroimaging was not sensitive in detecting brain pathology, quantitative electroencephalography was abnormal in all the participants evaluated, showing frontocentral slowing and increased spike wave activity. We propose that whiplash injury can produce wide-ranging circuitry dysfunction and that test selection is critical in identifying cognitive deficits.
Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.
Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela
2018-03-02
Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.
Zueva, Marina V.
2015-01-01
The theory that ties normal functioning and pathology of the brain and visual system with the spatial–temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult’s neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author’s theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232
Stable Microsaccades and Microsaccade-Induced Global Alpha Band Phase Reset Across the Life Span.
Gao, Ying; Huber, Carl; Sabel, Bernhard A
2018-04-01
To understand the effect of aging on microsaccade functions and brain physiologic responses, we quantified microsaccades and their physiologic correlates (including their interaction with alpha band brain oscillation) in normal subjects of different ages. Twenty-two normally sighted young (18 to 29 years), 22 middle-aged (31 to 55 years), and 22 elderly subjects (56 to 77 years) participated in this cross-sectional study. Dense array EEG and high-resolution eye-tracking data were simultaneously recorded during a fixation task. We quantified microsaccade features, spike potential (SP), microsaccadic lambda response (MLR) and microsaccade-related spectral perturbation (ERSP), and intertrial coherence (ITC) in the alpha and beta frequency bands and compared them between three age groups. After microsaccade onset, (1) alpha band ERSP increased (100 to 150 ms) occipitally and ITC increased (150 to 220 ms) globally in the brain; (2) low beta ITC increased (150 to 220 ms) in occipital and central regions and peaked (0 to 50 ms) in frontal region; and (3) high beta ITC increased (0 to 50 ms) globally with no beta band ERSP changes. Microsaccade features, the latency and amplitude of SP and MLR, and microsaccade-related temporal-spectral power and synchronization dynamics were all stable across different age groups. Microsaccades are well preserved in aging and can be used as reference points for studying neurodegenerative or neuro-ophthalmologic diseases where the oculomotor system is affected. Microsaccade-induced alpha band activity is a potential biomarker to better understand and monitor these diseases, and we propose that microsaccades trigger "cortical refreshment" by resetting alpha band phase globally to prepare (sensitize) the brain for subsequent visual processing.
García-Matas, Silvia; Paul, Rajib K; Molina-Martínez, Patricia; Palacios, Hector; Gutierrez, Vincent M; Corpas, Rubén; Pallas, Mercè; Cristòfol, Rosa; de Cabo, Rafael; Sanfeliu, Coral
2015-01-01
Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology. PMID:25711920
Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.
Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena
2018-03-01
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.
Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra
2014-04-01
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75 mmHg; and Tbr≈34-37°C. SR is congruous with the emerging field of complexity science in the modeling of dynamical physiological systems, especially during pathophysiological states. The SR model of TBI is generalizable to known physical laws. This increase in entropy reduces uncertainty and improves predictive capacity. SR is an appropriate computational framework to enable future smart monitoring devices.
Lipidomics of human brain aging and Alzheimer's disease pathology.
Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald
2015-01-01
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.
Koebele, Stephanie V; Bimonte-Nelson, Heather A
2017-08-01
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory. Copyright © 2017. Published by Elsevier Inc.
Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury
Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.
2009-01-01
Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795
Long live the axon. Parallels between ageing and pathology from a presynaptic point of view.
Grillo, Federico W
2016-10-01
All animals have to find the right balance between investing resources into their reproductive cycle and protecting their tissues from age-related damage. In higher order organisms the brain is particularly vulnerable to ageing, as the great majority of post-mitotic neurons are there to stay for an entire life. While ageing is unavoidable, it may progress at different rates in different individuals of the same species depending on a variety of genetic and environmental factors. Inevitably though, ageing results in a cognitive and sensory-motor decline caused by changes in neuronal structure and function. Besides normal ageing, age-related pathological conditions can develop in a sizeable proportion of the population. While this wide array of diseases are considerably different compared to physiological ageing, the two processes share many similarities and are likely to interact. At the subcellular level, two key structures are involved in brain ageing: axons and their synapses. Here I highlight how the ageing process affects these structures in normal and neurodegenerative states in different brain areas. Copyright © 2016 Elsevier B.V. All rights reserved.
The space where aging acts: focus on the GABAergic synapse.
Rozycka, Aleksandra; Liguz-Lecznar, Monika
2017-08-01
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging-related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Bruckert, G; Vivien, D; Docagne, F; Roussel, B D
2016-04-01
Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.
Physiological temperature during brain slicing enhances the quality of acute slice preparations
Huang, Shiwei; Uusisaari, Marylka Y.
2013-01-01
We demonstrate that brain dissection and slicing using solutions warmed to near-physiological temperature (~ +34°C), greatly enhance slice quality without affecting intrinsic electrophysiological properties of the neurons. Improved slice quality is seen not only when using young (<1 month), but also mature (>2.5 month) mice. This allows easy in vitro patch-clamp experimentation using adult deep cerebellar nuclear slices, which until now have been considered very difficult. As proof of the concept, we compare intrinsic properties of cerebellar nuclear neurons in juvenile (<1 month) and adult (up to 7 months) mice, and confirm that no significant developmental changes occur after the fourth postnatal week. The enhanced quality of brain slices from old animals facilitates experimentation on age-related disorders as well as optogenetic studies requiring long transfection periods. PMID:23630465
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.
Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina
2017-01-01
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.
Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.
Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian
2017-01-01
The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.
Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential
Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald
2017-01-01
Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI. PMID:28164083
Brain development during the preschool years
Brown, Timothy T.; Jernigan, Terry L.
2012-01-01
The preschool years represent a time of expansive psychological growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond. PMID:23007644
Blood pressure, brain structure, and cognition: opposite associations in men and women.
Cherbuin, Nicolas; Mortby, Moyra E; Janke, Andrew L; Sachdev, Perminder S; Abhayaratna, Walter P; Anstey, Kaarin J
2015-02-01
Research on associations between blood pressure, brain structure, and cognitive function has produced somewhat inconsistent results. In part, this may be due to differences in age ranges studied and because of sex differences in physiology and/or exposure to risk factors, which may lead to different time course or patterns in cardiovascular disease progression. The aim of this study was to investigate the impact of sex on associations between blood pressure, regional cerebral volumes, and cognitive function in older individuals. In this cohort study, brachial blood pressure was measured twice at rest in 266 community-based individuals free of dementia aged 68-73 years who had also undergone a brain scan and a neuropsychological assessment. Associations between mean blood pressure (MAP), regional brain volumes, and cognition were investigated with voxel-wise regression analyses. Positive associations between MAP and regional volumes were detected in men, whereas negative associations were found in women. Similarly, there were sex differences in the brain-volume cognition relationship, with a positive relationship between regional brain volumes associated with MAP in men and a negative relationship in women. In this cohort of older individuals, higher MAP was associated with larger regional volume and better cognition in men, whereas opposite findings were demonstrated in women. These effects may be due to different lifetime risk exposure or because of physiological differences between men and women. Future studies investigating the relationship between blood pressure and brain structure or cognitive function should evaluate the potential for differential sex effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Robson, Andrew; Danso, Sammy; Pernet, Cyril; Bastin, Mark E; Boardman, James P; Murray, Alison D; Ahearn, Trevor; Waiter, Gordon D; Staff, Roger T; Deary, Ian J; Shenkin, Susan D; Wardlaw, Joanna M
2017-01-01
The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Croll, S D; Suri, C; Compton, D L; Simmons, M V; Yancopoulos, G D; Lindsay, R M; Wiegand, S J; Rudge, J S; Scharfman, H E
1999-01-01
Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.
AED Treatment Through Different Ages: As Our Brains Change, Should Our Drug Choices Also?
French, Jacqueline A.; Staley, Brigid A.
2012-01-01
Patient age can impact selection of the optimal antiepileptic drug for a number of reasons. Changes in brain physiology from neonate to elderly, as well as changes in underlying etiologies of epilepsy, could potentially affect the ability of different drugs to control seizures. Unfortunately, much of this is speculative, as good studies demonstrating differences in efficacy across age ranges do not exist. Beyond the issue of efficacy, certain drugs may be more or less appropriate at different ages because of differing pharmacokinetics, including changes in hepatic metabolism, absorption, and elimination. Lack of appropriate drug formulations (such as liquid forms) may be a barrier to using drugs in the very young. Finally, some serious adverse events are seen either exclusively or preferentially at different ages. PMID:23476119
Effects of neuroinflammation on the regenerative capacity of brain stem cells.
Russo, Isabella; Barlati, Sergio; Bosetti, Francesca
2011-03-01
In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system associated with neuroinflammation, inflammatory mediators such as cytokines and chemokines can affect the capacity of brain stem cells and alter neurogenesis. In this review, we summarize the state of the art on the effects of neuroinflammation on adult neurogenesis and discuss the use of the lipopolysaccharide-model to study the effects of inflammation and reactive-microglia on brain stem cells and neurogenesis. Furthermore, we discuss the possible causes underlying reduced neurogenesis with normal aging and potential anti-inflammatory, pro-neurogenic interventions aimed at improving memory deficits in normal and pathological aging and in neurodegenerative diseases. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Default mode network as a potential biomarker of chemotherapy-related brain injury
Kesler, Shelli R.
2014-01-01
Chronic medical conditions and/or their treatments may interact with aging to alter or even accelerate brain senescence. Adult onset cancer, for example, is a disease associated with advanced aging and emerging evidence suggests a profile of subtle but diffuse brain injury following cancer chemotherapy. Breast cancer is currently the primary model for studying these “chemobrain” effects. Given the widespread changes to brain structure and function as well as the common impairment of integrated cognitive skills observed following breast cancer chemotherapy, it is likely that large-scale brain networks are involved. Default mode network (DMN) is a strong candidate considering its preferential vulnerability to aging and sensitivity to toxicity and disease states. Additionally, chemotherapy is associated with several physiologic effects including increased inflammation and oxidative stress that are believed to elevate toxicity in the DMN. Biomarkers of DMN connectivity could aid in the development of treatments for chemotherapy-related cognitive decline. For example, certain nutritional interventions could potentially reduce the metabolic changes (e.g. amyloid beta toxicity) associated with DMN disruption. PMID:24913897
Bigagli, Elisabetta; Luceri, Cristina; Scartabelli, Tania; Dolara, Piero; Casamenti, Fiorella; Pellegrini-Giampietro, Domenico E; Giovannelli, Lisa
2016-01-01
Our purpose was to evaluate long-term neuroglial cocultures as a model for investigating senescence in the nervous system and to assess its similarities with in vivo models. To this aim, we maintained the cultures from 15 days in vitro (mature cultures) up to 27 days in vitro (senescent cultures), measuring senescence-associated, neuronal, dendritic, and astrocytic markers. Whole microRNA expression profiles were compared with those measured in the cortex of 18- and 24-month-old C57Bl/6J aged mice and of transgenic TgCRND8 mice, a model of amyloid-β deposition. Neuroglial cocultures displayed features of cellular senescence (increased senescence-associated-β-galactosidase activity, oxidative stress, γ-H2AX expression, IL-6 production, astrogliosis) that were concentration dependently counteracted by the antiaging compound resveratrol (1-5 µM). Among the 1,080 microRNAs analyzed, 335 were downregulated or absent in 27 compared with 15 days in vitro and resveratrol reversed this effect. A substantial overlapping was found between age-associated changes in microRNA expression profiles in vitro and in TgCRND8 mice but not in physiologically aged mice, indicating that this culture model displays more similarities with pathological than physiological brain aging. Our results demonstrate that neuroglial cocultures aged in vitro can be useful for investigating the cellular and molecular mechanisms of brain aging and for preliminary testing of protective compounds. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential
NASA Astrophysics Data System (ADS)
Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald
2014-02-01
Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.
Sugar for the brain: the role of glucose in physiological and pathological brain function
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas
2013-01-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694
Behavioral neuroscience of emotion in aging.
Kaszniak, Alfred W; Menchola, Marisa
2012-01-01
Recent research on emotion and aging has revealed a stability of emotional experience from adulthood to older age, despite aging-related decrements in the perception and categorization of emotionally relevant stimuli. Research also shows that emotional expression remains intact with aging. In contrast, other studies provide evidence for an age-related decrease in autonomic nervous system physiological arousal, particularly in response to emotionally negative stimuli, and for shifts in central nervous system physiologic response to emotional stimuli, with increased prefrontal cortex activation and decreased amygdala activation in aging. Research on attention and memory for emotional information supports a decreased processing of negative emotional stimuli (i.e., a decrease in the negativity effect seen in younger adults), and a relative increase in the processing of emotionally positive stimuli (positivity effect). These physiological response and attentional/memory preference differences across increasingly older groups have been interpreted, within socioemotional selectivity theory, as reflecting greater motivation for emotion regulation with aging. According to this theory, as persons age, their perceived future time horizon shrinks, and a greater value is placed upon cultivating close, familiar, and meaningful relationships and other situations that give rise to positive emotional experience, and avoiding, or shifting attention from, those people and situations that are likely to elicit negative emotion. Even though there are central nervous system structural changes in emotion-relevant brain regions with aging, this shift in socioemotional selectivity, and perhaps the decreased autonomic nervous system physiological arousal of emotion with aging, facilitate enhanced emotion regulation with aging.
Event-related potential markers of brain changes in preclinical familial Alzheimer disease
Ally, B.A.; Celone, K.; McKeever, J.; Ruiz-Rizzo, A.L.; Lopera, F.; Stern, C.E.; Budson, A.E.
2011-01-01
Objectives: Event-related potentials (ERPs) can reflect differences in brain electrophysiology underlying cognitive functions in brain disorders such as dementia and mild cognitive impairment. To identify individuals at risk for Alzheimer disease (AD) we used high-density ERPs to examine brain physiology in young presymptomatic individuals (average age 34.2 years) who carry the E280A mutation in the presenilin-1 (PSEN1) gene and will go on to develop AD around the age of 45. Methods: Twenty-one subjects from a Colombian population with familial AD participated: 10 presymptomatic subjects positive for the PSEN1 mutation (carriers) and 11 siblings without the mutation (controls). Subjects performed a visual recognition memory test while 128-channel ERPs were recorded. Results: Despite identical behavioral performance, PSEN1 mutation carriers showed less positivity in frontal regions and more positivity in occipital regions, compared to controls. These differences were more pronounced during the 200–300 msec period. Discriminant analysis at this time interval showed promising sensitivity (72.7%) and specificity (81.8%) of the ERP measures to predict the presence of AD pathology. Conclusions: Presymptomatic PSEN1 mutation carriers show changes in brain physiology that can be detected by high-density ERPs. The relative differences observed showing greater frontal positivity in controls and greater occipital positivity in carriers indicates that control subjects may use frontally mediated processes to distinguish between studied and unstudied visual items, whereas carriers appear to rely more upon perceptual details of the items to distinguish between them. These findings also demonstrate the potential usefulness of ERP brain correlates as preclinical markers of AD. PMID:21775732
Caputo, M P; Benson, E R; Pritchett, E M; Hougentogler, D P; Jain, P; Patil, C; Johnson, A L; Alphin, R L
2012-12-01
The mass depopulation of production birds remains an effective means of controlling fast-moving, highly infectious diseases such as avian influenza and virulent Newcastle disease. Two experiments were performed to compare the physiological responses of White Pekin commercial ducks during foam depopulation and CO(2) gas depopulation. Both experiment 1 (5 to 9 wk of age) and 2 (8 to 14 wk of age) used electroencephalogram, electrocardiogram, and accelerometer to monitor and evaluate the difference in time to unconsciousness, motion cessation, brain death, altered terminal cardiac activity, duration of bradycardia, and elapsed time from onset of bradycardia to onset of unconsciousness between foam and CO(2) gas. Experiment 2 also added a third treatment, foam + atropine injection, to evaluate the effect of suppressing bradycardia. Experiment 1 resulted in significantly shorter times for all 6 physiological points for CO(2) gas compared with foam, whereas experiment 2 found that there were no significant differences between foam and CO(2) gas for these physiological points except brain death, in which CO(2) was significantly faster than foam and duration of bradycardia, which was shorter for CO(2). Experiment 2 also determined there was a significant positive correlation between duration of bradycardia and time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity was significantly faster for the treatment foam + atropine injection compared with foam. Both experiments showed that bradycardia can occur as a result of either submersion in foam or exposure to CO(2) gas. The duration of bradycardia has a significant impact on the time it takes White Pekin ducks to reach unconsciousness and death during depopulation.
2013-01-01
Background Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). Results As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. Conclusions We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism. PMID:23886007
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
Brain activation by visual erotic stimuli in healthy middle aged males.
Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H
2006-01-01
The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.
Sugar for the brain: the role of glucose in physiological and pathological brain function.
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas
2013-10-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Systematic Look at Environmental Modulation and Its Impact in Brain Development.
Sale, Alessandro
2018-01-01
Several experimental procedures are currently used to investigate the impact of the environment on brain plasticity under physiological and pathological conditions. The available methodologies are aimed at obtaining global or specific reductions or intensifications of the stimuli, with initial standardization in animal models being paralleled by translational applications to humans. More procedures can be combined together or applied in series to obtain powerful experimental paradigms, and the choice of a given setting should take into account the specific genetic background, age, and phenotypic vulnerabilities of the target subjects. Sophisticated use of environmental manipulations can increase our knowledge of the mechanisms underlying experience-dependent plasticity, opening the way for new therapies for neurodevelopmental disorders, dysfunctions of plasticity, and brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Peterson, Candida C.
2005-01-01
This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, "Journal of Autism and Developmental Disorders," 19(4),…
Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.
Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria
2017-01-01
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Grachev, I D; Apkarian, A V
2000-12-01
We recently presented results in an in vivo study of human brain chemistry in 'physiologic' anxiety, i.e., the anxiety of normal everyday life. Normal subjects with high anxiety demonstrated increased concentration of chemicals in orbital frontal cortex (OFC) as compared to lower anxiety. In a separate study of aging we demonstrated a decrease of total chemical concentration in OFC of middle-aged subjects, as compared with younger age. This brain region also showed gender dependence; men demonstrating decreased chemical concentration compared to women. We hypothesized that these sex- and age-dependent differences in OFC chemistry changes are a result of anxiety effects on this brain region. In the present study we examined these sex- and age-differential regional brain chemistry changes (as identified by localized in vivo proton magnetic resonance spectroscopy [1H-MRS]) in relation to the state-trait-anxiety (as measured by the State-Trait Anxiety Inventory) in 35 healthy subjects. The concentrations for all nine chemicals of 1H-MRS spectra were measured relative to creatine across multiple brain regions, including OFC in the left hemisphere. Analysis of variance showed anxiety-specific effects on chemical concentration changes in OFC, which were different for both sexes and age groups. Male subjects showed larger effect of anxiety on OFC chemistry as compared to females when the same sex high-anxiety subjects were compared to lower anxiety. Similarly, middle-aged subjects showed larger effect of anxiety on OFC chemistry as compared to younger age when the same age subjects with high anxiety were compared to lower anxiety. Largest effect of anxiety on OFC chemistry was due to changes of N-Acetyl aspartate. The results indicate that the state-trait anxiety has sex- and age-differential patterns on OFC chemistry in healthy humans, providing new information about the neurobiological roots of anxiety.
Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice
Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.
2008-01-01
Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425
Davinelli, Sergio; Maes, Michael; Corbi, Graziamaria; Zarrelli, Armando; Willcox, Donald Craig; Scapagnini, Giovanni
2016-01-01
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio
2015-03-01
Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Edelmann, Kathrin; Glashauser, Lena; Sprungala, Susanne; Hesl, Birgit; Fritschle, Maike; Ninkovic, Jovica; Godinho, Leanne; Chapouton, Prisca
2013-09-01
The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia. Copyright © 2013 Wiley Periodicals, Inc.
Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage.
Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E Sander; Kleinberg, Samantha
2016-01-01
High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology.
Cellular Senescence, Neurological Function, and Redox State.
Maciel-Barón, Luis Ángel; Moreno-Blas, Daniel; Morales-Rosales, Sandra Lizbeth; González-Puertos, Viridiana Yazmín; López-Díazguerrero, Norma Edith; Torres, Claudio; Castro-Obregón, Susana; Königsberg, Mina
2018-06-20
Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.
Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q
2016-03-01
Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Solov'eva, A D; Vorob'eva, O V; Loseva, M M; Khaspekova, N B; Fedorova, V I; Musaeva, Z A; Filatova, E G
1994-01-01
The epidemiological survey covered 2000 city schoolchildren. They ranged in age from 7 to 15 years. Hypothalamic deficiency (HD) was detected in 5% of the examinees. Clinical and physiological findings on HD children are provided. They were found to have the history of hereditary or natal damage evidencing the acquired nature of the disease. Special emphasis is placed on HD manifestations in prepubertal and pubertal age. The authors show defective regulation of nonspecific brain systems in the form of predominant activation of the septohippocampal system and relative insufficiency of the brain stem mesencephalic reticular formation. Activation of cerebral ergotropic vegetative mechanisms combines with peripheral vegetative failure (sympathetic and parasympathetic), probably, of congenital origin.
Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse.
Scott, Karen A; Ida, Masayuki; Peterson, Veronica L; Prenderville, Jack A; Moloney, Gerard M; Izumo, Takayuki; Murphy, Kiera; Murphy, Amy; Ross, R Paul; Stanton, Catherine; Dinan, Timothy G; Cryan, John F
2017-10-01
Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing. Copyright © 2017 Elsevier Inc. All rights reserved.
The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.
Miller, Suzanne L; Huppi, Petra S; Mallard, Carina
2016-02-15
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Clinical safety of 3-T brain magnetic resonance imaging in newborns.
Fumagalli, Monica; Cinnante, Claudia Maria; Calloni, Sonia Francesca; Sorrentino, Gabriele; Gorla, Ilaria; Plevani, Laura; Pesenti, Nicola; Sirgiovanni, Ida; Mosca, Fabio; Triulzi, Fabio
2018-03-29
The effects and potential hazards of brain magnetic resonance imaging (MRI) at 3 T in newborns are debated. Assess the impact of 3-T MRI in newborns on body temperature and physiological parameters. Forty-nine newborns, born preterm and at term, underwent 3-T brain MRI at term-corrected age. Rectal and skin temperature, oxygen saturation and heart rate were recorded before, during and after the scan. A statistically significant increase in skin temperature of 0.6 °C was observed at the end of the MRI scan (P<0.01). There was no significant changes in rectal temperature, heart rate or oxygen saturation. Core temperature, heart rate and oxygen saturation in newborns were not affected by 3-T brain MR scanning.
ERIC Educational Resources Information Center
Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett
2010-01-01
Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…
Joggin' the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits.
Stimpson, Nikolas J; Davison, Glen; Javadi, Amir-Homayoun
2018-05-01
This narrative review examines literature pertaining to possible physiological explanations for observed cognitive benefits stemming from improvements to cardiovascular fitness following chronic aerobic exercise. Studies regarding exercise and cardiovascular fitness, angiogenesis, neuroinflammation in relation to IGF-1 signalling, regulation of neurotrophins, neurogenesis and plasticity, cognitive training, are briefly described. We propose that current evidence points towards a mechanism by which cardiovascular fitness improvements act to promote long-term angiogenesis and cerebral circulation. This important adaptation allows for increased delivery and upregulation of neurotrophins along with supporting factors to the brain, particularly to the hippocampal neurogenic niche, following acute exercise bouts. We propose a sequential timeline and approximate time scale for this mechanism, describing how these stages generate increased support for neurogenesis and brain plasticity in combination with cognitive training to provide long-term cognitive benefits and protection against age-related cognitive decline. Influences from age, gender and other variables are considered, and methodological factors that could be utilised in future studies to further clarify the proposed model are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Physiological studies of the brain: Implications for science teaching
NASA Astrophysics Data System (ADS)
Esler, William K.
Physiological changes resulting from repeated, long-term stimulation have been observed in the brains of both humans and laboratory animals. It may be speculated that these changes are related to short-term and long-term memory processes. A physiologically based model for memory processing (PBMMP) can serve to explain the interrelations of various areas of the brain as they process new stimuli and recall past events. The model can also serve to explain many current principles of learning theory and serve as a foundation for developing new theories of learning based upon the physiology of the brain.
Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.
Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G
2017-03-01
Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.
Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice
Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G
2016-01-01
Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012
Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre
2016-03-01
Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.
Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien
2017-01-01
Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Physiological and biochemical effects of 17β estradiol in aging female rat brain.
Kumar, Pardeep; Taha, Asia; Kale, R K; Cowsik, S M; Baquer, Najma Zaheer
2011-07-01
Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's disease and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of monoamine oxidase, glucose transporter-4 levels, membrane fluidity, lipid peroxidation levels and lipofuscin accumulation occurring in brains of female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of estradiol (0.1 μg/g body weight for 1 month). The results obtained in the present work revealed that normal aging was associated with significant increases in the activity of monoamine oxidase, lipid peroxidation levels and lipofuscin accumulation in the brains of aging female rats, and a decrease in glucose transporter-4 level and membrane fluidity. Our data showed that estradiol treatment significantly decreased monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in brain regions of aging rats, and a reversal of glucose transporter-4 levels and membrane fluidity was achieved, therefore it can be concluded from the present findings that estradiol's beneficial effects seemed to arise from its antilipofuscin, antioxidant and antilipidperoxidative effects, implying an overall anti-aging action. The results of this study will be useful for pharmacological modification of the aging process and applying new strategies for control of age related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation
Norden, Diana M.; Godbout, Jonathan P.
2012-01-01
Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the coordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioral response following peripheral infection. With normal aging, however, microglia develop a more inflammatory phenotype. For instance, in several models of aging there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with aging is referred to as primed, reactive, or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in aging has behavioral and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared to adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behavior, depressive-like behavior and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits. PMID:23039106
Sex differences in the adolescent brain and body: Findings from the saguenay youth study.
Paus, Tomáš; Wong, Angelita Pui-Yee; Syme, Catriona; Pausova, Zdenka
2017-01-02
This Mini-Review describes sex differences in 66 quantitative characteristics of the brain and body measured in a community-based sample of 1,024 adolescents 12-18 years of age, members of the Saguenay Youth Study. Using an extensive phenotyping protocol, we have obtained measures in a number of domains, including brain structure, cognition, mental health, substance use, body composition, metabolism, cardiovascular reactivity, and life style. For each measure, we provide estimates of effect size (Cohen's d) and sex-specific correlations with age (Pearson R). In total 59 of the 66 characteristics showed sex differences (at a nominal P < 0.05), with small (32), medium-sized (13), and large (11) effects. Some, but not all, of these sex differences increase during adolescence; this appears to be the case mostly for anatomical and physiological measures. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W
2017-01-01
Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928
Insulin transport into the brain.
Gray, Sarah M; Barrett, Eugene J
2018-05-30
While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.
Hermann, Petra M; Watson, Shawn N; Wildering, Willem C
2014-01-01
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.
2015-01-01
Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913
RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes.
Chen, Bei Jun; Ueberham, Uwe; Mills, James D; Kirazov, Ludmil; Kirazov, Evgeni; Knobloch, Mara; Bochmann, Jana; Jendrek, Renate; Takenaka, Konii; Bliim, Nicola; Arendt, Thomas; Janitz, Michael
2017-08-01
Normal aging is associated with impairments in cognitive functions. These alterations are caused by diminutive changes in the biology of synapses, and ineffective neurotransmission, rather than loss of neurons. Hitherto, only a few studies, exploring molecular mechanisms of healthy brain aging in higher vertebrates, utilized synaptosomal fractions to survey local changes in aging-related transcriptome dynamics. Here we present, for the first time, a comparative analysis of the synaptosomes transcriptome in the aging mouse brain using RNA sequencing. Our results show changes in the expression of genes contributing to biological pathways related to neurite guidance, synaptosomal physiology, and RNA splicing. More intriguingly, we also discovered alterations in the expression of thousands of novel, unannotated lincRNAs during aging. Further, detailed characterization of the cleavage and polyadenylation factor I subunit 1 (Clp1) mRNA and protein expression indicates its increased expression in neuronal processes of hippocampal stratum radiatum in aging mice. Together, our study uncovers a new layer of transcriptional regulation which is targeted by aging within the local environment of interconnecting neuronal cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Stable olfactory sensory neuron in vivo physiology during normal aging.
Kass, Marley D; Czarnecki, Lindsey A; McGann, John P
2018-05-08
Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.
Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc
2018-01-01
Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.
Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration
Dinan, Timothy G.
2016-01-01
Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441
Clément, Gilles; Ngo-Anh, Jennifer Thu
2013-07-01
Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.
Neuroimmunomodulation and Aging.
Gemma, Carmelina
2010-12-01
Inflammation is by definition a protective phase of the immune response. The very first goal of inflammation is destroying and phagocytosing infected or damaged cells to avoid the spread of the pathogen or of the damage to neighboring, healthy, cells. However, we now know that during many chronic neurological disorders, inflammation and degeneration always coexist at certain time points. For example, inflammation comes first in multiple sclerosis, but degeneration follows, while in Alzheimer's or Parkinson's disease degeneration starts and inflammation is secondary. Either way these are the two pathological detectable problems. The central nervous system (CNS) has long been viewed as exempt from the effects of the immune system. The brain has physical barriers for protection, and it is now clear that cells in the nervous system respond to inflammation and injury in unique ways. In recent years, researchers have presented evidence supporting the idea that in the CNS there is an ongoing protective inflammatory mechanism, which involves macrophage, monocytes, T cells, regulatory T-cells, effector T cells and many others; these, in turn, promote repair mechanisms in the brain not only during inflammatory, and degenerative disorders but also in healthy people. This "repair mechanism" can be considered as an intrinsic part of the physiological activities of the brain. It is now well known that the microenvironment of the brain is a crucial player in determining the relative contribution of the two different outcomes. Failure of molecular and cellular mechanisms sustaining the "brain-repair programme" might be, at least in part, a cause of neurological disorders. Today, the neurotoxic and neuroprotective roles of the innate immune reactions in aging, brain injury, ischemia, autoimmune and neurodegenerative disorders of the CNS are widely investigated and highly debated research topics. Nevertheless, several issues remain to be elucidated, notably the earlier cellular events that initiate dysregulation of brain inflammatory pathways. If these inflammatory processes could be identified and harnessed, then cognitive function may be protected during aging and age-related neurodegenerative diseases through early interventions directed against the negative consequences of inflammation. This commentary highlights the major issues/opinions presented by experts on the involvement of the brain immune system in aging and age-related diseases in a special edition of the journal Aging and Disease.
Cerebral control of the bladder in normal and urge-incontinent women
Griffiths, Derek; Tadic, Stasa D.; Schaefer, Werner; Resnick, Neil M.
2007-01-01
Aim: To identify age-related changes in the normal brain/bladder control system, and differences between urge incontinence in younger and older women, as shown by brain responses to bladder filling; and to use age, bladder volume, urge incontinence and detrusor overactivity (DO) as probes to reveal control-system function. Functional MRI was used to examine regional brain responses to bladder infusion in 21 females (26 – 85 years): 11 “cases” with urge incontinence and DO (proven previously) and 10 normal “controls”. Responses and their age dependence were determined at small and large bladder volumes, in whole brain and in regions of interest representing right insula and anterior cingulate (ACG). In “controls”, increasing bladder volume/sensation led to increasing insular responses; with increasing age, insular responses became weaker. In younger “cases”, ACG responded abnormally strongly at large bladder volumes/strong sensation. Elderly “cases” showed strong ACG responses even at small bladder volume, but more moderate responses at larger volumes; if DO occurred, pontine micturition center (PMC) activation did not increase. Conclusion: Among normal “controls”, increasing age leads to decreased responses in brain regions involved in bladder control, including right insula, consistent with its role in mapping normal bladder sensations. Strong ACG activation occurs in urge-incontinent “cases” and may be a sign of urgency, indicating recruitment of alternative pathways when loss of bladder control is feared. Easier ACG provocation in older “cases” reflects lack of physiological reserve or different etiology. ACG responses seem associated with PMC inhibition: reduced ACG activity accompanies failure of inhibition (DO). PMID:17574871
The teen brain: insights from neuroimaging.
Giedd, Jay N
2008-04-01
Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.
Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications
Stankiewicz, James; Panter, Scott S; Neema, Mohit; Arora, Ashish; Batt, Courtney; Bakshi, Rohit
2007-01-01
Summary Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurologic disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathologic processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development. PMID:17599703
New Insights into Microglia-Neuron Interactions: A Neuron's Perspective.
Pósfai, Balázs; Cserép, Csaba; Orsolits, Barbara; Dénes, Ádám
2018-05-19
Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research. Copyright © 2018. Published by Elsevier Ltd.
Heart Activity and Autistic Behavior in Infants and Toddlers with Fragile X Syndrome
Roberts, Jane E.; Tonnsen, Bridgette; Robinson, Ashley; Shinkareva, Svetlana V.
2014-01-01
The present study contrasted physiological arousal in infants and toddlers with fragile X syndrome to typically developing control participants and examined physiological predictors early in development to autism severity later in development in fragile X syndrome. Thirty-one males with fragile X syndrome (ages 8–40 months) and 25 age-matched control participants were included. The group with fragile X syndrome showed shorter interbeat intervals (IBIs), lower vagal tone (VT), and less modulation of IBI. Data suggested a nonlinear effect with IBI and autistic behavior; however, a linear effect with VT and autistic behavior emerged. These findings suggest that atypical physiological arousal emerges within the first year and predicts severity of autistic behavior in fragile X syndrome. These relationships are complex and dynamic, likely reflecting endogenous factors assumed to reflect atypical brain function secondary to reduced fragile X mental retardation protein. This research has important implications for the early identification and treatment of autistic behaviors in young children with fragile X syndrome. PMID:22515825
Systematic Review of Prenatal Cocaine Exposure and Adolescent Development
Buckingham-Howes, Stacy; Berger, Sarah Shafer; Scaletti, Laura A.
2013-01-01
BACKGROUND AND OBJECTIVE: Previous research found that prenatal cocaine exposure (PCE) may increase children's vulnerability to behavior and cognition problems. Maturational changes in brain and social development make adolescence an ideal time to reexamine associations. The objective was to conduct a systematic review of published studies examining associations between PCE and adolescent development (behavior, cognition/school outcomes, physiologic responses, and brain morphology/functioning). METHODS: Articles were obtained from PubMed, PsycInfo, Web of Science, and CINAHL databases through July 2012 with search terms: prenatal drug, substance, or cocaine exposure; adolescence/adolescent; and in utero substance/drug exposure. Criteria for inclusion were nonexposed comparison group, human adolescents aged 11 to 19, peer-reviewed, English-language, and adolescent outcomes. RESULTS: Twenty-seven studies representing 9 cohorts met the criteria. Four outcome categories were identified: behavior, cognition/school performance, brain structure/function, and physiologic responses. Eleven examined behavior; 7 found small but significant differences favoring nonexposed adolescents, with small effect sizes. Eight examined cognition/school performance; 6 reported significantly lower scores on language and memory tasks among adolescents with PCE, with varying effect sizes varied. Eight examined brain structure/function and reported morphologic differences with few functional differences. Three examined physiologic responses with discordant findings. Most studies controlled for other prenatal exposures, caregiving environment, and violence exposure; few examined mechanisms. CONCLUSIONS: Consistent with findings among younger children, PCE increases the risk for small but significantly less favorable adolescent functioning. Although the clinical importance of differences is often unknown, the caregiving environment and violence exposure pose additional threats. Future research should investigate mechanisms linking PCE with adolescent functioning. PMID:23713107
Pietrelli, A; Lopez-Costa, J; Goñi, R; Brusco, A; Basso, N
2012-01-27
Recent research involving human and animals has shown that aerobic exercise of moderate intensity produces the greatest benefit on brain health and behavior. In this study we investigated the effects on cognitive function and anxiety-related behavior in rats at different ages of aerobic exercise, performed regularly throughout life. We designed an aerobic training program with the treadmill running following the basic principles of human training, and assuming that rats have the same physiological adaptations. The intensity was gradually adjusted to the fitness level and age, and maintained at 60-70% of maximum oxygen consumption (max.VO(2)). In middle age (8 months) and old age (18 months), we studied the cognitive response with the radial maze (RM), and anxiety-related behaviors with the open field (OF) and the elevated plus maze (EPM). Aerobically trained (AT) rats had a higher cognitive performance measured in the RM, showing that exercise had a cumulative and amplifier effect on memory and learning. The analysis of age and exercise revealed that the effects of aerobic exercise were modulated by age. Middle-aged AT rats were the most successful animals; however, the old AT rats met the criteria more often than the middle-aged sedentary controls (SC), indicating that exercise could reverse the negative effects of sedentary life, partially restore the cognitive function, and protect against the deleterious effects of aging. The results in the OF and EPM showed a significant decrease in key indicators of anxiety, revealing that age affected most of the analyzed variables, and that exercise had a prominent anxiolytic effect, particularly strong in old age. In conclusion, our results indicated that regular and chronic aerobic exercise has time and dose-dependent, neuroprotective and restorative effects on physiological brain aging, and reduces anxiety-related behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B
2014-01-01
Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.
Neuroaging through the Lens of the Resting State Networks
2018-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) allows studying spontaneous brain activity in absence of task, recording changes of Blood Oxygenation Level Dependent (BOLD) signal. rs-fMRI enables identification of brain networks also called Resting State Networks (RSNs) including the most studied Default Mode Network (DMN). The simplicity and speed of execution make rs-fMRI applicable in a variety of normal and pathological conditions. Since it does not require any task, rs-fMRI is particularly useful for protocols on patients, children, and elders, increasing participant's compliance and reducing intersubjective variability due to the task performance. rs-fMRI has shown high sensitivity in identification of RSNs modifications in several diseases also in absence of structural modifications. In this narrative review, we provide the state of the art of rs-fMRI studies about physiological and pathological aging processes. First, we introduce the background of resting state; then we review clinical findings provided by rs-fMRI in physiological aging, Mild Cognitive Impairment (MCI), Alzheimer Dementia (AD), and Late Life Depression (LLD). Finally, we suggest future directions in this field of research and its potential clinical applications. PMID:29568755
Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism*
Stoll, Elizabeth A.; Cheung, Willy; Mikheev, Andrei M.; Sweet, Ian R.; Bielas, Jason H.; Zhang, Jing; Rostomily, Robert C.; Horner, Philip J.
2011-01-01
Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology. PMID:21900249
Aging of Cerebral White Matter
Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K.; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming
2016-01-01
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer’s disease, and Parkinson’s disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. PMID:27865980
Aging of cerebral white matter.
Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming
2017-03-01
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Clearance of amyloid-β peptide across the choroid plexus in Alzheimer's disease.
Alvira-Botero, Ximena; Carro, Eva M
2010-12-01
Aging and several neurodegenerative diseases bring about changes in the anatomy and physiology of the choroid plexus. The identification of specific membrane receptors that bind and internalize extracellular ligands has revolutionized the traditional roles of this tissue. Amyloid beta peptide (Aβ), the major constituent of the amyloid core of senile plaques in patients with Alzheimer's disease (AD) is known to contribute to disease neuropathology and progression. Recent emphasis on comorbidity of AD and a deficient clearance of Aβ across the blood-brain barrier and blood-cerebrospinal fluid barrier have highlighted the importance of brain Aβ clearance in AD. The megalin receptor has also been implicated in the pathogenesis of AD. Faulty Aβ clearance from the brain across the choroid plexus epithelium by megalin appears to mediate focal Aβ accumulation in AD. Patients with AD have reduced levels of megalin at the choroid plexus, which in turn seem to increase brain levels of Aβ through a decreased efflux of brain Aβ. Therapies that increase megalin expression at the choroid plexus could potentially control accumulation of brain Aβ. This review covers in depth the anatomy and function of the choroid plexus, focusing on the brain barrier at the choroid plexus, as it actively participates in Aβ clearance. In addition, we describe the role of the choroid plexus in brain functions, aging and AD, as well as the role of megalin in the process of Aβ clearance. Finally, we present current data on the use of choroid plexus cells to repair the damaged brain.
Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A
2014-06-01
Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.
Erickson, Michelle A.; Morofuji, Yoichi; Owen, Joshua B.
2014-01-01
Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine. PMID:24706984
Loos, Ben; Klionsky, Daniel J; Wong, Esther
2017-09-01
Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic brain syndrome and aging. A six-year follow-up of surviving twins.
Jarvik, L F; Ruth, V; Matsuyama, S S
1980-03-01
The development of organic brain syndrome (OBS) was studied in a small group of survivors from a longitudinal investigation of aging twins. At the time of initial evaluation, the frequency of moderate to severe OBS was 25%. Among the 22 survivors who had a second psychiatric evaluation after approximately six years, the corrected rate for the development of OBS among those without it at the initial examination was 16%. Thus, the vast majority of those diagnosed as being without OBS at about the age of 80 years remained asymptomatic in subsequent years, supporting the view that OBS is not a necessary concomitant of old age, but the result of disease for which prevention and cure should be sought. Persons originally diagnosed as having OBS had the higher mortality, an observation in accord with prior reports in the literature. In the present study, the increased mortality was related to the severity of OBS but apparently independent of coexisting physical illness, again supporting the argument that OBS represents pathological as distinct from physiological aging.
Kutilin, D S; Bondarenko, T I; Mikhaleva, I I
2014-01-01
It is shown that subcutaneous injection of exogenous delta-sleep inducing peptide (DSIP) to rats aged 2-24 months in a dose of 100 μg/kg animal body weight by courses of 5 consecutive days per month has a stabilizing effect on the state of lysosomal membranes in rat tissues (brain, heart muscle and liver) at different ontogenetic stages, and this effect is accompanied by increasing intensity of lysosomal proteolysis in these tissues.
Peripheral inflammation and cognitive aging.
Lim, Alvin; Krajina, Katarina; Marsland, Anna L
2013-01-01
Evidence suggests that inflammation, an innate immune response facilitating recovery from injury and pathogenic invasion, is positively associated with age-related cognitive decline and may play a role in risk for dementia. Physiological pathways linking the peripheral immune and central nervous systems are outlined, and studies linking inflammation with neurocognitive function are overviewed. We also present recent studies from our laboratory showing that midlife inflammation is related to cognitive function and brain morphology. Finally, potential implications for treatment, future directions, and limitations are discussed. Copyright © 2013 S. Karger AG, Basel.
The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?
Nalivaeva, N. N.; Belyaev, N. D.; Zhuravin, I. A.; Turner, A. J.
2012-01-01
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance. PMID:22900228
Grashow, Rachel; Miller, Mark W; McKinney, Ann; Nie, Linda H; Sparrow, David; Hu, Howard; Weisskopf, Marc G
2013-01-01
Physiologically-based indicators of neural plasticity in humans could provide mechanistic insights into toxicant actions on learning in the brain, and perhaps prove more objective and sensitive measures of such effects than other methods. We explored the association between lead exposure and classical conditioning of the acoustic startle reflex (ASR)-a simple form of associative learning in the brain-in a population of elderly men. Fifty-one men from the VA Normative Aging Study with cumulative bone lead exposure measurements made with K-X-Ray-Fluorescence participated in a fear-conditioning protocol. The mean age of the men was 75.5years (standard deviation [sd]=5.9) and mean patella lead concentration was 22.7μg/g bone (sd=15.9). Baseline ASR eyeblink response decreased with age, but was not associated with subsequent conditioning. Among 37 men with valid responses at the end of the protocol, higher patella lead was associated with decreased awareness of the conditioning contingency (declarative learning; adjusted odds ratio [OR] per 20μg/g patella lead=0.91, 95% confidence interval [CI]: 0.84, 0.99, p=0.03). Eyeblink conditioning (non-declarative learning) was 0.44sd less (95% CI: -0.91, 0.02; p=0.06) per 20μg/g patella lead after adjustment. Each result was stronger when correcting for the interval between lead measurement and startle testing (awareness: OR=0.88, 95% CI: 0.78, 0.99, p=0.04; conditioning: -0.79sd less, 95% CI: -1.56, 0.03, p=0.04). This initial exploration suggests that lead exposure interferes with specific neural mechanisms of learning and offers the possibility that the ASR may provide a new approach to physiologically explore the effects of neurotoxicant exposures on neural mechanisms of learning in humans with a paradigm that is directly comparable to animal models. Copyright © 2013 Elsevier Inc. All rights reserved.
Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros
2010-01-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693
Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros
2010-06-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.
Fact Sheet: Early Warning Signs of Psychosis
... 2 items) Genetics (1 item) Brain Anatomy and Physiology (1 item) Other Treatments (4 items) Coping with ... 2 items) Genetics (1 item) Brain Anatomy and Physiology (1 item) Other Treatments (4 items) Coping with ...
NASA Astrophysics Data System (ADS)
Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James
2016-04-01
Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.
Savage, Julie C.; Hui, Chin Wai; Bisht, Kanchan
2016-01-01
Abstract Microglia are the only immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other types of glial cells. The past decade has witnessed a revolution in our understanding of their roles during normal physiological conditions. Cutting‐edge techniques revealed that these resident immune cells are critical for proper brain development, actively maintain health in the mature brain, and rapidly adapt their function to physiological or pathophysiological needs. In this review, we highlight recent studies on microglial origin (from the embryonic yolk sac) and the factors regulating their differentiation and homeostasis upon brain invasion. Elegant experiments tracking microglia in the CNS allowed studies of their unique roles compared with other types of resident macrophages. Here we review the emerging roles of microglia in brain development, plasticity and cognition, and discuss the implications of the depletion or dysfunction of microglia for our understanding of disease pathogenesis. Immune activation, inflammation and various other conditions resulting in undesirable microglial activity at different stages of life could severely impair learning, memory and other essential cognitive functions. The diversity of microglial phenotypes across the lifespan, between compartments of the CNS, and sexes, as well as their crosstalk with the body and external environment, is also emphasised. Understanding what defines particular microglial phenotypes is of major importance for future development of innovative therapies controlling their effector functions, with consequences for cognition across chronic stress, ageing, neuropsychiatric and neurological diseases. PMID:27104646
Not only in the brain: Cabanis and the Montpellierian tradition of localization.
Kaitaro, T
2000-01-01
Antonio Damasio (1995) has recently presented evidence to the effect that we are perhaps wrong in thinking that it is only the brain that thinks. Rational decision making involves emotional reactions as a necessary condition and background. And since emotions involve bodily reactions which are not limited to the brain but which embrace the autonomous nervous system and the viscera, one could say that we actually think with our bodies and not merely with our brains. According to Damasio the incapacity of patients with frontal lobe pathology in decision making could be explained by a disturbance in emotional reactions involving the whole organism. Philosophical discussions concerning brains in a vat have completely forgotten these aspects of our mental life. Despite the fact that the idea that we think exclusively with our brains has during the modern age been a rather widely held "received view," there is a physiological and philosophical tradition which regarded mental functions as the result of the interaction of several organs, instead of seeing them as the result of the activity of the brain alone.
Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules
NASA Astrophysics Data System (ADS)
Rosenstein, Jeffrey M.
1987-02-01
In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.
Evolution of brain-computer interfaces: going beyond classic motor physiology
Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.
2010-01-01
The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892
Complex and differential glial responses in Alzheimer's disease and ageing.
Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei
2016-01-01
Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.
Compensatory recruitment of neural resources in chronic alcoholism.
Chanraud, Sandra; Sullivan, Edith V
2014-01-01
Functional recovery occurs with sustained sobriety, but the neural mechanisms enabling recovery are only now emerging. Theories about promising mechanisms involve concepts of neuroadaptation, where excessive alcohol consumption results in untoward structural and functional brain changes which are subsequently candidates for reversal with sobriety. Views on functional adaptation in chronic alcoholism have expanded with results from neuroimaging studies. Here, we first describe and define the concept of neuroadaptation according to emerging theories based on the growing literature in aging-related cognitive functioning. Then we describe findings as they apply to chronic alcoholism and factors that could influence compensation, such as functional brain reserve and the integrity of brain structure. Finally, we review brain plasticity based on physiologic mechanisms that could underlie mechanisms of neural compensation. Where possible, we provide operational criteria to define functional and neural compensation. © 2014 Elsevier B.V. All rights reserved.
Nenadovic, Vera; Perez Velazquez, Jose Luis; Hutchison, James Saunders
2014-01-01
Brain injury from trauma, cardiac arrest or stroke is the most important cause of death and acquired disability in the paediatric population. Due to the lifetime impact of brain injury, there is a need for methods to stratify patient risk and ultimately predict outcome. Early prognosis is fundamental to the implementation of interventions to improve recovery, but no clinical model as yet exists. Healthy physiology is associated with a relative high variability of physiologic signals in organ systems. This was first evaluated in heart rate variability research. Brain variability can be quantified through electroencephalographic (EEG) phase synchrony. We hypothesised that variability in brain signals from EEG recordings would correlate with patient outcome after brain injury. Lower variability in EEG phase synchronization, would be associated with poor patient prognosis. A retrospective study, spanning 10 years (2000–2010) analysed the scalp EEGs of children aged 1 month to 17 years in coma (Glasgow Coma Scale, GCS, <8) admitted to the paediatric critical care unit (PCCU) following brain injury from TBI, cardiac arrest or stroke. Phase synchrony of the EEGs was evaluated using the Hilbert transform and the variability of the phase synchrony calculated. Outcome was evaluated using the 6 point Paediatric Performance Category Score (PCPC) based on chart review at the time of hospital discharge. Outcome was dichotomized to good outcome (PCPC score 1 to 3) and poor outcome (PCPC score 4 to 6). Children who had a poor outcome following brain injury secondary to cardiac arrest, TBI or stroke, had a higher magnitude of synchrony (R index), a lower spatial complexity of the synchrony patterns and a lower temporal variability of the synchrony index values at 15 Hz when compared to those patients with a good outcome. PMID:24752289
Phosphatidylserine and the human brain.
Glade, Michael J; Smith, Kyl
2015-06-01
The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.
Astrocytes in physiological aging and Alzheimer's disease.
Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A
2016-05-26
Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
From Paresis to PANDAS and PANS
... 4 items) Genetics (18 items) Brain Anatomy and Physiology (7 items) RDoC (6 items) Research Funding (36 ... 4 items) Genetics (18 items) Brain Anatomy and Physiology (7 items) RDoC (6 items) Research Funding (36 ...
Astrocytic glycogen metabolism in the healthy and diseased brain.
Bak, Lasse K; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S
2018-05-11
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K + and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.
Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra
2005-06-01
Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.
Cholesterol in brain disease: sometimes determinant and frequently implicated
Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G
2014-01-01
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281
Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean
2015-08-01
The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.
Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill
2014-11-01
Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
2009-04-18
intake and sophisticated signal processing of electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and...electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and electromyographic (EMG) physiological signals . It also has markedly...ambulatory physiological acquisition and quantitative signal processing; (2) Brain Amp MR Plus 32 and BrainVision Recorder Professional Software Package for
Anatomy and Physiology of the Blood-Brain Barrier
Serlin, Yonatan; Shelef, Ilan; Knyazer, Boris; Friedman, Alon
2015-01-01
Essential requisite for the preservation of normal brain activity is to maintain a narrow and stable homeostatic control in the neuronal environment of the CNS. Blood flow alterations and altered vessel permeability are considered key determinants in the pathophysiology of brain injuries. We will review the present-day literature on the anatomy, development and physiological mechanisms of the blood-brain barrier, a distinctive and tightly regulated interface between the CNS and the peripheral circulation, playing a crucial role in the maintenance of the strict environment required for normal brain function. PMID:25681530
Cerebral metabolic adaptation and ketone metabolism after brain injury
Prins, Mayumi L
2010-01-01
The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514
Sleep physiology and sleep disorders in childhood
El Shakankiry, Hanan M
2011-01-01
Sleep has long been considered as a passive phenomenon, but it is now clear that it is a period of intense brain activity involving higher cortical functions. Overall, sleep affects every aspect of a child’s development, particularly higher cognitive functions. Sleep concerns are ranked as the fifth leading concern of parents. Close to one third of all children suffer from sleep disorders, the prevalence of which is increased in certain pediatric populations, such as children with special needs, children with psychiatric or medical diagnoses and children with autism or pervasive developmental disorders. The paper reviews sleep physiology and the impact, classification, and management of sleep disorders in the pediatric age group. PMID:23616721
NASA Astrophysics Data System (ADS)
Gurkovskiy, B. V.; Zhuravlev, B. V.; Onishchenko, E. M.; Simakov, A. B.; Trifonova, N. Yu; Voronov, Yu A.
2016-10-01
New instrumental technique for research of the psycho-physiological reactions of the bio-objects under the microwave electromagnetic radiation, modulated by interval patterns of neural activity in the brain registered under different biological motivations, are suggested. The preliminary results of these new tool tests in real psycho physiological experiments on rats are presented.
The choroid plexus: function, pathology and therapeutic potential of its transplantation.
Emerich, Dwaine F; Vasconcellos, Alfred V; Elliott, Robert B; Skinner, Stephen J M; Borlongan, Cesario V
2004-08-01
The choroid plexus (CP) produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. However, the CP may have additional functions in the CNS beyond these traditional roles. Preclinical and clinical studies in ageing and neurodegeneration demonstrate anatomical and physiological changes in CP, suggesting roles in normal and pathological conditions and potentially endogenous repair processes following trauma. One of the broadest functions of the CP is establishing and maintaining the extracellular milieu throughout the brain and spinal cord, in part by secreting numerous growth factors into the CSF. The endogenous secretion of growth factors raises the possibility that transplantable CP might enable delivery of these molecules to the brain, while avoiding the conventional molecular and genetic alterations associated with modifying cells to secrete selected products. This review describes some of the anatomical and functional changes of CP in ageing and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Docosahexaenoic Acid and Cognition throughout the Lifespan
Weiser, Michael J.; Butt, Christopher M.; Mohajeri, M. Hasan
2016-01-01
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action. PMID:26901223
Cescon, Matilde; Chen, Peiwen; Castagnaro, Silvia; Gregorio, Ilaria; Bonaldo, Paolo
2016-05-01
Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1-/-) mice. Col6a1-/- neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1-/-mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.
Marquet-de Rougé, Perrine; Clamagirand, Christine; Facchinetti, Patricia; Rose, Christiane; Sargueil, Françoise; Guihenneuc-Jouyaux, Chantal; Cynober, Luc; Moinard, Christophe; Allinquant, Bernadette
2013-10-01
The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.
Physiological Effects of Touching Coated Wood.
Ikei, Harumi; Song, Chorong; Miyazaki, Yoshifumi
2017-07-13
This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood.
Physiological Effects of Touching Coated Wood
2017-01-01
This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood. PMID:28703777
Physiological Effects of Touching Wood
2017-01-01
This study aimed to clarify the physiological effects of touching wood with the palm, in comparison with touching other materials on brain activity and autonomic nervous activity. Eighteen female university students (mean age, 21.7 ± 1.6 years) participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb) concentrations were measured in the left/right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) was used as an indicator of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflected parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflected sympathetic nervous activity, were measured. Plates of uncoated white oak, marble, tile, and stainless steel were used as tactile stimuli. After sitting at rest with their eyes closed, participants touched the materials for 90 s. As a result, tactile stimulation with white oak significantly (1) decreased the oxy-Hb concentration in the left/right prefrontal cortex relative to marble, tile, and stainless steel and (2) increased ln(HF)-reflected parasympathetic nervous activity relative to marble and stainless steel. In conclusion, our study revealed that touching wood with the palm calms prefrontal cortex activity and induces parasympathetic nervous activity more than other materials, thereby inducing physiological relaxation. PMID:28718814
Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury
2012-07-01
months) stages after injury, the patients will be brought back to repeat both the MRI scans and neurocognitive evaluations. Age/gender/ education ...J.H., 2010. On the contribution of deoxy- hemoglobin to MRI gray-white matter phase contrast at high field. Neuro- image 49, 193–198. Li, C., Langham...provides physical and structural support of neuronal and glial cells. From a physiological point of view, the blood flow provides nutritional sup- port
Development of a cerebral circulation model for the automatic control of brain physiology.
Utsuki, T
2015-01-01
In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.
The emergence of Nervennahrung: Nerves, mind and metabolism in the long eighteenth century.
Stahnisch, Frank W
2012-06-01
Morphological assumptions concerning the form, structure and internal life of the brain and nervous system profoundly influenced contemporary physiological concepts about nerve actions throughout the 'long eighteenth century'. This article investigates some early theories of mind and metabolism. In a bottom-up fashion, it asks how eighteenth-century theories regarding the physiological actions of the body organs shaped the conceptions of the structure of the brain and nervous tissue themselves. These proposed that a healthy Nervennahrung (the German word for 'nerve nutrition', which might be rendered as brain food in modern English), not only guaranteed the integrity and stability of neuronal structures in the body, but also explained the complex texture of the brain and spinal cord in physiological terms. Eighteenth-century nerve theories already embodied a Leitmotiv of neurology and brain psychiatry from the later nineteenth century: 'Without phosphorus there is no thought!' Copyright © 2011 Elsevier Ltd. All rights reserved.
Motor Activity in Aging: An Integrated Approach for Better Quality of Life
Mastorci, Francesca; Sironi, Annamaria; Gemignani, Angelo
2014-01-01
Old age is normally associated with stereotypical structural and physiological changes in the brain that are caused by deterioration in elementary cognitive, sensory, and sensorimotor functions as well as increased susceptibility to stress. These changes are connected with gait impairment and falls, especially among patients with common neurological diseases. Even in the absence of history of falling or when there is no physical injury after a fall, many older people develop a fear of falling that leads to restricted mobility, reduced activity, depression, social isolation, worsened metabolic disease, and increasing risk of cardiovascular morbidity and mortality. Although links between cognitive decline and age-associated brain changes have been clarified, relationships between gait disorders and psychophysiological alterations in aging are less well understood. This review focuses on two crucial elements of aged individuals with gait disorders: characteristic comorbidities in the elderly and the psychophysiological effects of physical exercise in the elderly with gait disorder. We propose an integrated approach to studying elderly subjects with gait disorder before starting a program of motor rehabilitation with wearable robotic devices, in order to investigate the effectiveness and safety of the ambulatory training. PMID:27351018
Gastrointestinal Physiology and Function.
Greenwood-Van Meerveld, Beverley; Johnson, Anthony C; Grundy, David
2017-01-01
The gastrointestinal (GI) system is responsible for the digestion and absorption of ingested food and liquids. Due to the complexity of the GI tract and the substantial volume of material that could be covered under the scope of GI physiology, this chapter briefly reviews the overall function of the GI tract, and discusses the major factors affecting GI physiology and function, including the intestinal microbiota, chronic stress, inflammation, and aging with a focus on the neural regulation of the GI tract and an emphasis on basic brain-gut interactions that serve to modulate the GI tract. GI diseases refer to diseases of the esophagus, stomach, small intestine, colon, and rectum. The major symptoms of common GI disorders include recurrent abdominal pain and bloating, heartburn, indigestion/dyspepsia, nausea and vomiting, diarrhea, and constipation. GI disorders rank among the most prevalent disorders, with the most common including esophageal and swallowing disorders, gastric and peptic ulcer disease, gastroparesis or delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Many GI disorders are difficult to diagnose and their symptoms are not effectively managed. Thus, basic research is required to drive the development of novel therapeutics which are urgently needed. One approach is to enhance our understanding of gut physiology and pathophysiology especially as it relates to gut-brain communications since they have clinical relevance to a number of GI complaints and represent a therapeutic target for the treatment of conditions including inflammatory diseases of the GI tract such as IBD and functional gut disorders such as IBS.
Visual artistic creativity and the brain.
Heilman, Kenneth M; Acosta, Lealani Mae
2013-01-01
Creativity is the development of a new or novel understanding--insight that leads to the expression of orderly relationships (e.g., finding and revealing the thread that unites). Visual artistic creativity plays an important role in the quality of human lives, and the goal of this chapter is to describe some of the brain mechanisms that may be important in visual artistic creativity. The initial major means of learning how the brain mediates any activity is to understand the anatomy and physiology that may support these processes. A further understanding of specific cognitive activities and behaviors may be gained by studying patients who have diseases of the brain and how these diseases influence these functions. Physiological recording such as electroencephalography and brain imaging techniques such as PET and fMRI have also allowed us to gain a better understanding of the brain mechanisms important in visual creativity. In this chapter, we discuss anatomic and physiological studies, as well as neuropsychological studies of healthy artists and patients with neurological disease that have helped us gain some insight into the brain mechanisms that mediate artistic creativity. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-05-01
Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.
Brossard-Racine, M; du Plessis, A J; Vezina, G; Robertson, R; Bulas, D; Evangelou, I E; Donofrio, M; Freeman, D; Limperopoulos, C
2014-08-01
Brain injury is a major complication in neonates with complex congenital heart disease. Preliminary evidence suggests that fetuses with congenital heart disease are at greater risk for brain abnormalities. However, the nature and frequency of these brain abnormalities detected by conventional fetal MR imaging has not been examined prospectively. Our primary objective was to determine the prevalence and spectrum of brain abnormalities detected on conventional clinical MR imaging in fetuses with complex congenital heart disease and, second, to compare the congenital heart disease cohort with a control group of fetuses from healthy pregnancies. We prospectively recruited pregnant women with a confirmed fetal congenital heart disease diagnosis and healthy volunteers with normal fetal echocardiogram findings who underwent a fetal MR imaging between 18 and 39 weeks gestational age. A total of 338 fetuses (194 controls; 144 with congenital heart disease) were studied at a mean gestational age of 30.61 ± 4.67 weeks. Brain abnormalities were present in 23% of the congenital heart disease group compared with 1.5% in the control group (P < .001). The most common abnormalities in the congenital heart disease group were mild unilateral ventriculomegaly in 12/33 (36.4%) and increased extra-axial spaces in 10/33 (30.3%). Subgroup analyses comparing the type and frequency of brain abnormalities based on cardiac physiology did not reveal significant associations, suggesting that the brain abnormalities were not limited to those with the most severe congenital heart disease. This is the first large prospective study reporting conventional MR imaging findings in fetuses with congenital heart disease. Our results suggest that brain abnormalities are prevalent but relatively mild antenatally in fetuses with congenital heart disease. The long-term predictive value of these findings awaits further study. © 2014 by American Journal of Neuroradiology.
Salama, Aallaa; Gründer, Gerhard; Spreckelmeyer, Katja N.
2014-01-01
Recent studies have reported inconsistent results regarding the loss of reward sensitivity in the aging brain. Although such an age effect might be due to a decline of physiological processes, it may also be a consequence of age-related changes in motivational preference for different rewards. Here, we examined whether the age effects on neural correlates of reward anticipation are modulated by the type of expected reward. Functional magnetic resonance images were acquired in 24 older (60–78 years) and 24 young participants (20–28 years) while they performed an incentive delay task offering monetary or social rewards. Anticipation of either reward type recruited brain structures associated with reward, including the nucleus accumbens (NAcc). Region of interest analysis revealed an interaction effect of reward type and age group in the right NAcc: enhanced activation to cues of social reward was detected in the older subsample while enhanced activation to cues of monetary reward was detected in the younger subsample. Our results suggest that neural sensitivity to reward-predicting cues does not generally decrease with age. Rather, neural responses in the NAcc appear to be modulated by the type of reward, presumably reflecting age-related changes in motivational value attributed to different types of reward. PMID:23547243
D'Angelo, L; Castaldo, L; Cellerino, A; de Girolamo, P; Lucini, C
2014-07-01
Nerve growth factor (NGF) acts on central nervous system neurons, regulating naturally occurring cell death, synaptic connectivity, fiber guidance and dendritic morphology. The dynamically regulated production of NGF beginning in development, extends throughout adult life and aging, exerting numerous roles through a surprising variety of neurons and glial cells. This study analyzes the localization of NGF in the brain of the teleost fish Nothobranchius furzeri, an emerging model for aging research due to its short lifespan. Immunochemical and immunohistochemical experiments were performed by employing an antibody mapping at the N-terminus of the mature chain human origin NGF. Western blot analysis revealed an intense and well defined band of 20 kDa, which corresponds to proNGF of N. furzeri. Immunohistochemistry revealed NGF immunoreactivity (IR) diffused throughout all regions of telencephalon, diencephalon, mesencephalon and rhomboencephalon. It was detected in neurons and in glial cells, the latter mostly lining the mesencephalic and rhomboencephalic ventricles. Particularly in neurons, NGF IR was localized in perikarya and, to a less extent, in fibers. The widespread distribution of proNGF suggests that it might modulate numerous physiological functions in the adult brain of N. furzeri. The present survey constitutes a baseline study to enhance the understanding of the mechanisms underlying the role of NGF during aging processes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Stages of physical dependence in New Zealand smokers: Prevalence and correlates.
Walton, Darren; Newcombe, Rhiannon; Li, Judy; Tu, Danny; DiFranza, Joseph R
2016-12-01
Physically dependent smokers experience symptoms of wanting, craving or needing to smoke when too much time has passed since the last cigarette. There is interest in whether wanting, craving and needing represent variations in the intensity of a single physiological parameter or whether multiple physiological processes may be involved in the developmental progression of physical dependence. Our aim was to determine how a population of cigarette smokers is distributed across the wanting, craving and needing stages of physical dependence. A nationwide survey of 2594 New Zealanders aged 15years and over was conducted in 2014. The stage of physical dependence was assessed using the Levels of Physical Dependence measure. Ordinal logistic regression analysis was used to assess relations between physical dependence and other variables. Among 590 current smokers (weighted 16.2% of the sample), 22.3% had no physical dependence, 23.5% were in the Wanting stage, 14.4% in the Craving stage, and 39.8% in the Needing stage. The stage of physical dependence was predicted by daily cigarette consumption, and the time to first cigarette, but not by age, gender, ethnicity or socioeconomic status. Fewer individuals were in the craving stage than either the wanting or needing stages. The resulting inverted U-shaped curve with concentrations at either extreme is difficult to explain as a variation of a single biological parameter. The data support an interpretation that progression through the stages of wanting, craving and needing may involve more than one physiological process. Physical dependence to tobacco develops through a characteristic sequence of wanting, craving and needing which correspond to changes in addiction pathways in the brain. It is important to neuroscience research to determine if the development of physical dependence involves changes in a single brain process, or multiple processes. Our data suggests that more than one physiologic process is involved in the progression of physical dependence. Copyright © 2016 Elsevier Ltd. All rights reserved.
An in vivo model of functional and vascularized human brain organoids.
Mansour, Abed AlFatah; Gonçalves, J Tiago; Bloyd, Cooper W; Li, Hao; Fernandes, Sarah; Quang, Daphne; Johnston, Stephen; Parylak, Sarah L; Jin, Xin; Gage, Fred H
2018-06-01
Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.
Labandeira-Garcia, Jose L.; Rodríguez-Perez, Ana I.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Lanciego, Jose L.; Guerra, Maria J.
2017-01-01
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components. PMID:28515690
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects
Darwazeh, Rami; Yan, Yi
2013-01-01
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.
Darwazeh, Rami; Yan, Yi
2013-10-05
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.
[How can we determine the best cerebral perfusion pressure in pediatric traumatic brain injury?].
Vuillaume, C; Mrozek, S; Fourcade, O; Geeraerts, T
2013-12-01
The management of cerebral perfusion pressure (CPP) is the one of the main preoccupation for the care of paediatric traumatic brain injury (TBI). The physiology of cerebral autoregulation, CO2 vasoreactivity, cerebral metabolism changes with age as well as the brain compliance. Low CPP leads to high morbidity and mortality in pediatric TBI. The recent guidelines for the management of CPP for the paediatric TBI indicate a CPP threshold 40-50 mmHg (infants for the lower and adolescent for the upper). But we must consider the importance of age-related differences in the arterial pressure and CPP. The best CPP is the one that allows to avoid cerebral ischaemia and oedema. In this way, the adaptation of optimal CPP must be individual. To assess this objective, interesting tools are available. Transcranial Doppler can be used to determine the best level of CPP. Other indicators can predict the impairment of autoregulation like pressure reactivity index (PRx) taking into consideration the respective changes in ICP and CPP. Measurement of brain tissue oxygen partial pressure is an other tool that can be used to determine the optimal CPP. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.
Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P
2018-01-01
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Cardiocentric neurophysiology: the persistence of a delusion.
Smith, C U M
2013-01-01
Aristotle is well known to have taught that the brain was a mere coolant apparatus for overheated blood and to have located the hegemonikon in the heart. This teaching was hotly disputed by his immediate successors in the Alexandrian Museum, who showed that the brain played the central role in psychophysiology. This was accepted and developed by the last great biomedical figure of classical antiquity - Claudius Galen. However, Aristotle's cardiocentric theory did not entirely disappear and this article traces its influence through the Arabic physicians of the Islamic ascendancy, into the European Middle Ages where Albertus Magnus' attempt to reconcile cardiocentric and cerebrocentric physiology was particularly influential. It shows how cardiocentricity was sufficiently accepted to attract the attention of, and require refutation by, many of the great names of the Renaissance, including Vesalius, Fernel, and Descartes, and was still taken seriously by luminaries such as William Harvey in the mid-seventeenth century. The article, in rehearsing this history, shows the difficulty of separating the first-person perspective of introspective psychology and the third-person perspective of natural science. It also outlines an interesting case of conflict between philosophy and physiology.
Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André
2017-01-01
Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817
Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.
Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B
2017-09-01
Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goh, Catherine W; Aw, Chiu Cheong; Lee, Jasinda H; Chen, Christopher P; Browne, Edward R
2011-03-01
Physiological alterations that may change pharmacological response accompany aging. Pharmacokinetic/pharmacodynamic properties of cholinesterase inhibitors (ChEIs) used in the treatment of Alzheimer's disease, donepezil, tacrine, and galantamine, were investigated in an aged Lister hooded rat model. Intravenous and oral 6-h blood sampling profiles in old (30 months old) and young (7 months old) rats revealed pharmacokinetic changes similar to those in humans with an approximately 40% increase in C(max) of galantamine and prolonged t(1/2) (1.4-fold) and mean residence time (1.5-fold) of donepezil. Tacrine disposition was maintained with age, and area under the concentration-time curve and clearance in old rats were similar to those in young rats for all drugs tested as was bioavailability. Old rats showed a trend of increased pharmacodynamic sensitivity (<20%) to ChEIs in cholinesterase activity assays, which was attributed to pharmacokinetic effects because a trend of higher blood and brain concentrations was seen in the old rats although brain/blood ratios remained unaffected. Enhanced cholinergic-mediated behaviors such as tremor, hypothermia, salivation, and lacrimation were also observed in the old rats, which could not be accounted for by a similar magnitude of change in pharmacokinetics. A decrease in expression of muscarinic acetylcholine receptor subtype 2 detected in old rat brains was postulated to play a role. Greater age effects in both pharmacokinetics and pharmacodynamics of donepezil and tacrine were seen in previous studies with Fischer 344 rats, indicating a potential risk in overreliance on this rat strain for aging studies.
RHEB1 insufficiency in aged male mice is associated with stress-induced seizures.
Tian, Qi; Gromov, Pavel; Clement, Joachim H; Wang, Yingming; Riemann, Marc; Weih, Falk; Sun, Xiao-Xin; Dai, Mu-Shui; Fedorov, Lev M
2017-12-01
The mechanistic target of rapamycin (mTOR), a protein kinase, is a central regulator of mammalian metabolism and physiology. Protein mTOR complex 1 (mTORC1) functions as a major sensor for the nutrient, energy, and redox state of a cell and is activated by ras homolog enriched in brain (RHEB1), a GTP-binding protein. Increased activation of mTORC1 pathway has been associated with developmental abnormalities, certain form of epilepsy (tuberous sclerosis), and cancer. Clinically, those mTOR-related disorders are treated with the mTOR inhibitor rapamycin and its rapalogs. Because the effects of chronic interference with mTOR signaling in the aged brain are yet unknown, we used a genetic strategy to interfere with mTORC1 signaling selectively by introducing mutations of Rheb1 into the mouse. We created conventional knockout (Rheb1 +/- ) and gene trap (Rheb1 Δ/+ ) mutant mouse lines. Rheb1-insufficient mice with different combinations of mutant alleles were monitored over a time span of 2 years. The mice did not show any behavioral/neurological changes during the first 18 months of age. However, after aging (> 18 months of age), both the Rheb1 +/- and Rheb1 Δ /- hybrid males developed rare stress-induced seizures, whereas Rheb1 +/- and Rheb1 Δ /- females and Rheb1 Δ/+ and Rheb1 Δ/Δ mice of both genders did not show any abnormality. Our findings suggest that chronic intervention with mTORC1 signaling in the aged brain might be associated with major adverse events.
Tarroun, Abdullah; Bonnefoy, Marc; Bouffard-Vercelli, Juliette; Gedeon, Claire; Vallee, Bernard; Cotton, François
2007-02-01
Although mild progressive specific structural brain changes are commonly associated with normal human aging, it is unclear whether automatic or manual measurements of these structures can differentiate normal brain aging in elderly persons from patients suffering from cognitive impairment. The objective of this study was primarily to define, with a standard high resolution MRI, the range of normal linear age-specific values for the hippocampal formation (HF), and secondarily to differentiate hippocampal atrophy in normal aging from that occurring in Alzheimer disease (AD). Two MRI-based linear measurements of the hippocampal formation at the level of the head and of the tail, standardized by the cranial dimensions, were obtained from coronal and sagittal T1-weighted MR images in 25 normal elderly subjects, and 26 patients with AD. In this study, dimensions of the HF have been standardized and they revealed normal distributions for each side and each sex: the width of the hippocampal head at the level of the amygdala was 16.42 +/- 1.9 mm, and its height 7.93 +/- 1.4 mm; the width of the tail at the level of the cerebral aqueduct was 8.54 +/- 1.2 mm, and the height 5.74 +/- 0.4 mm. There were no significant differences in standardized dimensions of the HF between sides, sexes, or in comparison to head dimensions in the two groups. In addition, the median inter-observer agreement index was 93%. In contrast, the dimensions of the hippocampal formation decreased gradually with increasing age, owing to physiological atrophy, but this atrophy is more significant in the group of AD.
Cousins, Roderick; Wood, Charles E.
2010-01-01
Development and maturation of the fetal brain is critical for homeostasis in utero, responsiveness to fetal stress and, in ruminants, control of the timing of birth. In the sheep, as in the human, the placenta secretes estrogen and other signaling molecules into both the fetal and maternal blood, molecules whose entry or exit across the blood-brain barrier is likely to be facilitated by transporters. The purpose of this study was to test the hypothesis that the ovine fetal brain expresses organic anion transporters, and that the expression of these transporters varies as a function of brain region and fetal gestational age. Brains and pituitaries were collected at the time of sacrifice from fetal and newborn sheep at 80, 100, 120, 130, 145 days gestation and on the first day of postnatal life (parturition in sheep is at approximately 147 days gestation). Hypothalamus, medullary brainstem, cerebellum, and pituitary were processed for mRNA extraction and synthesis of cDNA (4–5/group). Real-time PCR analysis of OAT1 and OAT3 expression revealed significant expression of both genes in all of the tissues tested. In hypothalamus and cerebellum, there were statistically significant increases in the expression of one or both genes towards the end of gestation. In medullary brainstem and pituitary, the levels of expression were relatively unchanged as there were no statistically significant changes with developmental age. We conclude that the ovine fetal brain expresses both OAT1 and OAT3, that the pattern of expression suggests an increasing role for these transporters in the physiology of the developing fetal brain as the fetus nears the time of spontaneous parturition. PMID:20708067
Brain MRI atrophy quantification in MS
Rocca, Maria A.; Battaglini, Marco; Benedict, Ralph H.B.; De Stefano, Nicola; Geurts, Jeroen J.G.; Henry, Roland G.; Horsfield, Mark A.; Jenkinson, Mark; Pagani, Elisabetta
2017-01-01
Patients with the main clinical phenotypes of multiple sclerosis (MS) manifest varying degrees of brain atrophy beyond that of normal aging. Assessment of atrophy helps to distinguish clinically and cognitively deteriorating patients and predicts those who will have a less-favorable clinical outcome over the long term. Atrophy can be measured from brain MRI scans, and many technological improvements have been made over the last few years. Several software tools, with differing requirements on technical ability and levels of operator intervention, are currently available and have already been applied in research or clinical trial settings. Despite this, the measurement of atrophy in routine clinical practice remains an unmet need. After a short summary of the pathologic substrates of brain atrophy in MS, this review attempts to guide the clinician towards a better understanding of the methods currently used for quantifying brain atrophy in this condition. Important physiologic factors that affect brain volume measures are also considered. Finally, the most recent research on brain atrophy in MS is summarized, including whole brain and various compartments thereof (i.e., white matter, gray matter, selected CNS structures). Current methods provide sufficient precision for cohort studies, but are not adequate for confidently assessing changes in individual patients over the scale of months or a few years. PMID:27986875
Nemoto, Kiyotaka; Oka, Hiroki; Fukuda, Hiroki
2017-01-01
Neurological and psychiatric disorders are a burden on social and economic resources. Therefore, maintaining brain health and preventing these disorders are important. While the physiological functions of the brain are well studied, few studies have focused on keeping the brain healthy from a neuroscientific viewpoint. We propose a magnetic resonance imaging (MRI)-based quotient for monitoring brain health, the Brain Healthcare Quotient (BHQ), which is based on the volume of gray matter (GM) and the fractional anisotropy (FA) of white matter (WM). We recruited 144 healthy adults to acquire structural neuroimaging data, including T1-weighted images and diffusion tensor images, and data associated with both physical (BMI, blood pressure, and daily time use) and social (subjective socioeconomic status, subjective well-being, post-materialism and Epicureanism) factors. We confirmed that the BHQ was sensitive to an age-related decline in GM volume and WM integrity. Further analysis revealed that the BHQ was critically affected by both physical and social factors. We believe that our BHQ is a simple yet highly sensitive, valid measure for brain health research that will bridge the needs of the scientific community and society and help us lead better lives in which we stay healthy, active, and sharp. PMID:29077756
Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco
2018-05-24
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.
Inference in the age of big data: Future perspectives on neuroscience.
Bzdok, Danilo; Yeo, B T Thomas
2017-07-15
Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy, synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and genetics). While growing data availability and information granularity have been amply discussed, we direct attention to a less explored question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and pathological brain measurements. We argue that large-scale data analysis will use more statistical models that are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical hypothesis testing with out-of-sample predictions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sierra, Amanda; Beccari, Sol; Diaz-Aparicio, Irune; Encinas, Juan M.; Comeau, Samuel; Tremblay, Marie-Ève
2014-01-01
Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging, and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional consequences for learning and memory. PMID:24772353
Novel delivery methods bypassing the blood-brain and blood-tumor barriers.
Hendricks, Benjamin K; Cohen-Gadol, Aaron A; Miller, James C
2015-03-01
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
The hippocampal physiology of approaching middle-age: early indicators of change.
Huxter, John R; Miranda, Jason A; Dias, Rebecca
2012-09-01
Age-related cognitive decline presents serious lifestyle challenges, and anatomical changes to the hippocampus are often implicated in clinical conditions later in life. However, relatively little is known about how hippocampal physiology is altered in the transition to middle-age, when early detection may offer the best opportunity for successful treatment. High-yield extracellular recording is a powerful tool for understanding brain function in freely moving animals at single-cell resolution and with millisecond precision. We used this technique to characterize changes to hippocampal physiology associated with maturation in 35-week-old rats. Combining a series of behavioral tasks with recordings of large numbers of neurons, local field potentials (LFP), and network patterns of activation, we were able to generate a comprehensive picture based on more than 25 different assays for each subject. Notable changes associated with aging included increased firing rates in interneurons, reduced LFP power but increased frequency in the 4-12 Hz theta band, and impairment in hippocampal pattern-separation for different environments. General properties of pyramidal cell firing and spatial map integrity were preserved. There was no impairment in theta phase-precession, experience-dependent place field expansion, or sleep reactivation of waking network patterns. There were however changes in foraging strategy and behavioral responses to the introduction of a novel environment. Taken together the results reveal a diverse pattern of changes which are of increasing relevance in an aging population. They also highlight areas where high-yield electrophysiological assays can be used to provide the sensitivity and throughput required for pre-clinical drug-discovery programs. Copyright © 2012 Wiley Periodicals, Inc.
The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience.
Burgess, Neil
2014-12-17
Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O'Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser "for their discoveries of cells that constitute a positioning system in the brain." This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Hou, Xue-Qin; Song, Hou-Pan; Chen, Yun-Bo; Cheng, Shu-Yi; Fang, Shu-Huan; Zhang, Ji-Guo; Wang, Qi
2018-01-01
The present study aimed to investigate the possible effects and underlying molecular mechanism of Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine, on age-related degeneration of brain physiology in senescence-accelerated mouse prone 8 (SAMP8) mice. SAMP8 mice (age, 6 months) were administered BSYZ (1.46, 2.92 and 5.84 g/kg/day) for 30 days. Morris water maze and step-down tests demonstrated that BSYZ significantly improved memory impairments in SAMP8 mice. In addition, BSYZ significantly enhanced the expression levels of peroxisome proliferator-activated receptor-γ and B-cell lymphoma extra-large, and downregulated the expression levels of inflammatory mediators, glial fibrillary acidic protein, cyclooxygenase-2, nuclear factor-κB and interleukin-1β in the brain compared with untreated SAMP8 mice. Furthermore, BSYZ reversed disordered superoxide dismutase activity, malondialdehyde content and glutathione peroxidase activity, and ameliorated apoptosis and histological alterations. The present study indicated that BSYZ may attenuate cognitive impairment in SAMP8 mice, and modulate inflammation, oxidative stress and neuronal apoptosis. These results suggested that BSYZ may have the potential to be further developed into a therapeutic agent for protection against age-related neurodegenerative diseases. PMID:29568888
Endocannabinoid signalling and the deteriorating brain
Di Marzo, Vincenzo; Stella, Nephi; Zimmer, Andreas
2015-01-01
Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls — and is affected by — normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics. PMID:25524120
Bingo!: An Engaging Activity for Learning Physiological Terms in Psychology
ERIC Educational Resources Information Center
Vanags, Thea; George, Amanda M.; Grace, Diana M.; Brown, Patricia M.
2012-01-01
Brain Bingo is a tutorial activity for helping undergraduate psychology students learn complex physiological terms. In two experiments, the authors tested pretest and posttest knowledge, and in Experiment 2, the authors tested retention after 5 weeks. In Experiment 1 (n = 41), the experimental group (Brain Bingo) recalled more terms than the…
A Study of the Effectiveness of Sensory Integration Therapy on Neuro-Physiological Development
ERIC Educational Resources Information Center
Reynolds, Christopher; Reynolds, Kathleen Sheena
2010-01-01
Background: Sensory integration theory proposes that because there is plasticity within the central nervous system (the brain is moldable) and because the brain consists of systems that are hierarchically organised, it is possible to stimulate and improve neuro-physiological processing and integration and thereby increase learning capacity.…
Comparative gut physiology symposium: The microbe-gut-brain axis
USDA-ARS?s Scientific Manuscript database
The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...
Physiological properties of brain-machine interface input signals.
Slutzky, Marc W; Flint, Robert D
2017-08-01
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.
Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André
2017-05-01
Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκB), heme oxygenase-1 (HO-1), and p38 mitogen-activated protein kinase (MAPK), were also changed in adult and aged astrocytes and are probably related to the changes observed in senescence marker, glutamatergic metabolism, mitochondrial dysfunction, oxidative/nitrosative stress, antioxidant defenses, inflammatory response, and trophic factors release. Together, our results reinforce the role of hippocampal astrocytes as a target for understanding the mechanisms involved in aging and provide an innovative tool for studies of astrocyte roles in physiological and pathological aging brain.
Kenna, Kelly; De Matteo, Robert; Hanita, Takushi; Rees, Sandra; Sozo, Foula; Stokes, Victoria; Walker, David; Bocking, Alan; Brien, James; Harding, Richard
2011-10-01
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ∼145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (∼0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.
Fogel, Mark A; Durning, Suzanne; Wernovsky, Gil; Pollock, Avrum N; Gaynor, J William; Nicolson, Susan
2004-09-14
CO2 vasodilates and O2 vasoconstricts the cerebral vascular bed; the opposite is true in the lungs. When the brain and lungs are connected exclusively in series, which feedback loop predominates is unknown. The circulation of the superior cavopulmonary connection (SCPC) provides a unique physiology to answer this question. To determine cerebral and pulmonary blood flow and to establish the hierarchy of cerebral and pulmonary feedback mechanisms, 12 intubated, ventilated, single-ventricle patients in SCPC physiology (age 2.2+/-0.5 years) underwent magnetic resonance imaging velocity mapping of their jugular veins and aorta in room air, hypercarbia, and 100% O2. Flows in these vessels and arterial blood gases were measured. With 22+/-6 torr CO2 (Pco2) increased from 40 to 63 mm Hg, P<0.01), flow to the brain and lungs increased (1.5 to 2.7 L/min per m2, P=0.0003), Po2 improved (48 to 60 mm Hg, P=0.0004), and cardiac index increased (4.3 to 5.4 L/min per m2, P=0.0003). The increased cardiac index accounted for the increased cerebral and pulmonary blood flow (R=0.73, P=0.02) and cerebral O2 transport increased by 80% (P=0.0005) while preserving body O2 delivery. Hyperoxia did not change cerebral and pulmonary blood flow; Po2 increased 94% (P=0.01). The cerebral CO2 feedback loop predominates over the pulmonary one when they directly compete with each other. CO2 has a major impact on flow distribution whereas O2 has little impact. Increased CO2 improves cerebral oxygenation in SCPC patients. This may provide a clue in determining neurological sequelae in SC physiology and may influence timing of Fontan completion.
Forebrain networks and the control of feeding by environmental learned cues
Petrovich, Gorica D.
2013-01-01
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food intake. Often, however, environmental influences rival physiological control and stimulate eating irrespective of satiety, or inhibit eating irrespective of hunger. If persistent, such maladaptive challenges to the physiological system could lead to dysregulated eating and ultimately to eating disorders. Nevertheless, the brain mechanisms underlying environmental contribution in the control of food intake are poorly understood. This paper provides an overview in recent advances in deciphering the critical brain systems using rodent models for environmental control by learned cues. These models use associative learning to compete with the physiological control, and in one preparation food cues stimulate a meal despite satiety, while in another preparation fear cues stop a meal despite hunger. Thus far, four forebrain regions have been identified as part of the essential cue induced feeding circuitry. These are telencephalic areas critical for associative learning, memory encoding, and decision making, the amygdala, hippocampus and prefrontal cortex and the lateral hypothalamus, which functions to integrate feeding, reward, and motivation. This circuitry also engages two orexigenic peptides, ghrelin and orexin. A parallel amygdalar circuitry supports fear cue cessation of feeding. These findings illuminate the brain mechanisms underlying environmental control of food intake and might be also relevant to aspects of human appetite and maladaptive overeating and undereating. PMID:23562305
Quantitative modeling of multiscale neural activity
NASA Astrophysics Data System (ADS)
Robinson, Peter A.; Rennie, Christopher J.
2007-01-01
The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.
Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.
Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H
2016-04-01
To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.
Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria
2018-02-19
Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.
The hidden side of drug action: Brain temperature changes induced by neuroactive drugs
Kiyatkin, Eugene A.
2013-01-01
Rationale Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. Objectives Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. Results By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. Conclusions The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity PMID:23274506
Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin
2017-01-01
The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.
Rademacher, Lena; Salama, Aallaa; Gründer, Gerhard; Spreckelmeyer, Katja N
2014-06-01
Recent studies have reported inconsistent results regarding the loss of reward sensitivity in the aging brain. Although such an age effect might be due to a decline of physiological processes, it may also be a consequence of age-related changes in motivational preference for different rewards. Here, we examined whether the age effects on neural correlates of reward anticipation are modulated by the type of expected reward. Functional magnetic resonance images were acquired in 24 older (60-78 years) and 24 young participants (20-28 years) while they performed an incentive delay task offering monetary or social rewards. Anticipation of either reward type recruited brain structures associated with reward, including the nucleus accumbens (NAcc). Region of interest analysis revealed an interaction effect of reward type and age group in the right NAcc: enhanced activation to cues of social reward was detected in the older subsample while enhanced activation to cues of monetary reward was detected in the younger subsample. Our results suggest that neural sensitivity to reward-predicting cues does not generally decrease with age. Rather, neural responses in the NAcc appear to be modulated by the type of reward, presumably reflecting age-related changes in motivational value attributed to different types of reward. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time
Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.
2016-01-01
Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia. PMID:27242415
Goozée, Justine V; Murdoch, Bruce E; Theodoros, Deborah G
2002-01-01
A miniature pressure transducer was used to assess the interlabial contact pressures produced by a group of 19 adults (mean age 30.6 years) with dysarthria following severe traumatic brain injury (TBI) during a set of speech and nonspeech tasks. Ten parameters relating to lip strength, endurance, rate of movement and lip pressure accuracy and stability were measured from the nonspeech tasks. The results attained by the TBI group were compared against a group of 19 age- and sex-matched control subjects. Significant differences between the groups were found for maximum interlabial contact pressure, maximum rate of repetition of maximum pressure, and lip pressure accuracy at 50 and 10% levels of maximum pressure. In regards to speech, the interlabial contact pressures generated by the TBI group and control group did not differ significantly. When expressed as percentages of maximum pressure, however, the TBI group's interlabial pressures appeared to have been generated with greater physiological effort. Copyright 2002 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Anderson, Vitas
2003-10-01
The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4lgr dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (~0.13 to 0.14 °C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.
The significance of selegiline/(-)-deprenyl after 50 years in research and therapy (1965-2015).
Miklya, I
2016-11-01
Deprenyl/Selegiline (DEP), created by Joseph Knoll in the 1960s, registered in more than 60 countries to treat Parkinson's disease, Alzheimer's disease, major depressive disorder; and used as an anti-aging drug, achieved its place in research and therapy as the first selective inhibitor of B-type monoamine oxidase (MAO-B). The demonstration that the DEP analog (-)-1-phenyl-2-propylaminopentane devoid of MAO inhibitory property, enhanced like DEP the activity of the catecholaminergic brain engine revealed that this effect is unrelated to the selective inhibition of MAO-B. β-Phenylethylamine (PEA), the important trace-amine in the mammalian brain, is known to be a releaser of catecholamines. Amphetamine and methamphetamine, the best known synthetic PEA derivatives are also releasers of catecholamines like their parent compound. DEP is a unique synthetic PEA derivative devoid of the catecholamine releasing property. As the releasing effect conceals the catecholaminergic activity enhancer (CAE) effect, it remained undiscovered until DEP uncovered that PEA is a natural CAE substance; and only releases catecholamines in high concentration. Discovering that tryptamine is a natural enhancer of catecholaminergic and serotonergic neurons catalyzed the development of R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane (BPAP); the most potent and selective enhancer substance, and it exerts its enhancer effect in 0.0001 mg kg -1 . DEP and BPAP initiated an analysis of the enhancer regulation in the mammalian brain. Studies regarding the nature of the enhancer regulation revealed that this regulation is enhanced after weaning and sex hormones return it to the pre-weaning level. Thus, sex hormones elicit the transition of the developmental phase of life into the post-developmental, downhill (aging) period. The aging-related, slow decline in the enhancer regulation of the catecholaminergic brain engine, the main activator of the cortex, is the prime factor of brain aging. The enhancer regulation's decay in the most rapidly aging dopaminergic system is, for example, mainly responsible for the decline in learning ability and sexual activity over time. According to the Knoll concept, based on two longevity studies performed on male rats, to keep the catecholaminergic brain engine, from the beginning of the downhill period of life, via the administration of a small daily dose of a CAE substance (presently DEP is the only available drug) on a higher activity level, thus to fight against the physiological aging-related slow decay of the catecholaminergic system, is a suitable anti-aging therapy. As our present knowledge regarding the enhancer regulation in the mammalian brain is like seeing a peak of an iceberg, the future of this new line of brain research looks promising from both theoretical and practical aspects.
Norden, Diana M.; Muccigrosso, Megan M.; Godbout, Jonathan P.
2014-01-01
Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. PMID:25445485
Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw
2017-11-01
The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.
Erickson, Michelle A.
2018-01-01
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890
Reches, A; Kutcher, J; Elbin, R J; Or-Ly, H; Sadeh, B; Greer, J; McAllister, D J; Geva, A; Kontos, A P
2017-01-01
The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician's decision-making process. The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions.
Reches, A.; Kutcher, J.; Elbin, R. J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D. J.; Geva, A.; Kontos, A. P.
2017-01-01
ABSTRACT Background: The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician’s decision-making process. Objective: The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Methods: Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Results: Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. Conclusion: The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions. PMID:28055228
The neonatal brain in critical congenital heart disease: Insights and future directions.
Peyvandi, Shabnam; Latal, Beatrice; Miller, Steven P; McQuillen, Patrick S
2018-05-19
Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients. Copyright © 2018. Published by Elsevier Inc.
Quantification of brain macrostates using dynamical nonstationarity of physiological time series.
Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung
2011-04-01
The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.
Bethlehem, Richard A I; van Honk, Jack; Auyeung, Bonnie; Baron-Cohen, Simon
2013-07-01
In recent years the neuropeptide oxytocin (OT) has become one of the most studied peptides of the human neuroendocrine system. Research has shown widespread behavioural effects and numerous potential therapeutic benefits. However, little is known about how OT triggers these effects in the brain. Here, we discuss some of the physiological properties of OT in the human brain including the long half-life of neuropeptides, the diffuse projections of OT throughout the brain and interactions with other systems such as the dopaminergic system. These properties indicate that OT acts without clear spatial and temporal specificity. Therefore, it is likely to have widespread effects on the brain's intrinsic functioning. Additionally, we review studies that have used functional magnetic resonance imaging (fMRI) concurrently with OT administration. These studies reveal a specific set of 'social' brain regions that are likely to be the strongest targets for OT's potential to influence human behaviour. On the basis of the fMRI literature and the physiological properties of the neuropeptide, we argue that OT has the potential to not only modulate activity in a set of specific brain regions, but also the functional connectivity between these regions. In light of the increasing knowledge of the behavioural effects of OT in humans, studies of the effects of OT administration on brain function can contribute to our understanding of the neural networks in the social brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Neurogenesis in the adult brain: the demise of a dogma and the advent of new treatments].
Crespel, A; Baldy-Moulinier, M; Lerner Natoli, M
2004-12-01
Since the early sixties, many concepts concerning neurogenesis have been progressively ruled out. Proof of the persistence of a physiological neurogenesis in adult mammals, including humans, raised the concept of a unique precursor cell giving birth to neurons and glial cells. According to this concept, a real continuum between neuroepithelial cells, radial glia and astrocytes exists from the embryonic period to adult age and generates both neurons and glial cells. Different factors, either secreted in situ or transported by blood, can influence this physiological neurogenesis process. The targets and role of newborn neurons are not clearly understood. In pathological conditions (ischemia, epilepsy, lesions), the physiological neurogenesis process is enhanced; however the significance of this neurogenesis excess (beneficial or deleterious) is not completely known. Advances in understanding the regulation of neurogenesis in these different conditions represent hopes of new therapeutic procedures, not only by improving the control of differentiation and survival of transplanted stem cells, but also by the possibility of modifying the processes of "endogenous neurogenesis".
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.
Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G
2014-10-15
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Zwanenburg, Jaco JM; Reinink, Rik; Wisse, Laura EM; Luijten, Peter R; Kappelle, L Jaap; Geerlings, Mirjam I; Biessels, Geert Jan
2016-01-01
Cerebral perivascular spaces (PVS) are small physiological structures around blood vessels in the brain. MRI visible PVS are associated with ageing and cerebral small vessel disease (SVD). 7 Tesla (7T) MRI improves PVS detection. We investigated the association of age, vascular risk factors, and imaging markers of SVD with PVS counts on 7 T MRI, in 50 persons aged ≥ 40. The average PVS count ± SD in the right hemisphere was 17 ± 6 in the basal ganglia and 71 ± 28 in the semioval centre. We observed no relation between age or vascular risk factors and PVS counts. The presence of microbleeds was related to more PVS in the basal ganglia (standardized beta 0.32; p = 0.04) and semioval centre (standardized beta 0.39; p = 0.01), and white matter hyperintensity volume to more PVS in the basal ganglia (standardized beta 0.41; p = 0.02). We conclude that PVS counts on 7T MRI are high and are related SVD markers, but not to age and vascular risk factors. This latter finding may indicate that due to the high sensitivity of 7T MRI, the correlation of PVS counts with age or vascular risk factors may be attenuated by the detection of “normal”, non-pathological PVS. PMID:27154503
Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies.
Scullin, Michael K
2017-09-01
Sleep habits, sleep physiology, and sleep disorders change with increasing age. However, there is a longstanding debate regarding whether older adults need sleep to maintain health and daily functioning (reduced-sleep-need view). An alternative possibility is that all older adults need sleep, but that many older adults have lost the ability to obtain restorative sleep (reduced-sleep-ability view). Prior research using behavioral and polysomnography outcomes has not definitively disentangled the reduced-sleep-need and reduced-sleep-ability views. Therefore, this review examines the neuroimaging literature to determine whether age-related changes in sleep cause-or are caused by-age-related changes in brain structure, function, and pathology. In middle-aged and older adults, poorer sleep quality, greater nighttime hypoxia, and shorter sleep duration related to cortical thinning in frontal regions implicated in slow wave generation, in frontoparietal networks implicated in cognitive control, and in hippocampal regions implicated in memory consolidation. Furthermore, poor sleep quality was associated with higher amyloid burden and decreased connectivity in the default mode network, a network that is disrupted in the pathway to Alzheimer's disease. All adults need sleep, but cortical thinning and amyloidal deposition with advancing age may weaken the brain's ability to produce restorative sleep. Therefore, sleep in older adults may not always support identical functions for physical, mental, and cognitive health as in young adults.
Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R
2016-05-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.
Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; Koike, Yuta; Osawa, Misa; Takeda, Atsushi
2017-02-17
Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca 2+ and Mg 2+ , but not other divalent cations such as Zn 2+ , has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn 2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl 2 , indicating that extracellular Zn 2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl 2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl 2 , compared to perfusion with ACSF without Zn 2+ , but attenuated by perfusion with ACSF containing 100 nM ZnCl 2 . Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl 2 , but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn 2+ chelator. The present study indicates that the basal levels of extracellular Zn 2+ , which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently.
Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; koike, Yuta; Osawa, Misa; Takeda, Atsushi
2017-01-01
Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca2+ and Mg2+, but not other divalent cations such as Zn2+, has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl2, indicating that extracellular Zn2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl2, compared to perfusion with ACSF without Zn2+, but attenuated by perfusion with ACSF containing 100 nM ZnCl2. Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl2, but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn2+ chelator. The present study indicates that the basal levels of extracellular Zn2+, which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently. PMID:28211543
Resting State Correlates of Subdimensions of Anxious Affect
Bijsterbosch, Janine; Smith, Stephen; Forster, Sophie; John, Oliver P.; Bishop, Sonia J.
2014-01-01
Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal–posterior cingulate cortex–precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity. PMID:24168223
Effects of euthanasia on brain physiological activities monitored in real-time.
Mayevsky, Avraham; Barbiro-Michaely, Efrat; Ligeti, Laszlo; MacLaughlin, Alan C
2002-10-01
Animal experimentation is terminated by the euthanasia procedure in order to avoid pain and minimize suffering. Very little is known about the real time physiological changes taking place in the brain of animals during the euthanasia. Since there is no way to evaluate the suffering of animals under euthanasia, it is assumed that objective physiological changes taking place could serve as a good way to compare various types of euthanasia procedures. In the present study we compared the effect of euthanasia induced by i. v. injection of concentrated KCL to that of Taxan T-61 (a standard mixture used by veterinarians). The responses of the cat brain were evaluated by monitoring the hemodynamic (CBF), metabolic (NADH redox state), electrical (EcoG) and extracellular ion levels, as an indicator to the ionic homeostasis.
Neuroscience in its context. Neuroscience and psychology in the work of Wilhelm Wundt.
Ziche, P
1999-01-01
Wilhelm Wundt (1832-1920), the first to establish an Institute devoted exclusively to psychological research in Germany, started his career as a (neuro)physiologist. He gradually turned into a psychologist in the 1860's and 1870's, at a time when neuroscience had to deal with the problem of giving an adequate physiological interpretation of the data accumulated by neuroanatomy. Neither the functional interpretation of brain morphology, nor the options provided by the reflex model seemed acceptable to Wundt. In his Physiological Psychology, first published in 1874, Wundt adds another aspect to this discussion by showing that psychology may help, and indeed is required, to clarify some of the most controversial problems in brain research. He thus became a key figure in neuroscience's struggle to locate itself within the various research traditions. The following theses will be argued for: 1. Wundt's turn to psychology resulted from his view that the methodological basis of physiological brain research of the time was unsatisfactory. 2. Psychology, in its attempt to solve these problems, implied a new conception of an interaction between experimental and theoretical brain research. 3. Wundt tried to demonstrate the necessity of psychological considerations for experimental brain research. These points are discussed with reference to Wundt's treatment of the localization of functions in the brain. According to Wundt, psychology can show, by analyzing the complex structure of intellect and will, that mental phenomena can be realized in the brain only in the form of complex interations of the elements of the brain. The results of the psychological considerations imply that a strict localizations cannot be correct; but they are also turned against the conception of a complete functional equivalence of the various parts of the cortext. For Wundt, a reconstruction of brain processes cannot start with neurones, but only with patterns of a functional organization of brain activity. Wundt accordingly proposes a functional interpretation on the level of the physiology of nervous tissue as well as for the over-all organization of the brain.
Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B
2016-02-01
Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists.
Martins, Alexandre; Mello-Carpes, Pâmela Billig
2014-01-01
Brain Awareness Week (BAW) is a global campaign aimed at raising awareness of neuroscience and the progress and benefits of brain research. Our proposal was to include undergraduate physiology students in the organization and presentation of BAW activities. In this sense, we proposed the BAW as a neurophysiology teaching strategy. BAW 2013 occurred between March 11-17, and physiology students in the Nursing, Pharmacy and Physiotherapy programs of our university were involved in the organization of and participation in the activities. To evaluate student perceptions of their participation, a questionnaire was used to establish whether their involvement increased their interest in physiology/neuroscience. Our results indicated that this strategy was successful and increased the students' interest in neuroscience and physiology. In addition a survey of undergraduate and graduate students participating in BAW established their interest in the various activities available. The attention and reaction time workshop and the neuroanatomy workshop were the most popular of the eight activities available.
Protein Tyrosine Nitration: Role in Aging.
Chakravarti, Bulbul; Chakravarti, Deb N
2017-01-01
Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) are generated during aerobic metabolism in living organisms. Although protein damage and functional modification by ROS have been demonstrated in details, fewer studies have been reported on protein damage by RNS and its implication in the aging process. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review article is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of RNS induced post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process. Published studies on the role of RNS in age related functional alteration of various organs/ tissues were critically reviewed and evaluated. Covalent modification of various proteins by tyrosine nitration is associated with modification of biological functions of various organs/tissues such as skeletal muscle, heart, brain and liver due to aging. This information will be helpful to further investigate the interplay of different biochemical pathways and networks involved in the tyrosine nitration of various proteins due to aging with the ultimate goal to prevent the detrimental effects of RNS on the functional activities of these proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
[The battery of tests for behavioral phenotyping of aging animals in the experiment].
Gorina, Ya V; Komleva, Yu K; Lopatina, O L; Volkova, V V; Chernykh, A I; Shabalova, A A; Semenchukov, A A; Olovyannikova, R Ya; Salmina, A B
2017-01-01
The purpose of the study was to develop a battery of tests to study social and cognitive impairments for behavioral phenotyping of aging experimental animals with physiological neurodegeneration. Object of the study were outbred CD1 mice in the following groups: 1st group - 12-month old male mice (physiological aging); 2nd group - 2-month old male mice (control group). Social recognition test, elevated plus maze test (EPM), open field test, light-dark box test, and Fear conditioning protocol were used to estimate the neurological status of experimental animals. We found that aging male mice in a contrast to young ones have demonstrated lower social interest to female mice in the social recognition task. EPM and light-dark box tests showed increased level of anxiety in the group of aged mice comparing to the control group. Fear conditioning protocol revealed impairment of associative learning and memory in the group of aged mice, particularly, fear memory consolidation was dramatically suppressed. Analysis of behavioral factors, social interactions and anxiety level in the experimental mice has confirmed age-related neurodegeneration in the 1st group. We found that the most informative approach to identifying neurological impairments in aging mice (social interaction deficit, limitation of interests, increased level of anxiety) should be based on the open field test light-dark box test, and Fear conditioning protocol. Such combination allows obtaining new data on behavioral alterations in the age-associated of neurodegeneration and to develop novel therapeutic strategies for the treatment of age-related brain pathology.
Lixie, Erin; Edgeworth, Jameson; Shamir, Lior
2015-01-01
While many studies show a correlation between chronological age and physiological indicators, the nature of this correlation is not fully understood. To perform a comprehensive analysis of the correlation between chronological age and age-related physiological indicators. Physiological aging scores were deduced using principal component analysis from a large dataset of 1,227 variables measured in a cohort of 4,796 human subjects, and the correlation between the physiological aging scores and chronological age was assessed. Physiological age does not progress linearly or exponentially with chronological age: a more rapid physiological change is observed around the age of 55 years, followed by a mild decline until around the age of 70 years. These findings provide evidence that the progression of physiological age is not linear with that of chronological age, and that periods of mild change in physiological age are separated by periods of more rapid aging. © 2015 S. Karger AG, Basel.
Dedrick, D F; Sherer, Y D; Biebuyck, J F
1975-06-01
A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.
How heart rate variability affects emotion regulation brain networks.
Mather, Mara; Thayer, Julian
2018-02-01
Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.
Grizzanti, John; Lee, Hyoung-Gon; Camins, Antoni; Pallas, Merce; Casadesus, Gemma
2017-01-01
Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non–insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease. PMID:27923524
Effect of age, diet, and tissue type on PCr response to creatine supplementation.
Solis, Marina Yazigi; Artioli, Guilherme Giannini; Otaduy, Maria Concepción García; Leite, Claudia da Costa; Arruda, Walquiria; Veiga, Raquel Ramos; Gualano, Bruno
2017-08-01
Creatine/phosphorylcreatine (PCr) responses to creatine supplementation may be modulated by age, diet, and tissue, but studies assessing this possibility are lacking. Therefore we aimed to determine whether PCr responses vary as a function of age, diet, and tissue. Fifteen children, 17 omnivorous and 14 vegetarian adults, and 18 elderly individuals ("elderly") participated in this study. Participants were given placebo and subsequently creatine (0.3 g·kg -1 ·day -1 ) for 7 days in a single-blind fashion. PCr was measured through phosphorus magnetic resonance spectroscopy ( 31 P-MRS) in muscle and brain. Creatine supplementation increased muscle PCr in children ( P < 0.0003) and elderly ( P < 0.001), whereas the increase in omnivores did not reach statistically significant difference ( P = 0.3348). Elderly had greater PCr increases than children and omnivores ( P < 0.0001 for both), whereas children experienced greater PCr increases than omnivores ( P = 0.0022). In relation to diet, vegetarians ( P < 0.0001), but not omnivores, had significant increases in muscle PCr content. Brain PCr content was not affected by creatine supplementation in any group, and delta changes in brain PCr (-0.7 to +3.9%) were inferior to those in muscle PCr content (+10.3 to +27.6%; P < 0.0001 for all comparisons). PCr responses to a standardized creatine protocol (0.3 g·kg -1 ·day -1 for 7 days) may be affected by age, diet, and tissue. Whereas creatine supplementation was able to increase muscle PCr in all groups, although to different extents, brain PCr was shown to be unresponsive overall. These findings demonstrate the need to tailor creatine protocols to optimize creatine/PCr accumulation both in muscle and in brain, enabling a better appreciation of the pleiotropic properties of creatine. NEW & NOTEWORTHY A standardized creatine supplementation protocol (0.3 g·kg -1 ·day -1 for 7 days) effectively increased muscle, but not brain, phosphorylcreatine. Older participants responded better than younger participants whereas vegetarians responded better than omnivores. Responses to supplementation are thus dependent on age, tissue, and diet. This suggests that a single "universal" protocol, originally designed for increasing muscle creatine in young individuals, may lead to heterogeneous muscle responses in different populations or even no responses in tissues other than skeletal muscle. Copyright © 2017 the American Physiological Society.
Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction.
Yavari, Fatemeh; Jamil, Asif; Mosayebi Samani, Mohsen; Vidor, Liliane Pinto; Nitsche, Michael A
2018-02-01
Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Babizhayev, Mark A; Yegorov, Yegor E
2015-01-01
Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (β-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the oral supplement by athletes to achieve the fine sporting art results due to the buffering activities of carnosine and its related imidazole- containing compounds which contribute to the maintenance of the acid-base balance in the acting muscles. This work originally emphasizes that overall data indicate the signaling activities of carnosine in skeletal and cardiac muscles switching on the mechanisms of exercise-induced telomere protection and point to the stress response and growth/cellular proliferation pathways as high-priority candidates for the ongoing studies and therapeutic concepts. The therapeutic interventions utilizing the specific oral formulation (Can-C Plus), timing dosing and pharmaco-nutritional boost of imidazolecontaining dipeptides can maintain health, enhance physical exercise performance and prevent aging. The patented therapeutic concept protects the existence of the interesting physiological major activities, better controls and therapeutic treatments for aging/age-related disorders (including age-related loss of muscle mass and muscle function) using carnosine dipeptide for cellular rejuvenation and manipulating telomeres and enzyme telomerase activity that may reduce some of the physiological declines that accompany aging.
Phenylethylamine N-methylation by human brain preparations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosnaim, A.D.; Callaghan, O.H.; Wolf, M.E.
Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 /sup -5/M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matchedmore » controls. The formation of increased amounts of (/sup 3/H-) or (/sup 14/C-) N-methyl PEA when incubating either cold amine and /sup 3/H-SAM or 1-/sup 14/C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results.« less
Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; O'Brien, Haley D.; Meyer, Leith C. R.; Fuller, Andrea
2017-01-01
Abstract Some mammals have the ability to lower their hypothalamic temperature below that of carotid arterial blood temperature, a process termed selective brain cooling. Although the requisite anatomical structure that facilitates this physiological process, the carotid rete, is present in members of the Cetartiodactyla, Felidae and Canidae, the carotid rete is particularly well developed in the artiodactyls, e.g. antelopes, cattle, sheep and goats. First described in the domestic cat, the seemingly obvious function initially attributed to selective brain cooling was that of protecting the brain from thermal damage. However, hyperthermia is not a prerequisite for selective brain cooling, and selective brain cooling can be exhibited at all times of the day, even when carotid arterial blood temperature is relatively low. More recently, it has been shown that selective brain cooling functions primarily as a water-conservation mechanism, allowing artiodactyls to save more than half of their daily water requirements. Here, we argue that the evolutionary success of the artiodactyls may, in part, be attributed to the evolution of the carotid rete and the resulting ability to conserve body water during past environmental conditions, and we suggest that this group of mammals may therefore have a selective advantage in the hotter and drier conditions associated with current anthropogenic climate change. A better understanding of how selective brain cooling provides physiological plasticity to mammals in changing environments will improve our ability to predict their responses and to implement appropriate conservation measures. PMID:29383253
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
A new look at cerebrospinal fluid circulation
2014-01-01
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation. PMID:24817998
Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z
2017-01-01
Osteosarcopenic obesity, the combined deterioration of bone, muscle and fat tissues, could become the ultimate trajectory of aging. Aging stem cells are deregulated by low-grade chronic inflammation and possibly by diet. The metabolic shift of stem cells towards adipogenesis results in osteo obesity, sarco obesity and obesity. Macronutrients have numerous physiological functions but are regarded mainly for their energy contribution. Currently, no nutritional causes or treatment/prevention guidelines exist for osteosarcopenic obesity. The aim of this review is to assemble the evidence to elucidate if the macronutrient composition of the Western diet has an effect on the development of osteosarcopenic obesity. In view of the role of brain in locomotion a section examining the macronutrients as possible modulators of brain functioning was included. An extensive literature search of PubMed and Medline was conducted for human data using combinations and synonyms of osteoporosis, sarcopenia and obesity, and energy, carbohydrate, protein and lipid, and brain. US National Health and Nutrition Examination Survey (NHANES) food intake data from 2002-2012 were obtained and transposed to Microsoft Excel for analysis. NHANES data showed that energy imbalances in aging, excess high glycemic carbohydrate, lower protein intakes and low long chain polyunsaturated fat intakes may contribute to osteosarcopenic obesity. 135 articles were included in the review. Early humans probably consumed a diet closer to what the human body was designed for; however, we do not know the ideal energy and macronutrient proportions for optimal health or for preventing/treating aging and osteosarcopenic obesity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Working Memory in Bisphenol-A Treated Middle-Aged Ovariectomized Rats
Neese, Steven L.; Bandara, Suren B.; Schantz, Susan L.
2014-01-01
Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8–10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats were implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. PMID:23339879
Working memory in bisphenol-A treated middle-aged ovariectomized rats.
Neese, Steven L; Bandara, Suren B; Schantz, Susan L
2013-01-01
Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8-10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats was implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. Copyright © 2013. Published by Elsevier Inc.
Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C
2013-09-01
Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.
Investigating the physiology of brain activation with MRI
NASA Astrophysics Data System (ADS)
Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.
2004-04-01
Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).
Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji
2016-05-01
Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.
NASA Astrophysics Data System (ADS)
Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; do Carmo, M. G. T.; Moreira, S.; Rocha, M. S.; Martinez, A. M. B.; Lopes, R. T.
2006-11-01
The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats ( n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, São Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.
Wiring Pathways to Replace Aggression
ERIC Educational Resources Information Center
Bath, Howard
2006-01-01
The previous article in this series introduced the triune brain, the three components of which handle specialized life tasks. The survival brain, or brain stem, directs automatic physiological functions, such as heartbeat and breathing, and mobilizes fight/flight behaviour in times of threat. The emotional (or limbic) brain activates positive or…
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.
Davarpanah Jazi, Shirin; Modolo, Julien; Baker, Cadence; Villard, Sebastien; Legros, Alexandre
2017-11-24
Humans are surrounded by sources of daily exposure to power-frequency (60 Hz in North America) magnetic fields (MFs). Such time-varying MFs induce electric fields and currents in living structures which possibly lead to biological effects. The present pilot study examined possible extremely low frequency (ELF) MF effects on human neuromotor control in general, and physiological postural tremor and electroencephalography (EEG) in particular. Since the EEG cortical mu-rhythm (8-12 Hz) from the primary motor cortex and physiological tremor are related, it was hypothesized that a 60 Hz MF exposure focused on this cortical region could acutely modulate human physiological tremor. Ten healthy volunteers (age: 23.8 ± 4 SD) were fitted with a MRI-compatible EEG cap while exposed to 11 MF conditions (60 Hz, 0 to 50 mT rms , 5 mT rms increments). Simultaneously, physiological tremor (recorded from the contralateral index finger) and EEG (from associated motor and somatosensory brain regions) were measured. Results showed no significant main effect of MF exposure conditions on any of the analyzed physiological tremor characteristics. In terms of EEG, no significant effects of the MF were observed for C1, C3, C5 and CP1 electrodes. However, a significant main effect was found for CP3 and CP5 electrodes, both suggesting a decreased mu-rhythm spectral power with increasing MF flux density. This is however not confirmed by Bonferroni corrected pairwise comparisons. Considering both EEG and tremor findings, no effect of the MF exposure on human motor control was observed. However, MF exposure had a subtle effect on the mu-rhythm amplitude in the brain region involved in tactile perception. Current findings are to be considered with caution due to the small size of this pilot work, but they provide preliminary insights to international agencies establishing guidelines regarding electromagnetic field exposure with new experimental data acquired in humans exposed to high mT-range MFs.
Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.
2016-01-01
Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503
Management to optimize organ procurement in brain dead donors.
Mascia, L; Mastromauro, I; Viberti, S; Vincenzi, M; Zanello, M
2009-03-01
The demand for donor organs continues to exceed the number of organs available for transplantation. Many reasons may account for this discrepancy, such as the lack of consent, the absence of an experienced coordinator team able to solve logistical problems, the use of strict donor criteria, and suboptimal, unstandardized critical care management of potential organ donors. This has resulted in efforts to improve the medical care delivered to potential organ donors, so as to reduce organ shortages, improve organ procurement, and promote graft survival. The physiological changes that follow brain death entail a high incidence of complications jeopardizing potentially transplantable organs. Adverse events include cardiovascular changes, endocrine and metabolic disturbances, and disruption of internal homeostasis. Brain death also upregulates the release of pro-inflammatory molecules. Recent findings support the hypothesis that a preclinical lung injury characterized by an enhanced inflammatory response is present in potential donors and may predispose recipients to an adverse clinical prognosis following lung transplantation. In clinical practice, hypotension, diabetes insipidus, relative hypothermia, and natremia are more common than disseminated intravascular coagulation, cardiac arrhythmias, pulmonary oedema, acute lung injury, and metabolic acidosis. Strategies for the management of organ donors exist and consist of the normalization of donor physiology. Management has been complicated by the recent use of ''marginal'' donors and donors of advanced age or with ''extended'' criteria. Current guidelines suggest that the priority of critical care management for potential organ donors should be shifted from a ''cerebral protective'' strategy to a multimodal strategy aimed to preserve peripheral organ function.
MMP-9 in translation: from molecule to brain physiology, pathology, and therapy.
Vafadari, Behnam; Salamian, Ahmad; Kaczmarek, Leszek
2016-10-01
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue. © 2016 International Society for Neurochemistry.
Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Yoo, Miyoung; Lee, Sanghee; Kim, Chul Jung; Yoon, Yeo Sung; Hwang, In Koo
2014-06-01
Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.
Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Yoo, Miyoung; Lee, Sanghee; Kim, Chul Jung; Yoon, Yeo Sung
2014-01-01
Abstract Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus. PMID:24712702
Stanley, Molly; Macauley, Shannon L.; Caesar, Emily E.; Koscal, Lauren J.; Moritz, Will; Robinson, Grace O.; Roh, Joseph; Keyser, Jennifer; Jiang, Hong
2016-01-01
Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment. PMID:27852778
Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G
2016-09-01
To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.
Sleep in adolescence: physiology, cognition and mental health
Tarokh, Leila; Saletin, Jared M.; Carskadon, Mary A.
2016-01-01
Sleep is a core behavior of adolescents, consuming up to a third or more of each day. As part of this special issue on the adolescent brain, we review changes to sleep behaviors and sleep physiology during adolescence with a particular focus on the sleeping brain. We posit that brain activity during sleep may provide a unique window onto adolescent cortical maturation and compliment waking measures. In addition, we review how sleep actively supports waking cognitive functioning in adolescence. Though this review is focused on sleep in healthy adolescents, the striking comorbidity of sleep disruption with nearly all psychiatric and developmental disorders (for reviews see 1,2) further highlights the importance of understanding the determinants and consequences of adolescent sleep for the developing brain. Figure 1 illustrates the overarching themes of our review, linking brain development, sleep development, and behavioral outcomes. PMID:27531236
Samuels, E. R; Szabadi, E
2008-01-01
The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system. PMID:19506724
Porges, Eric C; Woods, Adam J; Edden, Richard A E; Puts, Nicolaas A J; Harris, Ashley D; Chen, Huaihou; Garcia, Amanda M; Seider, Talia R; Lamb, Damon G; Williamson, John B; Cohen, Ronald A
2017-01-01
Gamma-aminobutyric acid (GABA), the brain's principal inhibitory neurotransmitter, has been associated with perceptual and attentional functioning. Recent application of magnetic resonance spectroscopy (MRS) provides in vivo evidence for decreasing GABA concentrations during adulthood. It is unclear, however, how age-related decrements in cerebral GABA concentrations contribute to cognitive decline, or whether previously reported declines in cerebral GABA concentrations persist during healthy aging. We hypothesized that participants with higher GABA concentrations in the frontal cortex would exhibit superior cognitive function and that previously reported age-related decreases in cortical GABA concentrations continue into old age. We measured GABA concentrations in frontal and posterior midline cerebral regions using a Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) 1 H-MRS approach in 94 older adults without history or clinical evidence of mild cognitive impairment or dementia (mean age, 73 years). We administered the Montreal Cognitive Assessment to assess cognitive functioning. Greater frontal GABA concentrations were associated with superior cognitive performance. This relation remained significant after controlling for age, years of education, and brain atrophy. GABA concentrations in both frontal and posterior regions decreased as a function of age. These novel findings from a large, healthy, older population indicate that cognitive function is sensitive to cerebral GABA concentrations in the frontal cortex, and GABA concentration in frontal and posterior regions continue to decline in later age. These effects suggest that proton MRS may provide a clinically useful method for the assessment of normal and abnormal age-related cognitive changes and the associated physiological contributors.
DOE R&D Accomplishments Database
Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.
1978-01-01
Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.
Uribe, Valeria; Wong, Bibiana K Y; Graham, Rona K; Cusack, Corey L; Skotte, Niels H; Pouladi, Mahmoud A; Xie, Yuanyun; Feinberg, Konstantin; Ou, Yimiao; Ouyang, Yingbin; Deng, Yu; Franciosi, Sonia; Bissada, Nagat; Spreeuw, Amanda; Zhang, Weining; Ehrnhoefer, Dagmar E; Vaid, Kuljeet; Miller, Freda D; Deshmukh, Mohanish; Howland, David; Hayden, Michael R
2012-05-01
Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.
NASA Astrophysics Data System (ADS)
Oziel, M.; Hjouj, M.; Gonzalez, C. A.; Lavee, J.; Rubinsky, B.
2016-02-01
Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy.
Stability of auditory discrimination and novelty processing in physiological aging.
Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele
2013-01-01
Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.
Curcuma longa L. extract improves the cortical neural connectivity during the aging process
Flores, Gonzalo
2017-01-01
Turmeric or Curcuma is a natural product that has anti-inflammatory, antioxidant and anti-apoptotic pharmacological properties. It can be used in the control of the aging process that involves oxidative stress, inflammation, and apoptosis. Aging is a physiological process that affects higher cortical and cognitive functions with a reduction in learning and memory, limited judgment and deficits in emotional control and social behavior. Moreover, aging is a major risk factor for the appearance of several disorders such as cerebrovascular disease, diabetes mellitus, and hypertension. At the brain level, the aging process alters the synaptic intercommunication by a reduction in the dendritic arbor as well as the number of the dendritic spine in the pyramidal neurons of the prefrontal cortex, hippocampus and basolateral amygdala, consequently reducing the size of these regions. The present review discusses the synaptic changes caused by the aging process and the neuroprotective role the Curcuma has through its anti-inflammatory, antioxidant and anti-apoptotic actions PMID:28761413
The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice
Pasinetti, Giulio Maria; Singh, Risham; Westfall, Susan; Herman, Francis; Faith, Jeremiah; Ho, Lap
2018-01-01
A growing body of experimental data suggests that microbes in the gut influence behavior and can alter brain physiology and neurochemistry. Although promising, researchers are only starting to understand the potential of the gut microbiota for use in neurological disease. Recent evidence demonstrated that gastrointestinal activities are linked to mood disorders such as anxiety, depression, and most recently, cognitive functions in age-related neurodegenerative disorders. Studies from our group and others are uncovering new evidence suggesting that the gut microbiota plays a crucial role in the metabolism and bioavailability of certain dietary compounds and synthetic drugs. Based on this evidence, this review article will discuss the implications of the gut microbiota in mechanisms of bioavailability and biotransformation with an emphasis on dietary polyphenol compounds. This will be followed by a survey of ongoing innovative research identifying the ability of individual gut bacteria to enhance the bioavailability of gut-derived, brain-penetrating, bioactive polyphenol metabolites that ultimately influence mechanisms associated with the promotion of resilience against psychological and cognitive impairment in response to stress. Lastly, current research initiatives aimed at promoting the generation of brain bioactive polyphenol metabolites by specialized gut microbes will be discussed, specifically the use of gnotobiotic mice to develop bioengineered second generation probiotics. We propose that leveraging the gut microbial ecosystem to generate brain targeted bioactive metabolites from dietary polyphenols can attenuate lifestyle risk factors and promote resilience against age-related cognitive decline. PMID:29660942
A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.
Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David
2017-07-14
CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.
Infections, inflammation and epilepsy
Vezzani, Annamaria; Fujinami, Robert S.; White, H. Steve; Preux, Pierre-Marie; Blümcke, Ingmar; Sander, Josemir W.; Löscher, Wolfgang
2016-01-01
Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled “epilepsy.” Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered. PMID:26423537
A neurologist looks at mind and brain: "the enchanted loom".
Hansotia, Phiroze
2003-10-01
For a long time, before we developed an appreciation of the neuroanatomy and neurophysiology of the brain, there was uncertainty as to the nature and source of the human mind. Philosophers linked the mind to mythical "humors" that controlled the human body, and others speculated that the mind was associated with "life-force" or soul. Few felt that there was a relation between the human mind and brain, but they had to wait for the Age of Enlightenment and scientific discovery in the 18th and 19th centuries to establish a clear association between the two. Three centuries ago Rene Descartes described the mind as an extracorporeal entity that was expressed through the pineal gland. Descartes was wrong about the pineal, but the debate he set off regarding the relationship between mind and brain rages on. This review looks at the history of speculation on the mind and the development of ideas that have led to our present understanding of this phenomenon. The basic anatomy and physiology of the brain is reviewed to help us understand the brain's association with the complex function we call mind. This is followed by a look at some syndromes that may result when part of the brain is damaged-the parietal lobe is arbitrarily selected as an example-and the resulting effect on the subject's mind. This assists us in understanding the association of mind and brain, and also to better understanding its components, behavior, function and dysfunction.
Physiological responses induced by pleasant stimuli.
Watanuki, Shigeki; Kim, Yeon-Kyu
2005-01-01
The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.
Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"
ERIC Educational Resources Information Center
Baslow, Morris H.; Guilfoyle, David N.
2007-01-01
Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…
Brain Matters: Translating Research into Classroom Practice.
ERIC Educational Resources Information Center
Wolfe, Patricia
Maintaining that educators need a functional understanding of the brain and how it operates in order to teach effectively and to critically analyze the vast amount of neuroscientific information being published, this book provides information on brain-imaging techniques and the anatomy and physiology of the brain. The book also introduces a model…
Analysis of lipid raft molecules in the living brain slices.
Kotani, Norihiro; Nakano, Takanari; Ida, Yui; Ito, Rina; Hashizume, Miki; Yamaguchi, Arisa; Seo, Makoto; Araki, Tomoyuki; Hojo, Yasushi; Honke, Koichi; Murakoshi, Takayuki
2017-08-24
Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lange, K. A.
1980-01-01
Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.
Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim; Habgood, Mark D; Bauer, Hannelore; Bauer, Hans-Christian; Lindsay, Helen; Wakefield, Matthew J; Strazielle, Nathalie; Kratzer, Ingrid; Møllgård, Kjeld; Ghersi-Egea, Jean-François; Saunders, Norman R
2013-01-01
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases
Smith, J. A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S.
2015-01-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs—or specific EV cargoes—are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases. PMID:24973266
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases.
Smith, J A; Leonardi, T; Huang, B; Iraci, N; Vega, B; Pluchino, S
2015-04-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.
Bioreactivity: Studies on a Simple Brain Stem Reflex in Behaving Animals
1990-08-10
problem in attempting to understand complex physiological processes, such as brain neuromodulation , or complex behavioral processes, such as arousal...containing only one synapse in brain, and receives dense inputs from two neurochemical systems important in neuromodulation and arousal. Initial
Bioreactivity: Studies on a Simple Brain Stem Reflex in Behaving Animals
1990-01-04
attempting to understand complex physiological processes, such as brain neuromodulation , or complex behavioral processes, such as arousal, is finding a...one synapse in brain, and receives dense inputs from two neurochemical systems important in neuromodulation and arousal. Initial pharmacologic studies
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
Growth and development of children with a special focus on sleep.
Danker-Hopfe, Heidi
2011-12-01
The first two decades of life are characterised complex biological processes involving growth and maturation as well as differentiation. The Central Nervous System (CNS) where among others internal and external stimuli are integrated and responses of the body are prepared starts to evolve quite early during ontogenesis. One of the complex behaviours, which are regulated by the brain, is the sleep-wake cycle. The discussion of age-related changes in sleep comprises changes at the physiological level (e.g. changes in the frequency and amplitude of EEG signal, as well as development and distribution of sleep stages), changes in the corresponding behaviour (e.g. changes in the absolute amount of sleep and its distribution in 24h perspective), and finally the subjective perception of sleep and sleep as a measure of well-being. Studies on the impact of a specific factor on sleep during childhood and adolescence have to consider chronological and biological age as well as sex as relevant biological parameters. Even when these factors are controlled for large interindividual differences persist, that is why prospective instead of cross-sectional approaches should be used whenever possible. Furthermore, it has to be distinguished between sleep assessed at the level of brain functioning (i.e. by polysomnography), which gives information on effects at the physiological level and at the level of self-assessment, which focuses on behaviour. Both, sleep at the subjective as well as at the objective level, can to a considerable degree be affected by life style factors, which hence have to be considered as potential confounders. Copyright © 2011 Elsevier Ltd. All rights reserved.
pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article
NASA Astrophysics Data System (ADS)
Perez Velazquez, Jose Luis
2005-12-01
Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.
Baslow, Morris H.
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525
Brain to bone: What is the contribution of the brain to skeletal homeostasis?
Idelevich, Anna; Baron, Roland
2018-05-16
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa. Copyright © 2018 Elsevier Inc. All rights reserved.
Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish.
Backström, Tobias; Winberg, Svante
2017-01-01
Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.
Cell fusion in the brain: two cells forward, one cell back.
Kemp, Kevin; Wilkins, Alastair; Scolding, Neil
2014-11-01
Adult stem cell populations, notably those which reside in the bone marrow, have been shown to contribute to several neuronal cell types in the rodent and human brain. The observation that circulating bone marrow cells can migrate into the central nervous system and fuse with, in particular, cerebellar Purkinje cells has suggested, at least in part, a potential mechanism behind this process. Experimentally, the incidence of cell fusion in the brain is enhanced with age, radiation exposure, inflammation, chemotherapeutic drugs and even selective damage to the neurons themselves. The presence of cell fusion, shown by detection of increased bi-nucleated neurons, has also been described in a variety of human central nervous system diseases, including both multiple sclerosis and Alzheimer's disease. Accumulating evidence is therefore raising new questions into the biological significance of cell fusion, with the possibility that it represents an important means of cell-mediated neuroprotection or rescue of highly complex neurons that cannot be replaced in adult life. Here, we discuss the evidence behind this phenomenon in the rodent and human brain, with a focus on the subsequent research investigating the physiological mechanisms of cell fusion underlying this process. We also highlight how these studies offer new insights into endogenous neuronal repair, opening new exciting avenues for potential therapeutic interventions against neurodegeneration and brain injury.
Hannigan, Caoimhe; Coen, Robert F; Lawlor, Brian A; Robertson, Ian H; Brennan, Sabina
2015-01-01
Population ageing is a global phenomenon that has characterised demographic trends during the 20th and 21st century. The rapid growth in the proportion of older adults in the population, and resultant increase in the incidence of age-related cognitive decline, dementia and Alzheimer's disease, brings significant social, economic and healthcare challenges. Decline in cognitive abilities represents the most profound threat to active and healthy ageing. Current evidence suggests that a significant proportion of cases of age-related cognitive decline and dementia may be preventable through the modification of risk factors including education, depressive symptomology, physical activity, social engagement and participation in cognitively stimulating activities. The NEIL Memory Research Unit cohort study was established to investigate factors related to brain health and the maintenance of cognitive function. A cohort of 1000 normally ageing adults aged 50 years and over are being recruited to participate in comprehensive assessments at baseline, and at follow-up once every 2 years. The assessment protocol comprises a comprehensive neuropsychological battery, some basic physical measures, psychosocial scales, questionnaire measures related to a range of health, lifestyle and behavioural factors, and a measure of resting state activity using electroencephalography (EEG). The NEIL Memory Research Unit cohort study will address key questions about brain health and cognitive ageing in the population aged 50+, with a particular emphasis on the influence of potentially modifiable factors on cognitive outcomes. Analyses will be conducted with a focus on factors involved in the maintenance of cognitive function among older adults, and therefore will have the potential to contribute significant knowledge related to key questions within the field of cognitive ageing, and to inform the development of public health interventions aimed at preventing cognitive decline and promoting active and healthy ageing.
Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases.
Gabathuler, Reinhard
2010-01-01
The central nervous system is protected by barriers which control the entry of compounds into the brain, thereby regulating brain homeostasis. The blood-brain barrier, formed by the endothelial cells of the brain capillaries, restricts access to brain cells of blood-borne compounds and facilitates nutrients essential for normal metabolism to reach brain cells. This very tight regulation of the brain homeostasis results in the inability of some small and large therapeutic compounds to cross the blood-brain barrier (BBB). Therefore, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. In this review, we will address the different approaches used to increase the transport of therapeutics from blood into the brain parenchyma. We will mainly concentrate on the physiologic approach which takes advantage of specific receptors already expressed on the capillary endothelial cells forming the BBB and necessary for the survival of brain cells. Among all the approaches used for increasing brain delivery of therapeutics, the most accepted method is the use of the physiological approach which takes advantage of the transcytosis capacity of specific receptors expressed at the BBB. The low density lipoprotein receptor related protein (LRP) is the most adapted for such use with the engineered peptide compound (EPiC) platform incorporating the Angiopep peptide in new therapeutics the most advanced with promising data in the clinic.
In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans.
Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R; Öz, Gülin
2015-02-01
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans
Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin
2015-01-01
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563
Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets.
Kawasaki, Hiroshi
2014-09-01
The brains of mammals such as carnivores and primates contain developed structures not found in the brains of mice. Uncovering the physiological importance, developmental mechanisms and evolution of these structures using carnivores and primates would greatly contribute to our understanding of the human brain and its diseases. Although the anatomical and physiological properties of the brains of carnivores and primates have been intensively examined, molecular investigations are still limited. Recently, genetic techniques that can be applied to carnivores and primates have been explored, and molecules whose expression patterns correspond to these structures were reported. Furthermore, to investigate the functional importance of these molecules, rapid and efficient genetic manipulation methods were established by applying electroporation to gyrencephalic carnivore ferrets. In this article, I review recent advances in molecular investigations of the brains of carnivores and primates, mainly focusing on ferrets (Mustela putorius furo). Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks
ERIC Educational Resources Information Center
Kleim, Jeffrey A.
2011-01-01
Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…
Concussion Awareness: Getting School Psychologists into the Game
ERIC Educational Resources Information Center
Davies, Susan C.
2011-01-01
A concussion is a serious injury--a mild traumatic brain injury (TBI)--that induces physiological disruption of brain function. A concussion is caused by a bump, blow, or jolt to the head or body. The sudden movement causes stretching and tearing of brain cells; cells become damaged and chemical changes occur within the brain. Concussions can lead…
Lebedev, Valery P; Malygin, A V; Kovalevski, A V; Rychkova, S V; Sisoev, V N; Kropotov, S P; Krupitski, E M; Gerasimova, L I; Glukhov, D V; Kozlowski, G P
2002-03-01
It is well known that deficit of endorphins plays an important role in disturbances of human psycho-physiological status. Previously, we revealed that brain endorphinergic structures have quasiresonance characteristics. On the basis of these data, a method of activation of the brain endorphinergic structures by means of noninvasive and rather selective transcranial electrostimulation (TES) as a kind of functional electrical stimulation (FES) was elaborated. New models of TES devices (TRANSAIR) were developed for indoor and outdoor usage. To increase the efficacy of TES, the frequency modulation according to normal distribution in the limits of the quasiresonance characteristics was put into operation. The blind and placebo-controlled (passive and active placebo) study was produced to estimate the TES effects on stress events and accompanied psycho-physiological and autonomic disturbances of different intensities on volunteers and patients in the following groups: everyday stress and fatigue; stress in regular military service and in field conditions; stress in the relatives of those lost in mass disaster; posttraumatic stress (thermal burns); and affective disorders in a postabstinence period. Some subjective verbal and nonverbal tests and objective tests (including heart rate variability) were used for estimation of the initial level of psycho-physiological status, which changes after TES sessions. It was demonstrated that fatigue, stress, and other accompanied psycho-physiological disturbances were significantly improved or abolished after 2-5 TES sessions. The TES effects were more pronounced in cases of heavier disturbances. In conclusion, activation of the brain endorphinergic structures by TES is an effective homeostatic method of FES that sufficiently improves quality of life.
Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS.
Drechsel, Derek A; Estévez, Alvaro G; Barbeito, Luis; Beckman, Joseph S
2012-11-01
Oxidative damage is a common and early feature of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and other neurodegenerative disorders. Dr. Mark Smith and his colleagues have built the case for oxidative stress being a primary progenitor rather than a secondary end-stage epiphenomenon of neurodegeneration. They proposed that reactive oxygen species contribute to the "age-related cascade of neurodegeneration," whereby accumulative oxidative damage with age promotes other characteristic pathological changes in afflicted brain regions, including protein aggregation, metabolic deficiencies, and inflammation. Nitric oxide (NO) likely plays a critical role in this age-related cascade. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through stimulating cyclic GMP synthesis. However, the same physiological concentrations of NO, relevant in cellular signaling, may also initiate and amplify oxidative damage by diffusion-limited reactions with superoxide (O(2)(•-)) to produce peroxynitrite (ONOO(-)). This is perhaps best illustrated in ALS where physiological levels of NO promote survival of motor neurons, but the same concentrations can stimulate motor neuron apoptosis and glial cell activation under pathological conditions. While these changes represent a complex mechanism involving multiple cell types in the pathogenesis of ALS, they also reveal general processes underlying neurodegeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.
2007-08-01
Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometricallymore » scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.« less
Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław
2017-08-01
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
High frequency oscillations are associated with cognitive processing in human recognition memory.
Kucewicz, Michal T; Cimbalnik, Jan; Matsumoto, Joseph Y; Brinkmann, Benjamin H; Bower, Mark R; Vasoli, Vincent; Sulc, Vlastimil; Meyer, Fred; Marsh, W R; Stead, S M; Worrell, Gregory A
2014-08-01
High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Environment and brain plasticity: towards an endogenous pharmacotherapy.
Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto
2014-01-01
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
ERIC Educational Resources Information Center
Sylwester, Robert
1982-01-01
This article, the last in a series about the human brain, focuses on the skin and its importance for the brain. Physiological functions of the skin, concerning touch and body protection, are explained, as well as its social role in nonverbal communication. Suggestions for student discussions are given. (PP)
Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs
2009-01-01
The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition. AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype. PMID:19250550
Reser, Jared Edward
2009-02-28
The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent.Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition.AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype.
Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio
2016-01-01
From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.
Falone, Stefano; Mirabilio, Alessandro; Carbone, Maria Cristina; Zimmitti, Vincenzo; Di Loreto, Silvia; Mariggiò, Maria Addolorata; Mancinelli, Rosa; Di Ilio, Carmine; Amicarelli, Fernanda
2008-01-01
Several studies suggest that extremely low-frequency magnetic fields (ELF-MFs) may enhance the free radical endogenous production. It is also well known that one of the unavoidable consequences of ageing is an overall oxidative stress-based decline in several physiological functions and in the general resistance to stressors. On the basis of these assumptions, the aim of this study was to establish whether the ageing process can increase susceptibility towards widely present ELF-MF-mediated pro-oxidative challenges. To this end, female Sprague-Dawley rats were continuously exposed to a sinusoidal 50 Hz, 0.1 mT magnetic field for 10 days. Treatment-induced changes in the major antioxidant protection systems and in the neurotrophic support were investigated, as a function of the age of the subjects. All analyses were performed in brain cortices, due to the high susceptibility of neuronal cells to oxidative injury. Our results indicated that ELF-MF exposure significantly affects anti-oxidative capability, both in young and aged animals, although in opposite ways. Indeed, exposed young individuals enhanced their neurotrophic signalling and anti-oxidative enzymatic defence against a possible ELF-MF-mediated increase in oxygen radical species. In contrast, aged subjects were not capable of increasing their defences in response to ELF-MF treatment but, on the contrary, they underwent a significant decrease in the major antioxidant enzymatic activities. In conclusion, our data seem to suggest that the exposure to ELF-MFs may act as a risk factor for the occurrence of oxidative stress-based nervous system pathologies associated with ageing.
Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study.
Vasta, Roberta; Cutini, Simone; Cerasa, Antonio; Gramigna, Vera; Olivadese, Giuseppe; Arabia, Gennarina; Quattrone, Aldo
2017-01-01
Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t -test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- ( p < 0.01, t = -3.67) and shape-single tasks ( p = 0.026, t = -2.54) as well as switching ( p = 0.026, t = -2.41) and repetition trials ( p = 0.012, t = -2.80). Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC ( p = 0.048, t = 2.94). In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC ( p = 0.01, β = -0.321) and of shape single-task in the sFG ( p = 0.003, β = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects.
Functions and Mechanisms of Sleep
Zielinski, Mark R.; McKenna, James T.; McCarley, Robert W.
2017-01-01
Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep. PMID:28413828
Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y
2015-12-01
To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.
Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia
2016-01-01
Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD. PMID:27733604
ERIC Educational Resources Information Center
Rubenzer, Ronald L.; Rubenzer, Donna O.
Designed to accompany an all-day "brain" workshop on neurological aspects of learning, the manual contains charts and illustrations depicting the role and function of the right and left hemispheres. Additional material addresses such topics as physiological evolution of the brain, disharmony between left/right brain functions, comparisons between…
Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna
2017-09-15
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of a model for whole brain learning of physiology.
Eagleton, Saramarie; Muller, Anton
2011-12-01
In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.
A shift to randomness of brain oscillations in people with autism.
Lai, Meng-Chuan; Lombardo, Michael V; Chakrabarti, Bhismadev; Sadek, Susan A; Pasco, Greg; Wheelwright, Sally J; Bullmore, Edward T; Baron-Cohen, Simon; Suckling, John
2010-12-15
Resting-state functional magnetic resonance imaging (fMRI) enables investigation of the intrinsic functional organization of the brain. Fractal parameters such as the Hurst exponent, H, describe the complexity of endogenous low-frequency fMRI time series on a continuum from random (H = .5) to ordered (H = 1). Shifts in fractal scaling of physiological time series have been associated with neurological and cardiac conditions. Resting-state fMRI time series were recorded in 30 male adults with an autism spectrum condition (ASC) and 33 age- and IQ-matched male volunteers. The Hurst exponent was estimated in the wavelet domain and between-group differences were investigated at global and voxel level and in regions known to be involved in autism. Complex fractal scaling of fMRI time series was found in both groups but globally there was a significant shift to randomness in the ASC (mean H = .758, SD = .045) compared with neurotypical volunteers (mean H = .788, SD = .047). Between-group differences in H, which was always reduced in the ASC group, were seen in most regions previously reported to be involved in autism, including cortical midline structures, medial temporal structures, lateral temporal and parietal structures, insula, amygdala, basal ganglia, thalamus, and inferior frontal gyrus. Severity of autistic symptoms was negatively correlated with H in retrosplenial and right anterior insular cortex. Autism is associated with a small but significant shift to randomness of endogenous brain oscillations. Complexity measures may provide physiological indicators for autism as they have done for other medical conditions. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
On the Evolution of the Mammalian Brain.
Torday, John S; Miller, William B
2016-01-01
Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes.
Shah, Ashish K; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel
2018-01-01
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Spatial vision in older adults: perceptual changes and neural bases.
McKendrick, Allison M; Chan, Yu Man; Nguyen, Bao N
2018-05-17
The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
Epigenetic impacts of endocrine disruptors in the brain☆
Walker, Deena M.; Gore, Andrea C.
2017-01-01
The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner. PMID:27663243
Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology
ERIC Educational Resources Information Center
Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne
2014-01-01
During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…
Hannesdóttir, Dagmar Kr; Doxie, Jacquelyn; Bell, Martha Ann; Ollendick, Thomas H; Wolfe, Christy D
2010-03-01
We investigated whether brain electrical activity during early childhood was associated with anxiety symptoms and emotion regulation during a stressful situation during middle childhood. Frontal electroencephalogram (EEG) asymmetries were measured during baseline and during a cognitive control task at 4 1/2 years. Anxiety and emotion regulation were assessed during a stressful situation at age 9 (speech task), along with measures of heart rate (HR) and heart rate variability (HRV). Questionnaires were also used to assess anxiety and emotion regulation at age 9. Results from this longitudinal study indicated that children who exhibited right frontal asymmetry in early childhood experienced more physiological arousal (increased HR, decreased HRV) during the speech task at age 9 and less ability to regulate their emotions as reported by their parents. Findings are discussed in light of the associations between temperament and development of anxiety disorders.
Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo
2017-08-01
[Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.
Golukhova, Elena Z.; Polunina, Anna G.; Lefterova, Natalia P.; Begachev, Alexey V.
2011-01-01
Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations. PMID:21776370
Resting-state functional magnetic resonance imaging: the impact of regression analysis.
Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi
2015-01-01
To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.
Recent neuroimaging techniques in mild traumatic brain injury.
Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L
2007-01-01
Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.
Age-specific absolute and relative organ weight distributions for B6C3F1 mice.
Marino, Dale J
2012-01-01
The B6C3F1 mouse is the standard mouse strain used in toxicology studies conducted by the National Cancer Institute (NCI) and the National Toxicology Program (NTP). While numerous reports have been published on growth, survival, and tumor incidence, no overall compilation of organ weight data is available. Importantly, organ weight change is an endpoint used by regulatory agencies to develop toxicity reference values (TRVs) for use in human health risk assessments. Furthermore, physiologically based pharmacokinetic (PBPK) models, which utilize relative organ weights, are increasingly being used to develop TRVs. Therefore, all available absolute and relative organ weight data for untreated control B6C3F1 mice were collected from NCI/NTP studies in order to develop age-specific distributions. Results show that organ weights were collected more frequently in NCI/NTP studies at 2-wk (60 studies), 3-mo (147 studies), and 15-mo (40 studies) intervals than at other intervals, and more frequently from feeding and inhalation than drinking water studies. Liver, right kidney, lung, heart, thymus, and brain weights were most frequently collected. From the collected data, the mean and standard deviation for absolute and relative organ weights were calculated. Results show age-related increases in absolute liver, right kidney, lung, and heart weights and relatively stable brain and right testis weights. The results suggest a general variability trend in absolute organ weights of brain < right testis < right kidney < heart < liver < lung < spleen < thymus. This report describes the results of this effort.
Metabolomic Analysis in Brain Research: Opportunities and Challenges
Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.
2016-01-01
Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656
Increased brain-predicted aging in treated HIV disease
Underwood, Jonathan; Caan, Matthan W.A.; De Francesco, Davide; van Zoest, Rosan A.; Leech, Robert; Wit, Ferdinand W.N.M.; Portegies, Peter; Geurtsen, Gert J.; Schmand, Ben A.; Schim van der Loeff, Maarten F.; Franceschi, Claudio; Sabin, Caroline A.; Majoie, Charles B.L.M.; Winston, Alan; Reiss, Peter; Sharp, David J.
2017-01-01
Objective: To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. Methods: A large sample of virologically suppressed HIV-positive adults (n = 162, age 45–82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18–90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age − chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. Results: HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (−0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Conclusion: Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. PMID:28258081
Increased brain-predicted aging in treated HIV disease.
Cole, James H; Underwood, Jonathan; Caan, Matthan W A; De Francesco, Davide; van Zoest, Rosan A; Leech, Robert; Wit, Ferdinand W N M; Portegies, Peter; Geurtsen, Gert J; Schmand, Ben A; Schim van der Loeff, Maarten F; Franceschi, Claudio; Sabin, Caroline A; Majoie, Charles B L M; Winston, Alan; Reiss, Peter; Sharp, David J
2017-04-04
To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. A large sample of virologically suppressed HIV-positive adults (n = 162, age 45-82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18-90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age - chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (-0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Herbst, Eric A F; Holloway, Graham P
2015-02-15
Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice
Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.
2014-01-01
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473
Compact continuum brain model for human electroencephalogram
NASA Astrophysics Data System (ADS)
Kim, J. W.; Shin, H.-B.; Robinson, P. A.
2007-12-01
A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.
Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping
2017-01-01
Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas
2017-08-01
Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.
Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian
2016-07-01
Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. Copyright © 2016 Elsevier Inc. All rights reserved.
The dark side of high-frequency oscillations in the developing brain.
Le Van Quyen, Michel; Khalilov, Ilgam; Ben-Ari, Yehezkel
2006-07-01
Adult brain networks generate a wide range of oscillations. Some of these are behaviourally relevant, whereas others occur during seizures and other pathological conditions. This raises the question of how physiological oscillations differ from pathogenic ones. In this review, this issue is discussed from a developmental standpoint. Indeed, both epileptic and physiological high-frequency oscillations (HFOs) appear progressively during maturation, and it is therefore possible to determine how this program corresponds to maturation of the neuronal populations that generate these oscillations. We review here important differences in the development of neuronal populations that might contribute to their different oscillatory properties. In particular, at an early stage, the density of glutamatergic synapses is too low for physiological HFOs but an additional drive can be provided by excitatory GABA, triggering epileptic HFOs and the cascades involved in long-lasting epileptogenic transformations. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).
Paradoxical physiological transitions from aging to late life in Drosophila.
Shahrestani, Parvin; Quach, Julie; Mueller, Laurence D; Rose, Michael R
2012-02-01
In a variety of organisms, adulthood is divided into aging and late life, where aging is a period of exponentially increasing mortality rates and late life is a period of roughly plateaued mortality rates. In this study we used ∼57,600 Drosophila melanogaster from six replicate populations to examine the physiological transitions from aging to late life in four functional characters that decline during aging: desiccation resistance, starvation resistance, time spent in motion, and negative geotaxis. Time spent in motion and desiccation resistance declined less quickly in late life compared to their patterns of decline during aging. Negative geotaxis declined at a faster rate in late life compared to its rate of decline during aging. These results yield two key findings: (1) Late-life physiology is distinct from the physiology of aging, in that there is not simply a continuation of the physiological trends which characterize aging; and (2) late life physiology is complex, in that physiological characters vary with respect to their stabilization, deceleration, or acceleration in the transition from aging to late life. These findings imply that a correct understanding of adulthood requires identifying and appropriately characterizing physiology during properly delimited late-life periods as well as aging periods.
Paradoxical Physiological Transitions from Aging to Late Life in Drosophila
Quach, Julie; Mueller, Laurence D.; Rose, Michael R.
2012-01-01
Abstract In a variety of organisms, adulthood is divided into aging and late life, where aging is a period of exponentially increasing mortality rates and late life is a period of roughly plateaued mortality rates. In this study we used ∼57,600 Drosophila melanogaster from six replicate populations to examine the physiological transitions from aging to late life in four functional characters that decline during aging: desiccation resistance, starvation resistance, time spent in motion, and negative geotaxis. Time spent in motion and desiccation resistance declined less quickly in late life compared to their patterns of decline during aging. Negative geotaxis declined at a faster rate in late life compared to its rate of decline during aging. These results yield two key findings: (1) Late-life physiology is distinct from the physiology of aging, in that there is not simply a continuation of the physiological trends which characterize aging; and (2) late life physiology is complex, in that physiological characters vary with respect to their stabilization, deceleration, or acceleration in the transition from aging to late life. These findings imply that a correct understanding of adulthood requires identifying and appropriately characterizing physiology during properly delimited late-life periods as well as aging periods. PMID:22233126
Sex-dependent effects of letrozole on anxiety in middle-aged rats.
Borbélyová, Veronika; Domonkos, Emese; Csongová, Melinda; Kačmárová, Mária; Ostatníková, Daniela; Celec, Peter; Hodosy, Július
2017-12-01
Aromatase catalyzes the conversion of testosterone to estradiol and is involved in the physiological effects of sex hormones on brain function. Animal experiments have shown that the aromatase inhibitor, letrozole, can induce anxiety in young ovariectomized females that are used as a model of aging. Whether or not these effects would be similar in intact middle-aged animals is unknown. The aim of our study was to analyze the effects of letrozole on anxiety in middle-aged rats of both sexes. Fifteen month old male and female rats were treated daily with either letrozole or vehicle for 2 weeks. The elevated plus maze was used to test anxiety-like behaviour. Sex differences were found not only in plasma concentrations of testosterone but also in the effects of letrozole treatment on plasma testosterone (P<.05). The interaction between sex and treatment was also proven in locomotor activity (P<.05) and time spent in the open arms of the elevated plus maze (P<.05). Letrozole-treated male rats spent 95% less time in the open arms of the elevated plus maze than the control rats did (P<.05) suggesting an anxiogenic effect of aromatase inhibition. This difference was not found between letrozole-treated and vehicle-treated females. In contrast to previous experiments on young animals, letrozole seems to induce anxiety in male but not in female middle-aged rats. This sex-specific effect might be related to sex differences of oestrogen and androgen signalling in aging brains. These results should be taken into account in clinical applications of letrozole, especially in men. © 2017 John Wiley & Sons Australia, Ltd.
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P.; Giardini, Guido; Croisille, Pierre; Haller, Sven
2017-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport. PMID:28105018
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P; Giardini, Guido; Croisille, Pierre; Haller, Sven
2016-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods: This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results: The whole brain ADC significantly increased from baseline to arrival ( p = 0.005) and then significantly decreased at recovery ( p = 0.005) to lower values than at baseline ( p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality ( p = 0.01), cholesterol ( p = 0.009), c-reactive protein ( p = 0.04), sodium ( p = 0.01), and chloride ( p = 0.002) plasma level variations. Conclusions: These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.
Optical imaging characterizing brain response to thermal insult in injured rodent
NASA Astrophysics Data System (ADS)
Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.
2018-02-01
We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360
The physics of functional magnetic resonance imaging (fMRI).
Buxton, Richard B
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.
Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C
2017-02-01
The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-01-01
Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991
In pursuit of resilience: stress, epigenetics, and brain plasticity.
McEwen, Bruce S
2016-06-01
The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools. © 2016 New York Academy of Sciences.
Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E
2017-05-01
What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the hypothalamus of 3-month-old ISIAH rats, an increase in energetic activity and prevalence of excitatory over inhibitory neurotransmitters was noticed. The blood flow through the main arteries showed a positive correlation with glutamate and glutamine levels in the hypothalamus and a negative correlation with the hypothalamic GABA level. The blood pressure values were positively correlated with hypothalamic choline levels. Thus, the early development of stress-sensitive hypertension in the ISIAH rats is accompanied by considerable changes both in brain metabolite ratios and in the parameters of blood flow through the main arteries. © 2017 Institute of Cytology and Genetics (SB RAS). Experimental Physiology © 2017 The Physiological Society.
Deep brain stimulation for psychiatric disorders: where we are now.
Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L
2015-06-01
Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.
Eady, Tiffany N; Khoutorova, Larissa; Obenaus, Andre; Mohd-Yusof, Alena; Bazan, Nicolas G; Belayev, Ludmila
2014-02-01
Recently we have shown that docosahexaenoic acid complexed to albumin (DHA-Alb) is neuroprotective after experimental stroke in young rats. The purpose of this study was to determine whether treatment with DHA-Alb would be protective in aged rats after focal cerebral ischemia. Isoflurane/nitrous oxide-anesthetized normothermic (brain temperature 36-36.5°C) Sprague-Dawley aged rats (18-months old) received 2h middle cerebral artery occlusion (MCAo) by poly-l-lysine-coated intraluminal suture. The neurological status was evaluated during occlusion (60min) and on days 1, 2, 3 and 7 after MCAo; a grading scale of 0-12 was employed. DHA (5mg/kg), Alb (0.63g/kg), DHA-Alb (5mg/kg+0.63g/kg) or saline was administered i.v. 3h after onset of stroke (n=8-10 per group). Ex vivo T2-weighted imaging (T2WI) of the brains was conducted on an 11.7T MRI on day 7 and 3D reconstructions were generated. Infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/microphages), NeuN (neurons)-positive cells and SMI-71 (positive vessels) were counted in the cortex and striatum at the level of the central lesion. Physiological variables were entirely comparable between groups. Animals treated with DHA-Alb showed significantly improved neurological scores compared to vehicle rats; 33% improvement on day 1; 39% on day 2; 41% on day 3; and 45% on day 7. Total and cortical lesion volumes computed from T2WI were significantly reduced by DHA-Alb treatment (62 and 69%, respectively). In addition, treatment with DHA-Alb reduced cortical and total brain infarction while promoting cell survival. We conclude that DHA-Alb therapy is highly neuroprotective in aged rats following focal cerebral ischemia and has potential for the effective treatment of ischemic stroke in aged individuals. © 2013. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garell, P. C.; Granner, M. A.; Noh, M. D.; Howard, M. A.; Volkov, I. O.; Gillies, G. T.
1998-12-01
Scientific advancement is often spurred by the development of new instruments for investigation. Over the last several decades, many new instruments have been produced to further our understanding of the physiology of the human brain. We present a partial overview of some of these instruments, paying particular attention to those which record the electrical activity of the human brain. We preface the review with a brief primer on neuroanatomy and physiology, followed by a discussion of the latest types of apparatus used to investigate various properties of the central nervous system. A special focus is on microelectrode investigations that employ both intracellular and extracellular methods of recording the electrical activity of single neurons; another is on the modern electroencephalographic, electrocorticographic, and magnetoencephalographic methods used to study the spontaneous and evoked field potentials of the brain. Some examples of clinical applications are included, where appropriate.
Strategies for transporting nanoparticles across the blood-brain barrier.
Zhang, Tian-Tian; Li, Wen; Meng, Guanmin; Wang, Pei; Liao, Wenzhen
2016-02-01
The existence of blood-brain barrier (BBB) hampers the effective treatment of central nervous system (CNS) diseases. Almost all macromolecular drugs and more than 98% of small molecule drugs cannot pass the BBB. Therefore, the BBB remains a big challenge for delivery of therapeutics to the central nervous system. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now possible to design delivery systems that could cross the BBB effectively. Because of their advantageous properties, nanoparticles have been widely deployed for brain-targeted delivery. This review paper presents the current understanding of the BBB under physiological and pathological conditions, and summarizes strategies and systems for BBB crossing with a focus on nanoparticle-based drug delivery systems. In summary, with wider applications and broader prospection the treatment of brain targeted therapy, nano-medicines have proved to be more potent, more specific and less toxic than traditional drug therapy.
Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.
Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong
2018-02-07
Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.
Fragopoulou, Elizabeth; Panagiotakos, Demosthenes B; Pitsavos, Christos; Chrysohoou, Christina; Nomikos, Tzortzis; Evangelopoulos, Angelos; Katsagoni, Christina; Skoumas, John; Antonopoulou, Smaragdi; Stefanadis, Christodoulos
2010-05-01
Brain natriuretic peptides are widely used as biomarkers of cardiovascular diseases and mainly heart failure. However, these markers are often found to be high even in apparently healthy participants, and little is known about which factors contribute to physiological change in plasma brain natriuretic peptide (BNP) and amino-terminal pro-B-type natriuretic peptide (NTproBNP) concentration in general populations. In this study, a random subsample of the ATTICA study was used (486 individuals) and serum NT-proBNP was measured. Approximately 20% of the participants had no detectable NT-proBNP values. Women had higher values of NT-proBNP than men (median [25th-75th percentiles]: 30.2 [15.8-54.3] vs 14.9 [4.0-28.1] pg/mL, P < .001]. Amino-terminal pro-B-type natriuretic peptide values were positively correlated with age (rho = .140, P = .006) and inversely with body mass index (BMI; rho = -.142, P = .005), creatinine (Cr) clearance (rho = -.349, P < .001), and hemoglobin (rho = -.249, P < .001) values. Linear regression analysis revealed that gender is the main contributor of NT-proBNP levels, followed by age, BMI, and Cr values.
Sex steroids and neurogenesis.
Heberden, Christine
2017-10-01
The brain has long been known as a dimorphic organ and as a target of sex steroids. It is also a site for their synthesis. Sex steroids in numerous ways can modify cerebral physiology, and along with many processes adult neurogenesis is also modulated by sex steroids. This review will focus on the effects of the main steroids, estrogens, androgens and progestogens, and unveil some aspects of their partly disclosed mechanisms of actions. Gonadal steroids act on different steps of neurogenesis: cell proliferation seems to be increased by estrogens only, while androgens and progestogens favor neuronal renewal by increasing cell survival; differentiation is a common target. Aging is characterized by a cognitive deficiency, paralleled by a decrease in the rate of neuronal renewal and in the levels of circulating gonadal hormones. Therefore, the effects of gonadal hormones on the aging brain are important to consider. The review will also be expanded to related molecules which are agonists to the nuclear receptors. Sex steroids can modify adult neuronal renewal and the extensive knowledge of their actions on neurogenesis is essential, as it can be a leading pathway to therapeutic perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Gender effects on age-related changes in brain structure.
Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K
2000-01-01
Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.
The story of an exceptional serine protease, tissue-type plasminogen activator (tPA).
Hébert, M; Lesept, F; Vivien, D; Macrez, R
2016-03-01
The only acute treatment of ischemic stroke approved by the health authorities is tissue recombinant plasminogen activator (tPA)-induced thrombolysis. Under physiological conditions, tPA, belonging to the serine protease family, is secreted by endothelial and brain cells (neurons, astrocytes, microglia, oligodendrocytes). Although revascularisation induced by tPA is beneficial during a stroke, research over the past 20 years shows that tPA can also be deleterious for the brain parenchyma. Thus, in this review of the literature, after a brief history on the discovery of tPA, we reviewed current knowledge of mechanisms by which tPA can influence brain function in physiological and pathological conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The critical limiting temperature and selective brain cooling: neuroprotection during exercise?
Marino, Frank E
2011-01-01
There is wide consensus that long duration exercise in the heat is impaired compared with cooler conditions. A common observation when examining exercise tolerance in the heat in laboratory studies is the critical limiting core temperature (CLT) and the apparent attenuation in central nervous system (CNS) drive leading to premature fatigue. Selective brain cooling (SBC) purportedly confers neuroprotection during exercise heat stress by attenuating the increase in brain temperature. As the CLT is dependent on heating to invoke a reduction in efferent drive, it is thus not compatible with SBC which supposedly attenuates the rise in brain temperature. Therefore, the CLT and SBC hypotheses cannot be complimentary if the goal is to confer neuroprotection from thermal insult as it is counter-intuitive to selectively cool the brain if the purpose of rising brain temperature is to down-regulate skeletal muscle recruitment. This presents a circular model for which there is no apparent end to the ultimate physiological outcome; a 'hot brain' selectively cooled in order to reduce the CNS drive to skeletal muscle. This review will examine the postulates of the CLT and SBC with their relationship to the avoidance of a 'hot brain' which together argue for a theoretical position against neuroprotection as the key physiological strategy in exercise-induced hyperthermia.
Effects of yoga on brain waves and structural activation: A review.
Desai, Radhika; Tailor, Anisha; Bhatt, Tanvi
2015-05-01
Previous research has shown the vast mental and physical health benefits associated with yoga. Yoga practice can be divided into subcategories that include posture-holding exercise (asana), breathing (pranayama, Kriya), and meditation (Sahaj) practice. Studies measuring mental health outcomes have shown decreases in anxiety, and increases in cognitive performance after yoga interventions. Similar studies have also shown cognitive advantages amongst yoga practitioners versus non-practitioners. The mental health and cognitive benefits of yoga are evident, but the physiological and structural changes in the brain that lead to this remain a topic that lacks consensus. Therefore, the purpose of this study was to examine and review existing literature on the effects of yoga on brain waves and structural changes and activation. After a narrowed search through a set of specific inclusion and exclusion criteria, 15 articles were used in this review. It was concluded that breathing, meditation, and posture-based yoga increased overall brain wave activity. Increases in graygray matter along with increases in amygdala and frontal cortex activation were evident after a yoga intervention. Yoga practice may be an effective adjunctive treatment for a clinical and healthy aging population. Further research can examine the effects of specific branches of yoga on a designated clinical population. Copyright © 2015 Elsevier Ltd. All rights reserved.
State of the body in disorders of diurnal physiological rhythms and long-term hypokinesia
NASA Technical Reports Server (NTRS)
Razin, S. N.; Rychko, A. V.
1980-01-01
In order to study the effects of hypokinesia and circadian rhythm restructuring on the morphological and functional status of the hypothalamo-hypophysic-adrenal system, young male Wistar rats were placed in small cages for varying periods. The animals were decapitated and preparations were made from sections of the brain and adrenals and numerous destructive changes were noted in the investigated regions of the brain, indicating that the condition of these areas is directly affected by disruption of established rhythms in physiological processes.
ERIC Educational Resources Information Center
Healy, Jane M.
Noting that understanding a child's brain and the way it develops is the key to understanding learning, this book explores the relationship between brain physiology and children's learning processes. The book first translates the most current scientific theories on nervous-system development into practical information for parents. It then details…
Quantification of biological aging in young adults
Belsky, Daniel W.; Caspi, Avshalom; Houts, Renate; Cohen, Harvey J.; Corcoran, David L.; Danese, Andrea; Harrington, HonaLee; Israel, Salomon; Levine, Morgan E.; Schaefer, Jonathan D.; Sugden, Karen; Williams, Ben; Yashin, Anatoli I.; Poulton, Richie; Moffitt, Terrie E.
2015-01-01
Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies. PMID:26150497
Learning Disability Assessed through Audiologic and Physiologic Measures: A Case Study.
ERIC Educational Resources Information Center
Greenblatt, Edward R.; And Others
1983-01-01
The report describes a child with central auditory dysfunction, the first reported case where brain-stem dysfunction on audiologic tests were associated with specific electrophysiologic changes in the brain-stem auditory-evoked responses. (Author/CL)
Verdoux, H; van Os, J; Maurice-Tison, S; Gay, B; Salamon, R; Bourgeois, M
1998-02-09
It has been hypothesized that late adolescence and early adulthood might be a brain developmental stage favoring the clinical expression of psychotic symptoms in psychiatric or neurological diseases. The aim of the present survey was to examine the relationship between age and delusional ideation in a sample of subjects with no psychiatric disorder. The survey was carried out with the Aquitaine Sentinel Network of general practitioners. Consecutive practice attenders were invited to complete the PDI-21 (Peters Delusional Inventory 21 items), a self-report questionnaire designed to measure delusional ideation in the normal population. The study concerned 444 patients who had no lifetime history of psychiatric disorder and who completed the PDI-21. A principal component analysis of the PDI-21 items was performed in order to identify delusional dimensions. An age-related decrease in the likelihood to report delusional ideas was found, younger subjects scoring higher on most dimensions of delusional ideation, such as 'persecution', 'thought disturbance', 'grandiosity' and 'paranormal beliefs'. 'Religiosity' was the only dimension positively associated with age. The results suggest that there may be a physiological neurodevelopmental stage favouring the expression of psychosis proneness in normal subjects, and support the hypothesis that the association between age and positive psychotic symptoms in functional and organic psychoses may be linked to the interaction between normal brain maturational processes and cerebral abnormalities involved in the aetiology of functional and organic psychoses.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
Brain aging, Alzheimer's disease, and mitochondria
Swerdlow, Russell H.
2011-01-01
The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438
Umehara, Kenta; Sun, Yuchen; Hiura, Satoshi; Hamada, Koki; Itoh, Motoyuki; Kitamura, Keita; Oshima, Motohiko; Iwama, Atsushi; Saito, Kosuke; Anzai, Naohiko; Chiba, Kan; Akita, Hidetaka; Furihata, Tomomi
2018-07-01
While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical "reactive" features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.
Virués-Ortega, Javier; Bucks, Romola; Kirkham, Fenella J; Baldeweg, Torsten; Baya-Botti, Ana; Hogan, Alexandra M
2011-09-01
The brain is highly sensitive to environmental hypoxia. Little is known, however, about the neuropsychological effects of high altitude residence in the developing brain. We recently described only minor changes in processing speed in native Bolivian children and adolescents living at approximately 3700 m. However, evidence for loss of cerebral autoregulation above this altitude (4000 m) suggests a potential threshold of hypoxia severity over which neuropsychological functioning may be compromised. We conducted physiological and neuropsychological assessments in 62 Bolivian children and adolescents living at La Paz (∼3700 m) and El Alto (∼4100 m) in order to address this issue. Groups were equivalent in terms of age, gender, social class, schooling, parental education and genetic admixture. Apart from percentage of hemoglobin saturated with oxygen in arterial blood (%SpO(2)), participants did not differ in their basal cardiac and cerebrovascular performance as explored by heart rate, mean arterial pressure, end-tidal carbon dioxide, and cerebral blood flow velocity at the basilar, anterior, middle and posterior cerebral arteries. A comprehensive neuropsychological assessment was administered, including tests of executive functions, attention, memory and psychomotor performance. Participants living at extreme altitude showed lower levels of performance in all executive tests (Cohen effect size = -0.91), whereas all other domains remained unaffected by altitude of residence. These results are compatible with earlier physiological evidence of a transitional zone for cerebral autoregulation at an altitude of 4000 m. We now show that above this threshold, the developing brain is apparently increasingly vulnerable to neuropsychological deficit. © 2011 Blackwell Publishing Ltd.
Science and fate: Lina Stern (1878-1968), a neurophysiologist and biochemist.
Vein, Alla A
2008-01-01
Lina Stern (1878-1968), a neurophysiologist and biochemist, was born in Russia. She studied at the University of Geneva, Switzerland, where, after graduating, she conducted original research in physiology and biochemistry. In 1918, Stern was the first woman to be awarded a professional title at the University of Geneva and headed the department of Physiological Chemistry. She is deservedly considered to be one of the first scientists to entertain the concept of a blood-brain barrier. In 1929, Stern founded the Institute of Physiology in Moscow, of which she was director until 1948, when it was discontinued. Under her leadership, multidisciplinary groups of colleagues worked on the problems of the blood-brain and tissue-brain barriers and homeostasis of the brain. In 1939, Stern was elected full member of the Academy of Sciences and became its first female member ever. Most scientists manage to conduct their research by adjusting to the political and social situations surrounding them. Lina Stern did not follow this path. This small woman of complete devotion to science took the drastic decisions that altered her life. Though destiny was not kind to her, Lina Stern did not compromise. Despite a threat of execution, prolonged imprisonment, and exile she was never broken as a scientist and always maintained her dignity.
Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.
2015-01-01
Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376
Metabotropic glutamate receptors in auditory processing
Lu, Yong
2014-01-01
As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898
The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury
2008-06-19
brain slices were treated after injury with either a nootropic agent ( aniracetam , cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...tourniquet approach. Four well-known nootropic agents were evaluated: aniracetam , a pyrrolidione analog that slows non-NMDA (AMPA/kainate) receptor...to improve cognition in rats [Stdubli et al., 1994], and has more potent effects than aniracetam in rat brain slices [Arai et al., 1994]. In
A Physiologically Based Model for Methylmercury in Female American Kestrels
A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cel...
ERIC Educational Resources Information Center
Miller, Julie Ann
1978-01-01
The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)
Kiyatkin, Eugene A; Ren, Suelynn E
2017-01-01
Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential dangers of MDMA in humans and the development of pharmacological tools to alleviate drug-induced hyperthermia - potentially saving the lives of highly intoxicated individuals.
Interplay of pathogenic forms of human tau with different autophagic pathways.
Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria
2018-02-01
Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Chiacchiaretta, Piero; Cerritelli, Francesco; Bubbico, Giovanna; Perrucci, Mauro Gianni; Ferretti, Antonio
2018-01-01
Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.
Vyatleva, O A; Teksheva, L M; Kurgansky, A M
To test the effect of mobile phones (MP) of various radiation intensities on the functional state of the brain in children and adolescents, a sham-controlled EEG-study was conducted in a group of thirteen 6-13 years old children, including eight 6-10 years old children. The study showed that a 3-minute exposure to the MP causes the significant decline in alpha-band absolute power, which depends on the radiation intensity and the user’s age. Different from sham, an EEG-effect of MP with the energy flux density (EFD) about 100 mW/cm2 was registered both in total, and in a younger (6-10 yr) group. Its bilateral character, more prominent in the hemisphere that is ipsilateral to MP, indicates that this intensity of the radiation influences not only the superficial cortical areas of the ipsilateral hemisphere, but also the deep structures of the brain. MP with the EFD less than 1 mW/cm2 differed from sham by EEG-effect only in the group of children who are 6-10 years old. Its local, ipsilateral character indicates to the superficial influence of such intensity of the radiation on the cortex of the ipsilateral hemisphere. The results show that for the regulation of MP-radiation it’s necessary to consider age features of the brain’s response. The high significance of the EFD, as an index in the assessment of the impact of MP on the EEG of children, is shown. Since almost all schoolchildren are the users of mobile phones, the situation with the valuation of MP-effects on children of various ages, requires hygienic solution.
Boguszewska-Czubara, Anna; Budzynska, Barbara; Skalicka-Wozniak, Krystyna; Kurzepa, Jacek
2018-05-13
Matrix metalloproteinases (MMPs) play a key role in remodelling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation and survival. Their importance in variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain and only some pathological ones. Numerous neurodegenerative diseases is a consequence or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development and the progress of these diseases. In present review we discuss the role of metalloproteinase inhibitors, from the well-known natural endogenous tissue inhibitors of metalloproteinases (TIMPs) through exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplasctic diseases, the knowledge about the enzymatic system in mammalian brain tissue remain still poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of physiological function of adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries and others. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Why are there so many explanations for primate brain evolution?
2017-01-01
The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of ‘smart foraging’ and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673920
Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy.
Paldino, M J; Golriz, F; Chapieski, M L; Zhang, W; Chu, Z D
2017-02-01
The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths ( P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain. © 2017 by American Journal of Neuroradiology.
Loss of Brain Aerobic Glycolysis in Normal Human Aging.
Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E
2017-08-01
The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuroimaging explanations of age-related differences in task performance.
Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov
2014-01-01
Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.
Celik, Suat Erol; Oztürk, Hülya; Tolunay, Sahsine
2006-09-01
This study was undertaken to evaluate the therapeutic effect of hypothermia and dizocilpine maleate in traumatic brain injury (TBI) on newborn rats. After induction of TBI, physiologic and histopathological assessments were performed on both the control and therapeutic groups to evaluate the effects of both agents. Rats were assigned into four groups as follows: normothermic (n = 23), hypothermic (n = 18), normothermia plus dizocilpine maleate (n = 18) and hypothermia plus dizocilpine maleate (n = 18). All the rats were injured using a weight-drop head injury model, artificially ventilated with a 33% O(2) and 66% NO(2) mixture, and physiological parameters, intracranial pressure, and brain and rectal temperatures were recorded. Mortality, physiological, neurological parameters, and histopathological changes were assessed after 24 h. As a result, intracranial pressure, cerebral perfusion pressure, morbidity, weight loss, and microscopic changes were significantly worse in the normothermic group (p <0.05). There was no statistical difference between other groups (p > 0.05). Hypothermia and dizocilpine maleate displayed similar neuroprotective effects in TBI on newborn rats, but no additive effect was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magliulo-Cepriano, L.; Schreibman, M.P.
1999-07-01
In all vertebrates, the neuroendocrine system serves as the primary and essential link between the external and internal environments and a multitude of physiological systems, including the reproductive system. In response to changes in the environment and fluctuations in levels of circulating humoral agents, the neuroendocrine system is able to reverse, maintain or advance physiological events. Endocrine disrupting compounds are believed to wreak havoc on reproduction and development by interfering in the normal flow of information along the brain-pituitary-gonad axis. While the final effects of these compounds may be easily determined in a number of species, utilization of non-traditional researchmore » animals, such as some fishes in which the pattern of information flow along the brain-pituitary-gonad axis has been meticulously detailed and documented, will provide excellent and novel means of elucidating not only the final effects but the cytological, histological and systemic mechanisms of action of these endocrine disruptors. This report presents methods of assessing the effects of endocrine disrupting compounds on a variety of physiological and morphological parameters in fishes.« less
ERIC Educational Resources Information Center
Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.
2006-01-01
Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.…
Saylor, Kyle; Zhang, Chenming
2017-01-01
Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies’ ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. PMID:27473014
Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao
2015-01-01
The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity. PMID:25879203
Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao
2015-01-01
The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.
Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior
Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.
2009-01-01
Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594
These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...
Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study.
Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S
2016-06-01
Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used support vector regression, a supervised machine learning technique, to address this question. In a longitudinal sample of 341 schizophrenia patients and 386 healthy subjects with one or more structural MRI scans (1,197 in total), machine learning algorithms were used to build models to predict the age of the brain and the presence of schizophrenia ("schizophrenia score"), based on the gray matter density maps. Age at baseline ranged from 16 to 67 years, and follow-up scans were acquired between 1 and 13 years after the baseline scan. Differences between brain age and chronological age ("brain age gap") and between schizophrenia score and healthy reference score ("schizophrenia gap") were calculated. Accelerated brain aging was calculated from changes in brain age gap between two consecutive measurements. The age prediction model was validated in an independent sample. In schizophrenia patients, brain age was significantly greater than chronological age at baseline (+3.36 years) and progressively increased during follow-up (+1.24 years in addition to the baseline gap). The acceleration of brain aging was not constant: it decreased from 2.5 years/year just after illness onset to about the normal rate (1 year/year) approximately 5 years after illness onset. The schizophrenia gap also increased during follow-up, but more pronounced variability in brain abnormalities at follow-up rendered this increase nonsignificant. The progressive brain loss in schizophrenia appears to reflect two different processes: one relatively homogeneous, reflecting accelerated aging of the brain and related to various measures of outcome, and a more variable one, possibly reflecting individual variation and medication use. Differentiating between these two processes may not only elucidate the various factors influencing brain loss in schizophrenia, but also assist in individualizing treatment.
Banks, William A; Abrass, Christine K; Hansen, Kim M
2016-01-01
Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.
Hasirci, A. Sait; Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; O'Buckley, Todd K.; Morrow, A. Leslie
2016-01-01
Background The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) enhances GABAergic activity and produces subjective effects similar to ethanol. The effect of chronic alcohol exposure on 3α,5α-THP concentrations has been studied in mouse, rat, and monkey limbic brain areas. Chronic ethanol exposure produced divergent brain region and cell specific changes in 3α,5α-THP concentrations in animal studies. However, 3α,5α-THP levels in similar human brain regions have never been examined in individuals diagnosed with alcohol use disorder (AUD). Therefore, we used immunohistochemistry to examine 3α,5α-THP levels in the ventral tegmental area (VTA), substantia nigra pars medialis (SNM), and amygdala of human postmortem brains of patients diagnosed with AUD compared to social drinkers. The effects of sex and liver disease on 3α,5α-THP concentrations were examined in the aforementioned brain regions. Methods Human postmortem brains of AUD patients and age-matched controls were obtained from the New South Wales Brain Tissue Resource Center. Immunohistochemistry was performed using anti-3α,5α-THP antibody on formalin fixed and paraffin embedded brain sections to detect cellular 3α,5α-THP levels. Immunoreactivity was analyzed by pixel density/mm2 for the comparison between AUD patients and controls. Results 3α,5α-THP immunoreactivity was increased by 23.2±9% in the VTA of AUD patients compared to age matched controls (p= 0.014). Moreover, a 29.6±10% increase in 3α,5α-THP immunoreactivity was observed in the SNM of male AUD patients compared to male controls (p<0.01), but not in female subjects. 3α,5α-THP immunoreactivity in the VTA and SNM regions did not differ between non-cirrhotic and cirrhotic AUD patients. A sex difference in 3α,5α-THP immunoreactivity (female 51±18% greater than male) was observed among control subjects in the SNM, but no other brain region. 3α,5α-THP immunoreactivity in the basolateral and lateral amygdala were negatively correlated with the length of the tissue fixation time as well as the age of the subjects, precluding assessment of the effect of AUD. Conclusions Cellular 3α,5α-THP levels in VTA are increased in human AUD patients, an effect that is likely independent of sex and liver disease. The differences between animal models and human studies should be factored into the interpretation of the physiological significance of elevated 3α,5α-THP levels in humans. PMID:28068457
Information dynamics of brain-heart physiological networks during sleep
NASA Astrophysics Data System (ADS)
Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.
2014-10-01
This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.
Keeping brains young with making music.
Rogenmoser, Lars; Kernbach, Julius; Schlaug, Gottfried; Gaser, Christian
2018-01-01
Music-making is a widespread leisure and professional activity that has garnered interest over the years due to its effect on brain and cognitive development and its potential as a rehabilitative and restorative therapy of brain dysfunctions. We investigated whether music-making has a potential age-protecting effect on the brain. For this, we studied anatomical magnetic resonance images obtained from three matched groups of subjects who differed in their lifetime dose of music-making activities (i.e., professional musicians, amateur musicians, and non-musicians). For each subject, we calculated a so-called BrainAGE score which corresponds to the discrepancy (in years) between chronological age and the "age of the brain", with negative values reflecting an age-decelerating brain and positive values an age-accelerating brain, respectively. The index of "brain age" was estimated using a machine-learning algorithm that was trained in a large independent sample to identify anatomical correlates of brain-aging. Compared to non-musicians, musicians overall had lower BrainAGE scores, with amateur musicians having the lowest scores suggesting that music-making has an age-decelerating effect on the brain. Unlike the amateur musicians, the professional musicians showed a positive correlation between their BrainAGE scores and years of music-making, possibly indicating that engaging more intensely in just one otherwise enriching activity might not be as beneficial than if the activity is one of several that an amateur musician engages in. Intense music-making activities at a professional level could also lead to stress-related interferences and a less enriched environment than that of amateur musicians, possibly somewhat diminishing the otherwise positive effect of music-making.
High Resolution Measurement of the Glycolytic Rate
Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe
2010-01-01
The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447
Anesthesia Management of Organ Donors.
Xia, Victor W; Braunfeld, Michelle
2017-09-01
The shortage of suitable organs is the biggest obstacle for transplants. At present, most organs for transplant in the United States are from donation after neurologic determination of death (brain death). Potential organs for transplant need to maintain their viability during a series of insults, including the original disease, physiologic derangements during the dying process, ischemia, and reperfusion. Proper donor management before, during, and after procurement has potential to increase the number and quality of organs from donors. Anesthesiologists need to understand the physiologic derangements associated with brain death and the updated donor management during the periprocurement period. Copyright © 2017 Elsevier Inc. All rights reserved.
Studies on the Role of N-Acetylaspartic Acid in Mammalian Brain
Jacobson, K. Bruce
1959-01-01
N-Acetylaspartic acid (NAA) occurs at relatively high concentrations exclusively in the mammalian and avian brain and undergoes rapid rise in level soon after birth (Tallan, 1957). The amount of NAA in brains of mentally abnormal human beings and of young human beings was measured. The route by which NAA is synthesized was shown to involve a direct acetylation of aspartic acid. The degradative activity of the brain toward NAA is slight. Some experiments indicate that NAA in the brain is a physiologically and metabolically active compound. PMID:14406413
Complex Networks - A Key to Understanding Brain Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporns, Olaf
2008-01-23
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Pathophysiological implications of neurovascular P450 in brain disorders
Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir
2016-01-01
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874
Complex Networks - A Key to Understanding Brain Function
Sporns, Olaf
2017-12-22
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice.
Bilkei-Gorzo, Andras; Albayram, Onder; Draffehn, Astrid; Michel, Kerstin; Piyanova, Anastasia; Oppenheimer, Hannah; Dvir-Ginzberg, Mona; Rácz, Ildiko; Ulas, Thomas; Imbeault, Sophie; Bab, Itai; Schultze, Joachim L; Zimmer, Andreas
2017-06-01
The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ 9 -tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.
Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid
2015-01-01
The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.
Yi, Chenju; Teillon, Jérémy; Koulakoff, Annette; Berry, Hugues; Giaume, Christian
2018-06-01
Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Yansong; Zhao, Xudong; Cheng, Zaohuo; Zhang, Fuquan; Chang, Jun; Wang, Haosen; Xie, Rukui; Wang, Zhiqiang; Cao, Leiming; Wang, Guoqiang
2017-02-01
Overgeneral autobiographical memory (OGM) is involved in the onset and maintenance of depression. Recent studies have shown correlations between OGM and alterations of some brain regions by using task-state functional magnetic resonance imaging (fMRI). However, the correlation between OGM and spontaneous brain activity in depression remains unclear. The purpose of this study was to determine whether patients with major depressive disorder (MDD) show abnormal regional homogeneity (ReHo) and, if so, whether the brain areas with abnormal ReHo are associated with OGM. Twenty five patients with MDD and 25 age-matched, sex-matched, and education-matched healthy controls underwent resting-state fMRI. All participants were also assessed by 17-item Hamilton Depression Rating Scale and autobiographical memory test. The ReHo method was used to analyze regional synchronization of spontaneous neuronal activity. Patients with MDD, compared to healthy controls, exhibited extensive ReHo abnormalities in some brain regions, including the frontal, temporal, and occipital cortex. Moreover, ReHo value of the orbitofrontal cortex was negatively correlated with OGM scores in patients with MDD. The sample size of this study was relatively small, and the influence of physiological noise was not completely excluded. These results suggest that abnormal ReHo of spontaneous brain activity in the orbitofrontal cortex may be involved in the pathophysiology of OGM in patients with MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I
2009-01-12
Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.
How Does Evolution Design a Brain Capable of Learning Language?
ERIC Educational Resources Information Center
Savage-Rumbaugh, E. Sue
1993-01-01
Discusses methods of assessing language comprehension in apes. Considers the possible effect of brain physiology on the differences between productive and receptive language skills. Examines the possibility that differences between synaptic transmission and volume transmission, or transmission across extracellular spaces, of neurological impulses…
Microglia promote learning-dependent synapse formation through BDNF
Parkhurst, Christopher N.; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N.; Yates, John R.; Lafaille, Juan J.; Hempstead, Barbara L.; Littman, Dan R.; Gan, Wen-Biao
2014-01-01
SUMMARY Microglia are the resident macrophages of the central nervous system and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1CreER mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1CreER to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia show deficits in multiple learning tasks and a significant reduction in motor learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal TrkB phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal important physiological functions of microglia in learning and memory by promoting learning-related synapse formation through BDNF signaling. PMID:24360280
Boosting Endogenous Resistance of Brain to Ischemia
Sun, Fen; Johnson, Stephen R.; Jin, Kunlin; Uteshev, Victor V.
2016-01-01
Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be: 1) limited to less severe injuries; 2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and 3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential. PMID:26910820
Development of a brain monitoring system for multimodality investigation in awake rats.
Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li
2016-08-01
Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.
Zolpidem efficacy and safety in disorders of consciousness.
Machado, Calixto; Estévez, Mario; Rodriguez-Rojas, Rafael
2018-01-01
Sutton and Clauss presented a detailed review about the effectiveness of zolpidem, discussing recoveries from brain damage due to strokes, trauma and hypoxia. A significant finding has been the unexpected and paradoxical increment of brain activity in vegetative state/unresponsive wakefulness syndrome (VS/UWS). On the contrary, zolpidem is considered one of the best sleep inducers in normal subjects. We have studied series of VS/UWS cases after zolpidem intake. We have demonstrated EEG activation, increment of BOLD signal in different brain regions, and an autonomic influence, mainly characterized by a vagolytic chronotropic effect without a significant increment of the vasomotor sympathetic tone. As this autonomic imbalance might induce cardio- circulatory complications, which we didn't find in any of our patients, we suggest developing future trials under control of physiological indices by bedside monitoring. However, considering that the paradoxical arousing zolpidem effect might be certainly related to brain function improvement, we agree with Sutton and Clauss that future multicentre and multinational clinical trials should be developed, but under control of physiological indices.
A critical review of 5-HT brain microdialysis and behavior.
Rueter, L E; Fornal, C A; Jacobs, B L
1997-01-01
Serotonin (5-HT) has been implicated in many central nervous system-mediated functions including sleep, arousal, feeding, motor activity and the stress response. In order to help establish the precise role of 5-HT in physiology and behavior, in vivo microdialysis studies have sought to identify the conditions under which the release of 5-HT is altered. Extracellular 5-HT levels have been monitored in more than fifteen regions of the brain during a variety of spontaneous behaviors, and in response to several physiological, environmental, and behavioral manipulations. The vast majority of these studies found increases (30-100%) in 5-HT release in almost all brain regions studied. Since electrophysiological studies have shown that behavioral arousal is the primary determinant of brain serotonergic neuronal activity, we suggest that the increase in 5-HT release seen during a wide variety of experimental conditions is largely due to one factor, namely an increase in behavioral arousal/motor activity associated with the manipulation.
Diamond, David M.
2004-01-01
Dehydroepiandrosterone sulfate (DHEAS) is a steroid hornone that is synthesized, de novo, in the brain. Endogenous DHEAS levels correlate with the quality of mental and physical health, where the highest levels of DHEAS occur in healthy young adults and reduced levels of DHEAS are found with advanced age, disease, or extreme stress. DHEAS supplementation, therefore, may serve as a therapeutic agent against a broad range of maladies. This paper summarizes laboratory findings on dose-response relationships between DHEAS and cognitive and electrophysiological measures of hippocampal functioning. It was found that a low, but not a high, dose of DHEAS enhanced hippocampal primed burst potentiation (a physiological model of memory) as well as spatial (hippocampal-dependent) memory in rats. This complex dose-response function of DHEAS effects on the brain and memory may contribute toward the inconsistent findings that have been obtained by other investigators in studies on DHEAS administration in people. PMID:19330152
Abnormal brain development in newborns with congenital heart disease.
Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B
2007-11-08
Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.
Lo Van, Amanda; Sakayori, Nobuyuki; Hachem, Mayssa; Belkouch, Mounir; Picq, Madeleine; Fourmaux, Baptiste; Lagarde, Michel; Osumi, Noriko; Bernoud-Hubac, Nathalie
2018-06-01
Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.
Ko, Sang-Bae; Choi, H. Alex; Parikh, Gunjan; Helbok, Raimund; Schmidt, J. Michael; Lee, Kiwon; Badjatia, Neeraj; Claassen, Jan; Connolly, E. Sander; Mayer, Stephan A.
2011-01-01
Background and Purpose Limited data exists to recommend specific cerebral perfusion pressure (CPP) targets in patients with intracerebral hemorrhage (ICH). We sought to determine the feasibility of brain multimodality monitoring (MMM) for optimizing CPP and potentially reducing secondary brain injury after ICH. Methods We retrospectively analyzed brain MMM data targeted at perihematomal brain tissue in 18 comatose ICH patients (median monitoring: 164 hours). Physiological measures were averaged over one-hour intervals corresponding to each microdialysis sample. Metabolic crisis (MC) was defined as a lactate/pyruvate ratio (LPR) >40 with a brain glucose concentration <0.7 mmol/L. Brain tissue hypoxia (BTH) was defined as PbtO2 <15 mm Hg. Pressure reactivity index (PRx) and oxygen reactivity index (ORx) were calculated. Results Median age was 59 years, median GCS score 6, and median ICH volume was 37.5 ml. The risk of BTH, and to a lesser extent MC, increased with lower CPP values. Multivariable analyses showed that CPP <80 mm Hg was associated with a greater risk of BTH (OR 1.5, 95% CI 1.1–2.1, P=0.01) compared to CPP >100 mm Hg as a reference range. Six patients died (33%). Survivors had significantly higher CPP and PbtO2 and lower ICP values starting on post-bleed day 4, whereas LPR and PRx values were lower, indicating preservation of aerobic metabolism and pressure autoregulation. Conclusions PbtO2 monitoring can be used to identify CPP targets for optimal brain tissue oxygenation. In patients who do not undergo MMM, maintaining CPP >80 mm Hg may reduce the risk of BTH. PMID:21852615
Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.
Franke, Katja; Gaser, Christian; Roseboom, Tessa J; Schwab, Matthias; de Rooij, Susanne R
2018-06-01
Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R 2 = 0.63, p < 0.01). The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life. Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemiological and clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Bourre, J M
2004-01-01
Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent results have shown that dietary alpha-linolenic acid deficiency induces more marked abnormalities in certain cerebral structures than in others, as the frontal cortex and pituitary gland are more severely affected. These selective lesions are accompanied by behavioural disorders more particularly affecting certain tests (habituation, adaptation to new situations). Biochemical and behavioural abnormalities are partially reversed by a dietary phospholipid supplement, especially omega-3-rich egg yolk extracts or pig brain. A dose-effect study showed that animal phospholipids are more effective than plant phospholipids to reverse the consequences of alpha-linolenic acid deficiency, partly because they provide very long preformed chains. Alpha-linolenic acid deficiency decreases the perception of pleasure, by slightly altering the efficacy of sensory organs and by affecting certain cerebral structures. Age-related impairment of hearing, vision and smell is due to both decreased efficacy of the parts of the brain concerned and disorders of sensory receptors, particularly of the inner ear or retina. For example, a given level of perception of a sweet taste requires a larger quantity of sugar in subjects with alpha-linolenic acid deficiency. In view of occidental eating habits, as omega-6 fatty acid deficiency has never been observed, its impact on the brain has not been studied. In contrast, omega-9 fatty acid deficiency, specifically oleic acid deficiency, induces a reduction of this fatty acid in many tissues, except the brain (but the sciatic nerve is affected). This fatty acid is therefore not synthesized in sufficient quantities, at least during pregnancy-lactation, implying a need for dietary intake. It must be remembered that organization of the neurons is almost complete several weeks before birth, and that these neurons remain for the subject's life time. Consequently, any disturbance of these neurons, an alteration of their connections, and impaired turnover of their constituents at any stage of life, will tend to accelerate ageing. The enzymatic activities of sytivities of synthesis of long-chain polyunsaturated fatty acids from linoleic and alpha-linolenic acids are very limited in the brain: this organ therefore depends on an exogenous supply. Consequently, fatty acids that are essential for the brain are arachidonic acid and cervonic acid, derived from the diet, unless they are synthesized by the liver from linoleic acid and alpha-linolenic acid. The age-related reduction of hepatic desaturase activities (which participate in the synthesis of long chains, together with elongases) can impair turnover of cerebral membranes. In many structures, especially in the frontal cortex, a reduction of cervonic and arachidonic acids is observed during ageing, predominantly associated with a reduction of phosphatidylethanolamines (mainly in the form of plasmalogens). Peroxisomal oxidation of polyunsaturated fatty acids decreases in the brain during ageing, participating in decreased turnover of membrane fatty acids, which are also less effectively protected against peroxidation by free radicals.
Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.
2014-01-01
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483
Severity scores in trauma patients admitted to ICU. Physiological and anatomic models.
Serviá, L; Badia, M; Montserrat, N; Trujillano, J
2018-02-02
The goals of this project were to compare both the anatomic and physiologic severity scores in trauma patients admitted to intensive care unit (ICU), and to elaborate mixed statistical models to improve the precision of the scores. A prospective study of cohorts. The combined medical/surgical ICU in a secondary university hospital. Seven hundred and eighty trauma patients admitted to ICU older than 16 years of age. Anatomic models (ISS and NISS) were compared and combined with physiological models (T-RTS, APACHE II [APII], and MPM II). The probability of death was calculated following the TRISS method. The discrimination was assessed using ROC curves (ABC [CI 95%]), and the calibration using the Hosmer-Lemeshoẃs H test. The mixed models were elaborated with the tree classification method type Chi Square Automatic Interaction Detection. A 14% global mortality was recorded. The physiological models presented the best discrimination values (APII of 0.87 [0.84-0.90]). All models were affected by bad calibration (P<.01). The best mixed model resulted from the combination of APII and ISS (0.88 [0.83-0.90]). This model was able to differentiate between a 7.5% mortality for elderly patients with pathological antecedents and a 25% mortality in patients presenting traumatic brain injury, from a pool of patients with APII values ranging from 10 to 17 and an ISS threshold of 22. The physiological models perform better than the anatomical models in traumatic patients admitted to the ICU. Patients with low scores in the physiological models require an anatomic analysis of the injuries to determine their severity. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.
2018-01-01
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630
Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D
2018-04-10
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Kim, Myeong Seong
2016-01-01
Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872
Wu, James T.; Kral, John G.
2004-01-01
Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat different disease entities including those related to the over-nutrition of obesity and the catabolic response to surgical trauma. PMID:15024307
Chronic Pain and Chronic Stress: Two Sides of the Same Coin?
Abdallah, Chadi G; Geha, Paul
2017-02-01
Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.
A Neural Network Guide to Teaching. Fastback 431.
ERIC Educational Resources Information Center
Baker, Justine C.; Martin, Francis G.
This booklet proposes a model for learning that provides insight into the underlying physiology of the brain and suggests teaching strategies of repetition, variety and pattern, and incubation consistent with that physiology. It discusses how these three strategies can be used to enhance learning in the cognitive, psychomotor, and affective…
This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...
Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.
Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W
2018-03-01
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L
2014-09-01
Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.
The Physiology of Moral Maturity.
ERIC Educational Resources Information Center
Hemming, James
1991-01-01
Discusses an evolutionary approach to human morality. Emphasizes the rapid development of brain weight, neural circuits, and synaptic systems during early childhood. Concludes that the human brain has resources for generating responsible, caring behavior but must be nurtured and educated. Urges that moral training in a proper social climate be…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...
Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit
2017-03-01
Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Sun, JinWei; Rolfe, Peter
2010-12-01
Near-infrared spectroscopy (NIRS) can be used as the basis of non-invasive neuroimaging that may allow the measurement of haemodynamic changes in the human brain evoked by applied stimuli. Since this technique is very sensitive, physiological interference arising from the cardiac cycle and breathing can significantly affect the signal quality. Such interference is difficult to remove by conventional techniques because it occurs not only in the extracerebral layer but also in the brain tissue itself. Previous work on this problem employing temporal filtering, spatial filtering, and adaptive filtering have exhibited good performance for recovering brain activity data in evoked response studies. However, in this study, we present a time-frequency adaptive method for physiological interference reduction based on the combination of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). Monte Carlo simulations based on a five-layered slab model of a human adult head were implemented to evaluate our methodology. We applied an EMD algorithm to decompose the NIRS time series derived from Monte Carlo simulations into a series of intrinsic mode functions (IMFs). In order to identify the IMFs associated with symmetric interference, the extracted components were then Hilbert transformed from which the instantaneous frequencies could be acquired. By reconstructing the NIRS signal by properly selecting IMFs, we determined that the evoked brain response is effectively filtered out with even higher signal-to-noise ratio (SNR). The results obtained demonstrated that EMD, combined with HSA, can effectively separate, identify and remove the contamination from the evoked brain response obtained with NIRS using a simple single source-detector pair.
Hung, Man-Hsin; Liu, Chun-Yu; Shiau, Cheng-Ying; Hsu, Chin-Yi; Tsai, Yi-Fang; Wang, Yu-Ling; Tai, Ling-Chen; King, Kuang-Liang; Chao, Ta-Chung; Chiu, Jen-Hwey; Su, Cheng-Hsi; Lo, Su-Shun; Tzeng, Cheng-Hwai; Shyr, Yi-Ming; Tseng, Ling-Ming
2014-01-01
Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. Of the 2248 eligible patients, 164 (7.3%) developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507). Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
NASA Astrophysics Data System (ADS)
Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh
2016-09-01
We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.
Hulette, Christine M.; Ervin, John F.; Edmonds, Yvette; Antoine, Samantha; Stewart, Nicolas; Szymanski, Mari H.; Hayden, Kathleen M; Pieper, Carl F.; Burke, James R.; Welsh-Bohmer, Kathleen A.
2009-01-01
We previously found that vascular smooth muscle actin (SMA) is reduced in the brains of patients with late stage Alzheimer disease (AD) compared to brains of non-demented, neuropathologically normal subjects. To assess the pathogenetic significance and disease specificity of this finding, we studied 3 additional patient groups: non-demented subjects without significant AD type pathology (“Normal”, n = 20); non-demented subjects with frequent senile plaques at autopsy (“Preclinical AD”, n = 20); and subjects with frontotemporal dementia, (“FTD”, n = 10). The groups were matched for gender and age with those previously reported; SMA immunohistochemistry and image analysis were performed as previously described. Surprisingly, SMA expression in arachnoid, cerebral cortex and white matter arterioles was greater in the Preclinical AD group than in the Normal and FTD groups. The plaques were not associated with amyloid angiopathy or other vascular disease in this group. SMA expression in the brains of the Normal group was intermediate between the Preclinical AD and FTD groups. All 3 groups exhibited much greater SMA expression than in our previous report. The presence of frequent plaques and increased arteriolar SMA expression in the brains of non-demented subjects suggest that increased SMA expression might represent a physiologic response to neurodegeneration that could prevent or delay overt expression dementia in AD. PMID:19287310
Latimer, Caitlin S; Searcy, James L; Bridges, Michael T; Brewer, Lawrence D; Popović, Jelena; Blalock, Eric M; Landfield, Philip W; Thibault, Olivier; Porter, Nada M
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.
Latimer, Caitlin S.; Searcy, James L.; Bridges, Michael T.; Brewer, Lawrence D.; Popović, Jelena; Blalock, Eric M.; Landfield, Philip W.; Thibault, Olivier; Porter, Nada M.
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging. PMID:22046366
Brain Activation during Sentence Comprehension among Good and Poor Readers
Keller, Timothy A.; Cherkassky, Vladimir L.; Lee, Donghoon; Hoeft, Fumiko; Whitfield-Gabrieli, Susan; Gabrieli, John D. E.; Just, Marcel Adam
2008-01-01
This study sought to increase current understanding of the neuro-psychological basis of poor reading ability by using fMRI to examine brain activation during a visual sentence comprehension task among good and poor readers in the third (n = 32) and fifth (n = 35) grades. Reading ability, age, and the combination of both factors made unique contributions to cortical activation. The main finding was of parietotemporal underactivation (less activation than controls) among poor readers at the 2 grade levels. A positive linear relationship (spanning both the poor and good readers) was found between reading ability and activation in the left posterior middle temporal and postcentral gyri and in the right inferior parietal lobule such that activation increased with reading ability. Different developmental trajectories characterized good and poor readers in the left angular gyrus: activation increased with age among good readers, a change that failed to occur among poor readers. The parietotemporal cortex is discussed in terms of its role in reading acquisition, with the left angular gyrus playing a key role. It is proposed that the functioning of the cortical network underlying reading is dependent on a combination of interacting factors, including physiological maturation, neural integrity, skill level, and the nature of the task. PMID:17317678
Novel Rat Model for Neurocysticercosis Using Taenia solium
Verastegui, Manuela R.; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M.; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H.; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H.
2016-01-01
Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. PMID:26216286
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
LaManna, Joseph C.; Sun, Xiaoyan; Ivy, Andre D.; Ward, Nicole L.
We have used a relatively simple model of hypoxia that triggers adaptive structural changes in the cerebral microvasculature to study the process of physiological angiogenesis. This model can be used to obtain mechanistic data for the processes that probably underlie the dynamic structural changes that occur in learning and the control of oxygen availability to the neurovascular unit. These mechanisms are broadly involved in a wide variety of pathophysiological processes. This is the vascular component to CNS functional plasticity, supporting learning and adaptation. The angiogenic process may wane with age, contributing to the decreasing ability to survive metabolic stress and the diminution of neuronal plasticity.
Multiple Brain Markers are Linked to Age-Related Variation in Cognition
Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.
2016-01-01
Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, M.D.B.
The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study comparesmore » in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.« less
Kurz, Jonathan E; Parsons, J Travis; Rana, Aniruddha; Gibson, Cynthia J; Hamm, Robert J; Churn, Severn B
2005-04-01
Calcineurin, a neuronally enriched, calcium-stimulated phosphatase, is an important modulator of many neuronal processes, including several that are physiologically related to the pathology of traumatic brain injury. This study examined the effects of moderate, central fluid percussion injury on the activity of this important neuronal enzyme. Animals were sacrificed at several time-points postinjury and cortical, hippocampal, and cerebellar homogenates were assayed for calcineurin activity by dephosphorylation of p-nitrophenol phosphate. A significant brain injury-dependent increase was observed in both hippocampal and cortical homogenates under both basal and maximally-stimulated reaction conditions. This increase persisted 2-3 weeks post-injury. Brain injury did not alter substrate affinity, but did induce a significant increase in the apparent maximal dephosphorylation rate. Unlike the other brain regions, no change in calcineurin activity was observed in the cerebellum following brain injury. No brain region tested displayed a significant change in calcineurin enzyme levels as determined by Western blot, demonstrating that increased enzyme synthesis was not responsible for the observed increase in activity. The data support the conclusion that fluid percussion injury results in increased calcineurin activity in the rat forebrain. This increased activity has broad physiological implications, possibly resulting in altered cellular excitability or a greater likelihood of neuronal cell death.
Ma, Yilong; Wu, Shufen
2008-09-30
This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.
Sagare, Abhay P.; Deane, Rashid; Zlokovic, Berislav V.
2012-01-01
Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for A across the blood-brain barrier (BBB). sLRP1 maintains a plasma ‘sink’ activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD. PMID:22820095
Creatine and guanidinoacetate reference values in a French population.
Joncquel-Chevalier Curt, Marie; Cheillan, David; Briand, Gilbert; Salomons, Gajja S; Mention-Mulliez, Karine; Dobbelaere, Dries; Cuisset, Jean-Marie; Lion-François, Laurence; Des Portes, Vincent; Chabli, Allel; Valayannopoulos, Vassili; Benoist, Jean-François; Pinard, Jean-Marc; Simard, Gilles; Douay, Olivier; Deiva, Kumaran; Tardieu, Marc; Afenjar, Alexandra; Héron, Delphine; Rivier, François; Chabrol, Brigitte; Prieur, Fabienne; Cartault, François; Pitelet, Gaëlle; Goldenberg, Alice; Bekri, Soumeya; Gerard, Marion; Delorme, Richard; Porchet, Nicole; Vianey-Saban, Christine; Vamecq, Joseph
2013-11-01
Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport. © 2013 Elsevier Inc. All rights reserved.
Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin
2013-01-01
Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10–100 µmol/l. What’s more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress. PMID:24098758
Harris, B A; Andrews, P J D; Murray, G D
2007-01-01
Heat loss from the upper airways and through the skull are physiological mechanisms of brain cooling which have not been fully explored clinically. This randomized, crossover, factorial trial in 12 brain-injured, orally intubated patients investigated the effect of enhanced nasal airflow (high flow unhumidified air with 20 p.p.m. nitric oxide gas) and bilateral head fanning on frontal lobe brain temperature and selective brain cooling. After a 30 min baseline, each patient received the four possible combinations of the interventions--airflow, fanning, both together, no intervention--in randomized order. Each combination was delivered for 30 min and followed by a 30 min washout, the last 5 min of which provided the baseline for the next intervention. The difference in mean brain temperature over the last 5 min of the preceding washout minus the mean over the last 5 min of intervention, was 0.15 degrees C with nasal airflow (P=0.001, 95% CI 0.06-0.23 degrees C) and 0.26 degrees C with head fanning (P<0.001, 95% CI 0.17-0.34 degrees C). The estimate of the combined effect of airflow and fanning on brain temperature was 0.41 degrees C. Selective brain cooling did not occur. Physiologically, this study demonstrates that heat loss through the upper airways and through the skull can reduce parenchymal brain temperature in brain-injured humans and the onset of temperature reduction is rapid. Clinically, in ischaemic stroke, a temperature decrease of 0.27 degrees C may reduce the relative risk of poor outcome by 10-20%. Head fanning may have the potential to achieve a temperature decrease of this order.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...
Neuroscience, Education and Special Education
ERIC Educational Resources Information Center
Goswami, Usha
2004-01-01
The discipline of neuroscience draws from the fields of neurology, psychology, physiology and biology, but is best understood in the wider world as brain science. Of particular interest for education is the development of techniques for imaging the brain as it performs different cognitive functions. Cognitive neuroimaging has already led to…
Long Term Synaptic Plasticity and Learning in Neuronal Networks
1989-01-14
Videomicroscopy and synaptic physiology of cultured hippocampal slices. Soc, Neurosci. Abstr. 14:246, 1988. Griffith, W.H., Brown, T.H. and Johnston, D...Chapman, P.F., Chang, V., and Brown, T.H. . Videomicroscopy of acute brain slices from hippocampus and amygdala. Brain Res. Bull, 21: 373-383, 1988
The Relationship of Nutrition to Brain Development and Behavior.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Committee on International Nutrition Programs.
The physical, chemical, and physiological development of the brain and consequent behavior in all species of higher animals evolves from the continuous interaction of genetic and numerous environmental factors. Among the latter are nutritional, disease, psychological, learning, and cultural variables. Of these, nutrition is concerned directly with…
Two Dream Machines: Television and the Human Brain.
ERIC Educational Resources Information Center
Deming, Caren J.
Research into brain physiology and dream psychology have helped to illuminate the biological purposes and processes of dreaming. Physical and functional characteristics shared by dreaming and television include the perception of visual and auditory images, operation in a binary mode, and the encoding of visual information. Research is needed in…
Gnezditskiy, V V; Korepina, O S; Chatskaya, A V; Klochkova, O I
2017-01-01
Cognition, cognitive and memory impairments is widely discussed in the literature, especially in the psycho physiological and the neurologic. In essence, this literature is dedicated to the psycho physiological tests, different scales. However, instrument neurophysiologic methods not so widely are used for these purposes. This review is dedicated to the instrument methods of neurophysiology, in particular to the endogenous evoked potentials method Р 300 (by characteristic latency 300 ms), in the estimation of cognitive functions and memory, to their special features dependent on age and to special features to their changes with the pathology. Method cognitive EP - Р 300 is the response of the brain, recorded under the conditions of the identification of the significant distinguishing stimulus, it facilitates the inspection of cognitive functions and memory in the healthy persons and patients with different manifestation of cognitive impairments. In the review it is shown on the basis of literature and our own data, that working (operative) memory and the capacity of the working memory it can be evaluated with the aid of the indices Р 300 within the normal subject and with the pathology. Testing with the estimation of working memory according to latent period of the peak Р 300 can be carried out and when conducting psychological testing is not possible for any reasons. Together with these cognitive EP are used for evidence pharmacotherapy of many neurotropic drugs.
Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V
2011-05-01
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.
2011-01-01
SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257
The role of adult hippocampal neurogenesis in brain health and disease.
Toda, Tomohisa; Parylak, Sarah L; Linker, Sara B; Gage, Fred H
2018-04-20
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
The Cajal school and the physiological role of astrocytes: a way of thinking
Navarrete, Marta; Araque, Alfonso
2014-01-01
Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago –“Something about the physiological significance of neuroglia” (Ramón y Cajal, 1897) and “A contribution to the understanding of neuroglia in the human brain” (Ramón y Cajal, 1913)—focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte–neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal. PMID:24904302
Resting state functional connectivity: its physiological basis and application in neuropharmacology.
Lu, Hanbing; Stein, Elliot A
2014-09-01
Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Published by Elsevier Ltd.
Putative roles of neuropeptides in vagal afferent signaling
de Lartigue, Guillaume
2014-01-01
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553
Developing retinal biomarkers of neurological disease: an analytical perspective
MacCormick, Ian JC; Czanner, Gabriela; Faragher, Brian
2015-01-01
The inaccessibility of the brain poses a problem for neuroscience. Scientists have traditionally responded by developing biomarkers for brain physiology and disease. The retina is an attractive source of biomarkers since it shares many features with the brain. Some even describe the retina as a ‘window’ to the brain, implying that retinal signs are analogous to brain disease features. However, new analytical methods are needed to show whether or not retinal signs really are equivalent to brain abnormalities, since this requires greater evidence than direct associations between retina and brain. We, therefore propose a new way to think about, and test, how clearly one might see the brain through the retinal window, using cerebral malaria as a case study. PMID:26174843
[Monitoring of brain function].
Doi, Matsuyuki
2012-01-01
Despite being the most important of organs, the brain is disproportionately unmonitored compared to other systems such as cardiorespiratory in anesthesia settings. In order to optimize level of anesthesia, it is important to quantify the brain activity suppressed by anesthetic agents. Adverse cerebral outcomes remain a continued problem in patients undergoing various surgical procedures. By providing information on a range of physiologic parameters, brain monitoring may contribute to improve perioperative outcomes. This article addresses the various brain monitoring equipments including bispectral index (BIS), auditory evoked potentials (AEP), near-infrared spectroscopy (NIRS), transcranial Doppler ultrasonography (TCD) and oxygen saturation of the jugular vein (Sjv(O2)).
USDA-ARS?s Scientific Manuscript database
Determination of physiological state (age?) in insects is useful in furthering our understanding of how insect behavior changes with age. Central to this determination is the identification of characters that allow assessment of physiological age. While non-destructive measures are the most desired ...
In vivo correlation between axon diameter and conduction velocity in the human brain.
Horowitz, Assaf; Barazany, Daniel; Tavor, Ido; Bernstein, Moran; Yovel, Galit; Assaf, Yaniv
2015-01-01
The understanding of the relationship between structure and function has always characterized biology in general and neurobiology in particular. One such fundamental relationship is that between axon diameter and the axon's conduction velocity (ACV). Measurement of these neuronal properties, however, requires invasive procedures that preclude direct elucidation of this relationship in vivo. Here we demonstrate that diffusion-based MRI is sensitive to the fine microstructural elements of brain wiring and can be used to quantify axon diameter in vivo. Moreover, we demonstrate the in vivo correlation between the diameter of an axon and its conduction velocity in the human brain. Using AxCaliber, a novel magnetic resonance imaging technique that enables us to estimate in vivo axon diameter distribution (ADD) and by measuring the interhemispheric transfer time (IHTT) by electroencephalography, we found significant linear correlation, across a cohort of subjects, between brain microstructure morphology (ADD) and its physiology (ACV) in the tactile and visual sensory domains. The ability to make a quantitative assessment of a fundamental physiological property in the human brain from in vivo measurements of ADD may shed new light on neurological processes occurring in neuroplasticity as well as in neurological disorders and neurodegenerative diseases.