Sample records for physiological concentration range

  1. Physiological and behavioural responses to weaning conflict in free-ranging primate infants

    PubMed Central

    Mandalaywala, Tara M.; Higham, James P.; Heistermann, Michael; Parker, Karen J.; Maestripieri, Dario

    2014-01-01

    Weaning, characterized by maternal reduction of resources, is both psychologically and energetically stressful to mammalian offspring. Despite the importance of physiology in this process, previous studies have reported only indirect measures of weaning stress from infants, because of the difficulties of collecting physiological measures from free-ranging mammalian infants. Here we present some of the first data on the relationship between weaning and energetic and psychological stress in infant mammals. We collected data on 47 free-ranging rhesus macaque infants on Cayo Santiago, Puerto Rico, showing that faecal glucocorticoid metabolite (fGCM) concentrations were directly related to the frequency of maternal rejection, with fGCM concentrations increasing as rates of rejection increased. Infants with higher fGCM concentrations also engaged in higher rates of mother following, and mother following was associated with increased time on the nipple, suggesting that infants that experienced greater weaning-related stress increased their efforts to maintain proximity and contact with their mothers. Infants experiencing more frequent rejection uttered more distress vocalizations when being rejected; however, there was no relationship between rates of distress vocalizations and fGCM concentrations, suggesting a disassociation between behavioural and physiological stress responses to weaning. Elevated glucocorticoid concentrations during weaning may function to mobilize energy reserves and prepare the infant for continued maternal rejection and shortage of energetic resources. PMID:25431499

  2. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.

  3. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  4. A comparison of a novel testosterone bioadhesive buccal system, striant, with a testosterone adhesive patch in hypogonadal males.

    PubMed

    Korbonits, Márta; Slawik, Marc; Cullen, Derek; Ross, Richard J; Stalla, Günter; Schneider, Harald; Reincke, Martin; Bouloux, Pierre M; Grossman, Ashley B

    2004-05-01

    A novel delivery system has been developed for testosterone replacement. This formulation, COL-1621 (Striant), a testosterone-containing buccal mucoadhesive system, has been shown in preliminary studies to replace testosterone at physiological levels when used twice daily. Therefore, the current study compared the steady-state pharmacokinetics and tolerability of the buccal system with a testosterone-containing skin patch (Andropatch or Androderm) in an international multicenter study of a group of hypogonadal men. Sixty-six patients were randomized into two groups; one applied the buccal system twice daily, whereas the other applied the transdermal patch daily, in each case for 7 d. Serum total testosterone and dihydrotestosterone concentrations were measured at d 1, 3 or 4, and 6, and serially over the last 24 h of the study. Pharmacokinetic parameters for each formulation were calculated, and the two groups were compared. The tolerability of both formulations was also evaluated. Thirty-three patients were treated with the buccal preparation, and 34 were treated with the transdermal patch. The average serum testosterone concentration over 24 h showed a mean of 18.74 nmol/liter (SD =; 5.90) in the buccal system group and 12.15 nmol/liter (SD =; 5.55) in the transdermal patch group (P < 0.01). Of the patients treated with the buccal system, 97% had average steady-state testosterone concentrations within the physiological range (10.41-36.44 nmol/liter), whereas only 56% of the transdermal patch patients achieved physiological total testosterone concentrations (P < 0.001 between groups). Testosterone concentrations were within the physiological range in the buccal system group for a significantly greater portion of the 24-h treatment period than in the transdermal patch group (mean, 84.9% vs. 54.9%; P < 0.001). Testosterone/dihydrotestosterone ratios were physiological and similar in both groups. Few patients experienced major adverse effects from either treatment. No significant local tolerability problems were noted with the buccal system, other than a single patient withdrawal. We conclude that this buccal system is superior to the transdermal patch in achieving testosterone concentrations within the normal range. It may, therefore, be a valuable addition to the range of choices for testosterone replacement therapy.

  5. What goes on behind closed doors: physiological vs. pharmacological steroid hormone actions

    PubMed Central

    Simons, S. Stoney

    2009-01-01

    Summary Steroid hormone-activated receptor proteins are among the best understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (≥100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors. PMID:18623071

  6. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  7. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  8. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Treesearch

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  9. Stimulatory effects of calcium on respiration and NAD(P)H synthesis in intact rat heart mitochondria utilizing physiological substrates cannot explain respiratory control in vivo.

    PubMed

    Vinnakota, Kalyan C; Dash, Ranjan K; Beard, Daniel A

    2011-09-02

    Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca(2+) under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca(2+) in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mM extramitochondrial free magnesium, Ca(2+) can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca(2+) concentration averaged per beat, Ca(2+) had no observable stimulatory effect. A modest apparent stimulatory effect (22-27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mM initial phosphate. The stimulatory effects observed over the physiological Ca(2+) range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo.

  10. Stimulatory Effects of Calcium on Respiration and NAD(P)H Synthesis in Intact Rat Heart Mitochondria Utilizing Physiological Substrates Cannot Explain Respiratory Control in Vivo*

    PubMed Central

    Vinnakota, Kalyan C.; Dash, Ranjan K.; Beard, Daniel A.

    2011-01-01

    Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca2+ under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca2+ in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mm extramitochondrial free magnesium, Ca2+ can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca2+ concentration averaged per beat, Ca2+ had no observable stimulatory effect. A modest apparent stimulatory effect (22–27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mm initial phosphate. The stimulatory effects observed over the physiological Ca2+ range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo. PMID:21757763

  11. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

  12. The Physiological Role of Abscisic Acid in Eliciting Turion Morphogenesis.

    PubMed Central

    Smart, C. C.; Fleming, A. J.; Chaloupkova, K.; Hanke, D. E.

    1995-01-01

    The exogenous application of hormones has led to their implication in a number of processes within the plant. However, proof of their function in vivo depends on quantitative data demonstrating that the exogenous concentration used to elicit a response leads to tissue hormone levels within the physiological range. Such proof is often lacking in many investigations. We are using abscisic acid (ABA)-induced turion formation in Spirodela polyrrhiza L. to investigate the mechanism by which a hormone can trigger a morphogenic switch. In this paper, we demonstrate that the exogenous concentration of ABA used to induce turions leads to tissue concentrations of ABA within the physiological range, as quantified by both enzyme-linked immunosorbent assay and high-performance liquid chromatography/gas chromatography-electron capture detection analysis. These results are consistent with ABA having a physiological role in turion formation, and they provide an estimate of the changes in endogenous ABA concentration required if environmental effectors of turion formation (e.g. nitrate deficiency, cold) act via an increased level of ABA. In addition, we show that the (+)- and (-)-enantiomers of ABA are equally effective in inducing turions. Moreover, comparison of the ABA; levels attained after treatment with (+)-, (-)-, and ([plus or minus])-ABA and their effect on turion induction and comparison of the effectiveness of ABA on turion induction under different pH regimes suggest that ABA most likely interacts with a plasmalemma-located receptor system to induce turion formation. PMID:12228499

  13. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    PubMed

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  14. A novel model for estimating organic chemical bioconcentration in agricultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less

  15. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) III: Endogenous Inhibition of Angiotensin Converting Enzyme (ACE) Provides Protection against Cardiovascular Diseases

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    ACE inhibitor drugs decrease mortality by up to one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors. Here we investigated the clinical significance of this potential endogenous ACE inhibition. ACE concentration and activity was measured in patient's serum samples (n = 151). ACE concentration was found to be in a wide range (47–288 ng/mL). ACE activity decreased with the increasing concentration of the serum albumin (HSA): ACE activity was 56±1 U/L in the presence of 2.4±0.3 mg/mL HSA, compared to 39±1 U/L in the presence of 12±1 mg/mL HSA (values are mean±SEM). Effects of the differences in ACE concentration were suppressed in human sera: patients with ACE DD genotype exhibited a 64% higher serum ACE concentration (range, 74–288 ng/mL, median, 155.2 ng/mL, n = 52) compared to patients with II genotype (range, 47–194 ng/mL, median, 94.5 ng/mL, n = 28) while the difference in ACE activities was only 32% (range, 27.3–59.8 U/L, median, 43.11 U/L, and range 15.6–55.4 U/L, median, 32.74 U/L, respectively) in the presence of 12±1 mg/mL HSA. No correlations were found between serum ACE concentration (or genotype) and cardiovascular diseases, in accordance with the proposed suppressed physiological ACE activities by HSA (concentration in the sera of these patients: 48.5±0.5 mg/mL) or other endogenous inhibitors. Main implications are that (1) physiological ACE activity can be stabilized at a low level by endogenous ACE inhibitors, such as HSA; (2) angiotensin II elimination may have a significant role in angiotensin II related pathologies. PMID:24690767

  16. Physiological changes in largemouth bass exposed to paper mill effluents under laboratory and field conditions

    USGS Publications Warehouse

    Sepulveda, M.S.; Gallagher, E.P.; Gross, T.S.

    2004-01-01

    We report here on studies designed to asses the effects of paper mill effluents on non-reproductive functions of free-ranging and captive Florida largemouth bass (Micropterus salmoides floridanus) This was accomplished by conducting an outdoor tank study, in which fish were exposed to well water or to 10%, 20%, 40%, and 80% full strength effluent for 28 or 56 days, and by sampling largemouth bass from sites within the St. Johns River, Florida, upstream and downstream from a paper mill plant. Blood and plasma samples from fish from the tank study and from fish sampled from the ambient sites were analyzed for over 20 variables. We also determined liver and spleen weights and examined them histologically. The most significant finding from the tank study was an increase in the concentration of albumin and hepatosomatic index for bass exposed to ???20% effluents for 56 days. Spleenosomatic index and number of melanomacrophage centers were decreased in bass from effluent-dominated sites (Palatka and Rice Creek), whereas concentrations of calcium, phosphorous, glucose, and creatinine were elevated in fish from these sites, compared to fish from reference streams. Fish from Rice Creek also had fewer red blood cells, and male bass from Palatka had lower concentrations of cholesterol. Plasma concentrations of albumin and hepatic concentrations of glutathione were elevated in males from Palatka, and both females and males from Rice Creek had higher concentrations of globulin. These results indicate a complex pattern of effects of paper mill effluents on several physiological functions. However, despite the myriad of treatment and site-related effects, most physiological parameters fell within normal ranges when compared to reports on largemouth bass and other freshwater species.

  17. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    Treesearch

    Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose

    2005-01-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...

  18. Sex-specific ecophysiological responses to environmental fluctuations of free-ranging Hermann's tortoises: implication for conservation.

    PubMed

    Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie

    2016-01-01

    Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.

  19. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    PubMed

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  20. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age

    PubMed Central

    Jahn, Stephan C.; Rowland-Faux, Laura; Stacpoole, Peter W.; James, Margaret O.

    2015-01-01

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7 – 365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9 – 22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. PMID:25748576

  1. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    PubMed

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  3. Development of a simple intensified fermentation strategy for growth of Magnetospirillum gryphiswaldense MSR-1: Physiological responses to changing environmental conditions.

    PubMed

    Fernández-Castané, Alfred; Li, Hong; Thomas, Owen R T; Overton, Tim W

    2018-06-01

    The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L -1 ) and 33.1 mg iron·g -1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Towards more physiological manipulations of hormones in field studies: comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax.

    PubMed

    Quispe, Rene; Trappschuh, Monika; Gahr, Manfred; Goymann, Wolfgang

    2015-02-01

    Hormone manipulations are of increasing interest in the areas of physiological ecology and evolution, because hormones are mediators of complex phenotypic changes. Often, however, hormone manipulations in field settings follow the approaches that have been used in classical endocrinology, potentially using supra-physiological doses. To answer ecological and evolutionary questions, it may be important to manipulate hormones within their physiological range. We compare the release dynamics of three kinds of implants, silastic tubing, time-release pellets, and beeswax pellets, each containing 3mg of testosterone. These implants were placed into female Japanese quail, and plasma levels of testosterone measured over a period of 30 days. Testosterone in silastic tubing led to supraphysiological levels. Also, testosterone concentrations were highly variable between individuals. Time-release pellets led to levels of testosterone that were slightly supraphysiological during the first days. Over the period of 30 days, however, testosterone concentrations were more consistent. Beeswax implants led to a physiological increase in testosterone and a relatively constant release. The study demonstrated that hormone implants in 10mm silastic tubing led to a supraphysiological peak in female quail. Thus, the use of similar-sized or even larger silastic implants in males or in other smaller vertebrates needs careful assessment. Time-release pellets and beeswax implants provide a more controlled release and degrade within the body. Thus, it is not necessary to recapture the animal to remove the implant. We propose beeswax implants as an appropriate procedure to manipulate testosterone levels within the physiological range. Hence, such implants may be an effective alternative for field studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  6. Physiological Concentrations of Ascorbate Cannot Prevent the Potentially Damaging Reactions of Protein Radicals in Humans.

    PubMed

    Nauser, Thomas; Gebicki, Janusz M

    2017-09-18

    The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.

  7. Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model.

    PubMed

    Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.

  8. Measuring and Validating Levels of Steroid Hormones in the Skin of Bottlenose Dolphins (Tursiops Truncatus)

    DTIC Science & Technology

    2015-09-30

    relationship between serum and skin concentrations of aldosterone , c) how long it takes for aldosterone , corticosterone, and cortisol to be measurable in...opening up a new avenue of research in physiological response studies. REFERENCES Bechshoft T, Wright A, Weisser JJ, Teilmann J, Dietz R, Hansen M...Björklund E & Styrishave B. Developing a new research tool for use in free-ranging cetaceans: recovering cortisol from harbor porpoise skin. Conservation Physiology , 3: doi:10.1093/conphys/cov016

  9. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves

    PubMed Central

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W.; Diehl, Peter-Allan

    2015-01-01

    Background When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). Methodology/Principal Findings We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. Conclusions/Significance In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife. PMID:26398784

  11. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves.

    PubMed

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W; Diehl, Peter-Allan

    2015-01-01

    When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife.

  12. 5-Fluorouracil sensitivity varies among oral micro-organisms.

    PubMed

    Vanlancker, Eline; Vanhoecke, Barbara; Smet, Rozel; Props, Ruben; Van de Wiele, Tom

    2016-08-01

    5-Fluorouracil (5-FU), a commonly used chemotherapeutic agent, often causes oral mucositis, an inflammation and ulceration of the oral mucosa. Micro-organisms in the oral cavity are thought to play an important role in the aggravation and severity of mucositis, but the mechanisms behind this remain unclear. Although 5-FU has been shown to elicit antibacterial effects at high concentrations (>100 µM), its antibacterial effect at physiologically relevant concentrations in the oral cavity is unknown. This study reports the effect of different concentrations of 5-FU (range 0.1-50 µM) on the growth and viability of bacterial monocultures that are present in the oral cavity and the possible role in the activity of dihydropyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU resistance. Our data showed a differential sensitivity among the tested oral species towards physiological concentrations of 5-FU. Klebsiellaoxytoca, Streptococcus salivarius, Streptococcus mitis, Streptococcus oralis, Pseudomonas aeruginosa and Lactobacillus salivarius appeared to be highly resistant to all tested concentrations. In contrast, Lactobacillusoris, Lactobacillus plantarum, Streptococcus pyogenes, Fusobacterium nucleatum and Neisseria mucosa showed a significant reduction in growth and viability starting from very low concentrations (0.2-3.1 µM). We can also provide evidence that DPD is not involved in the 5-FU resistance of the selected species. The observed variability in response to physiological 5-FU concentrations may explain why certain microbiota lead to a community dysbiosis and/or an overgrowth of certain resistant micro-organisms in the oral cavity following cancer treatment.

  13. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men.

    PubMed

    Glaister, Mark; Williams, Benjamin Henley; Muniz-Pumares, Daniel; Balsalobre-Fernández, Carlos; Foley, Paul

    2016-01-01

    The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; [Formula: see text]: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2-4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions.

  14. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    PubMed

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  15. Discrepant post filter ionized calcium concentrations by common blood gas analyzers in CRRT using regional citrate anticoagulation.

    PubMed

    Schwarzer, Patrik; Kuhn, Sven-Olaf; Stracke, Sylvia; Gründling, Matthias; Knigge, Stephan; Selleng, Sixten; Helm, Maximilian; Friesecke, Sigrun; Abel, Peter; Kallner, Anders; Nauck, Matthias; Petersmann, Astrid

    2015-09-08

    Ionized calcium (iCa) concentration is often used in critical care and measured using blood gas analyzers at the point of care. Controlling and adjusting regional citrate anticoagulation (RCA) for continuous renal replacement therapy (CRRT) involves measuring the iCa concentration in two samples: systemic with physiological iCa concentrations and post filter samples with very low iCa concentrations. However, modern blood gas analyzers are optimized for physiological iCa concentrations which might make them less suitable for measuring low iCa in blood with a high concentration of citrate. We present results of iCa measurements from six different blood gas analyzers and the impact on clinical decisions based on the recommendations of the dialysis' device manufacturer. The iCa concentrations of systemic and post filter samples were measured using six distinct, frequently used blood gas analyzers. We obtained iCa results of 74 systemic and 84 post filter samples from patients undergoing RCA for CRRT at the University Medicine of Greifswald. The systemic samples showed concordant results on all analyzers with median iCa concentrations ranging from 1.07 to 1.16 mmol/L. The medians of iCa concentrations for post filter samples ranged from 0.21 to 0.50 mmol/L. Results of >70% of the post filter samples would lead to major differences in decisions regarding citrate flow depending on the instrument used. Measurements of iCa in post filter samples may give misleading information in monitoring the RCA. Recommendations of the dialysis manufacturer need to be revised. Meanwhile, little weight should be given to post filter iCa. Reference methods for low iCa in whole blood containing citrate should be established.

  16. Low concentrations of bilirubin inhibit activation of hepatic stellate cells in vitro.

    PubMed

    Tang, Yinhe; Zhang, Qiyu; Zhu, Yefan; Chen, Gang; Yu, Fuxiang

    2017-04-01

    Hepatic stellate cell (HSC) activation serves a key role in liver fibrosis, and is associated with chronic liver diseases. Bilirubin, a product of heme degradation, has been demonstrated to have antioxidant properties. The present study investigated the effects of physiological concentrations of bilirubin on rat HSC activation. Rat HSCs were isolated and cultured for several generations to induce activation. The activated HSCs were subsequently treated with 0, 1, 10 or 20 mg/l bilirubin and assayed for parameters of cell activation. As the bilirubin concentration increased, HSCs demonstrated reduced production of reactive oxygen species, reduced protein expression levels of α‑smooth muscle actin, a decreased mRNA expression ratio of tissue inhibitor of matrix metalloproteinase‑1/matrix metalloproteinase‑2, decreased proliferation and increased apoptosis. In conclusion, elevated bilirubin levels, within its physiological concentration range, appeared to inhibit HSC activation. These findings suggested a potential role for bilirubin in the treatment of fibrosis that requires further investigation.

  17. Morphological and Physiological Responses of Morning Glory (Ipomoea lacunosa L.) Grown in a Lead- and Chelate-Amended Soil

    PubMed Central

    Kambhampati, Murty S.; Begonia, Gregorio B.; Begonia, Maria F. T.; Bufford, Yolanda

    2005-01-01

    Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa. The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.4% clay), organic matter (6.24 ± 0.60%), and pH (7.95 ± 0.03), to establish soil conditions at the beginning of the experiments. Five EDTA (ethylenediaminetetraacetic acid) concentrations (0, 0.1, 0.5, 1, 5mM) and four lead (0, 500, 1000, 2000mg/L) treatments were arranged in factorial in a Randomized Complete Block (RCB) design with five replications. Duncan’s multiple comparison range test showed that the mean difference values of stomatal density were significant between 500 and 1000mg/L Pb and between 1000 and 2000mg/L Pb. Two way ANOVA (at 1% level) indicated that interaction between Pb and EDTA had a significant effect on the stomatal density and photosynthetic rates, and at 5% level Pb had a significant effect on chlorophyll concentrations. Lowest concentrations of chlorophyll were recorded at 2000mg/L Pb and 5mM EDTA and exhibited a decreasing trend specifically in the ranges of 1000 and 2000mg/L Pb and 1.0 and 5.0mM EDTA. Duncan’s multiple comparison range test confirmed that mean differences between the control treatment vs. 2000mg/L Pb, and 500mg/L vs. 2000mg/L Pb were significantly different at p>0.05. There was a decrease in leaf net photosynthetic rate with increasing concentrations of Pb from 0 to 2000mg/L. In conclusion, I. lacunosa L. plants were grown to maturity in all treatments with no significant and/or apparent morphological disorders, which indicated that this species might be highly tolerant even at 2000mg/L Pb concentrations in the soil. PMID:16705831

  18. Morphological and physiological responses of morning glory (Ipomoea lacunosa L.) grown in a lead- and chelate-amended soil.

    PubMed

    Kambhampati, Murty S; Begonia, Gregorio B; Begonia, Maria F T; Bufford, Yolanda

    2005-08-01

    Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa. The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.4% clay), organic matter (6.24 +/- 0.60%), and pH (7.95 +/- 0.03), to establish soil conditions at the beginning of the experiments. Five EDTA (ethylenediaminetetraacetic acid) concentrations (0, 0.1, 0.5, 1, 5mM) and four lead (0, 500, 1000, 2000mg/L) treatments were arranged in factorial in a Randomized Complete Block (RCB) design with five replications. Duncan's multiple comparison range test showed that the mean difference values of stomatal density were significant between 500 and 1000mg/L Pb and between 1000 and 2000mg/L Pb. Two way ANOVA (at 1% level) indicated that interaction between Pb and EDTA had a significant effect on the stomatal density and photosynthetic rates, and at 5% level Pb had a significant effect on chlorophyll concentrations. Lowest concentrations of chlorophyll were recorded at 2000mg/L Pb and 5mM EDTA and exhibited a decreasing trend specifically in the ranges of 1000 and 2000mg/L Pb and 1.0 and 5.0mM EDTA. Duncan's multiple comparison range test confirmed that mean differences between the control treatment vs. 2000mg/L Pb, and 500mg/L vs. 2000mg/L Pb were significantly different atp>0.05. There was a decrease in leaf net photosynthetic rate with increasing concentrations of Pb from 0 to 2000mg/L. In conclusion, I. lacunosa L. plants were grown to maturity in all treatments with no significant and/or apparent morphological disorders, which indicated that this species might be highly tolerant even at 2000mg/L Pb concentrations in the soil.

  19. From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range

    PubMed Central

    Fernandes, Jolyn; Hao, Li; Bijli, Kaiser M.; Chandler, Joshua D.; Orr, Michael; Hu, Xin; Jones, Dean P.

    2017-01-01

    Manganese (Mn) is an abundant redox-active metal with well-characterized mitochondrial accumulation and neurotoxicity due to excessive exposures. Mn is also an essential co-factor for the mitochondrial antioxidant protein, superoxide dismutase-2 (SOD2), and the range for adequate intake established by the Institute of Medicine Food and Nutrition Board is 20% of the interim guidance value for toxicity by the Agency for Toxic Substances and Disease Registry, leaving little margin for safety. To study toxic mechanisms over this critical dose range, we treated human neuroblastoma SH-SY5Y cells with a series of MnCl2 concentrations (from 0 to 100 μM) and measured cellular content to compare to human brain Mn content. Concentrations ≤10 μM gave cellular concentrations comparable to literature values for normal human brain, whereas concentrations ≥50 μM resulted in values comparable to brains from individuals with toxic Mn exposures. Cellular oxygen consumption rate increased as a function of Mn up to 10 μM and decreased with Mn dose ≥50 μM. Over this range, Mn had no effect on superoxide production as measured by aconitase activity or MitoSOX but increased H2O2 production as measured by MitoPY1. Consistent with increased production of H2O2, SOD2 activity, and steady-state oxidation of total thiol increased with increasing Mn. These findings have important implications for Mn toxicity by re-directing attention from superoxide anion radical to H2O2-dependent mechanisms and to investigation over the entire physiologic range to toxicologic range. Additionally, the results show that controlled Mn exposure provides a useful cell manipulation for toxicological studies of mitochondrial H2O2 signaling. PMID:27701121

  20. Physiological concentrations of anabolic steroids in human hair.

    PubMed

    Shen, Min; Xiang, Ping; Shen, Baohua; Bu, Jun; Wang, Mengye

    2009-01-30

    Doping with endogenous anabolic steroids is one of the most serious issues in sports today. The measurement of anabolic steroid levels in human hair is necessary in order to distinguish between pharmaceutical steroids and natural steroids. This is the first investigation into the physiological concentrations of anabolic steroids in human hair in Chinese subjects. A gas chromatography-tandem mass spectrometry (GC/MS/MS) method was developed for the simultaneous identification and quantitation of five endogenous anabolic steroids (testosterone, epitestosterone, androsterone, etiocholanolone and dehydroepiandrosterone) in hair. After basic hydrolysis, hair samples were extracted with diethyl ether, derivatized and then detected using GC/MS/MS in the multiple-reaction monitoring mode (MRM). The one precursor/two product ion transitions for each anabolic steroid were monitored. The limits of detection for the five endogenous anabolic steroids were in the 0.1-0.2 pg/mg range. All analytes showed good linearity and the extraction recoveries were 74.6-104.5%. Within-day and between-day precisions were less than 20%. This method was applied to the analysis of testosterone, epitestosterone, androsterone, etiocholanolone, and dehydroepiandrosterone in human hair. Full-length hair samples were taken at the skin surface from the vertex of 39 males, 30 females and 11 children from China. None of the subjects were professional athletes. Testosterone and dehydroepiandrosterone were detected in all the hair segments. The physiological concentrations of testosterone were in the range 0.8-24.2 pg/mg, 0.1-16.8 pg/mg and 0.2-11.5 pg/mg in males, females and children, respectively, however, the mean values of dehydroepiandrosterone were much higher than the concentrations of testosterone. These data are suitable reference values and are the basis for the interpretation of results from investigations into the abuse of endogenous anabolic steroids.

  1. Lack of physiological responses to hydrocarbon accumulation by Mytilus trossulus after 3-4 years chronic exposure to spilled Exxon Valdez crude oil in Prince William Sound.

    PubMed

    Thomas, R E; Brodersen, C; Carls, M G; Babcock, M; Rice, S D

    1999-01-01

    Mussels, Mytilus trossulus, were sampled in 1992 and 1993 from beaches in Prince William Sound that had been oiled by the Exxon Valdez spill of March, 1989. At some of the oiled beaches, mussels were collected from beds overlying oiled sediments, and from bedrock adjacent to these beds. Mussels were also collected from beaches within the Sound that had not been impacted by the spill. Polynuclear aromatic hydrocarbon (PAH) concentrations in mussel tissue, physiological responses (byssal thread production, condition index, clearance rate, and glycogen content), were determined for each group of mussels. Total PAH concentrations in mussel tissue ranged from 0 to 6 micrograms g-1, and were significantly greater in mussels from oiled beds than those from reference beds. No significant differences were noted in byssal thread production, condition index, clearance rate, or glycogen content between oiled sample sites and reference sites. The lack of physiological response was surprising because mussels in this study were chronically exposed to PAH for 3-4 years, and none of the physiological responses measured appeared to be affected by that exposure. The lack of a physiological response suggests that chronically exposed mussels may develop a physiological tolerance to PAH, but we recognize that these measures may not have been sensitive enough to discriminate response from background noise.

  2. Terbinafine in Combination with Other Antifungal Agents for Treatment of Resistant or Refractory Mycoses: Investigating Optimal Dosing Regimens Using a Physiologically Based Pharmacokinetic Model

    PubMed Central

    Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579

  3. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka

    2018-01-01

    The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.

  4. Impacts of visitor number on Kangaroos housed in free-range exhibits.

    PubMed

    Sherwen, Sally L; Hemsworth, Paul H; Butler, Kym L; Fanson, Kerry V; Magrath, Michael J L

    2015-01-01

    Free range exhibits are becoming increasingly popular in zoos as a means to enhance interaction between visitors and animals. However very little research exists on the impacts of visitors on animal behaviour and stress in free range exhibits. We investigated the effects of visitor number on the behaviour and stress physiology of Kangaroo Island (KI) Kangaroos, Macropus fuliginosus fuliginosus, and Red Kangaroos, Macropus rufus, housed in two free range exhibits in Australian zoos. Behavioural observations were conducted on individual kangaroos at each site using instantaneous scan sampling to record activity (e.g., vigilance, foraging, resting) and distance from the visitor pathway. Individually identifiable faecal samples were collected at the end of each study day and analysed for faecal glucocorticoid metabolite (FGM) concentration. When visitor number increased, both KI Kangaroos and Red Kangaroos increased the time spent engaged in visitor-directed vigilance and KI Kangaroos also increased the time spent engaged in locomotion and decreased the time spent resting. There was no effect of visitor number on the distance kangaroos positioned themselves from the visitor pathway or FGM concentration in either species. While there are limitations in interpreting these results in terms of fear of visitors, there was no evidence of adverse effects animal welfare in these study groups based on avoidance behaviour or stress physiology under the range of visitor numbers that we studied. © 2015 Wiley Periodicals, Inc.

  5. Maternal Behavior and Physiological Stress Levels in Wild Chimpanzees (Pan troglodytes schweinfurthii).

    PubMed

    Stanton, Margaret A; Heintz, Matthew R; Lonsdorf, Elizabeth V; Santymire, Rachel M; Lipende, Iddi; Murray, Carson M

    2015-06-01

    Individual differences in maternal behavior toward, and investment in, offspring can have lasting consequences, particularly among primate taxa characterized by prolonged periods of development over which mothers can exert substantial influence. Given the role of the neuroendocrine system in the expression of behavior, researchers are increasingly interested in understanding the hormonal correlates of maternal behavior. Here, we examined the relationship between maternal behavior and physiological stress levels, as quantified by fecal glucocorticoid metabolite (FGM) concentrations, in lactating chimpanzees, Pan troglodytes schweinfurthii , at Gombe National Park, Tanzania. After accounting for temporal variation in FGM concentrations, we found that mothers interacted socially (groomed and played) with and nursed their infants more on days when FGM concentrations were elevated compared to days when FGM concentrations were within the range expected given the time of year. However, the proportion of time mothers and infants spent in contact did not differ based on FGM concentrations. These results generally agree with the suggestion that elevated GC concentrations are related to maternal motivation and responsivity to infant cues and are the first evidence of a hormonal correlate of maternal behavior in a wild great ape.

  6. Luminal glucose concentrations in the gut under normal conditions.

    PubMed

    Ferraris, R P; Yasharpour, S; Lloyd, K C; Mirzayan, R; Diamond, J M

    1990-11-01

    Luminal glucose (Glc) concentrations in the small intestine (SI) are widely assumed to be 50-500 mM. These values have posed problems for interpreting SI luminal osmolality and absorptive capacity, Glc transporter Michaelis-Menten constants (Km), and the physiological role of active Glc transport and its regulation. Hence we measured luminal contents, osmolality, and Glc, Na+, and K+ concentrations in normally feeding rats, rabbits, and dogs. Measured Glc concentrations were compatible with the portion of measured osmolality not accounted for by Na+ and K+ salts, amino acids, and peptides. Mean SI luminal osmolalities were less than or equal to 100 mosmol/kg hypertonic. For animals on the most nearly physiological diets, SI Glc concentrations averaged 0.4-24 mM and ranged with time and SI region from 0.2 to a maximum of 48 mM. The older published very high values are artifacts of direct infusion of concentrated Glc solutions into the gut, nonspecific Glc assays, and failure to test for quantitative recovery or to centrifuge samples in the cold. By storing food after meals and releasing it between meals, rat stomach greatly damps diurnal fluctuations in quantity and osmolality of food reaching the SI and hence also damps fluctuations in absorption rates. These new values for luminal Glc have five important physiological implications: the problem of accounting for apparently very hypertonic SI contents in the face of high osmotic water permeability disappears; the effective Km of the SI Glc transporter is now comparable to prevailing Glc concentrations; the SI no longer appears to have enormous excess absorptive capacity for Glc; regulation of Glc transport by dietary intake now makes functional sense; and the claim that high luminal Glc concentrations permit solvent drag to become the major mode of Glc absorption under normal conditions is undermined.

  7. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  8. Plasma concentrations, analgesic and physiological assessments in horses with chronic laminitis treated with two doses of oral tramadol.

    PubMed

    Guedes, A; Knych, H; Hood, D

    2016-07-01

    Laminitis is a painful disease for which adequate pain management remains a challenging and largely unmet medical need. To investigate plasma concentrations, analgesic and physiological effects of 2 doses of tramadol in horses with chronic laminitis. Nonrandomised trial. Four horses with naturally occurring chronic laminitis received 5 mg/kg bwt and then 10 mg/kg bwt tramadol orally every 12 h for one week with a one-week washout between. Noninvasive arterial blood pressure, heart and respiratory rates, intestinal sounds and forelimb off-loading frequency were evaluated before and during treatments. Plasma tramadol and metabolite (M1 and M2) concentrations were measured on predetermined days and times after the morning dosing. Forelimb off-loading frequency decreased significantly with 10 mg/kg bwt (40%, P = 0.02) but not with 5 mg/kg bwt (9%, P = 0.4). Physiological variables did not change significantly with either treatment. For 5 and 10 mg/kg bwt treatments, respectively, individual maximum plasma concentrations (μg/l) ranged from 329 to 728 and 628 to 1330 (tramadol), 12-24 and 32-80 (M1), and 90-157 and 239-362 (M2). Respective median area under the concentration vs. time curves (h μg/l) were 727 and 1426, 33 and 88, 303 and 1003. Twice daily oral tramadol at 10 mg/kg bwt may produce analgesic plasma levels in horses with chronic laminitis. © 2015 EVJ Ltd.

  9. Parsimonious Development of a Physiologically-Based Pharmacokinetic Model for PFOA

    EPA Science Inventory

    We examine pharmacokinetic (PK) models of varying complexity with respect to a large data set for female CD1 mice (Lau et al.) exposed to a range of single and repeated oral doses of PFOA. These data can be broadly grouped into 1) plasma concentrations 2) liver and kidney concen...

  10. Effect of humic acids on the metabolism of Chlorella vulgaris in a model experiment

    NASA Astrophysics Data System (ADS)

    Toropkina, M. A.; Ryumin, A. G.; Kechaikina, I. O.; Chukov, S. N.

    2017-11-01

    The effect of humic acids (HAs) on physiological processes (photosynthesis, respiration, and abundance) of green microalga Chlorella vulgaris has been studied, and the relationships between the physiological activity of HAs and their structural parameters have been investigated. It has been found that the optimum range of HA concentrations for the growth of C. vulgaris is 0.01-0.03%. In this range, the highest positive effect on total photosynthesis increment is due to hydrophilic HA preparations from fallow soddypodzolic soil (Albic Retisol) and virgin gray soil (Luvic Greyzemic Phaeozem). The minimum stimulation of respiration is noted for all HA preparations in the region of the maximum photosynthesis stimulation. At concentrations above 0.003%, all HA preparations have a negative effect: the rate of photosynthesis in C. vulgaris cells decreases, and their respiration is strongly enhanced. The abundance of C. vulgaris under the effect of all of the studied preparations under illumination increases more rapidly than in the dark. A high positive coefficient of correlation is found between the hydrophilicity of HAs calculated from 13C NMR data and the photosynthesis rate in C. vulgaris.

  11. Physiological Gut Oxygenation Alters GLP-1 Secretion from the Enteroendocrine Cell Line STC-1.

    PubMed

    Kondrashina, Alina; Papkovsky, Dmitri; Giblin, Linda

    2018-02-01

    Enteroendocrine cell lines are routinely assayed in simple buffers at ≈20% oxygen to screen foods for bioactives that boost satiety hormone levels. However, in vivo, enteroendocrine cells are exposed to different phases of food digestion and function at low oxygen concentration, ranging from 7.5% in the stomach to 0.5% in the colon-rectal junction. The objective of this study is to investigate the effect of physiologically relevant O 2 concentrations of the gut on the production and secretion of the satiety hormone, glucagon-like peptide 1 (GLP-1), from the murine enteroendocrine cell line, secretin tumor cell line (STC-1), in response to dairy macronutrients as they transit the gut. GLP-1 exocytosis from STC-1 cells is influenced by both oxygen concentration and by individual macronutrients. At low oxygen, STC-1 cell viability is significantly improved for all macronutrient stimulations and cyclic adenosine monophosphate levels are dampened. GLP-1 secretion from STC-1 cells is influenced by both the phase of yogurt digestion and corresponding O 2 concentration. Atmospheric oxygen at 4.5% combined with upper gastric digesta, which simulates ileum conditions, yields the highest GLP-1 response. This demonstrates the importance of considering physiological oxygen levels and food digestion along gastrointestinal tract for reliable in vitro analysis of gut hormone secretion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of food availability on serum insulin and lipid concentrations in free-ranging baboons.

    PubMed

    Kemnitz, Joseph W; Sapolsky, Robert M; Altmann, Jeanne; Muruthi, Philip; Mott, Glen E; Stefanick, Marcia L

    2002-05-01

    The relationship between food availability and metabolic physiology was studied in groups of free-ranging baboons (Papio spp.) living in the Amboseli National Park and the Masai Mara National Reserve of Kenya. Three groups subsisted entirely on natural forage, while two other groups lived near tourist facilities and often consumed food wastes from these lodges. The refuse provided a very accessible food source with relatively high caloric density. Consumption of the refuse was associated with reduced locomotion. Sexually mature individuals from all five groups were sedated surreptitiously in the early morning and blood samples were collected. Compared to animals foraging exclusively in the wild, animals that supplemented their diet with the refuse items had two- to threefold elevations in serum insulin concentrations, as well as increased total cholesterol (C), HDL-C, and VLDL+LDL-C levels. No sex differences in physiological measures were observed except in body mass. Elevated serum insulin, and cholesterol and lipoprotein concentrations influence the development of cardiovascular disease and have been shown to be subject to dietary manipulation and exercise under controlled conditions. The present results suggest potentially deleterious effects of a highly accessible, calorically dense food source, and associated reduction of physical activity for baboons living in an otherwise natural environment. Copyright 2002 Wiley-Liss, Inc.

  13. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    NASA Astrophysics Data System (ADS)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  14. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis.

    PubMed

    Millward, Geoffrey E; Kadam, Sandeep; Jha, Awadhesh N

    2012-03-01

    The tissue-specific accumulation and time-dependent depuration of radioactive (63)Ni by the byssus, gut, foot, gills, kidney, adductor muscle and faeces of Mytilus edulis has been investigated using a pulse-chase technique. The rate and extent of depuration of (63)Ni varied between tissues and, after 168 h, the concentration factors and assimilation efficiencies ranged from 1 to 35 L kg(-1) and 5%-13%, respectively. Mussels were also exposed to a range of environmentally-realistic concentrations of dissolved Ni, prior to the analysis of biological endpoints. The clearance rate was concentration-dependent and at the highest concentration decreased by 30%. Neutral red retention (NRR) assays indicated a cytotoxic response and DNA strand breaks were observed in the haemocytes. The association of DNA damage with that of physiological and cytotoxic effects suggests that Ni exerts a significant impact on Mytilus edulis at cellular and genetic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  16. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  17. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.

    PubMed

    Nogueira, D R; Mitjans, M; Infante, M R; Vinardell, M P

    2011-07-01

    Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.

    PubMed

    Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin

    2010-08-15

    A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Dynamic biological exposure indexes for n-hexane and 2,5-hexanedione, suggested by a physiologically based pharmacokinetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perbellini, L.; Mozzo, P.; Olivato, D.

    Biological exposure index (BEI) of n-hexane was studied for accuracy using a physiologically based pharmacokinetic (PB-PK) model. The kinetics of n-hexane in alveolar air, blood, urine, and other tissues were simulated for different values of alveolar ventilations and also for constant and variable exposures. The kinetics of 2,5-hexanedione, the toxic n-hexane metabolite, were also simulated. The ranges of n-hexane concentrations in biological media and the urinary concentrations of 2,5-hexanedione are discussed in connection with a mean n-hexane exposure of 180 mg/m3 (50 ppm) (threshold limit value (TLV) suggested by American Conference of Governmental Industrial Hygienists (ACGIH) for 1988-89). The experimentalmore » and field data as well as those predicted by simulation with the PB-PK model were comparable. The physiological-pharmacokinetic simulations are used to propose the dynamic BEIs of n-hexane and 2,5-hexanedione. The use of simulation with PB-PK models enables a better understanding of the limits, advantages, and issues associated with biological monitoring of exposures to industrial solvents.« less

  20. Assessing the impact of thermal acclimation on physiological condition in the zebrafish model.

    PubMed

    Vergauwen, Lucia; Knapen, Dries; Hagenaars, An; De Boeck, Gudrun; Blust, Ronny

    2013-01-01

    The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 °C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 °C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish.

  1. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations.

    PubMed

    Kay, Katherine; Shah, Dhaval K; Rohan, Lisa; Bies, Robert

    2018-05-01

    A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l -1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l -1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  2. pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten

    2010-02-01

    Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.

  3. Towards microbial fermentation metabolites as markers for health benefits of prebiotics.

    PubMed

    Verbeke, Kristin A; Boobis, Alan R; Chiodini, Alessandro; Edwards, Christine A; Franck, Anne; Kleerebezem, Michiel; Nauta, Arjen; Raes, Jeroen; van Tol, Eric A F; Tuohy, Kieran M

    2015-06-01

    Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.

  4. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    PubMed

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F

    1998-10-01

    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4)-phosphate 5-kinase.

  5. Measuring salivary analytes from free-ranging monkeys

    PubMed Central

    Higham, James P.; Vitale, Alison; Rivera, Adaris Mas; Ayala, James E.; Maestripieri, Dario

    2014-01-01

    Studies of large free-ranging mammals have been revolutionized by non-invasive methods for assessing physiology, which usually involve the measurement of fecal or urinary biomarkers. However, such techniques are limited by numerous factors. To expand the range of physiological variables measurable non-invasively from free-ranging primates, we developed techniques for sampling monkey saliva by offering monkeys ropes with oral swabs sewn on the ends. We evaluated different attractants for encouraging individuals to offer samples, and proportions of individuals in different age/sex categories willing to give samples. We tested the saliva samples we obtained in three commercially available assays: cortisol, Salivary Alpha Amylase, and Secretory Immunoglobulin A. We show that habituated free-ranging rhesus macaques will give saliva samples voluntarily without training, with 100% of infants, and over 50% of adults willing to chew on collection devices. Our field methods are robust even for analytes that show poor recovery from cotton, and/or that have concentrations dependent on salivary flow rate. We validated the cortisol and SAA assays for use in rhesus macaques by showing aspects of analytical validation, such as that samples dilute linearly and in parallel to assay standards. We also found that values measured correlated with biologically meaningful characteristics of sampled individuals (age and dominance rank). The SIgA assay tested did not react to samples. Given the wide range of analytes measurable in saliva but not in feces or urine, our methods considerably improve our ability to study physiological aspects of the behavior and ecology of free-ranging primates, and are also potentially adaptable to other mammalian taxa. PMID:20837036

  6. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other stresses like temperature, radiation, pressure, pH, etc....

  7. Hepatic and renal metallothionein concentrations in Commerson's dolphins (Cephalorhynchus commersonii) from Tierra del Fuego, South Atlantic Ocean.

    PubMed

    Cáceres-Saez, Iris; Polizzi, Paula; Romero, Belén; Dellabianca, Natalia A; Ribeiro Guevara, Sergio; Goodall, R Natalie P; Cappozzo, H Luis; Gerpe, Marcela

    2016-07-15

    The Commerson's dolphin is the most common endemic odontocete of subantarctic waters of Tierra del Fuego, Argentina incidentally caught in fishing nets. The species is classified as "Data Deficient" by the IUCN. Metallothioneins (MTs) are considered as suitable biomarkers for health and environmental monitoring. The aims of the study were to assess MT concentrations in the liver and kidney of bycaught specimens. Moreover, correlations with Zn, Se, Cd, Ag and Hg, and the molar ratios of MT:metals were estimated to evaluate if there is an indication of their respective protective role against metal toxicity in tissues. Hepatic and renal MT concentrations were similar, ranging from 11.6 to 29.1nmol·g(-1) WW, and Kidney/Liver ratios ranging from 0.73 to 1.93 corresponded to normal ranges. Results suggest that MTs are related to physiological ranges for the species. This information constitutes the first MT report on Commerson's dolphins and possibly considered as baseline for species' conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non-essential metals.

    PubMed

    Schneider, Larissa; Maher, William A; Potts, Jaimie; Taylor, Anne M; Batley, Graeme E; Krikowa, Frank; Adamack, Aaron; Chariton, Anthony A; Gruber, Bernd

    2018-06-01

    Metal concentrations are reported for a seagrass ecosystem receiving industrial inputs. δ 13 C and δ 15 N isotope ratios were used to establish trophic links. Copper concentrations (dry mass) ranged from <0.01 μg/g in fish species to 570 μg/g (μ = 49 ± SD = 90 μg/g) in the oyster Saccostrea glomerata. Zinc concentrations ranged from 0.6 μg/g in the seagrass Zostera capricorni to 10,800 μg/g in the mud oyster Ostrea angasi (μ = 434 ± 1390 μg/g). Cadmium concentrations ranged from <0.01 μg/g in fish species to 268 μg/g in Ostrea angasi (μ = 6 ± 25 μg/g). Lead concentrations ranged from <0.01 μg/g for most fish species to 20 μg/g in polychaetes (μ = 2 ± 3 μg/g). Biomagnification of metals did not occur. Organisms that fed on particulate organic matter and benthic microalgae had higher metal concentrations than those that fed on detritus. Species physiology also played an important role in the bioaccumulation of metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The effects of high environmental ammonia on the structure of rainbow trout hierarchies and the physiology of the individuals therein.

    PubMed

    Grobler, Josias M B; Wood, Chris M

    2018-02-01

    Our goals were: (i) to determine whether sublethal concentrations of water-borne ammonia would prevent the formation of a dominance hierarchy, or alter its structure, in groups of 4 juvenile trout; (ii) to investigate the behavioral and physiological responses of individuals of different social rank exposed to a concentration of ammonia that still allowed hierarchy formation. Social hierarchies were created by using a technique in which a food delivery system that created competition also served to isolate individual fish for respirometry. Groups of 4 fish were exposed to elevated ammonia (NH 4 HCO 3 ) 12 h before first feeding; aggression was recorded by video camera during morning feedings. Experimental ammonia concentrations were 700, 1200 and 1500 μmol L -1 at pH 7.3, 12 °C (9.8, 16.8, and 21.0 mg L -1 as total ammonia-N, or 0.0515, 0.0884, and 0.1105 mg L -1 as NH 3 -N). Aggression was severely reduced by 1200 and abolished by 1500 μmol L -1 total ammonia, such that hierarchies did not form. However, groups exposed to 700 μmol L -1 total ammonia still formed stable hierarchies but displayed lower levels of aggression in comparison to control hierarchies. Exposure continued for 11 days. Physiological parameters were recorded on day 5 (end of period 1) and day 10 (end of period 2), while feeding and plasma cortisol were measured on day 11. In control hierarchies, dominant (rank 1) trout generally exhibited higher growth rates, greater increases in condition factor, higher food consumption, and lower cortisol levels than did fish of ranks 2, 3, and 4. In comparison to controls, the 700 μmol L -1 total ammonia hierarchies generally displayed lower growth, lower condition factor increases, lower O 2 consumption, lower cortisol levels, but similar feeding patterns, with smaller physiological differences amongst ranks during period 1. Effects attenuated during period 2, as aggression and physiological measures returned towards control levels, indicating both behavioral and physiological acclimation to ammonia. These disturbances in social behavior and associated physiology occurred at an ammonia concentration in the range of regulatory significance and relevance to aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide

    PubMed Central

    2011-01-01

    Background Hydrogen peroxide (H2O2) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H2O2 are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H2O2. Here we used conditions more like those in vivo to compare the effects of physiologically plausible concentrations of H2O2 and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli. Methods Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H2O2, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H2O2 and lactic acid was also measured. Results Physiological concentrations of H2O2 (< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H2O2. At 10 mM, H2O2 inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H2O2. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid. Conclusions Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H2O2 produced no detectable inactivation of either BV-associated bacteria or vaginal lactobacilli. Moreover, at very high concentrations, H2O2 was more toxic to vaginal lactobacilli than to BV-associated bacteria. On the basis of these in vitro observations, we conclude that lactic acid, not H2O2, is likely to suppress BV-associated bacteria in vivo. PMID:21771337

  11. California gull chicks raised near colony edges have elevated stress levels

    USGS Publications Warehouse

    Herring, Garth; Ackerman, Joshua T.

    2011-01-01

    Coloniality in nesting birds represents an important life history strategy for maximizing reproductive success. Birds nesting near the edge of colonies tend to have lower reproductive success than individuals nesting near colony centers, and offspring of edge-nesting parents may be impaired relative to those of central-nesting parents. We used fecal corticosterone metabolites in California gull chicks (Larus californicus) to examine whether colony size or location within the colony influenced a chick's physiological condition. We found that chicks being raised near colony edges had higher fecal corticosterone metabolite concentrations than chicks raised near colony centers, but that colony size (ranging from 150 to 11,554 nests) had no influence on fecal corticosterone levels. Fecal corticosterone metabolite concentrations also increased with chick age. Our results suggest that similarly aged California gull chicks raised near colony edges may be more physiologically stressed, as indicated by corticosterone metabolites, than chicks raised near colony centers.

  12. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range.

    PubMed

    Buccolieri, Alessandro; Hasan, Mohammed; Bettini, Simona; Bonfrate, Valentina; Salvatore, Luca; Santino, Angelo; Borovkov, Victor; Giancane, Gabriele

    2018-06-05

    Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.

  13. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  14. The Research on the Impact of Maca Polypeptide on Sport Fatigue.

    PubMed

    Miao, Hua

    2015-01-01

    In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.

  15. Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling.

    PubMed

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Birkved, Morten; Letcher, Robert J; Bossi, Rossana; Vorkamp, Katrin; Born, Erik W; Petersen, Gitte

    2009-12-01

    Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health effects, including reproductive, were conducted during 1990-2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p'-DDE, dieldrin, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79-1271 ng g(-1) lw) and PCBs (range: 4128-53,923 ng g(-1) lw) reported in bears in the year 1990 were in the range to elicit possible adverse health effects on reproduction in polar bears in East Greenland (all RQs > or = 1). Similar results were found for PCBs (range: 1928-17,376 ng g(-1) lw) and PFOS (range: 104-2840 ng g(-1) ww) in the year 2000 and for dieldrin (range: 43-640 ng g(-1) lw), PCBs (range: 3491-13,243 ng g(-1) lw) and PFOS (range: 1332-6160 ng g(-1) ww) in the year 2006. The concentrations of oxychlordane, DDTs, HCB and HCHs in polar bears resulted in RQs<1 and thus appear less likely to be linked to reproductive effects. Furthermore, sumRQs above 1 suggested risk for OHC additive effects. Thus, previous suggestions of possible adverse health effects in polar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated health effects for Arctic wildlife.

  16. Expanding the range of free calcium regulation in biological solutions.

    PubMed

    Dweck, David; Reyes-Alfonso, Avelino; Potter, James D

    2005-12-15

    Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.

  17. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  18. A facile route to glycated albumin detection.

    PubMed

    Bohli, Nadra; Meilhac, Olivier; Rondeau, Philippe; Gueffrache, Syrine; Mora, Laurence; Abdelghani, Adnane

    2018-07-01

    In this paper we propose an easy way to detect the glycated form of human serum albumin which is biomarker for several diseases such as diabetes and Alzheimer. The detection platform is a label free impedimetric immunosensor, in which we used a monoclonal human serum albumin antibody as a bioreceptor and electrochemical impedance as a transducing method. The antibody was deposited onto a gold surface by simple physisorption technique. Bovine serum albumin was used as a blocking agent for non-specific binding interactions. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of each layer. Human serum albumin was glycated at different levels with several concentrations of glucose ranging from 0 mM to 500 mM representing physiological, pathological (diabetic albumin) and suprapathological concentration of glucose. Through the calibration curves, we could clearly distinguish between two different areas related to physiological and pathological albumin glycation levels. The immunosensor displayed a linear range from 7.49% to 15.79% of glycated albumin to total albumin with a good sensitivity. Surface plasmon resonance imaging was also used to characterize the developed immunosensor. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Metabolic and respiratory status of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii).

    PubMed

    Innis, Charles J; Tlusty, Michael; Merigo, Constance; Weber, E Scott

    2007-08-01

    "Cold-stunning" of sea turtles has been reported as a naturally occurring stressor for many years; however, the physiologic status of cold-stunned turtles has only been partially described. This study investigated initial and convalescent venous blood gas, acid-base, and critical plasma biochemical data for 26 naturally cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) from Cape Cod, MA, USA. Samples were analyzed for pH, pCO(2), pO(2), bicarbonate, plasma osmolality, sodium, potassium, chloride, ionized calcium, ionized magnesium, glucose, lactate, and blood urea nitrogen using a clinical point-of-care analyzer. Data were corrected for the patient's body temperature using both species-specific and more general correction methods. In general, venous blood gas, acid-base, and plasma biochemical data obtained for surviving cold-stunned Kemp's ridley sea turtles were consistent with previously documented data for sea turtles exposed to a wide range of temperatures and physiologic stressors. Data indicated that turtles were initially affected by metabolic and respiratory acidosis. Initial pH-corrected ionized calcium concentrations were lower than convalescent concentrations, and initial pH-corrected ionized magnesium concentrations were higher than convalescent concentrations.

  20. Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts.

    PubMed

    M Larina, Irina; Percy, Andrew J; Yang, Juncong; Borchers, Christoph H; M Nosovsky, Andrei; I Grigoriev, Anatoli; N Nikolaev, Evgeny

    2017-08-15

    The effects of spaceflight on human physiology is an increasingly studied field, yet the molecular mechanisms driving physiological changes remain unknown. With that in mind, this study was performed to obtain a deeper understanding of changes to the human proteome during space travel, by quantitating a panel of 125 proteins in the blood plasma of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station. The panel of labeled prototypic tryptic peptides from these proteins covered a concentration range of more than 5 orders of magnitude in human plasma. Quantitation was achieved by a well-established and highly-regarded targeted mass spectrometry approach involving multiple reaction monitoring in conjunction with stable isotope-labeled standards. Linear discriminant function analysis of the quantitative results revealed three distinct groups of proteins: 1) proteins with post-flight protein concentrations remaining stable, 2) proteins whose concentrations recovered slowly, or 3) proteins whose concentrations recovered rapidly to their pre-flight levels. Using a systems biology approach, nearly all of the reacting proteins could be linked to pathways that regulate the activities of proteases, natural immunity, lipid metabolism, coagulation cascades, or extracellular matrix metabolism.

  1. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    PubMed Central

    Lipowicz, Michelle; Garcia, Antonio

    2015-01-01

    The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays. PMID:28955016

  2. A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations

    NASA Astrophysics Data System (ADS)

    Zakem, E.; Follows, M. J.

    2016-02-01

    Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.

  3. A novel hydrogel based piezoresistive pressure sensor platform for chemical sensing

    NASA Astrophysics Data System (ADS)

    Orthner, Michael P.

    New hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2x2) measure approximately 3 x 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 muV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M. Chemical testing showed sensors with perforated diaphragms have higher sensitivity than those with solid diaphragms, and sensitivities ranging from 53.3+/-6.5 to 271.47+/-27.53 mV/V-M, depending on diaphragm size. Additionally, recent experiments show sensors utilizing Ultra Violet (UV) polymerized glucose sensitive hydrogels respond reversibly to physiologically relevant glucose concentrations from 0 to 20 mM.

  4. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.

    PubMed

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO(2)) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO(2)) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO(2) and HHb, total haemoglobin concentration and SO(2). The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of +/-3.8 g l(-1) (+/-58 microM) and +/-4.4 g l(-1) (+/-68 microM) for the HbO(2) and HHb concentrations respectively and +/-4% for SO(2) with an accuracy in the latter in the range -6%-+7%.

  5. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4.4 g l-1 (±68 µM) for the HbO2 and HHb concentrations respectively and ±4% for SO2 with an accuracy in the latter in the range -6%-+7%.

  6. Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery

    PubMed Central

    Schlenker, Lela S.; Latour, Robert J.; Brill, Richard W.; Graves, John E.

    2016-01-01

    White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures. PMID:27293745

  7. Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery.

    PubMed

    Schlenker, Lela S; Latour, Robert J; Brill, Richard W; Graves, John E

    2016-01-01

    White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures.

  8. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.

    PubMed

    Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2016-01-01

    Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. An integrated open framework for thermodynamics of reactions that combines accuracy and coverage.

    PubMed

    Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron

    2012-08-01

    The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG(○) of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K' and pK(a) data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM-3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. ron.milo@weizmann.ac.il Supplementary data are available at Bioinformatics online.

  10. An integrated open framework for thermodynamics of reactions that combines accuracy and coverage

    PubMed Central

    Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron

    2012-01-01

    Motivation: The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Results: Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG○ of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K′ and pKa data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM–3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Availability: Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. Contact: ron.milo@weizmann.ac.il Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22645166

  11. Serum amyloid A protein (SAA), haptoglobin (Hp) and selected hematological and biochemical parameters in wild mares before and after parturition.

    PubMed

    Krakowski, L; Bartoszek, P; Krakowska, I; Olcha, P; Piech, T; Stachurska, A; Brodzki, P

    2017-03-01

    The aim of the study was to evaluate physiological changes in hematological and biochemical parameters in mares in perinatal period. Blood samples were collected from 24 pregnant Polish Konik breed mares which were divided into two groups. The first group (Group - I, n=12) comprised mares living in the wild, in the reserve. The second group (Group - II, n=12) consisted of mares kept in stables. The blood was collected 2 weeks prior to the parturition, then 24 hours after the delivery, and then at the 7th and 21st day after foaling. When comparing the two groups before the parturition, no significant differences in terms of WBC, RBC, and Hb were found, however, there was a significant difference in MCV, MCH, LYM, NEU and SEG NEU (p≤0.05). In Group II, 24 hours after the parturition and at the 21st day after foaling, a significant raise in WBC, NEU and SEG NEU (p≤0.05) was detected. No significant differences in serum concentrations of proteins such as TP, Alb or Glb were observed. As to acute phase proteins, significant rise in SAA and Hp (p≤0.05) was found in the two examined groups 24 hours after the parturition. Yet, this rise remained within physiological range. The study revealed a certain degree of fluctuations in hematological parameters, in serum concentrations of acute-phase proteins and total proteins in the mares in the perinatal period. However, these changes remained still within physiological ranges and thus they do not indicate potential susceptibility to disorders of perinatal period.

  12. Microworm optode sensors limit particle diffusion to enable in vivo measurements.

    PubMed

    Ozaydin-Ince, Gozde; Dubach, J Matthew; Gleason, Karen K; Clark, Heather A

    2011-02-15

    There have been a variety of nanoparticles created for in vivo uses ranging from gene and drug delivery to tumor imaging and physiological monitoring. The use of nanoparticles to measure physiological conditions while being fluorescently addressed through the skin provides an ideal method toward minimally invasive health monitoring. Here we create unique particles that have all the necessary physical characteristics to serve as in vivo reporters, but with minimized diffusion from the point of injection. These particles, called microworms, have a cylindrical shape coated with a biocompatible porous membrane that possesses a large surface-area-to-volume ratio while maintaining a large hydrodynamic radius. We use these microworms to create fluorescent sodium sensors for use as in vivo sodium concentration detectors after subcutaneous injection. However, the microworm concept has the potential to extend to the immobilization of other types of polymers for continuous physiological detection or delivery of molecules.

  13. Low-dose baclofen therapy raised plasma insulin-like growth factor-1 concentrations, but not into the normal range in a predictable and sustained manner in men with chronic spinal cord injury

    PubMed Central

    Bauman, William A.; La Fountaine, Michael F.; Cirnigliaro, Christopher M.; Kirshblum, Steven C.; Spungen, Ann M.

    2013-01-01

    Objective To evaluate, whether once-daily oral baclofen administration increases and/or sustains plasma insulin-like growth factor-1 (IGF-1) concentration in 11 men with chronic spinal cord injury (SCI) and IGF-1 deficiency (i.e. <250 ng/ml). Design Prospective, open-label, dose titration study. Baclofen was administered at 20 mg/day for 8 weeks; then increased to 40 mg/day for another 8 weeks. Plasma IGF-1 and self-reported side effects were measured at baseline and every other week for the duration of the study. Results The subjects were 43 ± 12 years old, had duration of injury of 20 ± 12 years; eight subjects had a complete motor injury, and eight had paraplegia. Nine of 11 subjects completed the 20 mg/day treatment and 5 subjects completed the 40 mg/day treatment. Plasma IGF-1 levels improved with each baclofen dose; however, only one subject increased from baseline and remained above the targeted physiological range of 250 ng/ml throughout treatment. A significant increase in IGF-1concentration was observed between baseline and week 2 (154 ± 63 vs. 217 ± 69 ng/ml; P < 0.05), weeks 8 and 10 (188 ± 95 vs. 228 ± 93 ng/ml; P < 0.05), and weeks 8 and 16 (188 ± 95 vs. 259 ± 92 ng/ml; P < 0.05). No serious side effects were observed at 20 mg/day; the 40 mg/day dose was less well tolerated. Conclusion Baclofen was not effective at sustaining plasma IGF-1 concentrations in the physiological range in men with chronic SCI. PMID:23941795

  14. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    PubMed Central

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  15. Physiological Stress in Koala Populations near the Arid Edge of Their Distribution

    PubMed Central

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R.; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change. PMID:24265749

  16. Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.

    PubMed

    Byrd, Shere K

    2016-06-01

    Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research. Copyright © 2016 The American Physiological Society.

  17. Physiologically Based Pharmacokinetic (PBPK) Modeling of ...

    EPA Pesticide Factsheets

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, inter-individual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data.Objectives: To evaluate the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and one hybrid mouse strains to calibrate and extend existing physiologically-based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). A Bayesian population analysis of inter-strain variability was used to quantify variability in TCE metabolism. Results: Concentration-time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation was less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production was less variable (2-fold range) than DCA production (5-fold range), although uncertainty bounds for DCA exceeded the predicted variability. Conclusions:

  18. Phosphorescent nanosensors for in vivo tracking of histamine levels.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2013-07-02

    Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.

  19. Concentrations of ketone bodies in the blood of the green lizard Ameiva ameiva (Teiidae) in different physiological situations.

    PubMed

    Pontes, R de C; Cartaxo, A C; Jonas, R

    1988-01-01

    1. The concentrations of acetoacetate and 3-hydroxybutyrate have been determined in the blood of the green lizard Ameiva ameiva (Teiidae) in fed animals and in animals starved for periods from one week to about four months. 2. The concentrations of acetoacetate are low and unaltered in fed and starved animals, being in the range from 0.014 to 0.018 mM. 3. The concentrations of 3-hydroxybutyrate are high: 2.67 mM, in fed animals, falling during starvation down to 0.26 mM. 4. The 3-hydroxybutyrate/acetoacetate ratio is high, 151, in fed animals, falling down to 17. 5. The possible importance of ketone bodies in the metabolism of Ameiva ameiva is discussed.

  20. Physiological Stress and Refuge Behavior by African Elephants

    PubMed Central

    Jachowski, David S.; Slotow, Rob; Millspaugh, Joshua J.

    2012-01-01

    Physiological stress responses allow individuals to adapt to changes in their status or surroundings, but chronic exposure to stressors could have detrimental effects. Increased stress hormone secretion leads to short-term escape behavior; however, no studies have assessed the potential of longer-term escape behavior, when individuals are in a chronic physiological state. Such refuge behavior is likely to take two forms, where an individual or population restricts its space use patterns spatially (spatial refuge hypothesis), or alters its use of space temporally (temporal refuge hypothesis). We tested the spatial and temporal refuge hypotheses by comparing space use patterns among three African elephant populations maintaining different fecal glucocorticoid metabolite (FGM) concentrations. In support of the spatial refuge hypothesis, the elephant population that maintained elevated FGM concentrations (iSimangaliso) used 20% less of its reserve than did an elephant population with lower FGM concentrations (Pilanesberg) in a reserve of similar size, and 43% less than elephants in the smaller Phinda reserve. We found mixed support for the temporal refuge hypothesis; home range sizes in the iSimangaliso population did not differ by day compared to nighttime, but elephants used areas within their home ranges differently between day and night. Elephants in all three reserves generally selected forest and woodland habitats over grasslands, but elephants in iSimangaliso selected exotic forest plantations over native habitat types. Our findings suggest that chronic stress is associated with restricted space use and altered habitat preferences that resemble a facultative refuge behavioral response. Elephants can maintain elevated FGM levels for ≥6 years following translocation, during which they exhibit refuge behavior that is likely a result of human disturbance and habitat conditions. Wildlife managers planning to translocate animals, or to initiate other management activities that could result in chronic stress responses, should consider the potential for, and consequences of, refuge behavior. PMID:22384079

  1. Electrical Connection of Enzyme Redox Centers to Electrodes

    DTIC Science & Technology

    1992-03-20

    concentration in the target organ or the affected physiological function ; and a microcontroller or microprocessor calculating the dose and timing the delivery...followed by introduction of medical feedback loops will allow the pharmaceutical industry to expand its range of drug delivery methods. Today’s primary ...inhalation (derived of the large lung surface area) and continuous, non -invasive administration, in the case of iontophoresis. The use of these

  2. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  3. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    PubMed

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Maintaining physiological testosterone levels by adding dehydroepiandrosterone to combined oral contraceptives: I. Endocrine effects.

    PubMed

    Coelingh Bennink, Herjan J T; Zimmerman, Yvette; Laan, Ellen; Termeer, Hanneke M M; Appels, Nicole; Albert, Adelin; Fauser, Bart C J M; Thijssen, Jos H H; van Lunsen, Rik H W

    2017-11-01

    To determine whether adding dehydroepiandrosterone to combined oral contraceptives (COCs) maintains physiological levels of free testosterone. A randomized, double-blind, placebo-controlled, two-way crossover study conducted in 81 healthy women (age range: 20-35 years; Body mass index (BMI) range: 18-35 kg/m 2 ) using oral contraceptives. Androgens, sex hormone-binding globulin (SHBG), estradiol (E2) and estrone (E1) were measured, and free testosterone and the free testosterone index were calculated. Subjects discontinued oral contraceptive use for at least one menstrual cycle before being randomized to receive five cycles of ethinyl estradiol (EE) combined with either levonorgestrel (EE/LNG group) or drospirenone (EE/DRSP group) together with either dehydroepiandrosterone (DHEA) (50 mg/day orally) or placebo. Subsequently, all subjects crossed over to the other treatment arm for an additional five cycles. Both COCs decreased the levels of all androgens measured. Significant decreases (p<.05) were found with EE/LNG and EE/DRSP for total testosterone (54.5% and 11.3%, respectively) and for free testosterone (66.8% and 75.6%, respectively). Adding DHEA to the COCs significantly increased all androgens compared to placebo. Moreover, including DHEA restored free testosterone levels to baseline values in both COC groups and total testosterone levels to baseline in the EE/LNG group and above baseline in the EE/DRSP group. SHBG concentrations were significantly higher with EE/DRSP compared to EE/LNG (p<.0001). The addition of DHEA did not affect the levels of SHBG. Taking COCs reduces total and free testosterone levels and increases SHBG concentrations. By coadministration with DHEA, physiological levels of total and free testosterone are restored while using EE/LNG. With EE/DRSP, only the free testosterone level is normalized by DHEA coadministration. A daily oral dose of 50-mg DHEA maintains physiological free and total testosterone levels in women who are using an EE/LNG-containing COC. Copyright © 2016 Pantarhei Bioscience. Published by Elsevier Inc. All rights reserved.

  5. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  6. Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges.

    PubMed

    Laver, Peter N; Ganswindt, André; Ganswindt, Stefanie B; Alexander, Kathleen A

    2012-11-01

    Free-ranging banded mongooses are infected by the novel pathogen, Mycobacterium mungi in northern Botswana. A reliable method for determining stress-related physiological responses in banded mongooses will increase our understanding of the stress response in M. mungi infection. Therefore, our aim was to examine the suitability of four enzyme immunoassays (EIAs) for monitoring adrenocortical endocrine function in captive and free-ranging banded mongooses based on fecal glucocorticoid metabolite (FGM) analysis. A conducted adrenocorticotropic hormone challenge revealed suitability of a valid measurement of FGM levels in banded mongoose feces for all four tested EIAs, with an 11-oxoetiocholanolone assay detecting 11,17-dioxoandrostanes (11,17-DOA) performing best. Subsequent analyses using only this EIA showed the expected decrease in FGM concentrations 48 h after administering dexamethasone sodium phosphate. Furthermore, captive mongooses showed higher FGM concentrations during reproductive activity, agonistic encounters and depredation events. Finally, a late-stage, tuberculosis-infected moribund mongoose in a free-ranging troop had a 54-fold elevation in FGM levels relative to the rest of the troop. Measurements of gastrointestinal transit times and FGM metabolism post-defecation indicate that the time delay of FGM excretion approximately corresponded with food transit time and that FGM metabolism is minimal up to 8h post-defecation. The ability to reliably assess adrenocortical endocrine function in banded mongoose now provides a solid basis for advancing our understanding of infectious disease and endocrinology in this species. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos*

    PubMed Central

    Hansen, Rasmus; Sønderkær, Mads; Arinell, Karin; Swenson, Jon E.; Revsbech, Inge G.

    2016-01-01

    Brown bears (Ursus arctos) hibernate for 5–7 months without eating, drinking, urinating, and defecating at a metabolic rate of only 25% of the summer activity rate. Nonetheless, they emerge healthy and alert in spring. We quantified the biochemical adaptations for hibernation by comparing the proteome, metabolome, and hematological features of blood from hibernating and active free-ranging subadult brown bears with a focus on conservation of health and energy. We found that total plasma protein concentration increased during hibernation, even though the concentrations of most individual plasma proteins decreased, as did the white blood cell types. Strikingly, antimicrobial defense proteins increased in concentration. Central functions in hibernation involving the coagulation response and protease inhibition, as well as lipid transport and metabolism, were upheld by increased levels of very few key or broad specificity proteins. The changes in coagulation factor levels matched the changes in activity measurements. A dramatic 45-fold increase in sex hormone-binding globulin levels during hibernation draws, for the first time, attention to its significant but unknown role in maintaining hibernation physiology. We propose that energy for the costly protein synthesis is reduced by three mechanisms as follows: (i) dehydration, which increases protein concentration without de novo synthesis; (ii) reduced protein degradation rates due to a 6 °C reduction in body temperature and decreased protease activity; and (iii) a marked redistribution of energy resources only increasing de novo synthesis of a few key proteins. The comprehensive global data identified novel biochemical strategies for bear adaptations to the extreme condition of hibernation and have implications for our understanding of physiology in general. PMID:27609515

  8. Nociceptive threshold, blood constituents and physiological values in 213 cows with locomotion scores ranging from normal to severely lame.

    PubMed

    Tadich, N; Tejeda, C; Bastias, S; Rosenfeld, C; Green, L E

    2013-08-01

    The aim of this study was to investigate associations between mechanical nociceptive threshold, blood constituents, physiological measurements and locomotion score (LS) in dairy cattle with a range of LS from 1 (normal) to 5 (severely lame). The study used 213 Friesian/Friesian cross dairy cows from 12 farms. There were 40-50 cows each with LS 1-4 and 22 cows with LS 5. Each cow was restrained and her temperature and respiratory and cardiac rates were measured. Nociceptive threshold, plasma concentrations of haptoglobin, β-hydroxybutyrate (β-HB), cortisol, glucose, lactate, creatinine kinase activity, packed cell volume and white blood cell counts were determined. Mixed effect models were used to investigate associations between the variables measured and LS. Parity and stage of lactation were forced into all analyses and the model fit was checked by investigation of residuals. After accounting for parity and stage of lactation, nociceptive threshold was significantly lower in cattle with LS 3-5 compared with LS 1 in a dose response manner, indicating increasing hyperalgesia with increasing LS. Haptoglobin concentration was raised in all cattle with LS>1, demonstrating an inflammatory response with all levels of lameness. Cortisol and glucose concentrations were lower and β-HB concentrations higher in cows with LS 2 compared with cows with other scores, possibly signifying metabolic challenge. Heart and respiratory rate and rectal temperature were significantly higher only in cows with LS 5, suggesting that these measurements were insensitive measures of pain or stress. It was concluded that hyperalgesia increases with increasing severity of lameness and that nociceptive pressure and haptoglobin were sensitive measures of pain from lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of captivity on the blood composition of Spanish ibex (Capra pyrenaica hispanica).

    PubMed

    Peinado, V I; Fernandez-Arias, A; Zabala, J L; Palomeque, J

    1995-12-02

    Blood analyses of seven free-ranging Spanish ibex (Capra pyrenaica hispanica) captured from the wild and then held in captivity were used to determine the physiological changes in some haematological parameters and serum chemistry values during captivity. The captive animals had a higher haematocrit and haemoglobin concentration and larger numbers of erythrocytes than the same animals when they were captured. In addition, the absolute numbers of leucocytes and lymphocytes decreased progressively during captivity. Significant differences were found for some of the biochemical variables between the captive ibex and free-ranging animals.

  10. The effects of the pollutant, sodium cyanide, on the morphology and physiology of oedogonium cardiacum

    NASA Technical Reports Server (NTRS)

    Sparks, E.

    1977-01-01

    OEDOGONIUM cardiacum exposed to varying concentrations of sodium cyanide for 15 day periods exhibited both morphological and physiological alterations. Organisms were exposed to the pollutant in concentrations of 1, 10, 25, 50, and 100 parts per million. Exposure period for organisms in each concentration was 15 days. As the concentration of the pollutant increased fragmentation also increased. Exposure also caused organisms to lose chlorophyll. The third morphological alteration was the incidence of rupture. Physiological effects altered by exposure included: reduced oxygen evolution, retardation of starch production and death. Death occurs when organisms are exposed to high concentrations over the total 15 day period.

  11. Thyroglobulin assay in fluids from lymph node fine needle-aspiration washout: influence of pre-analytical conditions.

    PubMed

    Casson, Florence Boux de; Moal, Valérie; Gauchez, Anne-Sophie; Moineau, Marie-Pierre; Sault, Corinne; Schlageter, Marie-Hélène; Massart, Catherine

    2017-04-01

    The aim of this study was to evaluate the pre-analytical factors contributing to uncertainty in thyroglobulin measurement in fluids from fine-needle aspiration (FNA) washout of cervical lymph nodes. We studied pre-analytical stability, in different conditions, of 41 samples prepared with concentrated solutions of thyroglobulin (FNA washout or certified standard) diluted in physiological saline solution or buffer containing 6% albumin. In this buffer, over time, no changes in thyroglobulin concentrations were observed in all storage conditions tested. In albumin free saline solution, thyroglobulin recovery rates depended on initial sample concentrations and on modalities of their conservation (in conventional storage tubes, recovery mean was 56% after 3 hours-storage at room temperature and 19% after 24 hours-storage for concentrations ranged from 2 to 183 μg/L; recovery was 95%, after 3 hours or 24 hours-storage at room temperature, for a concentration of 5,656 μg/L). We show here that these results are due to non-specific adsorption of thyroglobulin in storage tubes, which depends on sample protein concentrations. We also show that possible contamination of fluids from FNA washout by plasma proteins do not always adequately prevent this adsorption. In conclusion, non-specific adsorption in storage tubes strongly contributes to uncertainty in thyroglobulin measurement in physiological saline solution. It is therefore recommended, for FNA washout, to use a buffer containing proteins provided by the laboratory.

  12. Serum uric acid concentrations are directly associated with the presence of benign multiple sclerosis.

    PubMed

    Simental-Mendía, Esteban; Simental-Mendía, Luis E; Guerrero-Romero, Fernando

    2017-09-01

    It has been reported that patients with multiple sclerosis (MS) exhibit lower serum uric acid levels; however, the association between uric acid concentrations and benign MS (BMS) has not been assessed. Hence, the objective of the present study was to determine whether the serum concentrations of uric acid are associated with the presence of BMS. Men and non-pregnant women over 16 years of age with diagnosis of MS were enrolled in a cross-sectional study. Expanded Disability Status Scale score < 3, progression of disease ≤10 years, diabetes, renal or hepatic diseases, gout, malignancy, alcohol intake, and treatment with thiazide diuretics and/or acetylsalicylic acid were exclusion criteria. According to subtype of disease, the eligible patients were allocated into groups with BMS and other varieties of MS. A logistic regression analysis was conducted in order to evaluate the association between serum concentrations of uric acid and BMS. A total of 106 patients were included, 39 in the group with BMS and 67 in the group with other varieties of MS. The logistic regression analysis adjusted by age, sex, and disease duration showed that increased concentrations of uric acid, indeed within the physiological levels, are significantly associated with the presence of BMS (OR = 2.60; 95% CI: 1.55-4.38, p < 0.001). The results of the present study suggest that elevated concentrations of uric acid, indeed within the physiological range, are likely linked to the presence of BMS.

  13. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    NASA Astrophysics Data System (ADS)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  14. Cadmium content in fresh and canned squid (Loligo opalescens) from the Pacific coastal waters of California (USA).

    PubMed

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2009-01-01

    Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.

  15. Stability of four standardized preparations of methotrexate, cytarabine, and hydrocortisone for intrathecal use.

    PubMed

    Olmos-Jiménez, Raquel; Espuny-Miró, Alberto; Díaz-Carrasco, María Sacramento; Fernández-Varón, Emilio; Valderrey-Pulido, Manuel; Cárceles-Rodríguez, Carlos

    2016-10-01

    Intrathecal administration of methotrexate, cytarabine, and hydrocortisone is commonly used to treat and prevent central nervous system involvement in leukemias and lymphomas. The use of intrathecal solutions with pH and osmolarity values close to physiologic range of CSF (pH 7.31-7.37, osmolarity 281-306 mOsm/kg) and standardization of the methotrexate, cytarabine, and hydrocortisone doses in children and adults based on age is highly recommended. Stability studies of standardized intrathecal mixtures under these conditions have not yet been published. The purpose of this study was to evaluate the physical and chemical stabilities of four standardized mixtures of methotrexate, cytarabine, and hydrocortisone stored at 2-8℃ and 25℃ up to 7 days after preparation. Four different standardized intrathecal mixtures were prepared and stored at 2-8℃ and 25℃ and protected from light. Triplicate samples were taken at different times and precipitation, appearance, color, pH, and osmolarity were analyzed. Methotrexate, cytarabine, and hydrocortisone concentrations were measured using a modified high-performance liquid chromatography method. No variation greater than 10% of the initial concentration of methotrexate, cytarabine, and hydrocortisone was observed in any of the four standardized mixtures for the 7 days of study when stored at 2-8℃ and 25℃ and protected from light. The osmolarity of the four preparations was within the physiologic range of CSF for 7 days at both 2-8℃ and 25℃. The pH values close to the physiologic range of CSF were stable for 48 h at 25℃ and for 120 h at 2-8℃. Triple intrathecal standardized preparations of methotrexate, cytarabine, and hydrocortisone sodium phosphate are physically and chemically stable at 25℃ for 48 h and at 2-8℃ for 5 days. © The Author(s) 2015.

  16. Virtual Clinical Trial Toward Polytherapy Safety Assessment: Combination of Physiologically Based Pharmacokinetic/Pharmacodynamic-Based Modeling and Simulation Approach With Drug-Drug Interactions Involving Terfenadine as an Example.

    PubMed

    Wiśniowska, Barbara; Polak, Sebastian

    2016-11-01

    A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded C max values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa.

    PubMed

    Kamp, G; Schmidt, H; Stypa, H; Feiden, S; Mahling, C; Wegener, G

    2007-01-01

    Glycolysis is crucial for sperm functions (motility and fertilization), but how this pathway is regulated in spermatozoa is not clear. This prompted to study the location and the regulatory properties of 6-phosphofructokinase (PFK, EC 2.7.1.11), the most important element for control of glycolytic flux. Unlike some other glycolytic enzymes, PFK showed no tight binding to sperm structures. It could readily be extracted from ejaculated boar spermatozoa by sonication and was then chromatographically purified. At physiological pH, the enzyme was allosterically inhibited by near-physiological concentrations of its co-substrate ATP, which induced co-operativity, i.e. reduced the affinity for the substrate fructose 6-phosphate. Inhibition by ATP was reinforced by citrate and H+. Above pH 8, PFK lost all its regulatory properties and showed maximum activity. However, in the physiological pH range, PFK activity was very sensitive to small changes in effectors. At near-physiological substrate concentrations, PFK activity requires activators (de-inhibitors) of which the combination of AMP and fructose 2,6-bisphosphate (F2,6P2) was most efficient as a result of synergistic effects. The kinetics of PFK suggest AMP, F2,6P2, H+, and citrate as allosteric effectors controlling PFK activity in boar spermatozoa. Using immunogold labeling, PFK was localized in the mid-piece and principal piece of the flagellum as well as in the acrosomal area at the top of the head and in the cytoplasmic droplets released from the mid-piece after ejaculation.

  18. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    2000-01-01

    A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.

  19. Stevia preferences in Wistar rats.

    PubMed

    Núñez Martínez, Paula; Argüelles Luis, Juan; Perillán Méndez, Carmen

    2016-11-01

    The Stevia rebaudiana plant is likely to become a major source of high-potency sweetener for the growing natural-food market. S. rebaudiana is the source of a number of sweet diterpenoid glycosides, but the major sweet constituents are rebaudioside A and stevioside. These two constituents have similar pharmacokinetic and metabolic profiles in rats and humans, and thus, studies carried out with either steviol glycoside are relevant to both. Other studies illustrate the diversity of voluntary sweet intake in mammals. This study was done using a series of two-bottle tests that compared a wide range of sweetener concentrations versus saccharin concentrations and versus water. Wistar rats displayed preferences for stevia extract and pure rebaudioside A solutions over water at a range of concentrations (0.001% to 0.3%), and their intake peak occurred at 0.1% concentration. They also preferred solutions prepared with a commercial rebaudioside A plus erythritol mixture to water, and their peak was at 2% concentration. The present study provides new information about the responses of Wistar rats to stevia compounds and commercial stevia products such as Truvia. These results could help with the appropriate dosage selection for focused behavioral and physiological studies on stevia.

  20. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    PubMed

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  1. Maternal effects on offspring stress physiology in wild chimpanzees.

    PubMed

    Murray, Carson M; Stanton, Margaret A; Wellens, Kaitlin R; Santymire, Rachel M; Heintz, Matthew R; Lonsdorf, Elizabeth V

    2018-01-01

    Early life experiences are known to influence hypothalamic-pituitary-adrenal (HPA) axis development, which can impact health outcomes through the individual's ability to mount appropriate physiological reactions to stressors. In primates, these early experiences are most often mediated through the mother and can include the physiological environment experienced during gestation. Here, we investigate stress physiology of dependent offspring in wild chimpanzees for the first time and examine whether differences in maternal stress physiology are related to differences in offspring stress physiology. Specifically, we explore the relationship between maternal rank and maternal fecal glucocorticoid metabolite (FGM) concentration during pregnancy and early lactation (first 6 months post-partum) and examine whether differences based on maternal rank are associated with dependent offspring FGM concentrations. We found that low-ranking females exhibited significantly higher FGM concentrations during pregnancy than during the first 6 months of lactation. Furthermore, during pregnancy, low-ranking females experienced significantly higher FGM concentrations than high-ranking females. As for dependent offspring, we found that male offspring of low-ranking mothers experienced stronger decreases in FGM concentrations as they aged compared to males with high-ranking mothers or their dependent female counterparts. Together, these results suggest that maternal rank and FGM concentrations experienced during gestation are related to offspring stress physiology and that this relationship is particularly pronounced in males compared to females. Importantly, this study provides the first evidence for maternal effects on the development of offspring HPA function in wild chimpanzees, which likely relates to subsequent health and fitness outcomes. Am. J. Primatol. 80:e22525, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The Implications of selenium deficiency for wild herbivore conservation: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner T. Flueck; J.M. Smith Flueck; J. Mionczynski

    Selenium (Se) has been identified as an essential micronutrient in all animals. It is required at the most fundamental physiological level as a component of the selenoproteins containing the 21st amino acid, selenocysteine. Adequate levels of Se are vital to proper reproductive performance, bone metabolism, immune function and iodine metabolism. Yet, Se is a relatively rare element, and is often present at low concentrations in soil and vegetation. Selenium deficiencies are widespread in domestic stock and are unavoidable in some wildlife populations. This may be especially true for populations confined to high elevation ranges, or on areas with granitic bedrockmore » with low Se content, or that have lost access to Se-containing parts of their ranges such as mineral licks or low-elevation winter range. The condition may be exacerbated by increased levels of oxidative stress. Because our understanding of Se as a micronutrient is relatively new, many wildlife managers are unaware of the element’s importance in physiology and population dynamics. Severe deficiency results in obvious symptoms such as white muscle disease. However, more frequently, deficiency may be chronic and subclinical. Individuals then display no obvious signs of malady, yet performance suffers until their populations decline without apparent cause. While mysterious population declines are not always due to Se deficiency, the wildlife manager should be aware of the possibility. Therefore, this review presents not only a summary of the wildlife literature regarding Se nutrition, but also a comprehensive look at the role of Se in mammalian physiology, and the behavior of this important element in the environment. Finally, the role of the biogeochemical Se cycle is discussed, and evidence is provided that the levels of available Se in the environment are decreasing while physiological demands often are increasing.« less

  3. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  4. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample.

    PubMed

    Fox, Caroline S; Pencina, Michael J; D'Agostino, Ralph B; Murabito, Joanne M; Seely, Ellen W; Pearce, Elizabeth N; Vasan, Ramachandran S

    2008-03-24

    Overt hypothyroidism and hyperthyroidism may be associated with weight gain and loss. We assessed whether variations in thyroid function within the reference (physiologic) range are associated with body weight. Framingham Offspring Study participants (n=2407) who attended 2 consecutive routine examinations, were not receiving thyroid hormone therapy, and had baseline serum thyrotropin (TSH) concentrations of 0.5 to 5.0 mIU/L and follow-up concentrations of 0.5 to 10.0 mIU/L were included in this study. Baseline TSH concentrations were related to body weight and body weight change during 3.5 years of follow-up. At baseline, adjusted mean weight increased progressively from 64.5 to 70.2 kg in the lowest to highest TSH concentration quartiles in women (P< .001 for trend), and from 82.8 (lowest quartile) to 85.6 kg (highest quartile) in men (P= .007 for trend). During 3.5 years of follow-up, mean (SD) body weight increased by 1.5 (5.6) kg in women and 1.0 (5.0) kg in men. Baseline TSH concentrations were not associated with weight change during follow-up. However, an increase in TSH concentration at follow-up was positively associated with weight gain in women (0.5-2.3 kg across increasing quartiles of TSH concentration change; P< .001 for trend) and men (0.4-1.3 kg across quartiles of TSH concentration change; P= .007 for trend). Thyroid function (as assessed by serum TSH concentration) within the reference range is associated with body weight in both sexes. Our findings raise the possibility that modest increases in serum TSH concentrations within the reference range may be associated with weight gain.

  5. Combinations of Physiologic Estrogens with Xenoestrogens Alter ERK Phosphorylation Profiles in Rat Pituitary Cells

    PubMed Central

    Jeng, Yow-Jiun; Watson, Cheryl S.

    2011-01-01

    Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566

  6. Adaptive regulation of sparseness by feedforward inhibition

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Laurent, Gilles; Bazhenov, Maxim

    2014-01-01

    In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions. PMID:17660812

  7. Physical and physiological demands in women pole dance: a single case study.

    PubMed

    Ruscello, Bruno; Iannelli, Sara; Partipilo, Filippo; Esposito, Mario; Pantanella, Laura; Dring, Mary B; D'Ottavio, Stefano

    2017-04-01

    to investigate the physical and physiological demands of a pole dancer's performance studied during a simulated competition, lasting 3 min 30 sec. one single woman pole dancer, (age: 22 years; height: 1.56m; body weight: 52kg; BMI: 21.4kg·m-2; estimated HRmax:192.6 bpm) participated in the study. Physical data pertaining to accelerations and rotational values were collected by the means of a tri-axial accelerometer device integrating three gyroscopes. A complete video footage was recorded using four video cameras, using different sampling rates. Blood Pressure, Heart Rates, Breathing Rates, Blood Lactate concentrations were recorded during the performance. Accelerations (positive and negative), along the vertical axis reached 2G and rotational movements around the pole, reached 400°/s. Blood Pressure values ranged from 120/75 before and to 145/58 mmHg at the end of performance, respectively. Heart Rates reached a peak value of 96% of the Maximal Estimated Heart Rate (HRmax) and a mean %HRmax of 92.85 ± 3.15% during the simulated competition. Breathing Rate reached a peak value of 37 bpm and a mean value during competition of 31.87±3.42 bpm. Blood Lactate concentration ranged from 10.2 to 10.7 mmol/L measured at 1 min and 5 min after the completion of the competition, respectively. The results of this case study confirm that the Pole Dance is a performing art requiring heavy physiological and physical demands on the performers. Specific training routines should be designed in order to cope efficiently with this physical activity, taking into account the performance model we provided with this study.

  8. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of high aluminum consumption on mechanics and composition of furculae of free-ranging coots

    USGS Publications Warehouse

    Hui, C.A.; Ellers, O.

    1999-01-01

    High levels of ingested Al can affect mechanical properties of bones. Because of the spring action of the furcula during the wingbeat, small changes in the mechanical properties of this bone may have measurable impacts on long-distance flight. We examined the furculae and ingesta of free- ranging American coots (Fulica americana) in San Francisco Bay (California, USA), where they consume a diet high in Al. We measured the spring stiffness and phase angle (??) of the furculae and the concentrations of Al, Ca, F. Mg, and P in both the furculae and ingesta. The ingesta had mean Al concentrations (2,384 ??g/g, dry weight) and Al:P molar ratios (6.4:1) predicted to affect bone integrity but the bone concentrations of Al were near the normal range and the furcula stiffness did not change with Al concentration. The tan ?? of the furculae changed with Al concentration but the relationship was weak. The chemical speciation of the ingested Al may have affected its physiologic role and the high mean levels of ingested calcium (71,283 ??g/g, dry weight) very likely neutralized the activity of the Al. Controlled feeding studies have shown that F strengthens avian bones. The bones in our study had molar concentrations of F more than two orders of magnitude greater than Al (170:1) but F appears to have insignificant influence on bone mechanics. The coots in San Francisco Bay apparently are not suffering furcula impairment despite a diet high in Al.

  10. Plasma lactate concentrations in free-ranging moose (Alces alces) immobilized with etorphine.

    PubMed

    Haga, Henning A; Wenger, Sandra; Hvarnes, Silje; Os, Oystein; Rolandsen, Christer M; Solberg, Erling J

    2009-11-01

    To investigate plasma lactate concentrations of etorphine-immobilized moose in relation to environmental, temporal and physiological parameters. Prospective clinical study. Fourteen female and five male moose (Alces alces), estimated age range 1-7 years. The moose were darted from a helicopter with 7.5 mg etorphine per animal using projectile syringes and a dart gun. Once immobilized, the moose were approached, a venous blood sample was obtained and vital signs including pulse oximetry were recorded. Diprenorphine was administered to reverse the effects of etorphine. Timing of events, ambient temperature and snow depth were recorded. Blood samples were cooled and centrifuged before plasma was harvested and frozen. The plasma was thawed later and lactate analysed. Data were analysed using descriptive statistics and regression analysis. All animals recovered uneventfully and were alive 12 weeks after immobilization. Mean +/- SD plasma lactate was found to be 9.2 +/- 2.1 mmol L(-1). Plasma lactate concentrations were related positively to snow depth and negatively to time from induction of immobilization to blood sampling. The model that best described the variability in plasma lactate concentrations used induction time (time from firing the dart to the moose being immobilized). The second best model included induction time and snow depth. Plasma lactate concentrations in these etorphine-immobilized moose were in the range reported for other immobilized wild ruminants. Decreasing induction time, which may be related to a more profound etorphine effect, and increasing snow depth possibly may increase plasma lactate concentrations in etorphine-immobilized moose.

  11. A diffusion based long-range and steady chemical gradient generator on a microfluidic device for studying bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Murugesan, Nithya; Singha, Siddhartha; Panda, Tapobrata; Das, Sarit K.

    2016-03-01

    Studies on chemotaxis in microfluidics device have become a major area of research to generate physiologically similar environment in vitro. In this work, a novel micro-fluidic device has been developed to study chemo-taxis of cells in near physiological condition which can create controllable, steady and long-range chemical gradients using various chemo-effectors in a micro-channel. Hydrogels like agarose, collagen, etc, can be used in the device to maintain exclusive diffusive flux of various chemical species into the micro-channel under study. Variations of concentrations and flow rates of Texas Red dextran in the device revealed that an increase in the concentration of the dye in the feed from 6 to 18 μg ml-1, causes a steeper chemical gradient in the device, whereas the flow rate of the dye has practically no effect on the chemical gradient in the device. This observation confirms that a diffusion controlled chemical gradient is generated in the micro-channel. Chemo-taxis of E. coli cells were studied under the steady gradient of a chemo-attractant and a chemo-repellent separately in the same chemical gradient generator. For sorbitol and NiSO4·6H2O, the bacterial cells exhibit a steady distribution in the micro channel after 1 h and 30 min, respectively. From the distribution of bacterial population chemo-tactic strength of the chemo-effectors was estimated for E. coli. In a long microfluidic channel, migration behavior of bacterial cells under diffusion controlled chemical gradient showed chemotaxis, random movement, aggregation, and concentration dependent reverse chemotaxis.

  12. Feasting in fresh water: impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats

    PubMed Central

    Lee, Carol Eunmi; Moss, Wynne E; Olson, Nora; Chau, Kevin Fongching; Chang, Yu-Mei; Johnson, Kelsey E

    2013-01-01

    Saline to freshwater invasions have become increasingly common in recent years. A key hypothesis is that rates of freshwater invasions have been amplified in recent years by increased food concentration, yet this hypothesis has remained unexplored. We examined whether elevated food concentration could enhance freshwater tolerance, and whether this effect evolves following saline to freshwater invasions. We examined physiological response to salinity and food concentration in a 2 × 2 factorial design, using ancestral brackish and freshwater invading populations of the copepod Eurytemora affinis. We found that high food concentration significantly increases low-salinity tolerance. This effect was reduced in the freshwater population, indicating evolution following the freshwater invasion. Thus, ample food could enable freshwater invasions, allowing subsequent evolution of low-salinity tolerance even under food-poor conditions. We also compared effects of food concentration on freshwater survival between two brackish populations from the native range. Impacts of food concentration on freshwater survival differed between the brackish populations, suggesting variation in functional properties affecting their propensity to invade freshwater habitats. The key implication is that high food concentration could profoundly extend range expansions of brackishwater species into freshwater habitats, potentially allowing for condition-specific competition between saline invaders and resident freshwater species. PMID:23789033

  13. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  14. Melanin-concentrating hormone in peripheral circulation in the human.

    PubMed

    Naufahu, J; Alzaid, F; Fiuza Brito, M; Doslikova, B; Valencia, T; Cunliffe, A; Murray, J F

    2017-03-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5-1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5-55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role. © 2017 Society for Endocrinology.

  15. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  16. Development of sensitive holographic devices for physiological metal ion detection

    NASA Astrophysics Data System (ADS)

    Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela

    2017-08-01

    The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.

  17. The effects of magnesium on potassium transport in ferret red cells.

    PubMed Central

    Flatman, P W

    1988-01-01

    1. The magnesium dependence of net and isotopic (using 86Rb as tracer) potassium transport was measured in fed ferret red cells. Bumetanide (0.1 mM) was used to dissect total flux into two components: bumetanide sensitive and bumetanide resistant. 2. Increasing the external magnesium concentration from zero (added) to 2 mM stimulated bumetanide-sensitive uptake by 16% but inhibited the bumetanide-resistant component by about 20%. 3. Ionophore A23187 was used to control internal magnesium concentration. A23187 was usually present in the cells during measurement of isotopic fluxes but was washed away before measurement of net fluxes. The magnesium-buffering characteristics of fed ferret red cells were assessed during these experiments. The cytoplasm acts as a high-capacity, low-affinity magnesium buffer over most of the range. Some high-affinity binding was seen in the presence of A23187 and 2 mM-EDTA. 4. A23187 itself slightly inhibits bumetanide-sensitive potassium transport. 5. Bumetanide-sensitive potassium transport is strongly dependent on the concentration of internal ionized magnesium. Transport is 35% maximal at 10(-7) M and increases up to the maximal rate at 1.3 mM. Further increase in ionized magnesium concentration to 3.5 mM has no additional effect. The curve relating activity to magnesium concentration is steepest at the physiological magnesium concentration. The effects of changing magnesium concentration are fully reversible. 6. Reduction of internal ionized magnesium concentration to 10(-7) M with A23187 and EDTA approximately doubles bumetanide-resistant potassium transport. 7. Bumetanide-sensitive fluxes occur via the sodium-potassium-chloride co-transport system under the conditions used. Results described in this paper thus suggest that internal magnesium may be an important physiological controller of sodium-potassium-chloride co-transport activity. PMID:3137332

  18. Early life socioeconomic status, chronic physiological stress and hippocampal N-acetyl aspartate concentrations.

    PubMed

    McLean, John; Krishnadas, Rajeev; Batty, G David; Burns, Harry; Deans, Kevin A; Ford, Ian; McConnachie, Alex; McGinty, Agnes; McLean, Jennifer S; Millar, Keith; Sattar, Naveed; Shiels, Paul G; Tannahill, Carol; Velupillai, Yoga N; Packard, Chris J; Condon, Barrie R; Hadley, Donald M; Cavanagh, Jonathan

    2012-12-01

    Early life socioeconomic deprivation has been associated with cognitive and behavioural changes that persist through towards adulthood. In this study, we investigated whether early life socioeconomic status is associated with changes in the hippocampus N-acetyl aspartate (NAA), using the non-invasive technique of magnetic resonance spectroscopy (MRS). We performed proton magnetic resonance spectroscopy ((1)H-MRS) of the hippocampus at 3T in 30 adult males, selected from the PSOBID cohort. We conducted multiple regression analysis to examine the relationship between early socioeconomic status (SES) and concentration of N-acetyl-aspartate in the hippocampus. We also examined whether the relationship between these variables was mediated by markers of chronic physiological stress. Greater socioeconomic deprivation was associated with lower hippocampal NAA concentrations bilaterally. The relationship between early life SES and hippocampal NAA concentrations was mediated by allostatic load index - a marker of chronic physiological stress. Greater early life socioeconomic deprivation was associated with lower concentrations of NAA reflecting lesser neuronal integrity. This relationship was mediated by greater physiological stress. Further work, to better understand the biological processes underlying the effects of poverty, physiological stress on hippocampal metabolites is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration.

    PubMed

    Bellio, Michael A; Rodrigues, Claudia O; Landin, Ana Marie; Hatzistergos, Konstantinos E; Kuznetsov, Jeffim; Florea, Victoria; Valasaki, Krystalenia; Khan, Aisha; Hare, Joshua M; Schulman, Ivonne Hernandez

    2016-12-01

    Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O 2 ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O 2 concentrations. Physiological O 2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O 2 reduces senescence and promotes quiescence. Furthermore, physiological O 2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O 2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O 2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O 2 concentration on CSC biology and has important implications for refining stem cell therapies. Copyright © 2016 the American Physiological Society.

  20. Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model.

    PubMed

    Kalman, J; Smith, B D; Riba, I; Blasco, J; Rainbow, P S

    2010-06-01

    Biodynamic parameters of the ragworm Nereis diversicolor from southern Spain and south England were experimentally derived to assess the inter-population variability of physiological parameters of the bioaccumulation of Ag, Cd and Zn from water and sediment. Although there were some limited variations, these were not consistent with the local metal bioavailability nor with temperature changes. Incorporating the biodynamic parameters into a defined biodynamic model, confirmed that sediment is the predominant source of Cd and Zn accumulated by the worms, accounting in each case for 99% of the overall accumulated metals, whereas the contribution of dissolved Ag to the total accumulated by the worm increased from about 27 to about 53% with increasing dissolved Ag concentration. Standardised values of metal-specific parameters were chosen to generate a generalised model to be extended to N. diversicolor populations across a wide geographical range from western Europe to North Africa. According to the assumptions of this model, predicted steady state concentrations of Cd and Zn in N. diversicolor were overestimated, those of Ag underestimated, but still comparable to independent field measurements. We conclude that species-specific physiological metal bioaccumulation parameters are relatively constant over large geographical distances, and a single generalised biodynamic model does have potential to predict accumulated Ag, Cd and Zn concentrations in this polychaete from a single sediment metal concentration.

  1. Polymer-Free Optode Nanosensors for Dynamic, Reversible, and Ratiometric Sodium Imaging in the Physiological Range

    PubMed Central

    Ruckh, Timothy T.; Mehta, Ankeeta A.; Dubach, J. Matthew; Clark, Heather A.

    2013-01-01

    This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging. PMID:24284431

  2. Modified-release hydrocortisone to provide circadian cortisol profiles.

    PubMed

    Debono, Miguel; Ghobadi, Cyrus; Rostami-Hodjegan, Amin; Huatan, Hiep; Campbell, Michael J; Newell-Price, John; Darzy, Ken; Merke, Deborah P; Arlt, Wiebke; Ross, Richard J

    2009-05-01

    Cortisol has a distinct circadian rhythm regulated by the brain's central pacemaker. Loss of this rhythm is associated with metabolic abnormalities, fatigue, and poor quality of life. Conventional glucocorticoid replacement cannot replicate this rhythm. Our objectives were to define key variables of physiological cortisol rhythm, and by pharmacokinetic modeling test whether modified-release hydrocortisone (MR-HC) can provide circadian cortisol profiles. The study was performed at a Clinical Research Facility. Using data from a cross-sectional study in healthy reference subjects (n = 33), we defined parameters for the cortisol rhythm. We then tested MR-HC against immediate-release hydrocortisone in healthy volunteers (n = 28) in an open-label, randomized, single-dose, cross-over study. We compared profiles with physiological cortisol levels, and modeled an optimal treatment regimen. The key variables in the physiological cortisol profile included: peak 15.5 microg/dl (95% reference range 11.7-20.6), acrophase 0832 h (95% confidence interval 0759-0905), nadir less than 2 microg/dl (95% reference range 1.5-2.5), time of nadir 0018 h (95% confidence interval 2339-0058), and quiescent phase (below the mesor) 1943-0531 h. MR-HC 15 mg demonstrated delayed and sustained release with a mean (sem) maximum observed concentration of 16.6 (1.4) microg/dl at 7.41 (0.57) h after drug. Bioavailability of MR-HC 5, 10, and 15 mg was 100, 79, and 86% that of immediate-release hydrocortisone. Modeling suggested that MR-HC 15-20 mg at 2300 h and 10 mg at 0700 h could reproduce physiological cortisol levels. By defining circadian rhythms and using modern formulation technology, it is possible to allow a more physiological circadian replacement of cortisol.

  3. Store-operated Ca2+ entry in muscle physiology and diseases

    PubMed Central

    Pan, Zui; Brotto, Marco; Ma, Jianjie

    2014-01-01

    Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79] PMID:24411466

  4. Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma.

    PubMed

    Witmer, Jordan R; Wetherell, Bailey J; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R

    2016-08-01

    Supra-physiological concentrations of ascorbate, vitamin C, in blood, greater than 1mM, achieved through intravenous administration (IV), are being tested in clinical trials to treat human disease, e.g. cancer. These trials need information on the high levels of ascorbate achieved in blood upon IV administration of pharmacological ascorbate so appropriate clinical decisions can be made. Here we demonstrate that in the complex matrix of human blood plasma supra-physiological levels of ascorbate can be quantified by direct UV spectroscopy with use of a microvolume UV-vis spectrophotometer. Direct quantitation of ascorbate in plasma in the range of 2.9mM, lower limit of detection, up to at least 35mM can be achieved without any sample processing, other than centrifugation. This approach is rapid, economical, and can be used to quantify supraphysiological blood levels of ascorbate associated with the use of IV administration of pharmacological ascorbate to treat disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2015-09-30

    ranging individuals support the existence of these same stress response pathways in marine mammals. 2 While the HPA axis and physiological processes...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone...Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in serum samples were analyzed by Cornell’s Animal Health

  6. GHB: Forensic examination of a dangerous recreational drug by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindig, J. P.; Ellis, L. E.; Brueggemeyer, T. W.; Satzger, R. D.

    1998-06-01

    Gamma-hydroxybutyric acid (GHB) is an illegal drug that has been abused for its intoxicating effects. However, GHB can also produce harmful physiological effects ranging from mild (nausea, drowsiness) to severe (coma, death). Because GHB is often produced by clandestine manufacture, its concentration, purity, and final form can be variable. Therefore, the analysis of suspected GHB samples using FTIR spectroscopy requires a variety of sample preparations and accessories, based on the sample matrix.

  7. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  8. Paving a Path to Understanding Metabolic Responses to Iron Bioavailability: Global Proteomic Analysis of Crocosphaera watsonii

    NASA Astrophysics Data System (ADS)

    Gauglitz, J.; McIlvin, M. R.; Moran, D. M.; Waterbury, J. B.; Saito, M. A.

    2016-02-01

    Marine diazotrophic cyanobacteria provide a key source of new nitrogen into the oceans and are important contributors to primary production. The geographic distribution of these cyanobacteria is impacted by available iron and phosphorus as well as environmental conditions such as temperature, however available iron concentrations are thought to be particularly critical due to the high demand for iron in cellular processes. Iron bioavailability and microorganismal adaptations to low iron environments may thus play a key role in dictating community structure, however the mechanisms by which cyanobacteria acquire iron and regulate its uptake are not well defined. In this study, the unicellular diazotroph, Crocosphaera watsonii WH8501, was acclimated to a range of bioavailable iron concentrations (from 0.001nM to 8.13nM Fe') using trace metal clean culturing techniques and the proteomes were analyzed by LC/MS-MS. Physiological and proteomic data indicate three distinct phenotypic ranges: iron-replete, iron-limited, and iron-starved. Trends in photosynthetic, carbon fixation and iron storage proteins across the iron gradient indicate that the C. watsonii proteome responds directly to iron availability. Further analysis of relative protein expression, which describes the physiological state of the cell, will lead to insights into how C. watsonii is able to adapt to iron-limited conditions and the resulting biogeochemical implications will be discussed.

  9. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  10. Optical Fibre Sensor For Measuring pH In Physiological Range

    NASA Astrophysics Data System (ADS)

    Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy

    1990-01-01

    The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.

  11. Patterns of purine nucleotides in fish erythrocytes.

    PubMed

    Leray, C

    1979-01-01

    1. The purine nucleotides were determined in the whole blood of 9 fresh water teleosts and 2 marine selachians. 2. GTP and ATP accounted for 88-99% of the total erythrocytes purines. 3. The ATP/ADP ratio ranged from 11 to 60 in the erythrocytes of the fish examined. 4. GTP is widely distributed in fish erythrocytes but its level ranged from 1 to 33 nmol/mg Hb (0.4 to 9 mumol/ml erythrocyte). 5. Lepomis and Esox exhibited a GTP/ATP ratio as elevated as in Anguilla; moreover the concentration of GTP per mol of Hb (physiologically most indicative) is higher in Lepomis, Esox, Ictalurus and Silurus than in Anguilla.

  12. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; ...

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less

  13. Evaluation of Low versus High Volume per Minute Displacement CO₂ Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology.

    PubMed

    Hickman, Debra L; Fitz, Stephanie D; Bernabe, Cristian S; Caliman, Izabela F; Haulcomb, Melissa M; Federici, Lauren M; Shekhar, Anantha; Johnson, Philip L

    2016-08-02

    Current recommendations for the use of CO ₂ as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute) in order to render the animal insensible prior to exposure to levels of CO ₂ that are associated with pain. However, exposing rats to CO ₂ , concentrations as low as 7% CO ₂ are reported to cause distress and 10%-20% CO ₂ induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO ₂ concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO ₂ that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO ₂ for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO ₂ exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO ₂ also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO ₂ infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO ₂ and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10%) may prolong the duration of panicogenic ranges of ambient CO ₂ , while the use of the higher flow volume per minute displacement rate (100%) increases agitation. Therefore, of the volume displacement per minute rates evaluated, this study suggests that 30% minimizes the potential pain and distress experienced by the animal.

  14. Changes in blood flow and cellular metabolism at a myofascial trigger point with trigger point release (ischemic compression): a proof-of-principle pilot study

    PubMed Central

    Moraska, Albert F.; Hickner, Robert C.; Kohrt, Wendy M.; Brewer, Alan

    2012-01-01

    Objective To demonstrate proof-of-principle measurement for physiological change within an active myofascial trigger point (MTrP) undergoing trigger point release (ischemic compression). Design Interstitial fluid was sampled continuously at a trigger point before and after intervention. Setting A biomedical research clinic at a university hospital. Participants Two subjects from a pain clinic presenting with chronic headache pain. Interventions A single microdialysis catheter was inserted into an active MTrP of the upper trapezius to allow for continuous sampling of interstitial fluid before and after application of trigger point therapy by a massage therapist. Main Outcome Measures Procedural success, pain tolerance, feasibility of intervention during sample collection, determination of physiologically relevant values for local blood flow, as well as glucose and lactate concentrations. Results Both patients tolerated the microdialysis probe insertion into the MTrP and treatment intervention without complication. Glucose and lactate concentrations were measured in the physiological range. Following intervention, a sustained increase in lactate was noted for both subjects. Conclusions Identifying physiological constituents of MTrP’s following intervention is an important step toward understanding pathophysiology and resolution of myofascial pain. The present study forwards that aim by showing proof-of-concept for collection of interstitial fluid from an MTrP before and after intervention can be accomplished using microdialysis, thus providing methodological insight toward treatment mechanism and pain resolution. Of the biomarkers measured in this study, lactate may be the most relevant for detection and treatment of abnormalities in the MTrP. PMID:22975226

  15. [Influence of physiologic 17 beta-estradiol concentrations on gene E6 expression in HVP type 18 in vitro].

    PubMed

    Dziubińska-Parol, Izabella; Gasowska, Urszula; Rzymowska, Jolanta; Kwaśniewska, Anna

    2003-09-01

    Many recent studies indicate that long term use of contraceptives is a strong risk factor in the development of cervical cancer. Steroid hormones, in persistent papilloma virus infection act on various levels, one of them is enhancing transforming activity of the virus. The aim of the study was to estimate if physiological concentrations of 17 beta-estradiol could influence expression of viral transforming genes. HeLa cell lines were incubated with three different physiological concentrations and and on the third day of incubation the level of E6 gene expression was determined. Results show no differences in expression between the control culter, and cultures incubated with physiological concentrations. It indicates that normal levels of 17 beta-estradiol don't play role in transforming process but it also shows need to analyse higher levels of hormones by quantitative analyses in prospective studies.

  16. Concentrations and bioaccessibilities of trace elements in barbecue charcoals.

    PubMed

    Sharp, Annabel; Turner, Andrew

    2013-11-15

    Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements

    PubMed Central

    PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.

    2004-01-01

    It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442

  18. Fecal glucocorticoids reflect socio-ecological and anthropogenic stressors in the lives of wild spotted hyenas.

    PubMed

    Van Meter, Page E; French, Jeffrey A; Dloniak, Stephanie M; Watts, Heather E; Kolowski, Joseph M; Holekamp, Kay E

    2009-02-01

    Our aim was to identify natural and anthropogenic influences on the stress physiology of large African carnivores, using wild spotted hyenas (Crocuta crocuta) as model animals. With both longitudinal data from a single social group, and cross-sectional data from multiple groups, we used fecal glucocorticoids (fGC) to examine potential stressors among spotted hyenas. Longitudinal data from adult members of a group living on the edge of the Masai Mara National Reserve, Kenya, revealed that fGC concentrations were elevated during two periods of social upheaval among adults, especially among younger females; however, prey availability, rainfall, and presence of lions did not influence fGC concentrations among hyenas. Our results suggested that anthropogenic disturbance in the form of pastoralist activity, but not tourism, influenced fGC concentrations among adult male hyenas; rising concentrations of fGC among males over 12 years were significantly correlated with increasing human population density along the edge of the group's home range. As hyenas from this social group were frequently exposed to anthropogenic disturbance, we compared fGC concentrations among these hyenas with those obtained concurrently from hyenas living in three other groups undisturbed by pastoralist activity. We found that fGC concentrations from the undisturbed groups were significantly lower than those in the disturbed group, and we were able to rule out tourism and ecological stressors as sources of variation in fGC among the populations. Thus it appears that both social instability and anthropogenic disturbance, but not the ecological variables examined, elevate fGC concentrations and represent stressors for wild spotted hyenas. Further work will be necessary to determine whether interpopulation variation in stress physiology predicts population decline in groups exposed to intensive anthropogenic disturbance.

  19. Is the metabolic cost of walking higher in people with diabetes?

    PubMed

    Petrovic, M; Deschamps, K; Verschueren, S M; Bowling, F L; Maganaris, C N; Boulton, A J M; Reeves, N D

    2016-01-01

    People with diabetes walk slower and display biomechanical gait alterations compared with controls, but it remains unknown whether the metabolic cost of walking (CoW) is elevated. The aim of this study was to investigate the CoW and the lower limb concentric joint work as a major determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy (DPN). Thirty-one nondiabetic controls (Ctrl), 22 diabetic patients without peripheral neuropathy (DM), and 14 patients with moderate/severe DPN underwent gait analysis using a motion analysis system and force plates and treadmill walking using a gas analyzer to measure oxygen uptake. The CoW was significantly higher particularly in the DPN group compared with controls and also in the DM group (at selected speeds only) compared with controls, across a range of matched walking speeds. Despite the higher CoW in patients with diabetes, concentric lower limb joint work was significantly lower in DM and DPN groups compared with controls. The higher CoW is likely due to energetic inefficiencies associated with diabetes and DPN reflecting physiological and biomechanical characteristics. The lower concentric joint work in patients with diabetes might be a consequence of kinematic gait alterations and may represent a natural strategy aimed at minimizing the CoW. Copyright © 2016 the American Physiological Society.

  20. High-Flow-Rate Impinger for the Study of Concentration, Viability, Metabolic Activity, and Ice-Nucleation Activity of Airborne Bacteria.

    PubMed

    Šantl-Temkiv, Tina; Amato, Pierre; Gosewinkel, Ulrich; Thyrhaug, Runar; Charton, Anaïs; Chicot, Benjamin; Finster, Kai; Bratbak, Gunnar; Löndahl, Jakob

    2017-10-03

    The study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity. Because ambient air harbors low concentrations of bacteria, an effective bioaerosol sampler should have a high sampling efficiency and a high airflow. We characterize a high-flow-rate impinger with respect to particle collection and retention efficiencies in the range 0.5-3.0 μm, and we investigated its ability to preserve the physiological state of selected bacterial species and seawater bacterial community in comparison with four commercial bioaerosol samplers. The collection efficiency increased with particle size and the cutoff diameter was between 0.5 and 1 μm. During sampling periods of 120-300 min, the impinger retained the cultivability, metabolic activity, viability, and ice-nucleation activity of investigated bacteria. Field studies in semiurban, high-altitude, and polar environments included periods of low bacterial air concentrations, thus demonstrating the benefits of the impinger's high flow rate. In conclusion, the impinger described here has many advantages compared with other bioaerosol samplers currently on the market: a potential for long sampling time, a high flow rate, a high sampling and retention efficiency, low costs, and applicability for diverse downstream microbiological and molecular analyses.

  1. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.

    PubMed

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare.

  3. Zinc: physiology, deficiency, and parenteral nutrition.

    PubMed

    Livingstone, Callum

    2015-06-01

    The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  4. Wandering albatrosses document latitudinal variations in the transfer of persistent organic pollutants and mercury to Southern Ocean predators.

    PubMed

    Carravieri, Alice; Bustamante, Paco; Tartu, Sabrina; Meillère, Alizée; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Barbraud, Christophe; Weimerskirch, Henri; Chastel, Olivier; Cherel, Yves

    2014-12-16

    Top marine predators are effective tools to monitor bioaccumulative contaminants in remote oceanic environments. Here, we used the wide-ranging wandering albatross Diomedea exulans to investigate potential geographical variations of contaminant transfer to predators in the Southern Ocean. Blood concentrations of 19 persistent organic pollutants and 14 trace elements were measured in a large number of individuals (N = 180) of known age, sex and breeding status from the subantarctic Crozet Islands. Wandering albatrosses were exposed to a wide range of contaminants, with notably high blood mercury concentrations. Contaminant burden was markedly influenced by latitudinal foraging habitats (inferred from blood δ(13)C values), with individuals feeding in warmer subtropical waters having lower concentrations of pesticides, but higher concentrations of mercury, than those feeding in colder subantarctic waters. Sexual differences in contaminant burden seemed to be driven by gender specialization in feeding habitats, rather than physiological characteristics, with females foraging further north than males. Other individual traits, such as adult age and reproductive status, had little effect on blood contaminant concentrations. Our study provides further evidence of the critical role of global distillation on organic contaminant exposure to Southern Ocean avian predators. In addition, we document an unexpected high transfer of mercury to predators in subtropical waters, which merits further investigation.

  5. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood.

    PubMed

    Isokawa, Muneki; Kanamori, Takahiro; Funatsu, Takashi; Tsunoda, Makoto

    2014-08-01

    Low-molecular-weight biothiols such as homocysteine, cysteine, and glutathione are metabolites of the sulfur cycle and play important roles in biological processes such as the antioxidant defense network, methionine cycle, and protein synthesis. Thiol concentrations in human plasma and blood are related to diseases such as cardiovascular disease, neurodegenerative disease, and cancer. The concentrations of homocysteine, cysteine, and glutathione in plasma samples from healthy human subjects are approximately in the range of 5-15, 200-300, and 1-5 μM, respectively. Glutathione concentration in the whole blood is in the millimolar range. Measurement of biothiol levels in plasma and blood is thought to be important for understanding the physiological roles and biomarkers for certain diseases. This review summarizes the relationship of biothiols with certain disease as well as pre-analytical treatment and analytical methods for determination of biothiols in human plasma and blood by using high-performance liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, or chemiluminescence detection; or mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells.

    PubMed

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  7. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  8. Accumulation and effects of lead and cadmium on wood ducks near a mining and smelting complex in Idaho

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1993-01-01

    A study of wood ducks (Aix sponsa) was conducted along the Coeur d'Alene River system in northern Idaho in 1986 and 1987. Most of this area has been subjected to severe contamination from lead and other metals from mining and smelting since the 1880s. In 1986, a preliminary study of wood duck nesting was conducted in the contaminated area; incubating hens captured in nest boxes were bled and weighed. Blood samples were used to determine lead and cadmium concentrations and physiological characteristics. In 1987, an intensive study of wood ducks involved trapping and monitoring nest boxes in the contaminated area. Blood and tissue samples were also taken from wood ducks from a reference area without known contamination from metals. Lead levels in blood and tissues of most wood ducks from the contaminated area frequently exceeded those considered hazardous to birds; maximum levels (wet weight) of lead were 8 :g g?1 in blood and 14 :g g?1 in liver. Changes in physiological characteristics constituted the only evidence of potentially adverse effects from lead. In the contaminated area, nesting success (55% unadjusted, 35% Mayfield estimate) was less than in other areas where predation was low and nest boxes were used; but lead concentrations and physiological characteristics of blood were similar in successful and unsuccessful hens. Values of ALAD, hemoglobin, and body mass were negatively correlated with blood concentrations of lead, whereas protoporphyrin was positively correlated with lead levels in the blood. Some of the protoporphyrin values (1,091 :g dl?1 in a male and 756 :g dl?1 in a female) equalled those associated with lead toxicosis in experimental birds. ALAD activity was low in most birds from the contaminated area; values of 0 were obtained from 11 birds. Lead levels in blood, ALAD, protoporphyrin, and hemoglobin were significantly different between birds from the contaminated and reference areas. Concentrations of lead in ingesta of wood ducks ranged from 0.9 to 610 :g g?1 in the contaminated area and 0.2 to 0.6 :g g?1 in the reference area. Levels of cadmium in kidneys of wood ducks ranged from 1g g?1 to 20 :g g?1 in the contaminated area and from only to 0.1 :g g?1 to 1 :g g?1 in the reference area. Cadmium concentrations were less than known effect levels.

  9. Investigation of the C-3-epi-25(OH)D3 of 25-hydroxyvitamin D3 in urban schoolchildren.

    PubMed

    Berger, Samantha E; Van Rompay, Maria I; Gordon, Catherine M; Goodman, Elizabeth; Eliasziw, Misha; Holick, Michael F; Sacheck, Jennifer M

    2018-03-01

    The physiological relevance C-3 epimer of 25-hydroxyvitamin D (3-epi-25(OH)D) is not well understood among youth. The objective of this study was to assess whether demographic/physiologic characteristics were associated with 3-epi-25(OH)D 3 concentrations in youth. Associations between 3-epi-25(OH)D 3 and demographics and between 3-epi-25(OH)D 3 , total 25-hydroxyvitamin (25(OH)D) (25(OH)D 2 + 25(OH)D 3 ), total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides were examined in racially/ethnically diverse schoolchildren (n = 682; age, 8-15 years) at Boston-area urban schools. Approximately 50% of participants had detectable 3-epi-25(OH)D 3 (range 0.95-3.95 ng/mL). The percentage of 3-epi-25(OH)D 3 of total 25(OH)D ranged from 2.5% to 17.0% (median 5.5%). Males were 38% more likely than females to have detectable 3-epi-25(OH)D 3 concentrations. Both Asian and black race/ethnicity were associated with lower odds of having detectable 3-epi-25(OH)D 3 compared with non-Hispanic white children (Asian vs. white, odds ratio (OR) 0.28, 95% confidence interval (CI) 0.14-0.53; black vs. white, OR 0.38, 95%CI 0.23-0.63, p < 0.001). Having an adequate (20-29 ng/mL) or optimal (>30 ng/mL) 25(OH)D concentration was associated with higher odds of having detectable 3-epi-25(OH)D 3 than having an inadequate (<20 ng/mL) concentration (OR 4.78, 95%CI 3.23-6.94 or OR 14.10, 95%CI 7.10-28.0, respectively). There was no association between 3-epi-25(OH)D 3 and blood lipids. However, when considering 3-epi-25(OH)D 3 as a percentage of total 25(OH)D, total cholesterol was lower in children with percent 3-epi-25(OH)D 3 above the median (mean difference -7.1 mg/dL, p = 0.01). In conclusion, among schoolchildren, sex, race/ethnicity, and total serum 25(OH)D concentration is differentially associated with 3-epi-25(OH)D. The physiological relevance of 3-epi-25(OH)D 3 may be related to the 3-epi-25(OH)D 3 as a percentage of total 25(OH)D and should be considered in future investigations.

  10. Evaluation of H2O2 and pH in exhaled breath condensate samples: methodical and physiological aspects.

    PubMed

    Knobloch, Henri; Becher, Gunther; Decker, Manfred; Reinhold, Petra

    2008-05-01

    This veterinary study is aimed at further standardization of H(2)O(2) and pH measurements in exhaled breath condensate (EBC). Data obtained in the study provide valuable information for many mammalian species including humans, and may help to avoid general pitfalls in interpretation of EBC data. EBC was sampled via the 'ECoScreen' in healthy calves (body weight 63-98 kg). Serum samples and condensates of ambient (indoor) air were collected in parallel. In the study on H(2)O(2), concentrations of H(2)O(2) in EBC, blood and ambient air were determined with the biosensor system 'ECoCheck'. In EBC, the concentration of H(2)O(2) was found to be dependent on food intake and increased significantly in the course of the day. Physiologically, lowest H(2)O(2) concentrations at 06:00 varied within the range 138-624 nmol l(-1) EBC or 0.10-0.94 nmol per 100 l exhaled breath and individual concentrations were significantly different indicating a remarkable intersubject variability. Highly reproducible results were seen within each subject (three different days within 4 weeks). No correlation existed between H(2)O(2) concentrations in EBC and blood, and EBC-H(2)O(2) was not influenced by variables of spontaneous breathing. Further results confirmed that standardization of H(2)O(2) measurements in EBC requires (1) the re-calculation of the concentration exhaled per 100 l exhaled breath (because the analyzed concentration in the liquid condensate underlies multiple methodological sources of variability given by the collection process), and (2) subtracting the concentration of inspired indoor H(2)O(2). In the study on pH use of the ISFET electrode (Sentron, the Netherlands) and a blood gas analyzer ABL 550 (Radiometer, Denmark) led to comparable results for EBC-pH (r=0.89, R(2)=79.3%, p

  11. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    PubMed

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  12. LASER APPLICATIONS IN MEDICINE: Effect of glucose concentration in a model light-scattering suspension on propagation of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Popov, A. P.; Priezzhev, A. V.; Myllylä, Risto

    2005-11-01

    The propagation of laser pulses in the 2% aqueous solution of intralipid — a suspension of lipid particles with optical properties close to those of the human skin, is numerically simulated at different glucose concentrations. The temporal profiles of 820-nm laser pulses diffusely backscattered from a flat, 2-mm thick solution layer are simulated. The laser pulse profiles are detected by fibreoptic detectors of diameter 0.3 mm with the numerical apertures 0.19, 0.29, and 0.39. It is shown that this method can be used to detect changes in the glucose level in the physiological concentration range (100-500 mg dL-1) by monitoring variations in the peak intensity and area of the laser pulse temporal profile (pulse energy).

  13. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles.

    PubMed

    Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D; Gupta, Rani; Sharma, Enakshi Khular

    2017-10-01

    A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5  nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D.; Gupta, Rani; Sharma, Enakshi Khular

    2017-10-01

    A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing.

  15. Fecal Calprotectin Is Not Affected by Pregnancy: Clinical Implications for the Management of Pregnant Patients with Inflammatory Bowel Disease.

    PubMed

    Julsgaard, Mette; Hvas, Christian L; Gearry, Richard B; Vestergaard, Thea; Fallingborg, Jan; Svenningsen, Lise; Kjeldsen, Jens; Sparrow, Miles P; Wildt, Signe; Kelsen, Jens; Bell, Sally J

    2017-07-01

    Noninvasive biomarkers of inflammation for monitoring inflammatory bowel disease (IBD) are important in pregnancy. Clinical and laboratory markers are often affected by the physiological adaption that occurs during pregnancy, although, few, if any, data exist on fecal calprotectin (FC). We investigated FC concentrations in pregnant controls and IBD women, and whether FC correlated with physician global assessment (PGA), C-reactive protein (CRP), and Harvey-Bradshaw Index (HBI)/Simple Clinical Colitis Activity Index (SCCAI) before and after pregnancy, as well as during each trimester. The study is a prospective multicenter study of 46 pregnant women with and 21 without IBD in Denmark, Australia, and New Zealand. Demographics, clinical parameters, and HBI/SCCAI were recorded. Stool and blood samples were obtained to determine FC and CRP concentrations. From pregnant IBD women and pregnant controls, 174 and 21 fecal samples were collected, respectively. The median FC concentration in pregnant IBD women was 131 μg/g (range 0-3600) and in controls 0 μg/g (range 0-84) (P < 0.0001). FC strongly correlated with PGA at all 5 timepoints (r ≥ 0.80; P < 0.0001) and with HBI/SCCAI before (r = 0.66; P < 0.0001) and after pregnancy (r = 0.47; P < 0.003) but not during pregnancy (P > 0.05). An FC cutoff concentration of 250 μg/g significantly correlated with active disease according to PGA in all 5 periods (P ≤ 0.0002). CRP only significantly correlated with FC (P = 0.0007) and PGA in the second trimester (P = 0.0003). No significant correlation was found between CRP and HBI/SCCAI at any timepoint (P > 0.05). The physiological changes that occur during pregnancy do not affect FC, in contrast to CRP and HBI/SCCAI. The combined use of FC and PGA seems optimal to assess disease activity in IBD during pregnancy.

  16. Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume

    NASA Astrophysics Data System (ADS)

    Dugdale, R. C.; Wilkerson, F. P.; Hogue, V. E.; Marchi, A.

    2006-12-01

    A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May-June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis-Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low "realization" of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822-829].

  17. Physiological limit of the daily endogenous cholecalciferol synthesis from UV light in cattle.

    PubMed

    Hymøller, L; Jensen, S K; Kaas, P; Jakobsen, J

    2017-04-01

    The link between UV light (sunlight) and endogenous cholecalciferol (vitamin D 3 ) synthesis in the skin of humans has been known for more than a 100 years, since doctors for the first time successfully used UV light to cure rickets in children. Years later, it was shown that UV light also had a significant effect on the cholecalciferol status in the body of cattle. The cholecalciferol status in the body is measured as the plasma concentration of 25-hydroxycholecalciferol, which in cattle and humans is the major circulating metabolite of cholecalciferol. Very little is, however, known about the quantitative efficiency of UV light as a source of cholecalciferol in cattle nutrition and physiology. Hence, the aim of this study was to determine the efficiency of using UV light for increasing the plasma 25-hydroxycholecalciferol concentration in cholecalciferol-deprived cattle. Twelve cows deprived of cholecalciferol for 6 months were divided into three treatment groups and exposed to UV light for 30, 90 or 120 min/day during 28 days. UV-light wavelengths ranged from 280 to 415 nm and 30-min exposure to the UV light was equivalent to 60-min average summer-sunlight exposure at 56 °N. Blood samples were collected every 3-4 days and analysed for 25-hydroxycholecalciferol and cholecalciferol. Results showed that increasing the exposure time from 90-120 min/day did not change the slope of the daily increase in plasma 25-hydroxycholecalciferol. Hence, it appears that cholecalciferol-deprived dairy cattle are able to increase their plasma 25-hydroxycholecalciferol concentration by a maximum of 1 ng/ml/day from UV-light exposure. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  18. Comparison of several von Willebrand factor (VWF) activity assays for monitoring patients undergoing treatment with VWF/FVIII concentrates: improved performance with a new modified automated method.

    PubMed

    Hillarp, A; Friedman, K D; Adcock-Funk, D; Tiefenbacher, S; Nichols, W L; Chen, D; Stadler, M; Schwartz, B A

    2015-11-01

    The ability of von Willebrand factor (VWF) to bind platelet GP Ib and promote platelet plug formation is measured in vitro using the ristocetin cofactor (VWF:RCo) assay. Automated assay systems make testing more accessible for diagnosis, but do not necessarily improve sensitivity and accuracy. We assessed the performance of a modified automated VWF:RCo assay protocol for the Behring Coagulation System (BCS(®) ) compared to other available assay methods. Results from different VWF:RCo assays in a number of specialized commercial and research testing laboratories were compared using plasma samples with varying VWF:RCo activities (0-1.2 IU mL(-1) ). Samples were prepared by mixing VWF concentrate or plasma standard into VWF-depleted plasma. Commercially available lyophilized standard human plasma was also studied. Emphasis was put on the low measuring range. VWF:RCo accuracy was calculated based on the expected values, whereas precision was obtained from repeated measurements. In the physiological concentration range, most of the automated tests resulted in acceptable accuracy, with varying reproducibility dependent on the method. However, several assays were inaccurate in the low measuring range. Only the modified BCS protocol showed acceptable accuracy over the entire measuring range with improved reproducibility. A modified BCS(®) VWF:RCo method can improve sensitivity and thus enhances the measuring range. Furthermore, the modified BCS(®) assay displayed good precision. This study indicates that the specific modifications - namely the combination of increased ristocetin concentration, reduced platelet content, VWF-depleted plasma as on-board diluent and a two-curve calculation mode - reduces the issues seen with current VWF:RCo activity assays. © 2015 John Wiley & Sons Ltd.

  19. Monitoring stress in captive and free-ranging African wild dogs (Lycaon pictus) using faecal glucocorticoid metabolites.

    PubMed

    Van der Weyde, L K; Martin, G B; Paris, M C J

    2016-01-15

    An understanding of stress physiology is important for species management because high levels of stress can hamper reproduction and affect an individual's ability to cope with threats to their survival, such as disease and human-wildlife conflict. A commonly used indicator of stress, faecal concentrations of cortisol metabolites (FCM), can be used to assess the impact of social, biological and environmental factors. Measurements of FCM are particularly valuable for endangered species that are logistically challenging to study and where non-invasive techniques are preferred. As the second most endangered canid in Africa, the African wild dog (Lycaon pictus) has been the focus of considerable conservation research, yet there is still little understanding of factors associated with stress, in either captive or free-ranging populations. The present study therefore aimed to determine whether stress levels differ between captive and free-ranging populations, and to detect social, biological and environmental factors that are stressful in these populations. Faecal samples were collected from 20 captive and 62 free-ranging animals. Within free-ranging populations, the sexes differed significantly, but there was no effect of social status, age or breeding period for either sex. Captive females had higher FCM concentrations than free-ranging females. In captive populations, FCM concentrations differed among zoos and with reproductive status in females, but were not related to age class or group-housing structure. In conclusion, FCM is a useful indicator of stress and should be considered an integrative aspect of management, for both in situ and ex situ African wild dog populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  1. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Treesearch

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  2. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

    PubMed Central

    Faergeman, N J; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase. PMID:9173866

  3. Validation of an enzyme-immunoassay for the non-invasive monitoring of faecal testosterone metabolites in male cheetahs (Acinonyx jubatus).

    PubMed

    Pribbenow, Susanne; Wachter, Bettina; Ludwig, Carsten; Weigold, Annika; Dehnhard, Martin

    2016-03-01

    In mammals, the sex hormone testosterone is the major endocrine variable to objectify testicular activity and thus reproductive function in males. Testosterone is involved in the development and function of male reproductive physiology and sex-related behaviour. The development of a reliable androgen enzyme-immunoassay (EIA) to monitor faecal testosterone metabolites (fTM) is a powerful tool to non-invasively assess the gonadal status of males. We validated an epiandrosterone EIA for male cheetahs by performing a testosterone radiometabolism study followed by high-performance liquid chromatography (HPLC) analyses and excluding possible cross-reactivities with androgenic metabolites not derived from testosterone metabolism. The physiological and biological relevance of the epiandrosterone EIA was validated by demonstrating (1) a significant increase in fTM concentrations within one day in response to a testosterone injection, (2) a significant increase in fTM concentrations within one day in response to a gonadotropin-releasing hormone (GnRH) injection, which failed following a placebo injection, and (3) significant differences in fTM concentrations between adult male and adult female cheetahs and between adult and juvenile male cheetahs of a free-ranging population. Finally, we demonstrated stability of fTM concentrations measured in faecal samples exposed to ambient temperatures up to 72h. Our results clearly demonstrate that the epiandrosterone EIA is a reliable non-invasive method to monitor testicular activity in male cheetahs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Özdemir, Mahir S.; Reyngoudt, Harmen; DeDeene, Yves; Sazak, Hakan S.; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-12-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pHi range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy (1H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  5. Physiology, ecology and industrial applications of aroma formation in yeast

    PubMed Central

    Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J

    2017-01-01

    Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. PMID:28830094

  6. Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Mariussen, Espen; Stornes, Siv Marie; Bøifot, Kari Oline; Rosseland, Bjørn Olav; Salbu, Brit; Heier, Lene Sørlie

    2018-01-01

    Organ specific uptake and depuration, and biological effects in Atlantic salmon (Salmo salar) exposed to 2, 4, 6-trinitrotoluene (TNT) were studied. Two experiments were conducted, the first using radiolabeled TNT ( 14 C-TNT, 0.16mg/L) to study uptake (48h) and depuration (48h), while the second experiment focused on physiological effects in fish exposed to increasing concentrations of unlabeled TNT (1μg-1mg/L) for 48h. The uptake of 14 C-TNT in the gills and most of the organs increased rapidly during the first 6h of exposure (12h in the brain) followed by a rapid decrease even though the fish were still exposed to TNT in the water. The radioactivity in the gall bladder reached a maximum after 55h, 7h after the transfer to the clean water. A high concentration of 14 C-TNT in the gall bladder indicates that TNT is excreted through the gall bladder. Mortality (2 out of 14) was observed at a concentration of 1mg/L, and the surviving fish had hemorrhages in the dorsal muscle tissue near the spine. Analysis of the physiological parameters in blood from the high exposure group revealed severe effects, with an increase in the levels of glucose, urea and HCO 3 , and a decrease in hematocrit and the levels of Cl and hemoglobin. No effects on blood physiology were observed in fish exposed to the lower concentrations of TNT (1-100μg/L). TNT and the metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) were found in the muscle tissue, whereas only 2-ADNT and 4-ADNT were found in the bile. The rapid excretion and estimated bioconcentration factors (range of 2-18 after 48h in gills, blood, liver, kidney, muscle and brain) indicated a low potential for bioaccumulation of TNT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Century long assessment of herbaceous plants' physiological responses to climate change in Switzerland

    NASA Astrophysics Data System (ADS)

    Moreno-Gutierrez, Cristina; Kahmen, Ansgar

    2017-04-01

    The isotopic analysis of archived plant material offers the exceptional opportunity to reconstruct the physiological activity of plants over long time periods and thus, to assess plant responses to environmental changes during the last centuries. In addition, the stable isotope analysis of herbarium samples offers the opportunity to reconstruct the physiological processes of a large range of different plant species and from different environments. Interestingly, only few studies have to date assessed these archives. We will present a novel analysis of leaf nitrogen, oxygen and carbon isotope ratios of more than a thousand herbarium specimens collected since 1800 until present from the unique herbaria hold at the University of Basel. The objective of our study was to assess century-long physiological responses of herbaceous plant species from different plant functional groups and along an altitudinal gradient in Switzerland. The goal of our study was to determine with our investigations the long-term responses of plants to climate change. Such investigations are important as they allow to assess long-term processes of acclimation and adaptation in plants to global enviromental change. In our study we found that herbaceous plants have increased their intrinsic water use efficiency in response to increasing atmospheric CO2 concentration but this increment was higher in plants from higher altitudes, due to the higher efficiency of CO2 assimilation of alpine plants compared to plants from lowlands. There were also differences among functional groups, with grasses and forbs showing the highest increments. In addition, herbaceous plants showed a decreasing trend with time in their N isotopic composition, which may indicate progressive N limitation due to higher biological activity with increasing atmospheric CO2 concentration.

  8. Physiological, energetic and behavioural correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia.

    PubMed

    Pon, L B; Hinch, S G; Cooke, S J; Patterson, D A; Farrell, A P

    2009-04-01

    Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na(+) concentration was significantly lower in unsuccessful fish (P < 0.05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure.

  9. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less

  10. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    PubMed

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test.

    PubMed

    Turner, Andrew

    2018-05-01

    Samples of plastic collected from two beaches in southwest England (n = 185) have been analysed by XRF spectrometry for elements that are hazardous or restricted in synthetic polymers (namely, As, Ba, Br, Cd, Cr, Hg, Pb, Sb and Se). Overall, one or more restricted element was detected in 151 samples, with 15 cases exhibiting non-compliance with respect to the Restriction of Hazardous Substances (RoHS) Directive. Twelve plastics that were RoHS-non-compliant were subsequently processed into microplastic-sized fragments and subjected to an avian physiologically-based extraction test (PBET) that simulates the chemical conditions in the gizzard-proventriculus of the northern fulmar. Kinetic profiles of metal and metalloid mobilisation in the PBET were fitted using a pseudo-first-order diffusion model with rate constants ranging from ∼0.02 to 0.5 h -1 , while profiles for Br were better fitted with a parabolic diffusion model and rate constants of 7.4-9.5 (μg L -1 ) -1 h -1/2 . Bioaccessibilities, based on maximum or equilibrium concentrations mobilised relative to total (XRF) concentrations, ranged from <1% for Cd and Se in polyethylene and polypropylene to over 10% for Br in a sample of expanded polystyrene and Pb in a sample of PVC. Calculations suggest that ingested plastic could contribute about 6% and 30% of a seabird's exposure to and accumulation of Pb and brominated compounds, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The effect of vegetarian diet on selected essential nutrients in children.

    PubMed

    Laskowska-Klita, Teresa; Chełchowska, Magdalena; Ambroszkiewicz, Jadwiga; Gajewska, Joanna; Klemarczyk, Witold

    2011-01-01

    Vegetarian diets are considered to promote health and reduce the risk of some chronic diseases. It is also known that restriction or exclusion of animal foods may result in low intake of essential nutrients. The aim of the presented study was to assess the intake and serum status of vitamin B12, folate, vitamins A, E and D, as well as concentrations of homocysteine, total antioxidant status and iron balance in Polish vegetarian children. The study included 50 children, aged 5-11 who had been referred to the Institute of Mother and Child for dietary consultation. From those, 32 were vegetarians (aged 6.5±4.2 years) and 18 omnivores (aged 7.9±2.7 years). Dietary constituents were analyzed using the nutritional programme Dietetyk2®. Folate and vitamin B12 were determined with a chemiluminescence immunoassay, total homocysteine with a fluorescence polarization immunoassay and TAS (total antioxidant status) by colorimetric method. Vitamin A and E in serum were determined by the high-pressure liquid chromatography method (HPLC) and vitamin D by immunoenzymatic assay (ELISA). Concentrations of iron, ferritin, transferrin and total iron-binding capacity (TIBC) in serum were determined by commercially available kits. In vegetarian children daily intake of vitamin B12 (1.6 ěg) was in the recommended range, that of folate (195 ěg) and vitamin A (1245 ěg) higher, but vitamin E slightly lower (6.6 ěg) and three-fold lower vitamin D (1.1 ěg) than references allowance. Serum concentrations of vitamin B12 (548 pg/ml), folate (12.8 ng/ml), vitamin A (1.2 ěmol/L), vitamin E (15.6 ěmol/l) were within physiological range, but that of vitamin D (13.7 ěg/L) was only half of the lowest limit of the reference value. In vegetarian children in comparison to omnivorous similar levels of homocysteine (6.13 ěmol/L vs 5.45 ěmol/L) and vitamin A (1,17 ěmol/L vs 1.32 ěmol/L) were observed. Lower (p<0.05) values of vitamin E (15.6 ěmol/L vs 18.4 ěmol/L) and TAS (1.21 mmol/L vs 1.30 mmol/L; p<0.0001) were found. Concentrations of iron markers were in physiological range. Obtained results indicated that intakes of vitamin B12 and folic acid from vegetarian diets are sufficient to maintain serum concentrations of both homocysteine and iron in the range observed in omnivorous children. High consumption of vitamin A and low vitamin E only slightly affected their serum values. Significantly lower concentration of serum vitamin E in vegetarian children in comparison to nonvegetarians may be reflected with statistically significant lowering of total antioxidant status. Insufficient intake of vitamin D and its low serum concentration should be under close monitoring in vegetarian children. In order to prevent vitamin D deficiency appropriate age-dependent supplementation should be considered.

  14. Use of novel inhalation kinetic studies to refine physiologically-based-pharmacokinetic models for ethanol in non-pregnant and pregnant rats

    EPA Science Inventory

    Ethanol (EtOH) exposure induces a variety of concentration-dependent neurological and developmental effects in the rat. Physiologically-based pharmacokinetic (PBPK) models have been used to predict the inhalation exposure concentrations necessary to produce blood EtOH concentrat...

  15. Effects of color temperatures (Kelvin) of LED bulbs on blood physiological variables of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2015-08-01

    Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weights (>3 kg). The present study evaluated the effects of color temperature (Kelvin) of LED bulbs on blood physiological variables of heavy broilers in 2 trials with 4 replicates/trial. The study was a randomized complete block design. Four light treatments consisted of 3 LED light bulbs [2,700 K, (Warm-LED); 5,000 K, (Cool-LED-#1); 5,000 K, (Cool-LED-#2)] and incandescent light (ICD, standard) from 1 to 56 d age. A total of 960 1-day-old Ross × Ross 708 chicks (30 males/room 30 females/room) were equally and randomly distributed among 16 environmentally controlled rooms at 50% RH. Each of the 4 treatments was represented by 4 rooms. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on d 21, 28, 42, and 56 for immediate analysis of selected physiological variables and plasma collection. In comparison with ICD, Cool-LED-#1 had greater (P < 0.05) effects on pH, partial pressure of CO₂(pCO₂), partial pressure of O₂(pO₂), saturated O₂(sO₂), and K⁺. However, all these acid-base changes remained within the normal venous acid-base homeostasis and physiological ranges. In addition, no effect of treatments was observed on HCO(3)(-), hematocrit (Hct), hemoglobin (Hb), Na⁺, Ca²⁺, Cl⁻, mean corpuscular hemoglobin concentration (McHc), osmolality, and anion gap. Moreover, blood glucose concentrations were not affected by treatments. This study shows that the 3 LED light bulbs evaluated in this study may be suitable for replacement of ICD light sources in commercial poultry facilities to reduce energy cost and optimize production efficiency without inducing physiological stress on broilers grown to heavy weights. © 2015 Poultry Science Association Inc.

  16. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).

  17. The use of haemoglobin concentrations to assess physiological condition in birds: a review

    PubMed Central

    2015-01-01

    Abstract Total blood haemoglobin concentration is increasingly being used to assess physiological condition in wild birds, although it has not been explicitly recognized how reliably this parameter reflects different components of individual quality. Thus, I reviewed over 120 published studies linking variation in haemoglobin concentrations to different measures of condition and other phenotypic or ecological traits. In most of the studied avian species, haemoglobin concentrations were positively correlated with other commonly used indices of condition, such as body mass and fat loads, as well as with quality of the diet. Also, chick haemoglobin concentrations reliably reflected the intensity of nest infestation by parasitic arthropods, and haemoglobin was suggested to reflect parasitism by haematophagous ectoparasites much more precisely than haematocrit. There was also some evidence for the negative effect of helminths on haemoglobin levels in adult birds. Finally, haemoglobin concentrations were found to correlate with such fitness-related traits as timing of arrival at breeding grounds, timing of breeding, egg size, developmental stability and habitat quality, although these relationships were not always consistent between species. In consequence, I recommend the total blood haemoglobin concentration as a relatively robust indicator of physiological condition in birds, although this parameter is also strongly affected by age, season and the process of moult. Thus, researchers are advised to control fully for these confounding effects while using haemoglobin concentrations as a proxy of physiological condition in both experimental and field studies on birds. PMID:27293692

  18. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and physiological parameters in rats.

    PubMed

    Srednicka-Tober, Dominika; Barański, Marcin; Gromadzka-Ostrowska, Joanna; Skwarło-Sońta, Krystyna; Rembiałkowska, Ewa; Hajslova, Jana; Schulzova, Vera; Cakmak, Ismail; Öztürk, Levent; Królikowski, Tomasz; Wiśniewska, Katarzyna; Hallmann, Ewelina; Baca, Elżbieta; Eyre, Mick; Steinshamn, Håvard; Jordon, Teresa; Leifert, Carlo

    2013-02-06

    Very little is known about the effects of an organic or conventional diet on animal physiology and health. Here, we report the effect of contrasting crop protection (with or without chemosynthetic pesticides) and fertilization (manure or mineral fertilizers) regimes on feed composition and growth and the physiological parameters of rats. The use of manure instead of mineral fertilizers in feed production resulted in lower concentrations of protein (18.8 vs 20.6%) and cadmium (3.33 vs 4.92 μg/100 g) but higher concentrations of polyphenols (1.46 vs 0.89 g/100 g) in feeds and higher body protein (22.0 vs 21.5%), body ash (3.59 vs 3.51%), white blood cell count (10.86 vs 8.19 × 10³/mm³), plasma glucose (7.23 vs 6.22 mmol/L), leptin (3.56 vs 2.78 ng/mL), insulin-like growth factor 1 (1.87 vs 1.28 μg/mL), corticosterone (247 vs 209 ng/mL), and spontaneous lymphocyte proliferation (11.14 vs 5.03 × 10³ cpm) but lower plasma testosterone (1.07 vs 1.97 ng/mL) and mitogen stimulated proliferation of lymphocytes (182 vs 278 × 10³ cpm) in rats. There were no main effects of crop protection, but a range of significant interactions between fertilization and crop protection occurred.

  19. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird.

    PubMed

    Ouyang, Jenny Q; de Jong, Maaike; van Grunsven, Roy H A; Matson, Kevin D; Haussmann, Mark F; Meerlo, Peter; Visser, Marcel E; Spoelstra, Kamiel

    2017-11-01

    The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals. © 2017 John Wiley & Sons Ltd.

  20. Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    NASA Astrophysics Data System (ADS)

    Brahmi, C.; Domart-Coulon, I.; Rougée, L.; Pyle, D. G.; Stolarski, J.; Mahoney, J. J.; Richmond, R. H.; Ostrander, G. K.; Meibom, A.

    2012-09-01

    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.

  1. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Markey, Mia K.; Tunnell, James W.

    2017-02-01

    Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.

  3. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings.

    PubMed

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Abdallah, Ferjani Ben; Woodward, Steve; Kallel, Monem

    2015-10-01

    Phosphogypsum (PG) is the solid waste product of phosphate fertilizer production and is characterized by high concentrations of salts, heavy metals, and certain natural radionuclides. The work reported in this paper examined the influence of PG amendment on soil physicochemical proprieties, along with its potential impact on several physiological traits of sunflower seedlings grown under controlled conditions. Sunflower seedlings were grown on agricultural soil substrates amended with PG at rates of 0, 2.5, and 5 %. The pH of the soil decreased but electrical conductivity and organic matter, calcium, phosphorus, sodium, and heavy metal contents increased in proportion to PG concentration. In contrast, no variations were observed in magnesium content and small increases were recorded in potassium content. The effects of PG on sunflower growth, leaf chlorophyll content, nutritional status, osmotic regulator content, heavy metal accumulation, and antioxidative enzymes were investigated. Concentrations of trace elements in sunflower seedlings grown in PG-amended soil were considerably lower than ranges considered phytotoxic for vascular plants. The 5 % PG dose inhibited shoot extension and accumulation of biomass and caused a decline in total protein content. However, chlorophyll, lipid peroxidation, proline and sugar contents, and activities of antioxidant enzymes such as superoxide dismutase and catalase increased. Collectively, these results strongly support the hypothesis that enzymatic antioxidation capacity is an important mechanism in tolerance of PG salinity in sunflower seedlings.

  4. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (<5kDa) at times (30min) and concentration ranges (10mM) plausibly found in the intestines, whereas no reaction occurs with glucose. The reaction was inhibited by chlorogenic acid at concentrations compatible with those found in the gut. The reaction was also inhibited by aminoguanidine, a specific antiglycation agent. Our study showed fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  6. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    PubMed

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].

    PubMed

    Boronovskiĭ, S E; Nartsissov, Ia R

    2009-01-01

    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  8. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  9. Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

    NASA Astrophysics Data System (ADS)

    Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-01-01

    A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.

  10. Group management influences reproductive function of the male cheetah (Acinonyx jubatus).

    PubMed

    Koester, Diana C; Freeman, Elizabeth W; Wildt, David E; Terrell, Kimberly A; Franklin, Ashley D; Meeks, Karen; Crosier, Adrienne E

    2017-03-01

    Although the free-ranging cheetah is generally socially solitary, as many as 60% of males live in same-sex (usually sibling) coalitions. Under ex situ conditions, the cheetah experiences low reproductive success with only ~18% of males having ever produced young. Most male cheetahs (85%) are managed in captivity in coalitions, but with no data on the influence of social grouping on reproductive parameters. We examined the influence of singleton versus coalition management on various male cheetah physiological traits, including ejaculate quality and gonadal and adrenal hormone metabolite concentrations. We also assessed behaviour within coalitions for evidence of social hierarchy through initiation of interactions with group mates and relatedness to physiological traits. Ejaculate quality (including total motile and structurally normal spermatozoa per ejaculate) and androgen concentration profiles were higher (P<0.05) in coalition compared with singleton males. These results support the conclusion that testis function in the cheetah, specifically related to the development of normal, motile spermatozoa and androgen production, is influenced by management with same-sex conspecifics. The findings have implications for ex situ conservation breeding programs by suggesting that reproductive quality can be enhanced through group maintenance of cheetah males.

  11. Quantitative analysis of multiple fatty acid ethanolamides using ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Lin, Lin; Yang, Haifeng; Jones, Peter J H

    2012-12-01

    Fatty acid ethanolamides (FAE) represent a group of lipid signaling molecules associated with many physiological and pharmacological actions; however, low FAE tissue levels pose challenges in terms of analytical characterization. The objective was to develop a competent ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for analysis of multiple FAE in animal and human tissue samples. Analytes were extracted using lipid-phase and solid-phase extraction procedures. Chromatographic separation was achieved using a gradient elution in 8 min. FAE were quantified by MS/MS in positive electrospray ionization mode. Linearity was shown in lower and higher FAE concentration ranges, with a limit of quantification (LOQ) ≤0.2 ng/ml for FAE including alpha-linolenoylethanolamide (ALEA), arachidonoylethanolamide (AEA), docosahexaenoylethanolamide (DHEA), linoleoylethanolamide (LEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Accuracy was shown to be between 92.4% and 108.8%, and precision was <10% for all FAE species. In sum, this sensitive and reproducible method can be used to simultaneously determine multiple FAE at low concentrations in order to facilitate further study of the role of FAE on physiological state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild-type cells, which coincides with increased membrane permeability. Yet, triclosan depolarises the bacterial membrane by significantly reducing the membrane potential prior to being lethal. Therefore, the lysis of wild-type cells appears not to be directly associated with membrane depolarisation and is probably the result of a disturbance in the cellular envelope by triclosan. CONCLUSIONS: The triclosan concentrations expected in the MELiSSA are within the 'Predicted No Effect Concentration' range. In addition, the effect of triclosan on growth rate is minimal; even at sub-inhibitory effect concentrations, where triclosan is mainly influencing the lag-phase instead of the growth rate. Efficient reactor operation will therefore remain unchanged with slight modification of the operating parameters. However, since there are no clear indication that triclosan might be degraded in the system, except for the nitrifying compartment, triclosan might accumulate in the loop. Therefore, a thorough study of the effect of triclosan on the other compartments in the MELiSSA loop is desired, as well as potential countermeasures. Keywords: triclosan, Rhodospirillum rubrum, MELiSSA, microarray analysis, flow cytometry, chlorinated biphenylether, minimal inhibitory concentration.

  13. Within- and among-population level differences in response to chronic copper exposure in southern toads, Anaxyrus terrestris.

    PubMed

    Lance, Stacey L; Flynn, R Wesley; Erickson, Matthew R; Scott, David E

    2013-06-01

    Environmental contaminants are implicated in the global decline of amphibian populations. Copper (Cu) is a widespread contaminant that can be toxic at concentrations just above the normal physiological range. In the present study we examined the effects of chronic Cu aqueous exposure on embryos and larvae of southern toads, Anaxyrus (Bufo) terrestris. Measurable levels of Cu were found in larvae, with tissue concentrations up to 27.5 μg Cu/g dry mass. Aqueous concentrations of Cu as low as 10 μg/L significantly reduced survival to the free-swimming stage and no larvae reached metamorphosis at concentrations above 15 μg/L. Clutches from populations with prior Cu exposure had the lowest survivorship. Among several populations there was significant variation in survivorship at different levels of Cu. More data are needed to understand the underlying causes of within- and among-population resilience to anthropogenic stressors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A Layer Model of Ethanol Partitioning into Lipid Membranes

    PubMed Central

    Nizza, David T.; Gawrisch, Klaus

    2013-01-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid-water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane’s hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane-water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30 – 15 mmol/l, corresponding to one ethanol molecule per 100–200 lipids. PMID:19592710

  15. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging

    NASA Astrophysics Data System (ADS)

    Ishiwari, Fumitaka; Hasebe, Hanako; Matsumura, Satoko; Hajjaj, Fatin; Horii-Hayashi, Noriko; Nishi, Mayumi; Someya, Takao; Fukushima, Takanori

    2016-04-01

    Although the role of extracellular Ca2+ draws increasing attention as a messenger in intercellular communications, there is currently no tool available for imaging Ca2+ dynamics in extracellular regions. Here we report the first solid-state fluorescent Ca2+ sensor that fulfills the essential requirements for realizing extracellular Ca2+ imaging. Inspired by natural extracellular Ca2+-sensing receptors, we designed a particular type of chemically-crosslinked polyacrylic acid gel, which can undergo single-chain aggregation in the presence of Ca2+. By attaching aggregation-induced emission luminogen to the polyacrylic acid as a pendant, the conformational state of the main chain at a given Ca2+ concentration is successfully translated into fluorescence property. The Ca2+ sensor has a millimolar-order apparent dissociation constant compatible with extracellular Ca2+ concentrations, and exhibits sufficient dynamic range and excellent selectivity in the presence of physiological concentrations of biologically relevant ions, thus enabling monitoring of submillimolar fluctuations of Ca2+ in flowing analytes containing millimolar Ca2+ concentrations.

  16. A layer model of ethanol partitioning into lipid membranes.

    PubMed

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  17. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

    PubMed Central

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Mohan, Chandra; Shih, Wei-Chuan

    2015-01-01

    We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function. PMID:25798309

  18. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes).

    PubMed

    Yuan, Hongwei; Poeggel, Sven; Newe, Thomas; Lewis, Elfed; Viphavakit, Charusluk; Leen, Gabriel

    2017-03-10

    A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature three axis accelerometers for undertaking this investigation was a purpose built in-house version which is designed to facilitate reproducible application to a wide range of human subjects and the study of motion. The subjects were required to undertake several motion based exercises including standing, sitting and lying down and transitions between these states. They were also required to undertake set arm movements including arm-swinging and wrist rotation. A comprehensive set of experimental results corresponding to all motion inducing exercises have been recorded and analysed including the baseline (BL) value (DC component) and the amplitude of the oscillation of the PPG. All physiological parameters were also recorded as a simultaneous time varying waveform. The effects of the motion and specifically the localised Blood Pressure (BP) have been studied and related to possible influences of the Autonomic Nervous System (ANS) and hemodynamic pressure variations. It is envisaged that a comprehensive study of the effect of motion and the localised pressure fluctuations will provide valuable information for the future minimisation of motion artefact effect on the PPG signals of this probe and allow the accurate assessment of total haemoglobin concentration which is the primary function of the probe.

  19. Emission Computed Tomography: A New Technique for the Quantitative Physiologic Study of Brain and Heart in Vivo

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.

    1978-01-01

    Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.

  20. Assessment of physiological demand in kitesurfing.

    PubMed

    Vercruyssen, F; Blin, N; L'huillier, D; Brisswalter, J

    2009-01-01

    To evaluate the physiological demands of kitesurfing, ten elite subjects performed an incremental running test on a 400-m track and a 30-min on-water crossing trial during a light crosswind (LW, 12-15 knots). Oxygen uptake (V(O)(2)) was estimated from the heart rate (HR) recorded during the crossing trial using the individual HR-V(O)(2) relationship determined during the incremental test. Blood lactate concentration [La(b)] was measured at rest and 3 min after the exercise completion. Mean HR and estimated V(O)(2) values represented, respectively 80.6 +/- 7.5% of maximal heart rate and 69.8 +/- 11.7% of maximal oxygen uptake for board speeds ranging from 15 to 17 knots. Low values for [La(b)] were observed at the end of crossing trial (2.1 +/- 1.2 mmol l(-1). This first analysis of kitesurfing suggests that the energy demand is mainly sustained by aerobic metabolism during a LW condition.

  1. Fraction of Electrons Consumed in Electron Acceptor Reduction and Hydrogen Thresholds as Indicators of Halorespiratory Physiology

    PubMed Central

    Löffler, Frank E.; Tiedje, James M.; Sanford, Robert A.

    1999-01-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (fe) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The fe values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower fe value, 0.012. PMID:10473415

  2. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    PubMed Central

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  3. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    PubMed

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mechanosensitive cation channels in human leukaemia cells: calcium permeation and blocking effect

    PubMed Central

    Staruschenko, Alexandr V; Vedernikova, Elena A

    2002-01-01

    Cell-attached and inside-out patch-clamp methods were employed to identify and characterize mechanosensitive (MS) ionic channels in the plasma membrane of human myeloid leukaemia K562 cells. A reversible activation of gadolinium-blockable mechanogated currents in response to negative pressure application was found in 58 % of stable patches (n = 317). I-V relationships measured with a sodium-containing pipette solution showed slight inward rectification. Data analysis revealed the presence of two different populations of channels that were distinguishable by their conductance properties (17.2 ± 0.3 pS and 24.5 ± 0.5 pS), but were indistinguishable with regard to their selective and pharmacological properties. Ion-substitution experiments indicated that MS channels in leukaemia cells were permeable to cations but not to anions and do not discriminate between Na+ and K+. The channels were fully impermeable to large organic cations such as Tris+ and N-methyl-d-glucamine ions (NMDG+). Ca2+ permeation and blockade of MS channels were examined using pipettes containing different concentrations of Ca2+. In the presence of 2 mm CaCl2, when other cations were impermeant, both outward and inward single-channel currents were observed; the I-V relationship showed a unitary conductance of 7.7 ± 1.0 pS. The relative permeability value, PCa/PK, was equal to 0.75, as estimated at physiological Ca2+ concentrations. Partial or full inhibition of inward Ca2+ currents through MS channels was observed at higher concentrations of external Ca2+ (10 or 20 mm). No MS channels were activated when using a pipette containing 90 mm CaCl2. Monovalent mechanogated currents were not significantly affected by extracellular Ca2+ at concentrations within the physiological range (0-2 mm), and at some higher Ca2+ concentrations. PMID:12015421

  5. Nanosensor for detection of glucose

    NASA Astrophysics Data System (ADS)

    Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.

    2004-06-01

    A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.

  6. High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals

    EPA Science Inventory

    Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...

  7. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m.

    PubMed

    Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L

    2015-11-01

    What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2)  = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  8. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less

  9. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew

    2008-01-17

    The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.

  10. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community.

    PubMed

    Hättenschwiler, Stephan; Aeschlimann, Beat; Coûteaux, Marie-Madeleine; Roy, Jacques; Bonal, Damien

    2008-01-01

    Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.

  11. Active summer carbon storage for winter persistence in trees at the cold alpine treeline.

    PubMed

    Li, Mai-He; Jiang, Yong; Wang, Ao; Li, Xiaobin; Zhu, Wanze; Yan, Cai-Feng; Du, Zhong; Shi, Zheng; Lei, Jingpin; Schönbeck, Leonie; He, Peng; Yu, Fei-Hai; Wang, Xue

    2018-03-12

    The low-temperature limited alpine treeline is one of the most obvious boundaries in mountain landscapes. The question of whether resource limitation is the physiological mechanism for the formation of the alpine treeline is still waiting for conclusive evidence and answers. We therefore examined non-structural carbohydrates (NSC) and nitrogen (N) in treeline trees (TATs) and low-elevation trees (LETs) in both summer and winter in 11 alpine treeline cases ranging from subtropical monsoon to temperate continental climates across Eurasia. We found that tissue N concentration did not decrease with increasing elevation at the individual treeline level, but the mean root N concentration was lower in TATs than in LETs across treelines in summer. The TATs did not have lower tissue NSC concentrations than LETs in summer. However, the present study with multiple tree species across a large geographical scale, for the first time, revealed a common phenomenon that TATs had significantly lower NSC concentration in roots but not in the aboveground tissues than LETs in winter. Compared with LETs, TATs exhibited both a passive NSC storage in aboveground tissues in excess of carbon demand and an active starch storage in roots at the expense of growth reduction during the growing season. This starch accumulation disappeared in winter. Our results highlight some important aspects of the N and carbon physiology in relation to season in trees at their upper limits. Whether or to what extent the disadvantages of winter root NSC and summer root N level of TATs affect the growth of treeline trees and the alpine treeline formation needs to be further studied.

  12. Dynamics of proteins: Light scattering study of dilute and dense colloidal suspensions of eye lens homogenates

    NASA Astrophysics Data System (ADS)

    Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.

    2007-11-01

    We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.

  13. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population.

    PubMed

    Hannich, M; Wallaschofski, H; Nauck, M; Reincke, M; Adolf, C; Völzke, H; Rettig, R; Hannemann, A

    2018-01-01

    Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C ( β -coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C ( β -coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C ( β -coefficient = -0.022, standard error = 0.011, p = 0.04). The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.

  14. The association between HIV (treatment), pregnancy serum lipid concentrations and pregnancy outcomes: a systematic review.

    PubMed

    Harmsen, Marissa J; Browne, Joyce L; Venter, Francois; Klipstein-Grobusch, Kerstin; Rijken, Marcus J

    2017-07-11

    Observed adverse effects of antiretroviral therapy (ART) on the lipid profile could be of significance in pregnancy. This systematic review aims to summarize studies that investigated the association between HIV, ART and serum lipids during pregnancy and adverse pregnancy outcomes. A systematic search was conducted in five electronic databases to obtain articles that measured serum lipid concentrations or the incidence of dyslipidaemia in HIV-infected pregnant women. Included articles were assessed for quality according to the Cochrane Risk of Bias Tool. The extracted data was analysed through descriptive analysis. Of the 1264 articles screened, 17 articles were included in this review; eleven reported the incidence of dyslipidaemia, and twelve on maternal serum lipid concentrations under the influence of HIV-infection and ART. No articles reported pregnancy outcomes in relation to serum lipids. Articles were of acceptable quality, but heterogenic in methods and study design. Lipid levels in HIV-infected women increased 1.5-3 fold over the trimesters of pregnancy, and remained within the physiological reference range. The percentage of women with dyslipidaemia was variable between the studies [0-88.9%] and highest in the groups on first generation protease inhibitors and for women on ART at conception. This systematic review observed physiologic concentrations of serum lipids for HIV-infected women receiving ART during pregnancy. Serum lipids were increased in users of first generation protease inhibitors and for those on treatment at conception. There was no information available about pregnancy outcomes. Future studies are needed which include HIV-uninfected control groups, control for potential confounders, and overcome limitations associated with included studies.

  15. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    PubMed

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  16. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  17. Higher biomolecules yield in phytoplankton under copper exposure.

    PubMed

    Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa

    2018-05-30

    Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in microalgae production. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Predictable "individual differences" in uptake and excretion of gases and lipid soluble vapours simulation study.

    PubMed Central

    Fiserova-Bergerova, V; Vlach, J; Cassady, J C

    1980-01-01

    A five-compartment pharmacokinetic model with two excretory pathways, exhalation and metabolism, based on first order kinetics is used to outline the effect of body build, pulmonary ventilation, and lipid content in blood on uptake, distribution, and clearance of low solubility gases and lipid soluble vapours during and after exposure. The model shows the extent that individual differences have on altering uptake and distribution, with consequent changes in blood concentration, rate of excretion, and toxicity, even when variations in these parameters are within physiological ranges. The model is also used to describe the concentration variation of inhaled substances in tissues of subjects exposed to concentrations with permitted excursions. During the same course of exposure, the tissue concentrations of low solubility gases fluctuate much more than tissue concentrations of lipid soluble vapours. The fluctuation is reduced by metabolism of inhaled substance. These conclusions are recommended for consideration whenever evaluating the effect of excursions above the threshold limit values used in the control of industrial exposures (by excursion factors). PMID:7370192

  19. Effects of pelleted or powdered diets containing soy protein or sodium caseinate on lipid concentrations and bile acid excretion in golden Syrian hamsters.

    PubMed

    Butteiger, Dustie N; Krul, Elaine S

    2015-08-01

    Custom diets are a convenient vector for oral administration of test articles, but the processing and physical form of a diet can affect its nutritional properties and how it is consumed. Here, the authors evaluated the feeding behavior and physiology of golden Syrian hamsters fed diets of either soy or caseinate protein in pelleted or powdered forms for 28 d to determine whether dietary processing and form mediates the physiological effects of dietary proteins. The authors compared body weight, food consumption, serum cholesterol concentration, serum triglyceride concentration, fecal weight and fecal excretion of bile acids between treatment groups. Hamsters fed powdered diets showed higher food consumption than hamsters fed pelleted diets, regardless of protein source. Hamsters fed soy pelleted diets showed lower serum cholesterol concentration and higher fecal excretion of bile acid than hamsters fed caseinate pelleted diets, and serum cholesterol concentration correlated strongly with fecal excretion of bile acid. This correlation suggests that the physiological effects of soy protein on cholesterol and excretion of bile acid might be related or similarly mediated through diet. The differences observed between hamsters on different diets indicate that dietary form can influence both feeding behavior and the physiological effects of a diet in hamsters.

  20. Role of sugars under abiotic stress.

    PubMed

    Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul

    2016-12-01

    Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Glial-released proteins in clonal cultures and their modulation by hydrocortisone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenander, A.T.; de Vellis, J.

    Rat glial C6 cells release into the culture medium a reproducible spectrum of soluble proteins of 12 major peaks over a broad molecular weight range as determined by fractionation on SDS-gel electrophoresis. Exposing C6 monolayers to hydrocortisone (HC) results in a selective alteration in the pattern of glial-released protein (GRP). The selective HC-induced increase or decrease in GRP peaks is specific to HC in that 17 ..beta..-estradiol, dibutyryl cyclic AMP, isoproterenol, and melatonin exert either no detectable or a qualitatively different influence on the GRP pattern. The HC influence is dose dependent over a physiological range of concentrations from 10/supmore » -9/ to 10/sup -6/ M. Differences in culture age and in subclones of C6 can influence both the normal and the HC-induced pattern of GRP. The origin of the GRP is unknown, but pattern reproducibility, viability tests, surface labelling studies, and metabolic labelling studies of soluble and particulate compartment proteins and glycoproteins support the position that cell lysis is not an important source of GRP. More importantly, these studies indicate that GRP and HC-induced changes in GRP pattern are physiologically significant aspects of glial cell behavior.« less

  2. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes.

    PubMed

    Bhavsar, Kinjal; Fairchild, Aaron; Alonas, Eric; Bishop, Daniel K; La Belle, Jeffrey T; Sweeney, James; Alford, T L; Joshi, Lokesh

    2009-10-15

    A biosensor for the serum cytokine, Interleukin-12 (IL-12), based upon a label-free electrochemical impedance spectroscopy (EIS) monitoring approach is described. Overexpression of IL-12 has been correlated to the diagnosis of Multiple Sclerosis (MS). An immunosensor has been fabricated by electroplating gold onto a disposable printed circuit board (PCB) electrode and immobilizing anti-IL-12 monoclonal antibodies (MAb) onto the surface of the electrode. This approach yields a robust sensor that facilitates reproducible mass fabrication and easy alteration of the electrode shape. Results indicate that this novel PCB sensor can detect IL-12 at physiological levels, <100 fM with f-values of 0.05 (typically <0.0001) in a label-free and rapid manner. A linear (with respect to log concentration) detectable range was achieved. Detection in a complex biological solution is also explored; however, significant loss of dynamic range is noted in the 100% complex solution. The cost effective approach described here can be used potentially for diagnosis of diseases (like MS) with known biomarkers in body fluids and for monitoring physiological levels of biomolecules with healthcare, food, and environmental relevance.

  3. Physical and chemical effects of ingested plastic debris on short-tailed shearwaters, Puffinus tenuirostris, in the North Pacific Ocean.

    PubMed

    Yamashita, Rei; Takada, Hideshige; Fukuwaka, Masa-aki; Watanuki, Yutaka

    2011-12-01

    We investigated the plastics ingested by short-tailed shearwaters, Puffinus tenuirostris, that were accidentally caught during experimental fishing in the North Pacific Ocean in 2003 and 2005. The mean mass of plastics found in the stomach was 0.23 g per bird (n=99). Plastic mass did not correlate with body weight. Total PCB (sum of 24 congeners) concentrations in the abdominal adipose tissue of 12 birds ranged from 45 to 529 ng/g-lipid. Although total PCBs or higher-chlorinated congeners, the mass of ingested plastic correlated positively with concentrations of lower-chlorinated congeners. The effects of toxic chemicals present in plastic debris on bird physiology should be investigated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (Columba livia).

    PubMed

    Hsu, Bin-Yan; Dijkstra, Cor; Darras, Veerle M; de Vries, Bonnie; Groothuis, Ton G G

    2017-01-01

    Thyroid hormones (THs) - triiodothyronine (T3) and thyroxine (T4) - are essential for embryonic development in vertebrates. All vertebrate embryos are exposed to THs from maternal origin. As maternal TH levels are known to be essential to embryonic development, the natural variation of maternal THs probably represents a pathway of maternal effects that can modify offspring phenotype. However, potential fitness consequences of variation of maternal TH exposure within the normal physiological range and without confounding effects of the mother have never been experimentally investigated. We experimentally manipulated the levels of yolk T3 and T4 within the physiological range in a species in which the embryo develops outside the mother's body, the Rock Pigeon (Columba livia) eggs. Making use of the natural difference of yolk testosterone between the two eggs of pigeon clutches, we were also able to investigate the potential interaction between THs and testosterone. Elevated yolk TH levels enhanced embryonic development and hatching success, and reduced body mass but not tarsus length between day 14 and fledging. The yolk hormones increased plasma T4 concentrations in females but reduced it in males, in line with the effect on metabolic rate at hatching. Plasma concentrations of T3 and testosterone were not significantly affected. The effects of treatment did not differ between eggs with high or low testosterone levels. Our data indicate that natural variation in maternal yolk TH levels affects offspring phenotype and embryonic survival, potentially influencing maternal and chick fitness. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145-154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    John, Harald; Hierer, Jessica; Haas, Olga; Forssmann, Wolf-Georg

    2007-03-01

    Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.

    The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, andmore » the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.« less

  7. Cross-sectional biomonitoring study of pesticide exposures in Queensland, Australia, using pooled urine samples.

    PubMed

    Heffernan, A L; English, K; Toms, Lml; Calafat, A M; Valentin-Blasini, L; Hobson, P; Broomhall, S; Ware, R S; Jagals, P; Sly, P D; Mueller, J F

    2016-12-01

    A range of pesticides are available in Australia for use in agricultural and domestic settings to control pests, including organophosphate and pyrethroid insecticides, herbicides, and insect repellents, such as N,N-diethyl-meta-toluamide (DEET). The aim of this study was to provide a cost-effective preliminary assessment of background exposure to a range of pesticides among a convenience sample of Australian residents. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100 specimens). Concentrations of urinary pesticide biomarkers were quantified using solid-phase extraction coupled with isotope dilution high-performance liquid chromatography-tandem mass spectrometry. Geometric mean biomarker concentrations ranged from <0.1 to 36.8 ng/mL for organophosphate insecticides, <0.1 to 5.5 ng/mL for pyrethroid insecticides, and <0.1 to 8.51 ng/mL for all other biomarkers with the exception of the DEET metabolite 3-diethylcarbamoyl benzoic acid (4.23 to 850 ng/mL). We observed no association between age and concentration for most biomarkers measured but noted a "U-shaped" trend for five organophosphate metabolites, with the highest concentrations observed in the youngest and oldest age strata, perhaps related to age-specific differences in behavior or physiology. The fact that concentrations of specific and non-specific metabolites of the organophosphate insecticide chlorpyrifos were higher than reported in USA and Canada may relate to differences in registered applications among countries. Additional biomonitoring programs of the general population and focusing on vulnerable populations would improve the exposure assessment and the monitoring of temporal exposure trends as usage patterns of pesticide products in Australia change over time.

  8. PAVA: Physiological and Anatomical Visual Analytics for Mapping of Tissue-Specific Concentration and Time-Course Data

    EPA Science Inventory

    We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...

  9. Methods of estimating the effect of integral motorcycle helmets on physiological and psychological performance.

    PubMed

    Bogdan, Anna; Sudoł-Szopińska, Iwona; Luczak, Anna; Konarska, Maria; Pietrowski, Piotr

    2012-01-01

    This article proposes a method for a comprehensive assessment of the effect of integral motorcycle helmets on physiological and cognitive responses of motorcyclists. To verify the reliability of commonly used tests, we conducted experiments with 5 motorcyclists. We recorded changes in physiological parameters (heart rate, local skin temperature, core temperature, air temperature, relative humidity in the space between the helmet and the surface of the head, and the concentration of O(2) and CO(2) under the helmet) and in psychological parameters (motorcyclists' reflexes, fatigue, perceptiveness and mood). We also studied changes in the motorcyclists' subjective sensation of thermal comfort. The results made it possible to identify reliable parameters for assessing the effect of integral helmets on performance, i.e., physiological factors (head skin temperature, internal temperature and concentration of O(2) and CO(2) under the helmet) and on psychomotor factors (reaction time, attention and vigilance, work performance, concentration and a subjective feeling of mood and fatigue).

  10. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise.

    PubMed

    Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A

    2009-05-01

    We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.

  11. The concentration of fear: mice's behavioural and physiological stress responses to different degrees of predation risk

    NASA Astrophysics Data System (ADS)

    Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel

    2018-02-01

    Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes ( Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice ( Apodemus sylvaticus) . We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their behavioural and physiological stress responses.

  12. The concentration of fear: mice's behavioural and physiological stress responses to different degrees of predation risk.

    PubMed

    Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel

    2018-01-31

    Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes (Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice (Apodemus sylvaticus). We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their behavioural and physiological stress responses.

  13. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts.

    PubMed

    Zhang, Haining; He, Yanhua; Zhang, Guiping; Li, Xiaobin; Yan, Suikai; Hou, Ning; Xiao, Qing; Huang, Yue; Luo, Miaoshan; Zhang, Genshui; Yi, Quan; Chen, Minsheng; Luo, Jiandong

    2017-09-01

    We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.

  14. Endocrine correlates of musth in free-ranging Asian elephants (Elephas maximus) determined by non-invasive faecal steroid hormone metabolite measurements.

    PubMed

    Ghosal, Ratna; Ganswindt, André; Seshagiri, Polani B; Sukumar, Raman

    2013-01-01

    The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid--a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.

  15. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.

    PubMed

    Andersen, M; Magan, N; Mead, A; Chandler, D

    2006-09-01

    Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological time, also called hydrotime, could have general application in mycology and environmental microbiology.

  16. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  17. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.

    PubMed

    Faude, Oliver; Hecksteden, Anne; Hammes, Daniel; Schumacher, Franck; Besenius, Eric; Sperlich, Billy; Meyer, Tim

    2017-02-01

    The maximal lactate steady-state (MLSS) is frequently assessed for prescribing endurance exercise intensity. Knowledge of the intra-individual variability of the MLSS is important for practical application. To date, little is known about the reliability of time-to-exhaustion and physiological responses to exercise at MLSS. Twenty-one healthy men (age, 25.2 (SD 3.3) years; height, 1.83 (0.06) m; body mass, 78.9 (8.9) kg; maximal oxygen uptake, 57.1 (10.7) mL·min -1 ·kg -1 ) performed 1 incremental exercise test, and 2 constant-load tests to determine MLSS intensity. Subsequently, 2 open-end constant-load tests (MLSS 1 and 2) at MLSS intensity (3.0 (0.7) W·kg -1 , 76% (10%) maximal oxygen uptake) were carried out. During the tests, blood lactate concentrations, heart rate, ratings of perceived exertion (RPE), variables of gas exchange, and core body temperature were determined. Time-to-exhaustion was 50.8 (14.0) and 48.2 (16.7) min in MLSS 1 and 2 (mean change: -2.6 (95% confidence interval: -7.8, 2.6)), respectively. The coefficient of variation (CV) was high for time-to-exhaustion (24.6%) and for mean (4.8 (1.2) mmol·L -1 ) and end (5.4 (1.7) mmol·L -1 ) blood lactate concentrations (15.7% and 19.3%). The CV of mean exercise values for all other parameters ranged from 1.4% (core temperature) to 8.3% (ventilation). At termination, the CVs ranged from 0.8% (RPE) to 11.8% (breathing frequency). The low reliability of time-to-exhaustion and blood lactate concentration at MLSS indicates that the precise individual intensity prescription may be challenging. Moreover, the obtained data may serve as reference to allow for the separation of intervention effects from random variation in our sample.

  18. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    PubMed Central

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  19. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-10-01

    Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.

  20. Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach.

    PubMed

    Handy, R D; Al-Bairuty, G; Al-Jubory, A; Ramsden, C S; Boyle, D; Shaw, B J; Henry, T B

    2011-10-01

    Manufactured nanomaterials (NM) are already used in consumer products and exposure modelling predicts releases of ng to low µg l(-1) levels of NMs into surface waters. The exposure of aquatic ecosystems, and therefore fishes, to manufactured NMs is inevitable. This review uses a physiological approach to describe the known effects of NMs on the body systems of fishes and to identify the internal target organs, as well as outline aspects of colloid chemistry relevant to fish biology. The acute toxicity data, suggest that the lethal concentration for many NMs is in the mg l(-1) range, and a number of sublethal effects have been reported at concentrations from c. 100 µg to 1 mg l(-1). Exposure to NMs in the water column can cause respiratory toxicity involving altered ventilation, mucus secretion and gill pathology. This may not lead, however, to overt haematological disturbances in the short term. The internal target organs include the liver, spleen and haematopoietic system, kidney, gut and brain; with toxic effects involving oxidative stress, ionoregulatory disturbances and organ pathologies. Some pathology appears to be novel for NMs, such as vascular injury in the brain of rainbow trout Oncorhynchus mykiss with carbon nanotubes. A lack of analytical methods, however, has prevented the reporting of NM concentrations in fish tissues, and the precise uptake mechanisms across the gill or gut are yet to be elucidated. The few dietary exposure studies conducted show no effects on growth or food intake at 10-100 mg kg(-1) inclusions of NMs in the diet of O. mykiss, but there are biochemical disturbances. Early life stages are sensitive to NMs with reports of lethal toxicity and developmental defects. There are many data gaps, however, including how water quality alters physiological responses, effects on immunity and chronic exposure data at environmentally relevant concentrations. Overall, the data so far suggest that the manufactured NMs are not as toxic as some traditional chemicals (e.g. some dissolved metals) and the innovative, responsible, development of nanotechnology should continue, with potential benefits for aquaculture, fisheries and fish health diagnostics. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  1. Hyperspectral remote sensing of plant pigments.

    PubMed

    Blackburn, George Alan

    2007-01-01

    The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.

  2. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy.

  3. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  4. Inference of quantitative models of bacterial promoters from time-series reporter gene data.

    PubMed

    Stefan, Diana; Pinel, Corinne; Pinhal, Stéphane; Cinquemani, Eugenio; Geiselmann, Johannes; de Jong, Hidde

    2015-01-01

    The inference of regulatory interactions and quantitative models of gene regulation from time-series transcriptomics data has been extensively studied and applied to a range of problems in drug discovery, cancer research, and biotechnology. The application of existing methods is commonly based on implicit assumptions on the biological processes under study. First, the measurements of mRNA abundance obtained in transcriptomics experiments are taken to be representative of protein concentrations. Second, the observed changes in gene expression are assumed to be solely due to transcription factors and other specific regulators, while changes in the activity of the gene expression machinery and other global physiological effects are neglected. While convenient in practice, these assumptions are often not valid and bias the reverse engineering process. Here we systematically investigate, using a combination of models and experiments, the importance of this bias and possible corrections. We measure in real time and in vivo the activity of genes involved in the FliA-FlgM module of the E. coli motility network. From these data, we estimate protein concentrations and global physiological effects by means of kinetic models of gene expression. Our results indicate that correcting for the bias of commonly-made assumptions improves the quality of the models inferred from the data. Moreover, we show by simulation that these improvements are expected to be even stronger for systems in which protein concentrations have longer half-lives and the activity of the gene expression machinery varies more strongly across conditions than in the FliA-FlgM module. The approach proposed in this study is broadly applicable when using time-series transcriptome data to learn about the structure and dynamics of regulatory networks. In the case of the FliA-FlgM module, our results demonstrate the importance of global physiological effects and the active regulation of FliA and FlgM half-lives for the dynamics of FliA-dependent promoters.

  5. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular β-sheet formation.

    PubMed

    Bhattacharya, Arpan; Prajapati, Roopali; Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2014-12-16

    Proteins inside a cell remain in highly crowded environments, and this often affects their structure and activity. However, most of the earlier studies involving serum albumins were performed under dilute conditions, which lack biological relevance. The effect of protein-protein interactions on the structure and properties of serum albumins at physiological conditions have not yet been explored. Here, we report for the first time the effect of protein-protein and protein-crowder interactions on the structure and stability of two homologous serum albumins, namely, human serum albumin (HSA) and bovine serum albumin (BSA), at physiological conditions by using spectroscopic techniques and scanning electron microscopy (SEM). Concentration-dependent self-oligomerization and subsequent structural alteration of serum albumins have been explored by means of fluorescence and circular dichroism spectroscopy at pH 7.4. The excitation wavelength (λex) dependence of the intrinsic fluorescence and the corresponding excitation spectra at each emission wavelength indicate the presence of various ground state oligomers of serum albumins in the concentration range 10-150 μM. Circular dichroism and thioflavin T binding assay revealed formation of intermolecular β-sheet rich interfaces at high protein concentration. Excellent correlations have been observed between β-sheet content of both the albumins and fluorescence enhancement of ThT with protein concentrations. SEM images at a concentration of 150 μM revealed large dispersed self-oligomeric states with sizes vary from 330 to 924 nm and 260 to 520 nm for BSA and HSA, respectively. The self-oligomerization of serum albumins is found to be a reversible process; upon dilution, these oligomers dissociate into a native monomeric state. It has also been observed that synthetic macromolecular crowder polyethylene glycol (PEG 200) stabilizes the self-associated state of both the albumins which is contrary to expectations that the macromolecular crowding favors compact native state of proteins.

  6. [The merit of using untreated, HCl-treated amd partly-hydrolyzed straw meal in the feeding regime for piglets after early weaning. 3. Parameters of protein, fat, carbohydrates and mineral metabolism in the blood serum of the piglet].

    PubMed

    Münchow, H

    1989-10-01

    In parallel studies with piglets of the country race the applicability of variously treated straw materials was tested in comparison with the conventional feeding of concentrate (I) after an early weaning date (30th-35th day of life) over a feeding period of 8 weeks (1st-8th week of keeping). In the rations containing 10% straw (concentrate-straw mixtures), untreated (II), HCl treated (III:HCl treatment without steaming) and partly hydrolyzed straw meal (IV:HCl treatment with subsequent steaming) were tested. In the 2nd and 8th weeks of keeping blood samples were taken from 4 animals of each group and selected parameters of the protein, fat, carbohydrate and mineral metabolism were subsequently ascertained from the blood serum. About half of the total of the 13 selected parameters showed reactions of the intermediary metabolism of the test groups caused by the feeding. With the parameters on the whole varying in the normal physiologic range, a decrease in the blood urea and creatinine concentration and an increase in the blood glucose level were detected after the use of the concentrate-straw mixtures (III and IV) in comparison with the sole feeding of concentrate (I) and partly also in comparison with untreated straw meal (II), their intensity varying in dependence on feeding and test duration. Particularly towards the end of the experiment, an increase of the activity of alkaline phosphatase was also characteristic, which was in negative correlation with the P content of the serum and in positive correlation with growth performance. The physiologic parameters are discussed in connection with the higher growth performance at reduced concentrate expenditure achieved in III and IV in comparison to I and II.

  7. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro

    NASA Technical Reports Server (NTRS)

    Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.

    1999-01-01

    Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.

  8. Ferrum nano particles and multiwall carbon nano tubes based electrode as FIA detector for determination of amino acids in hypothalamus microdialysis fluids

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wang, J.; Wang, Y. T.; Yu, L.; Peng, H.; Zhu, J. Z.

    2017-01-01

    An amperometric electrode based on multiwall carbon nanotubes (MWCNTs) and Fe nanoparticles (NPs) has been successfully fabricated. Combined with Flow Injection Analysis (FIA) and chromatography separation column, the electrode exhibits linear response in the concentration range of 0.1 -12 μM and the sensitivity of 30.0 nA μM-1 for most of amino acids. The determination of 17 amino acids in the hypothalamus microdialysis fluids of guinea pigs, illustrates that the electrode is a powerful tool to investigate physiology and pathology mechanisms

  9. Assay for optical determination of biogenic amines using microtiterplates

    NASA Astrophysics Data System (ADS)

    Nedeljko, Polona; Turel, Matejka; Lobnik, Aleksandra

    2013-05-01

    Direct determination of catecholamine noradreanaline (NOR) is presented using o-phthaldialdehyde (OPA) as an indicator reagent. The fluorescent assay in which OPA forms with NOR a fluorescent complex (OPA-NOR) can be monitored at neutral, physiological conditions (pH 7) and performed in microtiterplates. The determination of NOR is optimal in the concentration range from 4.0×10-7 to 1.0×10-5 M and limit of detection is 4.0×10-7 M. The OPA-NOR complex maximum intensity is reached within 5 minutes. Dopamine and adrenaline could not be determined using the same approach.

  10. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    PubMed

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  11. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.

    PubMed

    Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A

    2016-06-01

    This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly <5.8 % of the total). Translocation behaviour of elements was not clear according to the physiological importance of the elements. In general, plant shoots from São Domingos had the highest elements concentrations, but only As, Mn and Zn reached phytotoxic concentrations. Concentration of Chlb in shoots from São Domingos was higher than those from Corte do Pinto. No significant differences were obtained between concentrations of Chla, total protein, proline and acid-soluble thiols in shoots collected in both areas, as well as SOD activity (total and specific) and specific CAT activity. Total CAT activity varied with population being lower in the shoots of the plants from São Domingos, but no correlation was obtained between this enzymatic activity and the concentrations of the studied elements in shoots. Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and low fertility showing no symptoms (visible and physiological) of phytotoxicity or deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    NASA Astrophysics Data System (ADS)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  13. The mouthfeel of white wine.

    PubMed

    Gawel, Richard; Smith, Paul A; Cicerale, Sara; Keast, Russell

    2017-07-05

    White wine mouthfeel which encompasses the tactile, chemosensory and taste attributes of perceived viscosity, astringency, hotness and bitterness is increasingly being recognized as an important component of overall white wine quality. This review summarizes the physiological basis for the perception of white wine mouthfeel and the direct and interactive effects of white wine composition, specifically those of low molecular weight phenolic compounds, polysaccharides, pH, ethanol, glycerol, dissolved carbon dioxide, and peptides. Ethyl alcohol concentration and pH play a direct role in determining most aspects of mouthfeel perception, and provide an overall framework on which the other minor wine components can interact to influence white wine mouthfeel. Phenolic compounds broadly impact on the mouthfeel by contributing to its viscosity, astringency, hotness and bitterness. Their breadth of influence likely results from their structural diversity which would allow them to activate multiple sensory mechanisms involved in mouthfeel perception. Conversely, polysaccharides have a small modulating effect on astringency and hotness perception, and glycerol does not affect perceived viscosity within the narrow concentration range found in white wine. Many of the major sensory attributes that contribute to the overall impression of mouthfeel are elicited by more than one class compound suggesting that different physiological mechanisms may be involved in the construct of mouthfeel percepts.

  14. Review: Zinc’s functional significance in the vertebrate retina

    PubMed Central

    Chappell, Richard L.

    2014-01-01

    This review covers a broad range of topics related to the actions of zinc on the cells of the vertebrate retina. Much of this review relies on studies in which zinc was applied exogenously, and therefore the results, albeit highly suggestive, lack physiologic significance. This view stems from the fact that the concentrations of zinc used in these studies may not be encountered under the normal circumstances of life. This caveat is due to the lack of a zinc-specific probe with which to measure the concentrations of Zn2+ that may be released from neurons or act upon them. However, a great deal of relevant information has been garnered from studies in which Zn2+ was chelated, and the effects of its removal compared with findings obtained in its presence. For a more complete discussion of the consequences of depletion or excess in the body’s trace elements, the reader is referred to a recent review by Ugarte et al. in which they provide a detailed account of the interactions, toxicity, and metabolic activity of the essential trace elements iron, zinc, and copper in retinal physiology and disease. In addition, Smart et al. have published a splendid review on the modulation by zinc of inhibitory and excitatory amino acid receptor ion channels. PMID:25324679

  15. Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll

    NASA Astrophysics Data System (ADS)

    Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.

    2012-06-01

    Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host-symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.

  16. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells.

    PubMed

    Heu, Celine; Berquand, Alexandre; Elie-Caille, Celine; Nicod, Laurence

    2012-04-01

    The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. CIRCULATING CONCENTRATIONS OF THYROID HORMONE IN BELUGA WHALES (DELPHINAPTERUS LEUCAS): INFLUENCE OF AGE, SEX, AND SEASON.

    PubMed

    Flower, Jennifer E; Allender, Matthew C; Giovanelli, Richard P; Summers, Sandra D; Spoon, Tracey R; St Leger, Judy A; Goertz, Caroline E C; Dunn, J Lawrence; Romano, Tracy A; Hobbs, Roderick C; Tuttle, Allison D

    2015-09-01

    Thyroid hormones play a critical physiologic role in regulating protein synthesis, growth, and metabolism. To date, because no published compilation of baseline values for thyroid hormones in beluga whales (Delphinapterus leucas) exists, assessment of thyroid hormone concentrations in this species has been underused in clinical settings. The purpose of this study was to document the concentrations of total thyroxine (tT4) and total triiodothyronine (tT3) in healthy aquarium-maintained and free-ranging beluga whales and to determine the influence of age, sex, and season on the thyroid hormone concentrations. Archived serum samples were collected from healthy aquarium-maintained (n=43) and free-ranging (n=39) belugas, and serum tT4 and tT3 were measured using chemiluminescence immunoassay. The mean tT4 concentration in aquarium-maintained belugas was 5.67±1.43 μg/dl and the mean tT3 concentration was 70.72±2.37 ng/dl. Sex comparisons showed that aquarium-maintained males had significantly greater tT4 and tT3 (9.70±4.48 μg/dl and 92.65±30.55 ng/dl, respectively) than females (7.18±2.82 μg/dl and 77.95±20.37 ng/dl) (P=0.004 and P=0.013). Age comparisons showed that aquarium-maintained whales aged 1-5 yr had the highest concentrations of tT4 and tT3 (8.17±0.17 μg/dl and 105.46±1.98 ng/dl, respectively) (P=0.002 and P<0.001). tT4 concentrations differed significantly between seasons, with concentrations in winter (4.59±1.09 μg/dl) being significantly decreased compared with spring (P=0.009), summer (P<0.0001), and fall (P<0.0001) concentrations. There was a significant difference in tT4 and tT3 concentrations between aquarium-maintained whales (5.67±1.43 μg/dl and 70.72±15.57 ng/dl, respectively) and free-ranging whales (11.71±3.36 μg/dl and 103.38±26.45 ng/dl) (P<0.0001 and P<0.001). Clinicians should consider biologic and environmental influences (age, sex, and season) for a more accurate interpretation of thyroid hormone concentrations in belugas. The findings of this study provide a baseline for thyroid health monitoring and comprehensive health assessments in both aquarium-maintained and free-ranging beluga whales.

  18. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  19. Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J.; Huang, Shao-Ling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2016-01-01

    Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study we determined the effects of the surrounding media’s dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their acoustic properties. Further in vivo investigations will be needed to evaluate the optimal usage of ELIP as blood pool contrast agents. PMID:22929652

  20. Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs).

    PubMed

    Ghosh, Ruma; Lokman, P Mark; Lamare, Miles D; Metcalf, Victoria J; Burritt, David J; Davison, William; Hageman, Kimberly J

    2013-03-15

    Although polybrominated diphenyl ethers (PBDEs) have the ability to undergo long-range atmospheric transport to remote ecosystems like Antarctica, a recent study found evidence for a local source within the Antarctic. PBDEs from sewage treatment outfalls of McMurdo Station and Scott Base on Ross Island have been attributed to the high concentrations measured in emerald rock cod (Trematomus bernacchii). The potential impact of PBDEs on Antarctic fish physiology is unknown and therefore, the aim of this study was to obtain a greater understanding of physiological responses of emerald rock cod for assessing changes in ecosystem quality. A PBDE mixture (ΣPBDE 8 congeners) was administered fortnightly over 42 days and physiological changes were observed throughout this period and for a further 14 days thereafter. Changes in liver composition, molecular level changes and enzyme activities of selected detoxification-mediated and antioxidant defence markers were measured. Changes in total lipid, lipid peroxide and protein carbonyl concentrations in emerald rock cod liver were consistent with increases in nucleus surface area in the PBDE-treated groups, suggesting alterations in cellular function. Changes in the activities of selected antioxidant enzymes indirectly indicated oxidative stress, possibly resulting in the changes in liver composition. Additionally, glutathione-S-transferase (GST) activity reached its peak faster than that of ethoxyresorufin-O-deethylase (EROD), suggesting that during the early response to PBDE exposures there could be a greater involvement of GST-mediated detoxification. Thus, for at least the species examined here, protein carbonyl and lipid peroxides were useful and informative biomarkers for cellular level responses following PBDE-related exposure. Furthermore, our findings suggest that emerald rock cod exposed to PBDEs develop oxidative stress - a condition with potential consequences for fish growth, health and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum.

    PubMed

    Jin, Yujian; Fan, Xiaoji; Li, Xingxing; Zhang, Zhenyan; Sun, Liwei; Fu, Zhengwei; Lavoie, Michel; Pan, Xiangliang; Qian, Haifeng

    2017-09-01

    Nano-aluminium oxide (nAl 2 O 3 ) is one of the most widely used nanomaterials. However, nAl 2 O 3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl 2 O 3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl 2 O 3 or to the equivalent molar concentration of ionic Al (AlCl 3 ) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl 2 O 3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl 2 O 3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl 2 O 3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl 2 O 3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl 2 O 3 and ionic Al in Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    PubMed

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic + chemometric methodology enables investigating the link between chemical conditions in a marine ecosystem and their consequences for phytoplankton living in it.

  3. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same.

    PubMed

    Khanam, Anjum; Platel, Kalpana

    2016-03-01

    Selenium (Se) is an essential nutrient with diverse physiological functions. The selenium content of commonly consumed cereals, pulses and green leafy vegetables (GLV) was determined. Bioaccessibility of Se, and its organic forms selenomethionine (SeMet), and selenocysteine (SeCys2) was also examined, and the effect of heat processing on the same was studied. The bioaccessibility of Se in cereals ranged from 10% to 24%, that of pulses was between 12% and 29%, and of GLV, 10-31%. The concentration of SeMet in the dialysates of the cereals, pulses and GLV ranged from 5.15 to 28.7, 2.7 to 36.2, and 0.03 to 5ngg(-1), respectively. The concentration of SeCys2 in the dialysates of the foods examined was negligible. Heat processing significantly decreased the bioaccessibility of Se, SeMet and SeCys2. This is the first report on the bioaccessibility of Se and its major organic forms from commonly consumed staples, and the effect of heat processing on the same. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Physiology undergraduate degree requirements in the U.S.

    PubMed

    VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A

    2017-12-01

    Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.

  5. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: A case study with toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nong, A.; McCarver, D.G.; Hines, R.N.

    2006-07-01

    The objective of the present study was to evaluate the magnitude of interindividual variability in the internal dose of toluene in children of various age groups, on the basis of subject-specific hepatic CYP2E1 content and physiology. The methodology involved the use of a previously validated physiologically based pharmacokinetic (PBPK) model, in which the intrinsic clearance for hepatic metabolism (CL{sub int}) was expressed in terms of the CYP2E1 content. The adult toluene PBPK model, with enzyme content-normalized CL{sub int}, facilitated the calculation of child-specific CL{sub int} based on knowledge of hepatic CYP2E1 protein levels. The child-specific physiological parameters, except liver volume,more » were computed with knowledge of age and body weight, whereas physicochemical parameters for toluene were kept age-invariant based on available data. The actual individual-specific liver volume (autopsy data) was also included in the model. The resulting model was used to simulate the blood concentration profiles in children exposed by inhalation, to 1 ppm toluene for 24 h. For this exposure scenario, the area under the venous blood concentration vs. time curve (AUC) ranged from 0.30 to 1.01 {mu}g/ml x h in neonates with low CYP2E1 concentration (<3.69 pmol/mg protein). The simulations indicated that neonates with higher levels of CYP2E1 (4.33 to 55.93 pmol/mg protein) as well as older children would have lower AUC (0.16 to 0.43 {mu}g/ml x h). The latter values were closer to those simulated for adults. Similar results were also obtained for 7 h exposure to 17 ppm toluene, a scenario previously evaluated in human volunteers. The interindividual variability factor for each subgroup of children and adults, calculated as the ratio of the 95th and 50th percentile values of AUC, was within a factor of 2. The 95th percentile value of the low metabolizing neonate group, however, was greater than the mean adult AUC by a factor of 3.9. This study demonstrates the feasibility of incorporating subject-specific data on hepatic CYP2E1 content and physiology within PBPK models for evaluating the age, interchild and population variability of internal dose for use in risk assessment of inhaled volatile organics.« less

  6. Physiological sodium concentrations enhance the iodide affinity of the Na+/I- symporter

    NASA Astrophysics Data System (ADS)

    Nicola, Juan P.; Carrasco, Nancy; Mario Amzel, L.

    2014-06-01

    The Na+/I- symporter (NIS) mediates active I- transport—the first step in thyroid hormonogenesis—with a 2Na+:1I- stoichiometry. NIS-mediated 131I- treatment of thyroid cancer post-thyroidectomy is the most effective targeted internal radiation cancer treatment available. Here to uncover mechanistic information on NIS, we use statistical thermodynamics to obtain Kds and estimate the relative populations of the different NIS species during Na+/anion binding and transport. We show that, although the affinity of NIS for I- is low (Kd=224 μM), it increases when Na+ is bound (Kd=22.4 μM). However, this Kd is still much higher than the submicromolar physiological I- concentration. To overcome this, NIS takes advantage of the extracellular Na+ concentration and the pronounced increase in its own affinity for I- and for the second Na+ elicited by binding of the first. Thus, at physiological Na+ concentrations, ~79% of NIS molecules are occupied by two Na+ ions and ready to bind and transport I-.

  7. Use of Invertebrate Animals to Teach Physiological Principles.

    ERIC Educational Resources Information Center

    Deyrup-Olsen, Ingrith; Linder, Thomas M.

    1991-01-01

    The advantages of using invertebrates in teaching physiological principles are discussed. The ability to illustrate with greater clarity physiological principles, the range and variety of physiological processes available for examination, and the unlimited possibilities for student research are topics of discussion. (KR)

  8. Lead concentrations in bullfrog Rana catesbeiana and green frog R. clamitans tadpoles inhabiting highway drainages

    USGS Publications Warehouse

    Birdsall, C.W.; Grue, C.E.; Anderson, A.

    1986-01-01

    Lead concentrations were determined in sediment and tadpoles of bullfrogs Rana catesbeiana and green frogs R. clamitans from drainages along highways with different daily average traffic volumes (range, 4272 to I08,800 vehicles day-I) and from ponds >0.4 km from the nearest highway. Lead concentrations (mg kg--I dry weight) in sediment (7-8 to 940) were usually greater (4-5 times) than those in the tadpoles (bullfrog, 0,07 to 270; green frog, 0,90 to 240 mg kg-I). Lead concentrations in sediment (r =0.63) and in both species of tadpoles (bullfrog, r = 0.69; green frog, r = 0.57) were positively correlated with average daily traffic volume. Lead concentrations in both species of tadpoles (bullfrog, r = (). 76: green frog, r = 0.75) were also positively correlated with lead concentrations in sediment. At sites where both bullfrog and green frog tadpoles were collected. lead concentrations in the two species were closely related (r = 0.84). Lead concentrations in tadpoles living near highways may contribute to the elevated lead levels reported in wildlife that are potential tadpole predators. Dietary lead concentrations similar to those in our tadpoles have been associated with physiological and reproductive effects in some species of birds and mammals. However, additional data are needed to determine the hazards to predators of lead concentrations in tadpoles.

  9. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production, which suggests that NO release by activated platelets was involved in the inhibitory effect of amifostine. Amifostine proved to be an effective inhibitor of platelet activation induced in vitro by physiologic inducers. This previously unrecognized effect was more evident with the weak agonist ADP and was related to reduced NO consumption by free radicals generated during platelet activation. Amifostine proved to be not only a powerful cytoprotectant, but, more generally, a therapeutic agent endowed with several relevant, though largely unknown, biological effects. Finally, our data once again support the concept that oxidative balance is of crucial importance in regulating platelet reactivity in both health and disease.

  10. Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium

    PubMed Central

    Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S.; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd

    2017-01-01

    Abstract The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43−. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10−2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50−120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. PMID:28486660

  11. Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium.

    PubMed

    Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd; Rabus, Ralf

    2017-05-01

    The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43-. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10-2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50-120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. © FEMS 2017.

  12. Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.

    PubMed

    Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia

    2017-01-01

    Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (<10%). Furthermore, the sensitivity of this approach in the detection of free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.

  13. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) is an essential micronutrient required for the growth and development of plants. However, at elevated concentrations in soil, copper is very toxic to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological an...

  14. Uptake and effects of americium-241 on a brackishwater amphipod

    NASA Astrophysics Data System (ADS)

    Hoppenheit, M.; Murray, C. N.; Woodhead, D. S.

    1980-03-01

    The present paper reports the results of experimental work undertaken using the brackish-water amphipod Gammarus duebeni duebeni and the transuranium nuclide americium-241. Data on the accumulation of this actinide showed that the larger fraction of the total body burden is associated with the exoskeleton. It was found that the body burden remained constant in the range pH 8.0 6.5 even though the water concentrations changed markedly. It would thus appear that the concept of a concentration factor should be re-examined and it is proposed that a factor should be defined in terms of environmental and chemical parameters which represent the bioavailable fraction of the actinide. The effect of americium on survival and moulting was studied at two activity concentrations; the dose rates and absorbed doses under the experimental conditions employed have been estimated. The differences in survival rates between the control and irradiated groups were statistically analyzed and the significant difference at the higher concentration is believed to be due to a synergism between physiological stress and radiotoxicity of americium rather than the chemical toxicity of the element.

  15. Effects of Elevated CO2 on the Swainsonine Chemotypes of Astragalus lentiginosus and Astragalus mollissimus.

    PubMed

    Cook, Daniel; Gardner, Dale R; Pfister, James A; Stonecipher, Clinton A; Robins, Joseph G; Morgan, Jack A

    2017-03-01

    Rapid changes in the Earth's atmosphere and climate associated with human activity can have significant impacts on agriculture including livestock production. CO 2 concentration has risen from the industrial revolution to the current time, and is expected to continue to rise. Climatic changes alter physiological processes, growth, and development in numerous plant species, potentially changing concentrations of plant secondary compounds. These physiological changes may influence plant population density, growth, fitness, and toxin concentrations and thus influence the risk of toxic plants to grazing livestock. Locoweeds, swainsonine-containing Astragalus species, are one group of plants that may be influenced by climate change. We evaluated how two different swainsonine-containing Astragalus species responded to elevated CO 2 concentrations. Measurements of biomass, crude protein, water soluble carbohydrates and swainsonine concentrations were measured in two chemotypes (positive and negative for swainsonine) of each species after growth at CO 2 levels near present day and at projected future concentrations. Biomass and water soluble carbohydrate concentrations responded positively while crude protein concentrations responded negatively to elevated CO 2 in the two species. Swainsonine concentrations were not strongly affected by elevated CO 2 in the two species. In the different chemotypes, biomass responded negatively and crude protein concentrations responded positively in the swainsonine-positive plants compared to the swainsonine-negative plants. Ultimately, changes in CO 2 and endophyte status will likely alter multiple physiological responses in toxic plants such as locoweed, but it is difficult to predict how these changes will impact plant herbivore interactions.

  16. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  17. Effects of chronic copper exposure on development and survival in the southern leopard frog (Lithobates [Rana] sphenocephalus).

    PubMed

    Lance, Stacey L; Erickson, Matthew R; Flynn, R Wesley; Mills, Gary L; Tuberville, Tracey D; Scott, David E

    2012-07-01

    Exposure to environmental contaminants contributes to the global decline of amphibian populations. The impacts of organic contaminants on amphibians are well documented. However, substantially less is known concerning the potential effects of metals on amphibian populations. Copper (Cu) is an essential element, but it can be toxic at concentrations only slightly higher than the normal physiological range. The present study examines the effects of chronic Cu exposure on embryos and larvae of southern leopard frogs, Lithobates (Rana) sphenocephalus. Groups of eggs from multiple clutches were collected from two wetlands and exposed to a range of Cu concentrations (0-150 µg/L) until they reached the free-swimming stage, and then individual larvae were reared to metamorphosis. Higher Cu concentrations significantly reduced embryo survival to the free-swimming stage but did not further reduce survival to metamorphosis. Larval period was affected by Cu treatment, but the clutch from which larvae originated (i.e., parentage) explained a higher proportion of the variation. Embryo survival to hatching varied significantly among clutches, ranging from 42.9 to 79.2%. Measurable levels of Cu were found in larvae with body burdens up to 595 µg Cu/g dry mass in the 100 µg/L treatment, and larval Cu body burdens were higher than in metamorphs. The present study also demonstrated that higher initial egg density ameliorated embryo mortality at higher Cu levels and should be accounted for in future studies. Copyright © 2012 SETAC.

  18. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    USGS Publications Warehouse

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  19. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    USGS Publications Warehouse

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  20. Optoacoustic Monitoring of Physiologic Variables

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964

  1. Optoacoustic Monitoring of Physiologic Variables.

    PubMed

    Esenaliev, Rinat O

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.

  2. Metabolic and physiological adjustment of Suaeda maritima to combined salinity and hypoxia

    PubMed Central

    Behr, Jan H.; Bouchereau, Alain; Berardocco, Solenne; Seal, Charlotte E.; Flowers, Timothy J.

    2017-01-01

    Background and Aims Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to salinity combined with hypoxia were investigated on a physiological and metabolic level. Methods To compare the adaptive mechanisms to deficient, optimal and stressful salt concentrations, S. maritima plants were grown in a hydroponic culture under low, medium and high salt concentrations. Additionally, hypoxic conditions were applied to investigate the impact of hypoxia combined with different salt concentrations. A non-targeted metabolic approach was used to clarify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms of S. maritima. Key Results Roots exposed to hypoxic conditions showed an increased level of tricarboxylic acid (TCA)-cycle intermediates such as succinate, malate and citrate. During hypoxia, the concentration of free amino acids increased in shoots and roots. Osmoprotectants such as proline and glycine betaine increased in concentrations as the external salinity was increased under hypoxic conditions. Conclusions The combination of high salinity and hypoxia caused an ionic imbalance and an increase of metabolites associated with osmotic stress and photorespiration, indicating a severe physiological and metabolic response under these conditions. Disturbed proline degradation in the roots induced an enhanced proline accumulation under hypoxia. The enhanced alanine fermentation combined with a partial flux of the TCA cycle might contribute to the tolerance of S. maritima to hypoxic conditions. PMID:28110268

  3. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    PubMed

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  4. Reference intervals and physiologic alterations in hematologic and biochemical values of free-ranging desert tortoises in the Mojave Desert

    USGS Publications Warehouse

    Christopher, Mary M.; Berry, Kristin H.; Wallis, I.R.; Nagy, K.A.; Henen, B.T.; Peterson, C.C.

    1999-01-01

    Desert tortoise (Gopherus agassizii) populations have experienced precipitous declines resulting from the cumulative impact of habitat loss, and human and disease-related mortality. Evaluation of hematologic and biochemical responses of desert tortoises to physiologic and environmental factors can facilitate the assessment of stress and disease in tortoises and contribute to management decisions and population recovery. The goal of this study was to obtain and analyze clinical laboratory data from free-ranging desert tortoises at three sites in the Mojave Desert (California, USA) between October 1990 and October 1995, to establish reference intervals, and to develop guidelines for the interpretation of laboratory data under a variety of environmental and physiologic conditions. Body weight, carapace length, and venous blood samples for a complete blood count and clinical chemistry profile were obtained from 98 clinically healthy adult desert tortoises of both sexes at the Desert Tortoise Research Natural area (western Mojave), Goffs (eastern Mojave) and Ivanpah Valley (northeastern Mojave). Samples were obtained four times per year, in winter (February/March), spring (May/June), summer (July/August), and fall (October). Years of near-, above- and below-average rainfall were represented in the 5 yr period. Minimum, maximum and median values, and central 95 percentiles were used as reference intervals and measures of central tendency for tortoises at each site and/or season. Data were analyzed using repeated measures analysis of variance for significant (P < 0.01) variation on the basis of sex, site, season, and interactions between these variables. Significant sex differences were observed for packed cell volume, hemoglobin concentration, aspartate transaminase activity, and cholesterol, triglyceride, calcium, and phosphorus concentrations. Marked seasonal variation was observed in most parameters in conjunction with reproductive cycle, hibernation, or seasonal rainfall. Year-to-year differences and long-term alterations primarily reflected winter rainfall amounts. Site differences were minimal, and largely reflected geographic differences in precipitation patterns, such that results from these studies can be applied to other tortoise populations in environments with known rainfall and forage availability patterns.

  5. Challenges of ambulatory physiological sensing.

    PubMed

    Healey, Jennifer

    2004-01-01

    Applications for ambulatory monitoring span the spectrum from fitness optimization to cardiac defibrillation. This range of applications is associated with a corresponding range of required detection accuracies and a range of inconvenience and discomfort that wearers are willing to tolerate. This paper describes a selection of physiological sensors and how they might best be worn in the unconstrained ambulatory environment to provide the most robust measurements and the greatest comfort to the wearer. Using wireless mobile computing devices, it will be possible to record, analyze and respond to changes in the wearers' physiological signals in real time using these sensors.

  6. The Interaction of Motor Performance and Psycho-Physiological Effects During Acceleration to Hypergravity

    NASA Astrophysics Data System (ADS)

    Guardiera, Simon; Schneider, Stefan

    2008-06-01

    Several studies reported that human motor performance is impaired during acceleration to hypergravity. While physiological explanations (e.g. vestibular activity) are widely discussed, psycho-physiological reasons (e.g. stress) are less considered. The present study therefore evaluates the interaction between psycho-physiological effects and motor performance in hypergravity. Eleven subjects performed a manual tracking task. Additionally, stress hormone concentration, EEG and subjective mood were evaluated. All measurements were performed in normal (+1Gz), and in (or directly after) three times gravitational acceleration (+3Gz). Motor performance decreased, while all determined stress hormone concentrations increased in +3Gz. EEG analysis revealed an increase of brain cortical activity in right frontal lobe in +3Gz. Subjective mood decreased due to +3Gz. Our data confirm, that motor performance is decreased in hypergravity, whereas an increase in psychophysiological stress markers could be obtained. We conclude that psycho-physiological changes have to be regarded as a possible explanation for deficits in motor performance in hypergravity.

  7. Sulfur isotopic constraints from a single enzyme on the cellular to global sulfur cycles

    NASA Astrophysics Data System (ADS)

    Sim, M. S.; Adkins, J. F.; Sessions, A. L.; Orphan, V. J.; McGlynn, S.

    2017-12-01

    Since first reported more than a half century ago, sulfur isotope fractionation between sulfate and sulfide has been used as a diagnostic indicator of microbial sulfate reduction, giving added dimensions to the microbial ecological and geochemical studies of the sulfur cycle. A wide range of fractionation has attracted particular attention because it may serve as a potential indicator of environmental or physiological variables such as substrate concentrations or specific respiration rates. In theory, the magnitude of isotope fractionation depends upon the sulfur isotope effect imparted by the involved enzymes and the relative rate of each enzymatic reaction. The former defines the possible range of fractionation quantitatively, while the latter responds to environmental stimuli, providing an underlying rationale for the varying fractionations. The experimental efforts so far have concentrated largely on the latter, the factors affecting the size of fractionation. Recently, however, the direct assessment of intracellular processes emerges as a promising means for the quantitative analysis of microbial sulfur isotope fractionation as a function of environmental or physiological variables. Here, we experimentally determined for the first time the sulfur isotope fractionation during APS reduction, the first reductive step in the dissimilatory sulfate reduction pathway, using the enzyme purified from Desulfovibrio vulgaris Miyazaki. APS reductase carried out the one-step, two-electron reduction of APS to sulfite, without the production of other metabolic intermediates. Nearly identical isotope effects were obtained at two different temperatures, while the rate of APS reduction more than quadrupled with a temperature increase from 20 to 32°C. When placed in context of the linear network model for microbial sulfur isotope fractionation, our finding could provide a new, semi-quantitative constraint on the sulfur cycle at levels from cellular to global.

  8. The effect of hydration state and energy balance on innate immunity of a desert reptile.

    PubMed

    Moeller, Karla T; Butler, Michael W; Denardo, Dale F

    2013-05-04

    Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Using agglutination and lysis assays as measures of an organism's plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.

  9. The effect of hydration state and energy balance on innate immunity of a desert reptile

    PubMed Central

    2013-01-01

    Introduction Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Results Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Conclusions Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species. PMID:23642164

  10. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.

  11. The role of thermal physiology in recent declines of birds in a biodiversity hotspot.

    PubMed

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.

  12. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K

    2015-01-01

    Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning. PMID:27293732

  13. Teeth as biomonitors of soft tissue mercury concentrations in beluga, Delphinapterus leucas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outridge, P.M.; Wagemann, R.; McNeely, R.

    2000-06-01

    This paper reports relationships between bulk Hg concentrations in the tooth cementum and soft tissues of free-living beluga (Delphinapterus leucas). Total Hg levels were determined in slivers of cementum using a solid-sample Hg analyzer, a recent advance in Hg analysis that avoids acid predigestion. Tooth Hg concentrations ranged up to about 350 ng/g dry weight and were significantly correlated with Hg levels in kidneys, liver, muscle, and muktuk (skin) and with the age of the animals. The Hg/Se ratio in liver, the organ with the highest Hg concentrations, may have been an important determinant of tooth Hg. At hepatic Hg/Semore » molar ratios {ge}0.6, tooth Hg increased steeply, suggesting that Hg in teeth may reflect physiologically available Hg that was not bound in the liver and that was circulating in the bloodstream. This Hg/Se ratio was exceeded in most beluga aged {ge}20 years. The results indicate that teeth can be used as biomonitors to reconstruct temporal and geographic trends in the soft tissue Hg concentrations of beluga, provided that the age structures of the different populations are known.« less

  14. Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity.

    PubMed

    Townsend, Michelle; Peck, Connor; Meng, Wei; Heaton, Matthew; Robison, Richard; O'Neill, Kim

    2017-04-01

    Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 μM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 μM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-11-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.

  16. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  17. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.

    PubMed

    Heckwolf, Marlies; Pater, Dianne; Hanson, David T; Kaldenhoff, Ralf

    2011-09-01

    Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. The role of silicon in plant tissue culture

    PubMed Central

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578

  19. Cadmium in the shore crab Carcinus maenas along the Norwegian coast: geographical and seasonal variation and correlation to physiological parameters.

    PubMed

    Knutsen, Heidi; Wiech, Martin; Duinker, Arne; Maage, Amund

    2018-03-27

    Previously, high concentrations of cadmium have been found in the hepatopancreas of the edible or brown crab (Cancer pagurus) sampled from positions north of about 67° N, compared to regions further south along the Norwegian coast, with no clear understanding why. In order to study a similar organism in the same ecosystem, the present study analyzed 210 shore crabs (Carcinus maenas) from four different locations along the Norwegian coast, two in the North and two in the South. The physiological variables size, sex, molting stage, hepatosomatic index, carapace color, and gonad maturation were registered, in attempt to explain the high inter-individual variation in cadmium levels in hepatopancreas. In contrast to the brown crabs, the shore crabs showed no clear geographical differences in cadmium concentrations. This indicates physiological differences between the two crab species. No clear and consistent correlations were found between cadmium levels and physiological parameters, except for sex, where cadmium concentration in hepatopancreas was twice as high in males compared to females. The cadmium levels also varied with season, with approximately 40 and 60% lower cadmium concentration in April than August for male and female shore crabs, respectively. None of the analyzed cadmium concentrations in muscle meat from claws exceeded EUs food safety limit, and low cadmium levels in soup prepared from shore crabs clearly indicated that this dish is not problematic regarding food safety.

  20. Modulation of 14-3-3/Phosphotarget Interaction by Physiological Concentrations of Phosphate and Glycerophosphates

    PubMed Central

    Sluchanko, Nikolai N.; Chebotareva, Natalia A.; Gusev, Nikolai B.

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3. PMID:23977325

  1. Modulation of 14-3-3/phosphotarget interaction by physiological concentrations of phosphate and glycerophosphates.

    PubMed

    Sluchanko, Nikolai N; Chebotareva, Natalia A; Gusev, Nikolai B

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3.

  2. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    PubMed

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  3. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification

    NASA Astrophysics Data System (ADS)

    Riebesell, Ulf; Bach, Lennart T.; Bellerby, Richard G. J.; Monsalve, J. Rafael Bermúdez; Boxhammer, Tim; Czerny, Jan; Larsen, Aud; Ludwig, Andrea; Schulz, Kai G.

    2017-01-01

    Coccolithophores--single-celled calcifying phytoplankton--are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.

  4. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.

    PubMed

    Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva

    2017-11-01

    Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.

  5. Noninvasive monitoring of adrenocortical function in captive jaguars (Panthera onca).

    PubMed

    Conforti, Valéria A; Morato, Ronaldo G; Augusto, Anderson M; de Oliveira e Sousa, Lúcio; de Avila, David M; Brown, Janine L; Reeves, Jerry J

    2012-01-01

    Jaguars are threatened with extinction throughout their range. A sustainable captive population can serve as a hedge against extinction, but only if they are healthy and reproduce. Understanding how jaguars respond to stressors may help improve the captive environment and enhance their wellbeing. Thus, our objectives were to: (1) conduct an adrenocorticotrophic hormone (ACTH) challenge to validate a cortisol radioimmunoassay (RIA) for noninvasive monitoring of adrenocortical function in jaguars; (2) investigate the relationship between fecal corticoid (FCM) and androgen metabolite (FAM) concentrations in males during the ACTH challenge; and (3) establish a range of physiological concentrations of FCMs for the proposed protocol. Seven jaguars (3 M, 4 F) received 500 IU/animal of ACTH. Pre- and post-ACTH fecal samples were assayed for corticoid (M and F) and androgen metabolites (M) by RIA. Concentrations of FCMs increased (P80.01) after ACTH injection (pre-ACTH: 0.90 ± 0.12 µg/g dry feces; post-ACTH: 2.55 ± 0.25 µg/g). Considering pre- and post-ACTH samples, FCM concentrations were higher (P80.01) in males (2.15 ± 0.20 µg/g) than in females (1.30 ± 0.20 µg/g), but the magnitude of the response to ACTH was comparable (P>0.05) between genders. After ACTH injection, FAMs increased in two (of 3) males; in one male, FCMs and FAMs were positively correlated (0.60; P80.01). Excretion of FCMs was assessed in 16 jaguars (7 M, 9 F) and found to be highly variable (range, 80.11-1.56 µg/g). In conclusion, this study presents a cortisol RIA for monitoring adrenocortical function in jaguars noninvasively. © 2011 Wiley Periodicals, Inc.

  6. Short-term physiological responses of wild and hatchery-produced red drum during angling

    USGS Publications Warehouse

    Gallman, E.A.; Isely, J.J.; Tomasso, J.R.; Smith, T.I.J.

    1999-01-01

    Serum cortisol concentrations, plasma glucose concentrations, plasma lactate concentrations, and plasma osmolalities increased in red drum Sciaenops ocellatus (26.0-65.5 cm total length) during angling in estuarine waters (17-33 g/L salinity, 21-31??C). Angling time varied from as fast as possible (10 s) to the point when fish ceased resisting (up to 350 s). The increases in the physiological characteristics were similar in wild and hatchery-produced fish. This study indicates that hatchery-produced red drum may be used in catch-and-release studies to simulate the responses of wild fish.

  7. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  8. Effects of preoperative administration of butorphanol or meloxicam on physiologic responses to surgery in ball pythons.

    PubMed

    Olesen, Mette G; Bertelsen, Mads F; Perry, Steve F; Wang, Tobias

    2008-12-15

    To characterize physiologic responses of ball pythons (Python regius) following a minor surgical procedure and investigate the effects of 2 commonly used analgesics on this response. 15 healthy ball pythons. Snakes were randomly assigned to receive 1 of 3 treatments: meloxicam (0.3 mg/kg [0.14 mg/lb]; n = 5), butorphanol (5 mg/kg [2.3 mg/lb]; 5), or saline (0.9% NaCl) solution (5) before catheterization of the vertebral artery. Plasma concentrations of catecholamines and cortisol, blood pressure, heart rate, and blood gas values were measured at various times for 72.5 hours after catheterization. The 72.5-hour point was defined as baseline. Heart rate of ball pythons increased significantly during the first hour following surgery. Mean plasma epinephrine concentration increased slightly at 2.5 hours after surgery, whereas mean plasma cortisol concentration increased beginning at 1.5 hours, reaching a maximum at 6.5 hours. Mean blood pressure increased within the first hour but returned to the baseline value at 2.5 hours after surgery. After 24.5 hours, blood pressure, heart rate, and plasma hormone concentrations remained stable at baseline values. There were no significant differences in values for physiologic variables between snakes that received saline solution and those that received meloxicam or butorphanol. Measurement of physiologic variables provides a means of assessing postoperative pain in snakes. Meloxicam and butorphanol at the dosages used did not decrease the physiologic stress response and did not appear to provide analgesic effects in ball pythons.

  9. Frequency of bullying at work, physiological response, and mental health.

    PubMed

    Hansen, Åse Marie; Hogh, Annie; Persson, Roger

    2011-01-01

    The present study aimed to elucidate the relationship between bullying at work and cortisol secretion. Of particular interest was to examine whether frequently and occasionally bullied persons differed from nonbullied persons. The study included 1944 employees (1413 women and 531 men) from 55 workplaces in Denmark (16 private and 39 public workplaces). During a work day three saliva samples were collected at awakening, +30 min later, and at 20:00 hours, and analyzed for cortisol concentrations. Mental health was assessed using items on somatic, cognitive, stress, and depressive mood. Of the 1944 employees, 1.1% was frequently bullied and 7.2% occasionally bullied. Frequently bullied persons reported poorer mental health and had a 24.8% lower salivary cortisol concentration compared with the nonbullied reference group. Occasionally bullied persons had a poorer self-reported mental health, but their cortisol concentrations did not deviate from the group of nonbullied persons. The associations remained significant even after controlling for age, gender, exact time of sampling, mental health, and duration of bullying. Bullying occurred at 78% of the workplaces (43 workplaces); frequent bullying occurred at 21% of the workplaces (40%). Frequent bullying was associated with lower salivary cortisol concentrations. No such association was observed for occasional bullying. Whether the generally lower secretion of cortisol among the frequently bullied persons indicate an altered physiological status remains to be evaluated in future studies. Yet, the physiological response seems to underscore the possibility that bullying indeed may have measurable physiological consequences. Hence, the physiological response supports the mental symptoms found among the frequently bullied. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test.

    PubMed

    Khan, Sardar; Cao, Qing; Lin, Ai-Jun; Zhu, Yong-Guan

    2008-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.

  11. Diet and cooling interactions on physiological responses of grazing dairy cows, milk production and composition

    NASA Astrophysics Data System (ADS)

    Gallardo, M. R.; Valtorta, S. E.; Leva, P. E.; Gaggiotti, M. C.; Conti, G. A.; Gregoret, R. F.

    2005-11-01

    The objective of this trial was to evaluate the effects of diet and cooling in the holding pen before milking on rectal temperature, respiration rate and milk production and composition. Fifty-eight lactating Holstein cows were used in a factorial split-plot design, at Rafaela Experimental Station from 12 January to 3 March 2003. The treatments were combinations of two diets: control (CD) and balanced (BD) with two levels of cooling before milking: none (NSF) and a sprinkler and fans (SF). Forage:concentrate ratios for CD and BD were 81:19 and 68:32, respectively. Cows were milked twice daily. Milk production was recorded daily, and milk composition (fat, protein, lactose and urea) was analysed twice a week. The physiological data were recorded once a week, before the cattle entered the holding pen and after milking, in the afternoon. Average maximum weekly temperature humidity index was 75.4 and ranged from 61.4 to 83. There were highly significant effects of cooling on physiological responses. Milk production was affected by diet and cooling, with no interaction; the highest and lowest production of milk was 22.42 and 20.07 l/cow per day, for BD+SF and CD+NSF, respectively. Protein was affected by diet, and was higher for BD (3.17 vs. 3.08%). There were interaction effects on milk fat at the 8% level, the highest concentration being 3.65% for BD+NFS. It was concluded that under grazing conditions, cooling by sprinkler and fans before milking improves the comfort of dairy cows, and that the effects on milk production and composition are enhanced when diets are specially formulated for heat-stress periods.

  12. The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral-mediated drug-drug interactions on piperaquine antimalarial therapy during pregnancy.

    PubMed

    Olafuyi, Olusola; Coleman, Michael; Badhan, Raj K S

    2017-11-01

    Antimalarial therapy during pregnancy poses important safety concerns due to potential teratogenicity and maternal physiological and biochemical changes during gestation. Piperaquine (PQ) has gained interest for use in pregnancy in response to increasing resistance towards sulfadoxine-pyrimethamine in sub-Saharan Africa. Coinfection with HIV is common in many developing countries, however, little is known about the impact of antiretroviral (ARV) mediated drug-drug interaction (DDI) on piperaquine pharmacokinetics during pregnancy. This study applied mechanistic pharmacokinetic modelling to predict pharmacokinetics in non-pregnant and pregnant patients, which was validated in distinct customised population groups from Thailand, Sudan and Papua New Guinea. In each population group, no significant differences in day 7 concentrations were observed during different gestational weeks (GW) (weeks 10-40), supporting the notion that piperaquine is safe throughout pregnancy with consistent pharmacokinetics, although possible teratogenicity may limit this. Antiretroviral-mediated DDIs (efavirenz and ritonavir) had moderate effects on piperaquine during different gestational weeks with a predicted AUC ratio in the range 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir, respectively, over GW 10-40, with a reduction in circulating human serum albumin significantly reducing the number of subjects attaining the day 7 (post-dose) therapeutic efficacy concentrations under both efavirenz and ritonavir DDIs. This present model successfully mechanistically predicted the pharmacokinetics of piperaquine in pregnancy to be unchanged with respect to non-pregnant women, in the light of factors such as malaria/HIV co-infection. However, antiretroviral-mediated DDIs could significantly alter piperaquine pharmacokinetics. Further model refinement will include collation of relevant physiological and biochemical alterations common to HIV/malaria patients. Copyright © 2017 John Wiley & Sons, Ltd.

  13. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill. ) fruit soluble solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damon, S.E.

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of ({sup 3}H)-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of ({sup 14}C)sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of ({sup 14}C)-(glycosyl)-1{prime}fluorosucrose was identical to the rate of ({sup 14}C) sucrosemore » uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F{sub 2} population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes.« less

  14. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    PubMed

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The New MIRUS System for Short-Term Sedation in Postsurgical ICU Patients.

    PubMed

    Romagnoli, Stefano; Chelazzi, Cosimo; Villa, Gianluca; Zagli, Giovanni; Benvenuti, Francesco; Mancinelli, Paola; Arcangeli, Giulio; Dugheri, Stefano; Bonari, Alessandro; Tofani, Lorenzo; Belardinelli, Andrea; De Gaudio, A Raffaele

    2017-09-01

    To evaluate the feasibility and safety of the MIRUS system (Pall International, Sarl, Fribourg, Switzerland) for sedation with sevoflurane for postsurgical ICU patients and to evaluate atmospheric pollution during sedation. Prospective interventional study. Surgical ICU. February 2016 to December 2016. Postsurgical patients requiring ICU admission, mechanical ventilation, and sedation. Sevoflurane was administered with the MIRUS system targeted to a Richmond Agitation Sedation Scale from -3 to -5 by adaptation of minimum alveolar concentration. Data collected included Richmond Agitation Sedation Scale, minimum alveolar concentration, inspired and expired sevoflurane fraction, wake-up times, duration of sedation, sevoflurane consumption, respiratory and hemodynamic data, Simplified Acute Physiology Score II, Sepsis-related Organ Failure Assessment, and laboratory data and biomarkers of organ injury. Atmospheric pollution was monitored at different sites: before sevoflurane delivery (baseline) and during sedation with the probe 15 cm up to the MIRUS system (S1) and 15 cm from the filter-Reflector group (S2). Sixty-two patients were enrolled in the study. No technical failure occurred. Median Richmond Agitation Sedation Scale was -4.5 (interquartile range, -5 to -3.6) with sevoflurane delivered at a median minimum alveolar concentration of 0.45% (interquartile range, 0.4-0.53) yielding a mean inspiratory and expiratory concentrations of 0.79% (SD, 0.24) and 0.76% (SD, 0.18), respectively. Median awakening time was 4 minutes (2.2-5 min). Median duration of sevoflurane administration was 3.33 hours (2.33-5.75 hr), range 1-19 hours with a mean consumption of 7.89 mL/hr (SD, 2.99). Hemodynamics remained stable over the study period, and no laboratory data indicated liver or kidney injury or dysfunction. Median sevoflurane room air concentration was 0.10 parts per million (interquartile range, 0.07-0.15), 0.17 parts per million (interquartile range, 0.14-0.27), and 0.15 parts per million (interquartile range, 0.07-0.19) at baseline, S1, and S2, respectively. The MIRUS system is a promising and safe alternative for short-term sedation with sevoflurane of ICU patients. Atmospheric pollution is largely below the recommended thresholds (< 5 parts per million). Studies extended to more heterogeneous population of patients undergoing longer duration of sedation are needed to confirm these observations.

  16. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.

    1995-01-01

    The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.

  17. Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.

    PubMed

    Sugnaux, Caroline; Klok, H-A

    2014-08-01

    Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Generation of Ca2+-independent sortase A mutants with enhanced activity for protein and cell surface labeling

    PubMed Central

    Jeong, Hee-Jin; Abhiraman, Gita C.; Story, Craig M.

    2017-01-01

    Sortase A, a calcium-dependent transpeptidase derived from Staphylococcus aureus, is used in a broad range of applications, such as the conjugation of fluorescent dyes and other moieties to proteins or to the surface of eukaryotic cells. In vivo and cell-based applications of sortase have been somewhat limited by the large range of calcium concentrations, as well as by the often transient nature of protein-protein interactions in living systems. In order to use sortase A for cell labeling applications, we generated a new sortase A variant by combining multiple mutations to yield an enzyme that was both calcium-independent and highly active. This variant has enhanced activity for both N- and C-terminal labeling, as well as for cell surface modification under physiological conditions. PMID:29200433

  19. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  20. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  1. [Paracetamol (acetaminophen) use in neonatology: a (re)appreciation of an old drug].

    PubMed

    Langhendries, J-P

    2015-10-01

    In neonates, paracetamol is mainly used for its analgesic action. This drug is actually preferred by neonatologists because of its broad therapeutic index. Recently, it has been demonstrated that paracetamol is also an anti-cyclooxygenase (COX) medication through its inhibitory action on the peroxidase arm of central and peripheral COX (Boutaud et al., 2002; Toussaint et al., 2010; Graham et al., 2013; Hinz et al., 2008; Hinz and Brune, 2011). As such, this drug interferes with the synthesis of prostaglandins. This inhibition of peroxidase is, however, limited to a low concentration of arachidonic acid (AA) (around 2μM, in vitro) when the plasmatic concentration of paracetamol is experimentally 10μM, actually within the same range as compared to the therapeutic concentrations in vivo. This may partly explain its low anti-inflammatory effect as compared to ibuprofen and indomethacin, which exert their inhibition on COX whatever the AA concentrations are. This new well-demonstrated action of paracetamol on peripheral COX-2 of intact cells could explain recent observations making this drug a potential alternative in treating patent ductus arteriosus. However, the higher dosages that have been claimed by some authors in this indication still remain to be validated. This inhibition that paracetamol shows on the physiological synthesis of prostaglandins E2 (PGE2) could also explain some long-term immune deviations because the physiological concentration of PGE2 is a well-known actor in the genesis of immune homeostasis in the submucosal area. Indeed, recent epidemiology studies have pointed out immune deviations in children repeatedly exposed to paracetamol earlier in life. Consequently, this is actually the new discovery of an old drug. From these new data on paracetamol, a more focused pharmacovigilance on the long-term effects of paracetamol repeatedly given in the early stage should be urgently initiated. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Evaluation of adrenocortical function in Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tripp, K.M.; Verstegen, J.P.; Deutsch, C.; Bonde, Robert K.; de Wit, M.; Manire, Charles A.; Gaspard, J.; Harr, K.E.

    2011-01-01

    The study objectives were to determine the predominant manatee glucocorticoid; validate assays to measure this glucocorticoid and adrenocorticotropic hormone (ACTH); determine diagnostic thresholds to distinguish physiological vs. pathological concentrations; identify differences associated with sex, age class, female reproductive status, capture time, and lactate; and determine the best methods for manatee biologists and clinicians to diagnose stress. Cortisol is the predominant manatee glucocorticoid. IMMULITE 1000 assays for cortisol and ACTH were validated. Precision yielded intra- and inter-assay coefficients of variation for serum cortisol: ≤23.5 and ≤16.7%; and ACTH: ≤6.9 and ≤8.5%. Accuracy resulted in a mean adjusted R(2)≥0.87 for serum cortisol and ≥0.96 for ACTH. Assay analytical sensitivities for cortisol (0.1 µg/dl) and ACTH (10.0 pg/ml) were verified. Methods were highly correlated with another IMMULITE 1000 for serum cortisol (r=0.97) and ACTH (r=0.98). There was no significant variation in cortisol or ACTH with sex or age class and no correlation with female progesterone concentrations. Cortisol concentrations were highest in unhealthy manatees, chronically stressed by disease or injury. ACTH was greatest in healthy free-ranging or short-term rehabilitating individuals, peracutely stressed by capture and handling. Cortisol concentrations ≥1.0 µg/dl were diagnostic of chronic stress; ACTH concentrations ≥87.5 pg/ml were diagnostic of peracute stress. In healthy long-term captive manatees, cortisol (0.4±0.2 µg/dl) and ACTH (47.7±15.9 pg/ml) concentrations were lower than healthy free-ranging, short-term rehabilitated or unhealthy manatees. Capture time was not significantly correlated with cortisol; ACTH correlation was borderline significant. Cortisol and ACTH were positively correlated with lactate.

  3. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.

    PubMed

    Marcano, Mariano; Layton, Anita T; Layton, Harold E

    2010-02-01

    In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.

  4. The pharmacokinetics of enteral antituberculosis drugs in patients requiring intensive care.

    PubMed

    Koegelenberg, C F N; Nortje, A; Lalla, U; Enslin, A; Irusen, E M; Rosenkranz, B; Seifart, H I; Bolliger, C T

    2013-04-05

    There is a paucity of data on the pharmacokinetics of fixed-dose combination enteral antituberculosis treatment in critically ill patients. To establish the pharmacokinetic profile of a fixed-dose combination of rifampicin, isoniazid, pyrazinamide and ethambutol given according to weight via a nasogastric tube to patients admitted to an intensive care unit (ICU). We conducted a prospective, observational study on 10 patients (mean age 32 years, 6 male) admitted to an ICU and treated for tuberculosis (TB). Serum concentrations of the drugs were determined at eight predetermined intervals over 24 hours by means of high-performance liquid chromatography. The therapeutic maximum plasma concentration (Cmax) for rifampicin at time to peak concentration was achieved in only 4 patients, whereas 2 did not achieve therapeutic Cmax for isoniazid. No patient reached sub-therapeutic Cmax for pyrazinamide (6 were within and 4 above therapeutic range). Three patients reached sub-therapeutic Cmax for ethambutol, and 6 patients were within and 1 above the therapeutic range. Patients with a sub-therapeutic rifampicin level had a higher mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score (p=0.03) and a lower estimated glomerular filtration rate (GFR) (p=0.03). A fixed-dose combination tablet, crushed and mixed with water, given according to weight via a nasogastric tube to patients with TB admitted to an ICU resulted in sub-therapeutic rifampicin plasma concentrations in the majority of patients, whereas the other drugs had a more favourable pharmacokinetic profile. Patients with a sub-therapeutic rifampicin concentration had a higher APACHE II score and a lower estimated GFR, which may contribute to suboptimal outcomes in critically ill patients. Studies in other settings have reported similar proportions of patients with 'sub-therapeutic' rifampicin concentrations.

  5. Evaluation of adrenocortical function in Florida manatees (Trichechus manatus latirostris).

    PubMed

    Tripp, Kathleen M; Verstegen, John P; Deutsch, Charles J; Bonde, Robert K; de Wit, Martine; Manire, Charles A; Gaspard, Joseph; Harr, Kendal E

    2011-01-01

    The study objectives were to determine the predominant manatee glucocorticoid; validate assays to measure this glucocorticoid and adrenocorticotropic hormone (ACTH); determine diagnostic thresholds to distinguish physiological vs. pathological concentrations; identify differences associated with sex, age class, female reproductive status, capture time, and lactate; and determine the best methods for manatee biologists and clinicians to diagnose stress. Cortisol is the predominant manatee glucocorticoid. IMMULITE 1000 assays for cortisol and ACTH were validated. Precision yielded intra- and inter-assay coefficients of variation for serum cortisol: ≤23.5 and ≤16.7%; and ACTH: ≤6.9 and ≤8.5%. Accuracy resulted in a mean adjusted R(2)≥0.87 for serum cortisol and ≥0.96 for ACTH. Assay analytical sensitivities for cortisol (0.1 µg/dl) and ACTH (10.0 pg/ml) were verified. Methods were highly correlated with another IMMULITE 1000 for serum cortisol (r=0.97) and ACTH (r=0.98). There was no significant variation in cortisol or ACTH with sex or age class and no correlation with female progesterone concentrations. Cortisol concentrations were highest in unhealthy manatees, chronically stressed by disease or injury. ACTH was greatest in healthy free-ranging or short-term rehabilitating individuals, peracutely stressed by capture and handling. Cortisol concentrations ≥1.0 µg/dl were diagnostic of chronic stress; ACTH concentrations ≥87.5 pg/ml were diagnostic of peracute stress. In healthy long-term captive manatees, cortisol (0.4±0.2 µg/dl) and ACTH (47.7±15.9 pg/ml) concentrations were lower than healthy free-ranging, short-term rehabilitated or unhealthy manatees. Capture time was not significantly correlated with cortisol; ACTH correlation was borderline significant. Cortisol and ACTH were positively correlated with lactate. © 2010 Wiley-Liss, Inc.

  6. Exposure of growing and adult captive cheetahs (Acinonyx jubatus) to dietary isoflavones: twenty years later.

    PubMed

    Bell, K M; Rutherfurd, S M; Hendriks, W H

    2010-12-01

    Dietary isoflavones are associated with oestrogenic and anti-oestrogenic effects, and have been linked to infertility in cheetahs. This study aimed to determine the isoflavone content of commercially prepared diets consumed by captive cheetahs. Sixteen international zoological facilities provided diets, and the isoflavone content of each diet was determined by acid hydrolysis and HPLC quantification. Proximate nutritional composition was also determined. Over half the diets analysed contained detectable concentrations of isoflavones, whereby total isoflavone content ranged from 1.75-183 mg/kg dry matter. The zoo-specific diets were calculated to deliver a median isoflavone dose of 0.07 mg/kg body weight (BW) and a maximum of 1.95 mg/kg BW to captive cheetahs. On a metabolic body weight basis this equates to a maximum of 4.90-5.43 mg/kg(0.75) . Some diets prepared for hand-rearing neonatal cheetahs could expose neonates to doses of up to 4.24 mg/kg BW (or 4.24-6.33 mg/kg(0.75) for cubs under 3 months of age). Only one of six zoo-specific diets was found to deliver isoflavones in doses shown to possess biological activity in other species. Therefore, on average, dietary isoflavones were not found in commercially prepared diets consumed by captive cheetahs in concentrations predicted to cause physiological changes. However, a small proportion of these diets, including hand-rearing formulas, contained elevated isoflavones concentrations which may influence cheetah fertility, behaviour or other physiological parameters. © 2010 Blackwell Verlag GmbH.

  7. A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease

    PubMed Central

    Hill, David B.; Vasquez, Paula A.; Mellnik, John; McKinley, Scott A.; Vose, Aaron; Mu, Frank; Henderson, Ashley G.; Donaldson, Scott H.; Alexis, Neil E.; Boucher, Richard C.; Forest, M. Gregory

    2014-01-01

    In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions. PMID:24558372

  8. Foliar phosphite application has minor phytotoxic impacts across a diverse range of conifers and woody angiosperms.

    PubMed

    Scott, Peter; Bader, Martin Karl-Friedrich; Williams, Nari Michelle

    2016-10-01

    Phytophthora plant pathogens cause tremendous damage in planted and natural systems worldwide. Phosphite is one of the only effective chemicals to control broad-scale Phytophthora disease. Little work has been done on the phytotoxic effects of phosphite application on plant communities especially in combination with plant physiological impacts. Here, we tested the phytotoxic impact of phosphite applied as foliar spray at 0, 12, 24 and 48 kg a.i. ha(-1) . Eighteen-month-old saplings of 13 conifer and angiosperm species native to New Zealand, and two exotic coniferous species were treated and the development of necrotic tissue and chlorophyll-a-fluorescence parameters (optimal quantum yield, Fv /Fm ; effective quantum yield of photosystem II, ΦPSII ) were assessed. In addition, stomatal conductance (gs ) was measured on a subset of six species. Significant necrosis assessed by digital image analysis occurred in only three species: in the lauraceous canopy tree Beilschmiedia tawa (8-14%) and the understory shrub Dodonaea viscosa (5-7%) across phosphite concentrations and solely at the highest concentration in the myrtaceous pioneer shrub Leptospermum scoparium (66%). In non-necrotic tissue, Fv /Fm , ΦPSII and gs remained unaffected by the phosphite treatment. Overall, our findings suggest minor phytotoxic effects resulting from foliar phosphite application across diverse taxa and regardless of concentration. This study supports the large-scale use of phosphite as a management tool to control plant diseases caused by Phytophthora pathogens in plantations and natural ecosystems. Long-term studies are required to ascertain potential ecological impacts of repeated phosphite applications. © 2016 Scandinavian Plant Physiology Society.

  9. What proof is in your Christmas pudding? Is caring under the influence possible?

    PubMed

    Brieger, Daniel G; Amir, Amaleena B; Punch, Gratian J; Lim, Christopher S H; Toh, James

    2014-12-11

    To determine the ethanol concentration of commonly available Christmas puddings, and to extrapolate the blood alcohol content (BAC) of typical health care professionals after Christmas lunch at the hospital. We conducted fractional distillation of Christmas puddings and analysed the distillate for ethanol content. We then applied standard pharmacological and physiological assumptions to assess predicted BAC in typical male and female health care professionals at our hospital. Ethanol concentration of each pudding; estimated BAC of health care professionals after ingestion and at the end of a 30-minute lunch break. The concentration of ethanol in common Christmas puddings ranged from 0.260 to 1.685 g per 125 mg slice. The concentration of ethanol per pudding was not greater than the stipulated specifications on the packaging, where shown. After pudding ingestion, the theoretical BAC of a typical 70 kg male and 60 kg female health care professional ranged from 0.001 to 0.004 g/dL and from 0.001 to 0.006 g/dL, respectively. Neither male nor female staff had a predicted BAC > 0.000 g/dL by the end of the lunch break. Christmas puddings contain ethanol that does not all evaporate during the cooking process. However, the rise in BAC after ingestion of a typical slice of Christmas pudding was negligible and unlikely to affect work performance or safety or impair a health care worker's ability to make complex decisions.

  10. Assessment of lead exposure in schoolchildren from Jakarta.

    PubMed Central

    Heinze, I; Gross, R; Stehle, P; Dillon, D

    1998-01-01

    Children attending schools in urban areas with high traffic density are a high risk group for lead poisoning. We assessed the magnitude of lead exposure in schoolchildren from Jakarta by analyzing blood lead concentrations and biomarkers of heme biosynthesis. A total of 131 children from four public elementary schools in Jakarta (two in the southern district and two in the central district) were enrolled in the study. To evaluate lead pollution in each area, soil samples and tap water were collected. The mean blood lead concentration was higher in the central district than in the southern district (8.3 +/- 2.8 vs. 6.9 +/- 3.5 microg/100 ml; p<0.05); 26.7% of the children had lead levels greater than 10 microg/100 ml. In 24% of the children, zinc protoporphyrin concentrations were over 70 micromol/mol hemoglobin; in 17% of the samples, hemoglobin was less than 11 g/100 ml. All other values were within the physiological range. Blood lead concentration and hematological biomarkers were not correlated. Analyses of tap water revealed lead values under 0. 01 mg/l; lead contamination of soil ranged from 77 to 223 ppm. Our data indicate that Indonesian children living in urban areas are at increased risk for blood lead levels above the actual acceptable limit. Activities to reduce pollution (e.g., reduction of lead in gasoline) and continuous monitoring of lead exposure are strongly recommended. Images Figure 1 PMID:9681978

  11. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural

  12. Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions.

    PubMed

    Töpper, Christoph; Steinbach, Cathérine L; Dorn, Christoph; Kratzer, Alexander; Wicha, Sebastian G; Schleibinger, Michael; Liebchen, Uwe; Kees, Frieder; Salzberger, Bernd; Kees, Martin G

    2016-10-01

    Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin <0.4 mg/L). The median unbound fraction in all 20 patients was 90.9%. Drug exposure after standard doses of linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.

  13. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.

    PubMed

    Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M

    2010-10-01

    The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and are most appropriately applied to central tendency estimates for such datasets. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Validation of an in vitro digestive system for studying macronutrient decomposition in humans.

    PubMed

    Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti

    2012-02-01

    The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.

  15. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes.

    PubMed

    Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu

    2014-01-01

    Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.

  16. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.

  17. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    NASA Astrophysics Data System (ADS)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  18. Control of Biogenic Amines in Fermented Sausages: Role of Starter Cultures

    PubMed Central

    Latorre-Moratalla, M.L.; Bover-Cid, Sara; Veciana-Nogués, M.T.; Vidal-Carou, M.C.

    2012-01-01

    Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed. PMID:22586423

  19. Pharmacokinetic consequences of spaceflight

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Cintron, N. M.

    1991-01-01

    Spaceflight induces a wide range of physiological and biochemical changes, including disruption of gastrointestinal (GI) function, fluid and electrolyte balance, circulatory dynamics, and organ blood flow, as well as hormonal and metabolic perturbations. Any of these changes can influence the pharmacokinetics and pharmacodynamics of in-flight medication. That spaceflight may alter bioavailability was proposed when drugs prescribed to alleviate space motion sickness (SMS) had little therapeutic effect. Characterization of the pharmacokinetic and/or pharmacodynamic behavior of operationally critical medications is crucial for their effective use in flight; as a first step, we sought to determine whether drugs administered in space actually reach the site of action at concentrations sufficient to elicit the therapeutic response.

  20. Effect of eggshell temperature and oxygen concentration during incubation on the developmental and physiological status of broiler hatchlings in the perinatal period.

    PubMed

    Molenaar, R; van den Anker, I; Meijerhof, R; Kemp, B; van den Brand, H

    2011-06-01

    This study evaluated the influence of incubation conditions on the developmental and physiological status of birds in the perinatal period, which spans the end of incubation until the early posthatch period. Embryos were incubated at a normal (37.8°C) or high (38.9°C) eggshell temperature (EST) and a low (17%), normal (21%), or high (25%) O(2) concentration from d 7 until 19 of incubation. After d 19 of incubation, EST was maintained, but O(2) concentrations were 21% for all embryos. Body and organ weights, and hepatic glycogen levels were measured at d 18 of incubation and at 12 and 48 h after emergence from the eggshell. In addition, blood metabolites were measured at 12 and 48 h after emergence from the eggshell. Embryos incubated at a high EST and low O(2) concentration had the highest mortality in the last week of incubation, which may be related to their low yolk-free body mass (YFBM) or a reduced nutrient availability for hatching (i.e., hepatic glycogen). High EST, compared with normal EST, decreased YFBM. This may be due to the shorter incubation duration of 8 h, the lower weight of supply organs (i.e., heart and lung), or a lack of glucose precursors. Because of this lack of glucose precursors, embryos incubated at high EST may have used proteins for energy production instead of for body development at the end of incubation. The YFBM at d 18 of incubation increased with an increase in O(2) concentration. However, differences between the normal and high O(2) concentration disappeared at 12 and 48 h after emergence, possibly because the high O(2) concentration had difficulties adapting to lower O(2) concentrations in the perinatal period. Blood metabolites and hepatic glycogen were comparable among O(2) concentrations, indicating that the physiological status at hatch may be related to the environment that the embryo experienced during the hatching process. In conclusion, EST and O(2) concentration differentially influence the developmental and physiological status of broilers during the perinatal period.

  1. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  2. A Futile Redox Cycle Involving Neuroglobin Observed at Physiological Temperature.

    PubMed

    Liu, Anyang; Brittain, Thomas

    2015-08-24

    Previous studies identifying the potential anti-apoptotic role of neuroglobin raise the question as to how cells might employ neuroglobin to avoid the apoptotic impact of acute hypoxia whilst also avoiding chronic enhancement of tumour formation. We show that under likely physiological conditions neuroglobin can take part in a futile redox cycle. Determination of the rate constants for each of the steps in the cycle allows us to mathematically model the steady state concentration of the active anti-apoptotic ferrous form of neuroglobin under various conditions. Under likely normal physiological conditions neuroglobin is shown to be present in the ferrous state at approximately 30% of its total cellular concentration. Under hypoxic conditions this rapidly rises to approximately 80%. Temporal analysis of this model indicates that the transition from low concentrations to high concentration of ferrous neuroglobin occurs on the seconds time scale. These findings indicate a potential control model for the anti-apoptotic activity of neuroglobin, under likely physiological conditions, whereby, in normoxic conditions, the anti-apoptotic activity of neuroglobin is maintained at a low level, whilst immediately a transition occurs to a hypoxic situation, as might arise during stroke, the anti-apoptotic activity is drastically increased. In this way the cell avoids unwanted increased oncogenic potential under normal conditions, but the rapid activation of neuroglobin provides anti-apoptotic protection in times of acute hypoxia.

  3. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles.

    PubMed

    Lombardi, Giovanni; Barbaro, Mosè; Locatelli, Massimo; Banfi, Giuseppe

    2017-06-01

    The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.

  4. Calcium, essential for health

    PubMed

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  5. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    PubMed Central

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings. PMID:23840230

  6. Physiologic conditions affect toxicity of ingested industrial fluoride.

    PubMed

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  7. Hair analyses: worthless for vitamins, limited for minerals.

    PubMed

    Hambidge, K M

    1982-11-01

    Despite many major and minor problems with interpretation of analytical data, chemical analyses of human hair have some potential value. Extensive research will be necessary to define this value, including correlation of hair concentrations of specific elements with those in other tissues and metabolic pools and definition of normal physiological concentration ranges. Many factors that may compromise the correct interpretation of analytical data require detailed evaluation for each specific element. Meanwhile, hair analyses are of some value in the comparison of different populations and, for example, in public health community surveys of environmental exposure to heavy metals. On an individual basis, their established usefulness is much more restricted and the limitations are especially notable for evaluation of mineral nutritional status. There is a wide gulf between the limited and mainly tentative scientific justification for their use on an individual basis and the current exploitation of multielement chemical analyses of human hair.

  8. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis.

    PubMed

    Moore, T Joshua; Moody, Amber S; Payne, Taylor D; Sarabia, Grace M; Daniel, Alyssa R; Sharma, Bhavya

    2018-05-11

    For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.

  9. Growth and physiological responses of some Capsicum frutescens varieties to copper stress

    NASA Astrophysics Data System (ADS)

    Jadid, Nurul; Maziyah, Rizka; Nurcahyani, Desy Dwi; Mubarokah, Nilna Rizqiyah

    2017-06-01

    Copper (Cu) is an essential micronutrient participating in various physiological processes. However, excessive uptake of this micronutrient could potentially affect plant growth and development as well as plant productivity. In this present work, growth and physiological responses of some Capsicum frustescens varieties to Cu stress were determined. Three C. frutescens varieties used in this work were var. Bara, CF 291, and Genie. In addition, these varieties were treated with different concentration of Cu (0, 30, 70, and 120 ppm). The growth and physiological responses measured in this work included plant height, root length, malondialdehyde (MDA), and chlorophyll. The result showed that all varieties tested relatively displayed plant growth reduction including plant height and root length. Likewise, an increase of MDA level, a major bioindicator for oxidative damage was also found in all varieties following exposure to elevated Cu concentration. Finally, the chlorophyll content was also affected indicated by a decreased amount of chlorophyll, especially in var. CF291. The overall results demonstrated that elevated Cu concentration might decrease C. frutescens productivity where among the three varieties tested, var CF 291 seemed to be the most sensitive varieties to Cu stress.

  10. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  11. Physiological pattern changes in response to a simulated competition in elite women artistic gymnasts.

    PubMed

    Isacco, Laurie; Ennequin, Gaël; Cassirame, Johan; Tordi, Nicolas

    2017-08-04

    The outstanding progress in women's artistic gymnastics in recent decades has led to increased technical and physiological demands. The aim of this study was to investigate i) the physiological demands of elite French gymnasts and ii) the impact of a competitive routine on physiological pattern changes. Fourteen French elite female gymnasts performed anthropometric measurements, physical fitness tests and a simulated four event competition. Heart rate (HR) was continuously recorded throughout the duration of the simulated competition. Blood lactate concentrations were assessed at rest, before the beginning and at 2, 4 and 10 min after completion of the routine on each apparatus. Isometric handgrip strength and anaerobic endurance and power were assessed during the simulated competition. The highest values of HR and blood lactate concentrations were reached during the floor and uneven bar exercises. Blood lactate concentrations and HR kinetics were apparatus dependent and values remained significantly increased at 10 min of recovery compared with resting data. Anaerobic endurance and power decreased significantly as the competition progressed (P <0.001). The present results show specifically cardiorespiratory and anaerobic apparatus- dependent responses throughout a simulated competition. Recovery approaches appear relevant to prevent and/or minimize fatigue and optimize performance in these athletes.

  12. Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Brewer, S.K.; Little, E.E.

    2000-01-01

    Relations between neurotoxicants and changes in physiological parameters and behavior were investigated in larval rainbow trout (RBT; Oncorhynchus mykiss) exposed to sublethal concentrations of two organophosphate pesticides (OPs). Fish were exposed to diazinon and malathion in static-renewal experiments. After exposures for 24, 96, or 96 h, followed by 48 h of recovery, individual RBT were videotaped to assess locomotory behaviors. Brain tissue from the same fish was assayed for the physiological endpoints, cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number (Bmax), and MChR affinity (KD). Cholinesterase activity decreased significantly with increasing concentrations of both diazinon and malathion and differed significantly among exposure durations, with 24- and 96-h means less than 48-h recovery means. Decreases in Bmax with OP concentration were not significant for either chemical, and KDwas unaffected. Changes in swimming speed and distance were significantly correlated with changes in ChE activity for both chemicals; rate of turning was significantly correlated with ChE activity in malathion exposures. These results suggest that correlations between physiological and behavioral changes previously seen in mammals also occur in fish.

  13. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    PubMed

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  14. A flow-proteometric platform for analyzing protein concentration (FAP): Proof of concept for quantification of PD-L1 protein in cells and tissues.

    PubMed

    Chou, Chao-Kai; Huang, Po-Jung; Tsou, Pei-Hsiang; Wei, Yongkun; Lee, Heng-Huan; Wang, Ying-Nai; Liu, Yen-Liang; Shi, Colin; Yeh, Hsin-Chih; Kameoka, Jun; Hung, Mien-Chie

    2018-05-29

    Protein expression level is critically related to the cell physiological function. However, current methodologies such as Western blot (WB) and Immunohistochemistry (IHC) in analyzing the protein level are rather semi-quantitative and without the information of actual protein concentration. We have developed a microfluidic technique termed a "flow-proteometric platform for analyzing protein concentration (FAP)" that can measure the concentration of a target protein in cells or tissues without the requirement of a calibration standard, e.g., the purified target molecules. To validate our method, we tested a number of control samples with known target protein concentrations and showed that the FAP measurement resulted in concentrations that well matched the actual concentrations in the control samples (coefficient of determination [R 2 ], 0.998), demonstrating a dynamic range of concentrations from 0.13 to 130 pM of a detection for 2 min. We successfully determined a biomarker protein (for predicting the treatment response of cancer immune check-point therapy) PD-L1 concentration in cancer cell lines (HeLa PD-L1 and MDA-MB-231) and breast cancer patient tumor tissues without any prior process of sample purification and standard line construction. Therefore, FAP is a simple, faster, and reliable method to measure the protein concentration in cells and tissues, which can support the conventional methods such as WB and IHC to determine the actual protein level. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation.

    PubMed

    Lerant, Anna A; Hester, Robert L; Coleman, Thomas G; Phillips, William J; Orledge, Jeffrey D; Murray, W Bosseau

    2015-01-01

    Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature.

  16. Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation

    PubMed Central

    Lerant, Anna A.; Hester, Robert L.; Coleman, Thomas G.; Phillips, William J.; Orledge, Jeffrey D.; Murray, W. Bosseau

    2015-01-01

    Introduction: Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. Methods: We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. Results: A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). Conclusions: HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature. PMID:26283881

  17. Bovine temperament impacts immunity, metabolism, and reproduction: A review

    USDA-ARS?s Scientific Manuscript database

    Temperament, or excitability, is a behavioral trait that has been shown to impact physiology and performance. Temperament in cattle alters the function of the hypothalamic-pituitary-adrenal axis, thereby influencing circulating concentrations of catecholamines and glucocorticoids. The physiological ...

  18. Physiological and hematological changes in Chum Salmon artificially infected with Erythrocytic Necrosis virus

    USGS Publications Warehouse

    Haney, D.C.; Hursh, D.A.; Mix, M.C.; Winton, J.R.

    1992-01-01

    Chum salmon Oncorhynchus keta were injected with erythrocytic necrosis virus (ENV) to study the physiological and hematological consequences of ENV infection. Infected and control fish were held in pathogen-free seawater and sampled for 5 weeks. Physiological tests included measures of plasma cortisol, glucose, protein, and osmolality; blood lactic acid; and liver glycogen. In general, ENV-infected fish had lower plasma glucose and blood lactic acid, and higher liver glycogen concentrations than did control fish. Hematological tests included red and white blood cell (RBC and WBC) counts, hematocrit, measurement of blood hemoglobin concentration, and a determination of erythrocyte fragility. Infected fish had lower RBC counts, hematocrits, and hemoglobin concentrations; higher WBC counts; and less fragile erythrocytes than did control fish. The hematology data indicated that erythrocytes of infected fish had higher mean corpuscular volume, depressed mean corpuscular hemoglobin concentration, and slightly lower mean corpuscular hemoglobin. Erythrocytic inclusions were observed in the cytoplasm of RBCs from infected fish. The infection progressed steadily through week 4, after which the fish appeared to begin recovering. In a second study, fish were infected with ENV for 3 weeks, and recovery from a stress challenge test was measured. Plasma glucose concentrations and osmclality were higher in infected fish, whereas plasma cortisol and blood lactate were only slightly elevated. These studies indicate that chum salmon withstood the effects of ENV infection without in-eversible physiological consequences. However, when subjected to a stress challenge test, infected fish recovered more slowly than control fish and had increased osmoregulatory difficulties.

  19. Pharmacokinetics and physiologic effects of alprazolam after a single oral dose in healthy mares.

    PubMed

    Wong, D M; Davis, J L; Alcott, C J; Hepworth-Warren, K L; Galow-Kersh, N L; Rice, S; Coetzee, J F

    2015-06-01

    The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α-hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one-compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single-dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0-∞ ) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1-12 h). Alpha-hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted. © 2014 John Wiley & Sons Ltd.

  20. Diffuse optical tomography and spectroscopy of breast cancer and fetal brain

    NASA Astrophysics Data System (ADS)

    Choe, Regine

    Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.

  1. Physiological and biomechanical responses to walking underwater on a non-motorised treadmill: effects of different exercise intensities and depths in middle-aged healthy women.

    PubMed

    Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco

    2014-01-01

    Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.

  2. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems

    PubMed Central

    Arnold, Kathryn E.; Brown, A. Ross; Ankley, Gerald T.; Sumpter, John P.

    2014-01-01

    Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment. PMID:25405959

  3. Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Marshall, Katie E; Sinclair, Brent J

    2018-06-12

    Internal ice formation leads to wholesale changes in ionic, osmotic and pH homeostasis, energy metabolism, and mechanical damage, across a small range of temperatures, and is thus an abiotic stressor that acts at a distinct, physiologically-relevant, threshold. Insects that experience repeated freeze-thaw cycles over winter will cross this stressor threshold many times over their lifespan. Here we examine the effect of repeatedly crossing the freezing threshold on short-term physiological parameters (metabolic reserves and cryoprotectant concentration) as well as long-term fitness-related performance (survival and egg production) in the freeze-tolerant goldenrod gall fly Eurosta solidaginis We exposed overwintering prepupae to a series of low temperatures (-10, -15, or -20 °C) with increasing numbers of freezing events (3, 6, or 10) with differing recovery periods between events (1, 5, or 10 days). Repeated freezing increased sorbitol concentration by about 50% relative to a single freezing episode, and prompted prepupae to modify long chain triacylglycerols to acetylated triacylglycerols. Long-term, repeated freezing did not significantly reduce survival, but did reduce egg production by 9.8% relative to a single freezing event. Exposure temperature did not affect any of these measures, suggesting that threshold crossing events may be more important to fitness than the intensity of stress in E. solidaginis overwintering. © 2018. Published by The Company of Biologists Ltd.

  4. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    PubMed

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  5. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    PubMed

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching the anoxic condition. This property may contribute to the physiological role of sulfide as an oxygen sensor. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Sulfide-Inhibition of Mitochondrial Respiration at Very Low Oxygen Concentrations

    PubMed Central

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-01-01

    Our aim was to study the capacity of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the capacity of the pathway metabolizing and eliminating sulfide, which is linked to the mitochondrial respiratory chain and therefore operates under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide’s inhibition of cellular respiration would be dependent of the oxygen concentration in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5 – 1 × 106 cells in 2 ml of continuously stirred respiration medium at 37°C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73 ± 0.05 μM, 3.1 ± 0.2 μM, and 6.2 ± 0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3; 3.5] and 11.7 [6.2;21.2] min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6[15.5;28.1] min (coupled) and 35.9[27.4;59.2] min (uncoupled), as well as 42.4 [27.5;42.4] min (coupled) and 51.5 [46.4;51.7] min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results suggest that elimination of sulfide in these cells is limited by oxygen availability when approaching the anoxic condition. This property may contribute to the physiological role of sulfide as an oxygen sensor. PMID:24963794

  7. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus

    PubMed Central

    Harter, T. S.; Reichert, M.; Brauner, C. J.; Milsom, W. K.

    2015-01-01

    Every year, bar-headed geese (Anser indicus) perform some of the most remarkable trans-Himalayan migrations, and researchers are increasingly interested in understanding the physiology underlying their high-altitude flight performance. A major challenge is generating reliable measurements of blood parameters on wild birds in the field, where established analytical techniques are often not available. Therefore, we validated two commonly used portable clinical analysers (PCAs), the i-STAT and the HemoCue systems, for the analysis of blood parameters in bar-headed geese. The pH, partial pressures of O2 and CO2 (PO2 and PCO2), haemoglobin O2 saturation (sO2), haematocrit (Hct) and haemoglobin concentration [Hb] were simultaneously measured with the two PCA systems (i-STAT for all parameters; HemoCue for [Hb]) and with conventional laboratory techniques over a physiological range of PO2, PCO2 and Hct. Our results indicate that the i-STAT system can generate reliable values on bar-headed goose whole blood pH, PO2, PCO2 and Hct, but we recommend correcting the obtained values using the linear equations determined here for higher accuracy. The i-STAT is probably not able to produce meaningful measurements of sO2 and [Hb] over a range of physiologically relevant environmental conditions. However, we can recommend the use of the HemoCue to measure [Hb] in the bar-headed goose, if results are corrected. We emphasize that the equations that we provide to correct PCA results are applicable only to bar-headed goose whole blood under the conditions that we tested. We encourage researchers to validate i-STAT or HemoCue results thoroughly for their specific study conditions and species in order to yield accurate results. PMID:27293706

  8. Vital signs in older patients: age-related changes.

    PubMed

    Chester, Jennifer Gonik; Rudolph, James L

    2011-06-01

    Vital signs are objective measures of physiological function that are used to monitor acute and chronic disease and thus serve as a basic communication tool about patient status. The purpose of this analysis was to review age-related changes of traditional vital signs (blood pressure, pulse, respiratory rate, and temperature) with a focus on age-related molecular changes, organ system changes, systemic changes, and altered compensation to stressors. The review found that numerous physiological and pathological changes may occur with age and alter vital signs. These changes tend to reduce the ability of organ systems to adapt to physiological stressors, particularly in frail older patients. Because of the diversity of age-related physiological changes and comorbidities in an individual, single-point measurements of vital signs have less sensitivity in detecting disease processes. However, serial vital sign assessments may have increased sensitivity, especially when viewed in the context of individualized reference ranges. Vital sign change with age may be subtle because of reduced physiological ranges. However, change from an individual reference range may indicate important warning signs and thus may require additional evaluation to understand potential underlying pathological processes. As a result, individualized reference ranges may provide improved sensitivity in frail, older patients. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.

  9. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    NASA Astrophysics Data System (ADS)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  10. Oximetry: A Reflective Tool for the Detection of Physiological Expression of Emotions in a Science Education Classroom

    ERIC Educational Resources Information Center

    Calderón, Olga

    2016-01-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation--SpO[subscript 2]); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying…

  11. Serum proteins in the leopard seal, Hydrurga leptonyx, in Prydz Bay, Eastern Antarctica and the coast of NSW, Australia.

    PubMed

    Gray, Rachael; Canfield, Paul; Rogers, Tracey

    2005-09-01

    Blood protein analysis including total serum protein and albumin by chemical methods, fibrinogen estimation and serum protein electrophoresis (SPE) was performed on the leopard seal, Hydrurga leptonyx. The most commonly observed SPE pattern was eight fractions designated albumin, alpha(1a), alpha(1b), alpha(2a), alpha(2b), beta(1), beta(2) and gamma-globulin. Significantly higher total serum protein and albumin concentrations, as determined by chemical methods, and significantly higher alpha(2)-globulin concentrations, determined by SPE, were seen in free-ranging male seals compared to females, whilst significantly higher beta-globulin concentrations were seen in female seals. Season of sampling influenced fibrinogen and beta(2)-globulin concentrations, whereas there were no significant differences in any protein concentrations with moult status. Qualitative comparison of SPE traces of leopard seals in Antarctica with "sick" individuals in NSW, Australia revealed obvious differences, as did quantitative comparison of protein concentrations where differences in alpha(1), alpha(2), beta(1), beta(2), and gamma-globulin concentrations were seen. These findings suggest that SPE is a useful tool for investigating serum proteins in the leopard seal, with applications for the investigation of "sick" individuals and the assessment of variation in homeostasis. This technique could also be used to identify the presence of environmental stressors, subclinical disease and physiological variation within specific seal populations.

  12. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    PubMed

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO 3 - ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO 3 - accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L -1 produced an increase in Zn concentration provoking a decrease of NO 3 - concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L -1 of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L -1 of Zn, because it could result in an increase in the Zn concentration, a reduction of NO 3 - levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Circulating Endocannabinoid Concentrations and Sexual Arousal in Women

    PubMed Central

    Klein, Carolin; Hill, Matthew N.; Chang, Sabrina C.H.; Hillard, Cecilia J.; Gorzalka, Boris B.

    2013-01-01

    Introduction Several lines of evidence point to the potential role of the endocannabinoid system in female sexual functioning. These include results from studies describing the subjective effects of exogenous cannabinoids on sexual functioning in humans and the observable effects of exogenous cannabinoids on sexual functioning in other species, as well as results from studies investigating the location of cannabinoid receptors in the brain and periphery, and the effects of cannabinoid receptor activation on neurotransmitters implicated in sexual functioning. While these lines of research suggest a role for the endocannabinoid system in female sexual functioning, no studies investigating the relationship between concentrations of endogenous cannabinoids (i.e., arachidonoylethanolamide [AEA] and 2-arachidonoylglycerol [2-AG]) and sexual functioning have been conducted in any species. Aim To measure circulating endocannabinoid concentrations in relation to subjective and physiological indices of sexual arousal in women (n = 21). Methods Serum endocannabinoid (AEA and 2-AG) concentrations were measured immediately prior to, and immediately following, viewing of neutral (control) and erotic (experimental) film stimuli in a repeated measures design. Physiological sexual arousal was measured via vaginal photoplethysmography. Subjective sexual arousal was measured both continuously and non-continuously. Pearson’s correlations were used to investigate the relationships between endocannabinoid concentrations and sexual arousal. Main Outcome Measures Changes in AEA and 2-AG concentrations from pre- to post-film and in relation to physiological and subjective indices of sexual arousal. Results Results revealed a significant relationship between endocannabinoid concentrations and female sexual arousal, whereby increases in both physiological and subjective indices of sexual arousal were significantly associated with decreases in AEA, and increases in subjective indices of sexual arousal were significantly associated with decreases in 2-AG. Conclusions These findings support the hypothesis that the endocannabinoid system is involved in female sexual functioning, with implications for furthering understanding of the biological mechanisms underlying female sexual functioning. PMID:22462722

  14. A physiologically based pharmacokinetic model of vitamin D

    EPA Science Inventory

    Despite the plethora of studies discussing the benefits of vitamin D on physiological functioning, few mathematical models of vitamin D predict the response of the body on low-concentration supplementation of vitamin D under sunlight-restricted conditions. This study developed a ...

  15. Metal Cations in G-Quadruplex Folding and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  16. Nanoparticle assembled microcapsules for application as pH and ammonia sensor.

    PubMed

    Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara

    2011-12-05

    The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete.

    PubMed

    Wang, Jianyun; Jonkers, Henk M; Boon, Nico; De Belie, Nele

    2017-06-01

    The suitability of using a spore-forming ureolytic strain, Bacillus sphaericus, was evaluated for self-healing of concrete cracks. The main focus was on alkaline tolerance, calcium tolerance, oxygen dependence, and low-temperature adaptability. Experimental results show that B. sphaericus had a good tolerance. It can grow and germinate in a broad range of alkaline pH. The optimal pH range is 7 ∼ 9. High alkaline conditions (pH 10 ∼ 11) slow down but not stop the growth and germination. Oxygen was strictly needed during bacterial growth and germination, but not an essential factor during bacterial urea decomposition. B. sphaericus also had a good Ca tolerance, especially at a high bacterial concentration of 10 8  cells/mL; no significant influence was observed on bacterial ureolytic activity of the presence of 0.9M Ca 2+ . Furthermore, at a low temperature (10 °C), bacterial spores germinated and revived ureolytic activity with some retardation. However, this retardation can be counteracted by using a higher bacterial concentration and by supplementing yeast extract. It can be concluded that B. sphaericus is a suitable bacterium for application in bacteria-based self-healing concrete.

  18. Relative phase of oscillations of cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations during sleep

    NASA Astrophysics Data System (ADS)

    Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2012-02-01

    We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.

  19. SERS as an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup.

    PubMed

    Patze, Sophie; Huebner, Uwe; Liebold, Falk; Weber, Karina; Cialla-May, Dana; Popp, Juergen

    2017-01-01

    Sulfamethoxazole (SMX) is a commonly applied antibiotic for treating urinary tract infections; however, allergic reactions and skin eczema are known side effects that are observed for all sulfonamides. Today, this molecule is present in drinking and surface water sources. The allowed concentration in tap water is 2·10 -7  mol L -1 . SMX could unintentionally be ingested by healthy people when drinking contaminated tap water, representing unnecessary drug intake. To assess the quality of tap water, fast, specific and sensitive detection methods are required, in which consequence measures for improving the purification of water might be initiated in the short term. Herein, the quantitative detection of SMX down to environmentally and physiologically relevant concentrations in the nanomolar range by employing surface-enhanced Raman spectroscopy (SERS) and a microfluidic cartridge system is presented. By applying surface-water samples as matrices, the detection of SMX down to 2.2·10 -9  mol L -1 is achieved, which illustrates the great potential of our proposed method in environmental science. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dangerous liaisons: anion-induced protonation in phosphate-polyamine interactions and their implications for the charge states of biologically relevant surfaces.

    PubMed

    Laucirica, Gregorio; Marmisollé, Waldemar A; Azzaroni, Omar

    2017-03-22

    Although not always considered a preponderant interaction, amine-phosphate interactions are omnipresent in multiple chemical and biological systems. This study aims to answer questions that are still pending about their nature and consequences. We focus on the description of the charge state as surface charges constitute directing agents of the interaction of amine groups with either natural or synthetic counterparts. Our results allow us to quantitatively determine the relative affinities of HPO 4 2- and H 2 PO 4 - from the analysis of the influence of phosphates on the zeta-potential of amino-functionalized surfaces in a broad pH range. We show that phosphate anions enhance the protonation of amino groups and, conversely, charged amines induce further proton dissociation of phosphates, yielding a complex dependence of the surface effective charge on the pH and phosphate concentration. We also demonstrate that phosphate-amine interaction is specific and the modulation of surface charge occurs in the physiological phosphate concentration range, emphasizing its biochemical and biotechnological relevance and the importance of considering this veiled association in both in vivo and in vitro studies.

  1. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

    PubMed

    Way, Danielle A; Ghirardo, Andrea; Kanawati, Basem; Esperschütz, Jürgen; Monson, Russell K; Jackson, Robert B; Schmitt-Kopplin, Philippe; Schnitzler, Jörg-Peter

    2013-10-01

    Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe.

    PubMed

    Su, Pai-Hsiang; Lai, Yen-Hsun

    2017-01-01

    The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.

  3. Hot and Bothered: Changes in Microclimate Alter Chlorophyll Fluorescence Measures and Increase Stress Levels in Tropical Epiphytic Orchids

    Treesearch

    Benjamin J. Crain; Raymond L. Tremblay

    2017-01-01

    Premise of research. Tropical epiphytes are susceptible to climatic changes, as evidenced by documented population declines, range contractions, and range shifts; however, physiological changes in individual plants may also be indicative of deteriorating climate conditions. Consequently, physiological analyses of tropical epiphytes whose natural habitats are...

  4. Measurement of Physiologic Glucose Levels Using Raman Spectroscopy in a Rabbit Aqueous Humor Model

    NASA Technical Reports Server (NTRS)

    Lambert, J.; Storrie-Lombardi, M.; Borchert, M.

    1998-01-01

    We have elecited a reliable glucose signature in mammalian physiological ranges using near infrared Raman laser excitation at 785 nm and multivariate analysis. In a recent series of experiments we measured glucose levels in an artificial aqueous humor in the range from 0.5 to 13X normal values.

  5. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    PubMed Central

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354

  6. Seasonal variability of free amino acids in two marine bivalves, Macoma balthica and Mytilus spp., in relation to environmental and physiological factors.

    PubMed

    Kube, S; Sokolowski, A; Jansen, J M; Schiedek, D

    2007-08-01

    The seasonal variability of the intracellular free amino acid (FAA) concentration was studied in 5 Macoma balthica populations and 7 Mytilus spp. populations along their European distribution. Because of the well known physiological role of FAA as organic osmolytes for salinity induced cell volume regulation in marine osmoconformers, FAA variations were compared in bivalve populations that were exposed to high vs. low intraannual salinity fluctuations. In general, seasonal FAA variations were more pronounced in M. balthica than in Mytilus spp. In both bivalve taxa from different locations in the Baltic Sea, highest FAA concentrations were found in autumn and winter and low FAA concentrations were measured in summer. Seasonal patterns were less pronounced in both taxa at locations with constant salinity conditions. In contrast to Baltic Sea populations, Atlantic and Mediterranean bivalves showed high FAA concentrations in summer and low values in winter, regardless of seasonal salinity fluctuations. Significant seasonal FAA variations at locations with constant salinity conditions showed that salinity appeared not to be the main factor in determining FAA concentrations. The seasonal patterns of the main FAA pool components, i.e. alanine, glycine and taurine, are discussed in the context of seasonal variations in environmental factors (salinity, temperature) and physiological state (glycogen content, reproductive stage).

  7. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.

    PubMed

    Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi

    2015-01-01

    This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.

  8. High-performance liquid chromatographic determination of methotrexate, 7-hydroxymethotrexate, 5-methyltetrahydrofolic acid and folinic acid in serum and cerebrospinal fluid.

    PubMed

    Belz, S; Frickel, C; Wolfrom, C; Nau, H; Henze, G

    1994-11-04

    A method for the simultaneous determination of the antifolates methotrexate and 7-hydroxymethotrexate as well as the folates 5-methyltetrahydrofolic acid and folinic acid (5-formyltetrahydrofolic acid) in serum and cerebrospinal fluid (CSF) is described. High-performance liquid chromatography with gradient elution and dual detection (ultraviolet absorption and fluorescence) was used to separate and quantitate the analytes. Serum samples containing high levels of the substances of interest and CSF samples were injected directly onto the HPLC column. For determination of low concentrations, serum samples were subjected to a solid-phase extraction method for clean-up and concentration purposes. The determination limits were 10 ng/ml for both antifolates, 100 ng/ml for folinic acid, and 0.1 ng/ml for the physiologically occurring methylated folate which is about 1/100 the serum concentration in healthy children. The suitability of the method for pharmacokinetic monitoring of high-dose methotrexate therapy combined with leucovorin rescue administered to children with acute lymphoblastic leukemia was demonstrated. Minimum values of the serum folate during treatment ranged from 0.2 to 3.1 ng/ml. Even those very low concentrations could be reliably measured.

  9. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  10. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo

    PubMed Central

    Choi, Nak Won; Verbridge, Scott S.; Williams, Rebecca M.; Chen, Jin; Kim, Ju-Young; Schmehl, Russel; Farnum, Cornelia E.; Zipfel, Warren R.; Fischbach, Claudia; Stroock, Abraham D.

    2012-01-01

    We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role. PMID:22240511

  11. Dual Level Statistical Investigation of Equilibrium Solubility in Simulated Fasted and Fed Intestinal Fluid

    PubMed Central

    2017-01-01

    The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A prerequisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances, such as phospholipid, bile salt, monoglyceride, and cholesterol. To aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviors are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug’s behavior in gastrointestinal fluids. PMID:29072917

  12. Effects of environmental pollutants on the reproduction and welfare of ruminants

    PubMed Central

    Rhind, S. M.; Evans, N. P.; Bellingham, M.; Sharpe, R. M.; Cotinot, C.; Mandon-Pepin, B.; Loup, B.; Sinclair, K. D.; Lea, R. G.; Pocar, P.; Fischer, B.; van der Zalm, E.; Hart, K.; Schmidt, J.-S.; Amezaga, M. R.; Fowler, P. A.

    2010-01-01

    Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare. PMID:20582145

  13. Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters

    NASA Astrophysics Data System (ADS)

    Bauerle, William L.; Daniels, Alex B.; Barnard, David M.

    2014-05-01

    Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.

  14. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy.

    PubMed

    Kirilina, Evgeniya; Jelzow, Alexander; Heine, Angela; Niessing, Michael; Wabnitz, Heidrun; Brühl, Rüdiger; Ittermann, Bernd; Jacobs, Arthur M; Tachtsidis, Ilias

    2012-05-15

    A major methodological challenge of functional near-infrared spectroscopy (fNIRS) is its high sensitivity to haemodynamic fluctuations in the scalp. Superficial fluctuations contribute on the one hand to the physiological noise of fNIRS, impairing the signal-to-noise ratio, and may on the other hand be erroneously attributed to cerebral changes, leading to false positives in fNIRS experiments. Here we explore the localisation, time course and physiological origin of task-evoked superficial signals in fNIRS and present a method to separate them from cortical signals. We used complementary fNIRS, fMRI, MR-angiography and peripheral physiological measurements (blood pressure, heart rate, skin conductance and skin blood flow) to study activation in the frontal lobe during a continuous performance task. The General Linear Model (GLM) was applied to analyse the fNIRS data, which included an additional predictor to account for systemic changes in the skin. We found that skin blood volume strongly depends on the cognitive state and that sources of task-evoked systemic signals in fNIRS are co-localized with veins draining the scalp. Task-evoked superficial artefacts were mainly observed in concentration changes of oxygenated haemoglobin and could be effectively separated from cerebral signals by GLM analysis. Based on temporal correlation of fNIRS and fMRI signals with peripheral physiological measurements we conclude that the physiological origin of the systemic artefact is a task-evoked sympathetic arterial vasoconstriction followed by a decrease in venous volume. Since changes in sympathetic outflow accompany almost any cognitive and emotional process, we expect scalp vessel artefacts to be present in a wide range of fNIRS settings used in neurocognitive research. Therefore a careful separation of fNIRS signals originating from activated brain and from scalp is a necessary precondition for unbiased fNIRS brain activation maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeksmore » 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.« less

  16. Sensitivity of Physiological Emotional Measures to Odors Depends on the Product and the Pleasantness Ranges Used

    PubMed Central

    Pichon, Aline M.; Coppin, Géraldine; Cayeux, Isabelle; Porcherot, Christelle; Sander, David; Delplanque, Sylvain

    2015-01-01

    Emotions are characterized by synchronized changes in several components of an organism. Among them, physiological variations provide energy support for the expression of approach/avoid action tendencies induced by relevant stimuli, while self-reported subjective pleasantness feelings integrate all other emotional components and are plastic. Consequently, emotional responses evoked by odors should be highly differentiated when they are linked to different functions of olfaction (e.g., avoiding environmental hazards). As this differentiation has been observed for contrasted odors (very pleasant or unpleasant), we questioned whether subjective and physiological emotional response indicators could still disentangle subtle affective variations when no clear functional distinction is made (mildly pleasant or unpleasant fragrances). Here, we compared the sensitivity of behavioral and physiological [respiration, skin conductance, facial electromyography (EMG), and heart rate] indicators in differentiating odor-elicited emotions in two situations: when a wide range of odor families was presented (e.g., fruity, animal), covering different functional meanings; or in response to a restricted range of products in one particular family (fragrances). Results show clear differences in physiological indicators to odors that display a wide range of reported pleasantness, but these differences almost entirely vanish when fragrances are used even though their subjective pleasantness still differed. Taken together, these results provide valuable information concerning the ability of classic verbal and psychophysiological measures to investigate subtle differences in emotional reactions to a restricted range of similar olfactory stimuli. PMID:26648888

  17. Is physiological glucocorticoid replacement important in children?

    PubMed Central

    Porter, John; Blair, Joanne; Ross, Richard J

    2017-01-01

    Cortisol has a distinct circadian rhythm with low concentrations at night, rising in the early hours of the morning, peaking on waking and declining over the day to low concentrations in the evening. Loss of this circadian rhythm, as seen in jetlag and shift work, is associated with fatigue in the short term and diabetes and obesity in the medium to long term. Patients with adrenal insufficiency on current glucocorticoid replacement with hydrocortisone have unphysiological cortisol concentrations being low on waking and high after each dose of hydrocortisone. Patients with adrenal insufficiency complain of fatigue, a poor quality of life and there is evidence of poor health outcomes including obesity potentially related to glucocorticoid replacement. New technologies are being developed that deliver more physiological glucocorticoid replacement including hydrocortisone by subcutaneous pump, Plenadren, a once-daily modified-release hydrocortisone and Chronocort, a delayed and sustained absorption hydrocortisone formulation that replicates the overnight profile of cortisol. In this review, we summarise the evidence regarding physiological glucocorticoid replacement with a focus on relevance to paediatrics. PMID:27582458

  18. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2000-01-01

    The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.

  20. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. Copyright © 2015. Published by Elsevier B.V.

  1. Metabolic effects of cortisol, ACTH, adrenalin and insulin in the marsupial sugar glider, Petaurus breviceps.

    PubMed

    Bradley, A J; Stoddart, D M

    1990-11-01

    The effects of cortisol, ACTH, adrenalin and insulin on indices of carbohydrate, fat and protein metabolism were investigated in the conscious marsupial sugar glider Petaurus breviceps. Short-term i.v. infusion of cortisol at dose rates of 0.02, 0.2 and 1.0 mg/kg per h caused the plasma glucose concentration to rise sharply from the normal range of 3.3-4.4 to 8.1-8.7 mmol/l at the end of the infusion period without significant alteration in plasma free fatty acid (FFA), amino acid or urea concentrations. Infusions of ACTH at dose rates of 0.02, 0.06 and 0.45 IU/kg per h caused a similar rise in plasma glucose concentration; however, this was now accompanied by an elevation in plasma FFA concentration, but again without significant changes in either plasma amino acid or urea concentrations. Infusion of adrenalin at 10 micrograms/kg per h caused an increase in the plasma concentrations of both glucose and FFA. Intravenous injections of 0.15 IU insulin/kg caused a rapid and marked decrease in the plasma glucose concentration within 30 min and an increase in the plasma free cortisol concentration. Associated with this change was a marked rise in the plasma concentration of both FFA and free cortisol. The rise in free cortisol was, however, significantly reduced by infusion of glucose. Pretreatment with five daily i.m. injections of 1 mg cortisol acetate/kg, which produced an increase in plasma free cortisol concentration to near the maximum of the physiological range, caused a marked reduction in insulin sensitivity. Cortisol pretreatment caused an increase in the plasma FFA and amino acid concentrations. Petaurus breviceps is highly sensitive to the metabolic effects of glucocorticoids and is similar in this respect to the brush-tailed possum Trichosurus vulpecula. The interactive effects between insulin and glucocorticoids on carbohydrate, fat and protein metabolism in Petaurus breviceps are similar to those shown by Trichosurus vulpecula and some eutherian mammals but contrast with the pattern described for two macropodid marsupials, the red kangaroo Macropus rufus and the quokka Setonix brachyurus.

  2. Factors affecting 210Po and 210Pb activity concentrations in mussels and implications for environmental bio-monitoring programmes.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Alberto, G

    2011-02-01

    The activity of (210)Po and (210)Pb was determined in mussels of the same size (3.5-4.0 cm shell length) sampled monthly over a 17-month period at the Atlantic coast of Portugal. Average radionuclide concentration values in mussels were 759±277 Bq kg(-1) for (210)Po (range 460-1470 Bq kg(-1) dry weight), and 45±19 Bq kg(-1) for (210)Pb (range 23-96 Bq kg(-1) dry weight). Environmental parameters and mussel biometric parameters were monitored during the same period. Although there was no seasonal variation of radionuclide concentrations in sea water during the study period, the concentration of radionuclide activity in mussels varied seasonally displaying peaks of high concentrations in winter and low concentrations in summer. Analysis of radionuclide data in relation to the physiological Condition Index of mussels revealed that (210)Po and (210)Pb activities in the mussel (average activity per individual) remained nearly constant during the investigation period, while mussel body weight fluctuated due to fat storage/expenditure in the soft tissues. Similar variation of radionuclide concentrations was observed in mussels transplanted from the sea coast into the Tejo Estuary. However, under estuarine environmental conditions and with higher food availability throughout the year, transplanted mussel Condition Index was higher than in coastal mussels and average radionuclide concentrations were 210±75 Bq kg(-1) (dry weight) for (210)Po and 10±4 Bq kg(-1) (dry weight) for (210)Pb, therefore lower than in coastal mussels with similar shell length. It is concluded that the apparent seasonal fluctuation and inter-site difference of radionuclide concentrations were mostly caused by mussel body weight fluctuation and not by radionuclide body burden fluctuation. This interpretation can be extended to the apparent seasonal fluctuation in concentrations of lipophilic and lipophobic contaminants in mussels, and provides an explanation for occasional high concentrations of (210)Po and man-made contaminants measured in mussels far from pollution sources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...

  4. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...

  5. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...

  6. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...

  7. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...

  8. Acute Exposure to Perchlorethylene alters Rat Visual Evoked Potentials in Relation to Brain Concentration

    EPA Science Inventory

    These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...

  9. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    PubMed

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  10. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.

    PubMed

    Hayes, F; Jones, M L M; Mills, G; Ashmore, M

    2007-04-01

    This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.

  11. Altered erythrocyte sodium-lithium counter-transport and Na+/K(+)-ATPase activity in cystic fibrosis.

    PubMed

    Luczay, A; Vásárhelyi, B; Dobos, M; Holics, K; Ujhelyi, R; Tulassay, T

    1997-03-01

    Patients with cystic fibrosis (CF) exhibit normal concentrations of sodium and chloride in spite of the disturbance of Cl- and Na+ transport in epithelial cells. To characterize compensatory mechanisms in the regulation of sodium homeostasis, erythrocytes of 13 CF patients were analysed for sodium-lithium counter-transport (SLC), Na+/K(+)-ATPase activity and intracellular sodium content. Values were compared to those of healthy controls. Patients with CF had normal serum sodium and chloride concentrations and renal excretions of these ions were within the physiological range. Intracellular sodium concentration was similar in the CF and the control group (6.8 +/- 2.2 vs 5.7 +/- 1.0 mmol/l RBCs). Red blood cells' SLC and Na+/ K(+)-ATPase activity were elevated in CF patients (381 +/- 106 mumol/h/l RBCs vs 281 +/- 64; p < 0.01) and (445 +/- 129 mumol ATP mg prot/h vs 322 +/- 84, p < 0.01). Our study demonstrates that transmembrane cation transport systems are highly activated in CF. The increased sodium transport may be part of a compensatory mechanism of sodium homeostasis in children with CF.

  12. Phase characterization of oscillatory components of the cerebral concentrations of oxy-hemoglobin and deoxy-hemoglobin

    NASA Astrophysics Data System (ADS)

    Pierro, Michele; Sassaroli, Angelo; Zheng, Feng; Fantini, Sergio

    2011-02-01

    We present a study of the relative phase of oscillations of cerebral oxy- and deoxy-hemoglobin concentrations in the low-frequency range, namely 0.04-0.12 Hz. We have characterized the potential contributions of noise to the measured phase distributions, and we have performed phase measurements on the brain of a human subject at rest, and on the brain of a human subject during stage I sleep. While phase distributions of pseudo hemodynamic oscillations generated from noise (obtained by applying to two independent sets of random numbers the same linear transformation that converts absorption coefficients at 690 and 830 nm into concentrations of oxy- and deoxy-hemoglobin) are peaked at 180º, those associated with real hemodynamic changes can be peaked around any value depending on the underlying physiology and hemodynamics. In particular, preliminary results reported here indicate a greater phase lead of deoxy-hemoglobin vs. oxy-hemoglobin low-frequency oscillations during stage I sleep (82º +/- 55º) than while the subject is awake (19º +/- 58º).

  13. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells.

    PubMed

    Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H; Uppal, Karan; Go, Young-Mi; Jones, Dean P

    2018-06-01

    Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl 2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range. Copyright © 2018. Published by Elsevier Ltd.

  14. Transfer Behavior of the Weakly Acidic BCS Class II Drug Valsartan from the Stomach to the Small Intestine During Fasted and Fed States.

    PubMed

    Hamed, Rania; Alnadi, Sabreen Hasan

    2018-05-07

    The objective of this study was to investigate the transfer behavior of the weakly acidic BCS class II drug valsartan from the stomach to the small intestine during fasted and fed states. An in vitro transfer model previously introduced by Kostewicz et al. (J Pharm Pharmacol 56(1):43-51, 2004) based on a syringe pump and a USP paddle apparatus was used to determine the concentration profiles of valsartan in the small intestine. Donor phases of simulated gastric fluid during fasted (FaSSGF) and fed (FeSSGF) states were used to predisperse Diovan® tablets (160 mg valsartan). The initial concentrations of valsartan in FaSSGF and FeSSGF were 6.2 and 91.8%, respectively. Valsartan dispersions were then transferred to acceptor phases that simulate intestinal fluid and cover the physiological properties (pH, buffer capacity, and ionic strength) of the gastrointestinal fluid at a flow rate of 2 mL/min. The pH measurements were reported at time intervals corresponded to those of the transfer experiments to investigate the effect of percent dissolved of valsartan in the donor phase on lowering the pH of the acceptor phases. The f2 similarity test was used to compare the concentration profiles in the acceptor phases. In fasted state, the concentration of valsartan in the acceptor phases ranged between 33.1 and 89.4% after 240 min. Whereas in fed state, valsartan was fully dissolved in all acceptor phases within a range of 94.5-104.9% after 240 min. Therefore, the transfer model provides a useful screen for the concentrations of valsartan in the small intestine during fasted and fed states.

  15. An assessment of contemporary atomic spectroscopic techniques for the determination of lead in blood and urine matrices

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Geraghty, Ciaran; Verostek, Mary Frances

    2001-09-01

    The preparation and validation of a number of clinical reference materials for the determination of lead in blood and urine is described. Four candidate blood lead reference materials (Lots, 047-050), and four candidate urine lead reference materials (Lots, 034, 035, 037 and 038), containing physiologically-bound lead at clinically relevant concentrations, were circulated to up to 21 selected laboratories specializing in this analysis. Results from two interlaboratory studies were used to establish certified values and uncertainty estimates for these reference materials. These data also provided an assessment of current laboratory techniques for the measurement of lead in blood and urine. For the blood lead measurements, four laboratories used electrothermal atomization AAS, three used anodic stripping voltammetry and one used both ETAAS and ICP-MS. For the urine lead measurements, 11 laboratories used ETAAS (most with Zeeman background correction) and 10 used ICP-MS. Certified blood lead concentrations, ±S.D., ranged from 5.9±0.4 μg/dl (0.28±0.02 μmol/l) to 76.0±2.2 μg/dl (3.67±0.11 μmol/l) and urine lead concentrations ranged from 98±5 μg/l (0.47±0.02 μmol/l) to 641±36 μg/l (3.09±0.17 μmol/l). The highest concentration blood lead material was subjected to multiple analyses using ETAAS over an extended time period. The data indicate that more stringent internal quality control practices are necessary to improve long-term precision. While the certification of blood lead materials was accomplished in a manner consistent with established practices, the urine lead materials proved more troublesome, particularly at concentrations above 600 μg/l (2.90 μmol/l).

  16. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Serum homocysteine, folate, vitamin B12 and total antioxidant status in vegetarian children.

    PubMed

    Ambroszkiewicz, J; Klemarczyk, W; Chełchowska, M; Gajewska, J; Laskowska-Klita, T

    2006-01-01

    The results of several studies point to the positive role of vegetarian diets in reducing the risk of diabetes, some cancers and cardiovascular diseases. However, exclusion of animal products in vegetarian diets may affect the cobalamin status and cause an elevation of the plasma homocysteine level. The aim of this study was to assess the effect of vegetarian diets on serum concentrations of homocysteine, folate, vitamin B12 and total antioxidant status (TAS) in children. The study included 32 vegetarians (including 5 vegans), age 2-10 years. Dietary constituents were analyzed using a local nutritional programme. Serum homocysteine, folate and vitamin B12 were determined with fluorescence and chemiluminescence immunoassays. The concentration of TAS was measured by a colorimetric method. Average daily energy intake and the percentage of energy from protein, fat and carbohydrates in the diets of the studied children were just above or similar to the recommended amounts. It could be shown that vegetarian diets contain high concentrations of folate. In vegan diets it even exceeds the recommended dietary allowance. Mean daily intake of vitamin B12 in the studied diets was adequate but in vegans was below the recommended range. The serum concentrations of homocysteine, folate, vitamin B12 and TAS in vegetarian children remained within the physiological range. The presented data indicate that vegetarian children, contrary to adults, have enough vitamin B12 in their diet (excluding vegans) and normal serum concentrations of homocysteine, folate and vitamin B12. Therefore, in order to prevent deficiencies in the future, close monitoring of vegetarian children (especially on a vegan diet) is important to make sure that they receive adequate quantities of nutrients needed for healthy growth.

  18. Evaluation of lead and essential elements in whole blood during pregnancy: a cross-sectional study.

    PubMed

    Liu, K; Mao, X; Shi, J; Lu, Y; Liu, C

    2016-08-01

    Physiological concentrations of some elements fluctuate during pregnancy due to the increased requirements of growing fetus and changes in the maternal physiology. The aim of the study is to evaluate the distribution at different stages of pregnancy in healthy Chinese women and to show the association between trace elements and gestational age-specific reference intervals. A cross-sectional study was performed in 1089 pregnant women and 677 nonpregnant control women. Five element concentrations, including Cu, Zn, Ca, Mg, Pb in the blood were determined by atomic absorption spectrometry. Spearman's rank correlation test was used to assess the relationship between weeks of gestation and blood element concentrations. The mean levels of Cu and Mg were 23.64 ± 4.69 μmol/L and 1.36 ± 0.12 mmol/L, respectively, in the control women. While 0.68 % of all pregnant women showed Cu levels below the normal ranges, the levels of Mg were comparable in different groups. Though the overall mean blood zinc and Ca concentrations (83.84 ± 17.50 μmol/L and 1.60 ± 0.15 mmol/L, respectively) increased gradually with the progress of gestation, the Zn and Ca deficiency levels (16.6 and 3.6 %, respectively) decreased with the advance of gestation. Compared with nonpregnant group, the concentrations of Cu, Zn, Ca, Mg, Pb during the different stages of pregnancy, as a whole, were significantly different. Positive correlations were observed between weeks of gestation and blood Cu, Ca, Pb concentrations (r = 0.301, 0.221, 0.223; P < 0.05). There was a negative correlation blood Mg concentrations and weeks of gestation (r = -0.321; P < 0.05). A weak positive correlation was noted between Zn concentrations and weeks of gestation (r = 0.125; P < 0.05). The importance of Cu and Mg deficiency and supplementation is well realized, but, Zn/Ca deficiency and Pb exposure is still exist; the overall deficiency of pregnant women was not so optimistic. During pregnancy, the established reference values will provide an important guidance for the reasonable supplementation of essential elements and surveillance of lead overexposure.

  19. Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom.

    PubMed

    Radhakrishnan, Kirthi; Haworth, Kevin J; Huang, Shao-Ling; Klegerman, Melvin E; McPherson, David D; Holland, Christy K

    2012-11-01

    Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study, we determined the effects of the surrounding media's dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their echogenic properties. Further in vivo investigations will be needed to evaluate the optimal usage of ELIP as blood pool contrast agents. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Hair cortisol and progesterone detection in dairy cattle: interrelation with physiological status and milk production.

    PubMed

    Tallo-Parra, O; Carbajal, A; Monclús, L; Manteca, X; Lopez-Bejar, M

    2018-07-01

    Hair cortisol concentrations (HCCs) and hair progesterone concentrations (HPCs) allow monitoring long-term retrospective steroid levels. However, there are still gaps in the knowledge of the mechanisms of steroid deposition in hair and its potential application in dairy cattle research. This study aimed to evaluate the potential uses of hair steroid determinations by studying the interrelations between HCC, HPC, physiological data from cows, and their milk production and quality. Cortisol and progesterone concentrations were analyzed in hair from 101 milking Holstein Friesian cows in a commercial farm. Physiological data were obtained from the 60 d prior to hair collection. Moreover, productive data from the month when hair was collected and the previous one were also obtained as well as at 124 d after hair sampling. Significant but weak correlations were found between HCC and HPC (r = 0.25, P < 0.0001) and between HPC and age (r = 0.06, P = 0.0133). High HCC were associated with low milk yields from the 2 previous months to hair sampling (P = 0.0396) and during the whole lactation (P < 0.0001). High HCC were also related to high somatic cell count (P = 0.0241). No effect of HCC on fat or protein content was detected. No significant correlations were detected between hair steroid concentrations and pregnancy status, days of gestation, parturition category (primiparous vs multiparous), number of lactations or days in milk. The relationship between physiological variables and HCC or HPC could depend on the duration of the time period over which hair accumulates hormones. Steroid concentrations in hair present high variability between individuals but are a potential tool for dairy cattle welfare and production research by providing a useful and practical tool for long-term steroid monitoring. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Physiology and growth of redwood and Douglas-fir planted after variable density retention outside redwood’s range

    Treesearch

    Lucy Kerhoulas; Nicholas Kerhoulas; Wade Polda; John-Pascal Berrill

    2017-01-01

    Reforestation following timber harvests is an important topic throughout the coast redwood (Sequoia sempervirens (D. Don) Endl.) range. Furthermore, as drought-induced mortality spreads across many of California’s forests, it is important to understand how physiology and stand structure influence reforestation success. Finally, as climate...

  2. Plasma concentrations, behavioural and physiological effects following intravenous and intramuscular detomidine in horses.

    PubMed

    Mama, K R; Grimsrud, K; Snell, T; Stanley, S

    2009-11-01

    Detomidine hydrochloride is used to provide sedation, muscle relaxation and analgesia in horses, but a lack of information pertaining to plasma concentration has limited the ability to correlate drug concentration with effect. To build on previous information and assess detomidine for i.v. and i.m. use in horses by simultaneously assessing plasma drug concentrations, physiological parameters and behavioural characteristics. Systemic effects would be seen following i.m. and i.v. detomidine administration and these effects would be positively correlated with plasma drug concentrations. Behavioural (e.g. head position) and physiological (e.g. heart rate) responses were recorded at fixed time points from 4 min to 24 h after i.m. or i.v. detomidine (30 microg/kg bwt) administration to 8 horses. Route of administration was assigned using a balanced crossover design. Blood was sampled at predetermined time points from 0.5 min to 48 h post administration for subsequent detomidine concentration measurements using liquid chromatography-mass spectrometry. Data were summarised as mean +/- s.d. for subsequent analysis of variance for repeated measures. Plasma detomidine concentration peaked earlier (1.5 min vs. 1.5 h) and was significantly higher (105.4 +/- 71.6 ng/ml vs. 6.9 +/- 1.4 ng/ml) after i.v. vs. i.m. administration. Physiological and behavioural changes were of a greater magnitude and observed at earlier time points for i.v. vs. i.m. groups. For example, head position decreased from an average of 116 cm in both groups to a low value 35 +/- 23 cm from the ground 10 min following i.v. detomidine and to 64 +/- 24 cm 60 min after i.m. detomidine. Changes in heart rate followed a similar pattern; low value of 17 beats/min 10 min after i.v. administration and 29 beats/min 30 min after i.m. administration. Plasma drug concentration and measured effects were correlated positively and varied with route of administration following a single dose of detomidine. Results support a significant influence of route of administration on desirable and undesirable drug effects that influence case management.

  3. Pharmacokinetics and selected pharmacodynamics of trazodone following intravenous and oral administration to horses undergoing fitness training.

    PubMed

    Knych, Heather K; Mama, Khursheed R; Steffey, Eugene P; Stanley, Scott D; Kass, Philip H

    2017-10-01

    OBJECTIVE To measure concentrations of trazodone and its major metabolite in plasma and urine after administration to healthy horses and concurrently assess selected physiologic and behavioral effects of the drug. ANIMALS 11 Thoroughbred horses enrolled in a fitness training program. PROCEDURES In a pilot investigation, 4 horses received trazodone IV (n = 2) or orally (2) to select a dose for the full study; 1 horse received a vehicle control treatment IV. For the full study, trazodone was initially administered IV (1.5 mg/kg) to 6 horses and subsequently given orally (4 mg/kg), with a 5-week washout period between treatments. Blood and urine samples were collected prior to drug administration and at multiple time points up to 48 hours afterward. Samples were analyzed for trazodone and metabolite concentrations, and pharmacokinetic parameters were determined; plasma drug concentrations following IV administration best fit a 3-compartment model. Behavioral and physiologic effects were assessed. RESULTS After IV administration, total clearance of trazodone was 6.85 ± 2.80 mL/min/kg, volume of distribution at steady state was 1.06 ± 0.07 L/kg, and elimination half-life was 8.58 ± 1.88 hours. Terminal phase half-life was 7.11 ± 1.70 hours after oral administration. Horses had signs of aggression and excitation, tremors, and ataxia at the highest IV dose (2 mg/kg) in the pilot investigation. After IV drug administration in the full study (1.5 mg/kg), horses were ataxic and had tremors; sedation was evident after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE Administration of trazodone to horses elicited a wide range of effects. Additional study is warranted before clinical use of trazodone in horses can be recommended.

  4. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles.

    PubMed

    Lam, Shu J; Wong, Edgar H H; O'Brien-Simpson, Neil M; Pantarat, Namfon; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-12-14

    'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with uncompromised potency even under physiological conditions.

  5. Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic-Eukaryotic Interface.

    PubMed

    Garuglieri, Elisa; Meroni, Erika; Cattò, Cristina; Villa, Federica; Cappitelli, Francesca; Erba, Daniela

    2017-01-01

    Nanotechnology applications are expected to bring a range of benefits to the food sector, aiming to provide better quality and conservation. In this research, the physiological response of both an Escherichia coli mono-species biofilm and Caco-2 intestinal cells to sub-lethal concentrations of silver nanoparticles (AgNPs) has been investigated. In order to simulate the anaerobic and aerobic compartments required for bacteria and intestinal cells growth, a simplified semi-batch model based on a transwell permeable support was developed. Interaction between the two compartments was obtained by exposing Caco-2 intestinal cells to the metabolites secreted by E. coli biofilm after its exposure to AgNPs. To the best of the authors' knowledge, this study is the first to investigate the effect of AgNPs on Caco-2 cells that takes into consideration previous AgNP-intestinal biofilm interactions, and at concentrations mimicking real human exposure. Our data show that 1 μg/mL AgNPs in anaerobic conditions (i) promote biofilm formation up to 2.3 ± 0.3 fold in the first 72 h of treatment; (ii) increase reactive oxygen species (ROS) production to 84 ± 21% and change the physiological status of microbial cells after 96 h of treatment; (iii) seriously affect a 72-h old established biofilm, increasing the level of oxidative stress to 86 ± 21%. Moreover, the results indicate that oxygen renders the biofilm more adequate to counteract AgNP effects. Comet assays on Caco-2 cells demonstrated a protective role of biofilm against the genotoxic effect of 1 μg/mL AgNPs on intestinal epithelial cells.

  6. Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects

    PubMed Central

    Kanter, Ulrike; Hauser, Andreas; Michalke, Bernhard; Dräxl, Stephan; Schäffner, Anton R.

    2010-01-01

    Due to the physico-chemical similarities of caesium (Cs+) to potassium (K+) on the one hand and strontium (Sr2+) to calcium (Ca2+) on the other hand, both elements can easily be taken up by plants and thus enter the food chain. This could be detrimental when radionuclides such as 137Cs and 90Sr are involved. In this study, both genetic and physiological aspects of Cs+ and Sr2+ accumulation in Arabidopsis thaliana were investigated using 86 Arabidopsis accessions and a segregating F2 population of the low Cs+ accumulating Sq-1 (Ascot, UK) crossed with the high uptaking Sorbo (Khurmatov, Tajikistan). Hydroponically grown plants were exposed to subtoxic levels of Cs+ and Sr2+ using radioactive isotopes as tracers. In the natural accessions shoot concentration of Cs+ as well as Sr2+ varied about 2-fold, whereas its heritability ranged for both ions between 0.60 and 0.73. Shoot accumulation of Cs+ and Sr2+ could be compromised by increasing concentrations of their essential analogues K+ and Ca2+, respectively, causing a reduction of up to 80%. In the case of the segregating F2/F3 population Sq-1×Sorbo, this study identified several QTL for the trait Cs+ and Sr2+ accumulation, with main QTL on chromosomes 1 and 5. According to the correlation and discrimination surveys combined with QTL-analysis Cs+ and Sr2+ uptake seemed to be mediated mostly via non-selective cation channels. A polymorphism, affecting amino acids close to the K+-pore of one candidate, CYCLIC-NUCLEOTIDE-GATED CHANNEL 1 (CNGC1), was identified in Sorbo and associated with high Cs+ concentrating accessions. PMID:20624763

  7. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    USGS Publications Warehouse

    Schultz, Melissa M.; Painter, Meghan M.; Bartell, Stephen E.; Logue, Amanda; Furlong, Edward T.; Werner, Stephen L.; Schoenfuss, Heiko L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimeplwles promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish—a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.

  8. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    USGS Publications Warehouse

    Schultz, M.M.; Painter, M.M.; Bartell, S.E.; Logue, A.; Furlong, E.T.; Werner, S.L.; Schoenfuss, H.L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305. ng/L and 1104. ng/L) and SER (5.2. ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28. ng/L induced vitellogenin in male fish-a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies. ?? 2011 Elsevier B.V.

  9. A novel method for the quantitation of gingerol glucuronides in human plasma or urine based on stable isotope dilution assays.

    PubMed

    Schoenknecht, Carola; Andersen, Gaby; Schieberle, Peter

    2016-11-15

    The bio-active compounds of ginger (Zingiber officinale Roscoe), the gingerols, are gaining considerable attention due to their numerous beneficial health effects. In order to elucidate the physiological relevance of the ascribed effects their bioavailability has to be determined taking their metabolization into account. To quantitate in vivo generated [6]-, [8]- and [10]-gingerol glucuronides in human plasma and urine after ginger tea consumption, a simultaneous and direct liquid chromatography-tandem mass spectrometry method based on stable isotope dilution assays was established and validated. The respective references as well as the isotopically labeled substances were synthesized and characterized by mass spectrometry and NMR. Selective isolation of gingerol glucuronides from human plasma and urine by a mixed-phase anion-exchange SPE method led to recovery rates between 80.8 and 98.2%. LC-MS/MS analyses in selected reaction monitoring modus enabled a highly sensitive quantitation of gingerol glucuronides with LoQs between 3.9-9.8nmol/L in plasma and 39.3-161.1nmol/L in urine. The method precision in plasma and urine varied in the range±15%, whereas the intra-day accuracy in plasma and urine showed values between 78 and 122%. The developed method was then applied to a pilot study in which two volunteers consumed one liter ginger tea. Pharmacokinetic parameters like the maximum concentration (c max ), the time to reach c max (t max ), area under the curve (AUC), elimination rate constant (k el ) and elimination half-life (t 1/2 ) were calculated from the concentration-time curve of each gingerol glucuronide. The obtained results will enable more detailed investigation of gingerol glucuronides as bioactives in their physiologically relevant concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    PubMed Central

    Wannaz, E. D.; Rodriguez, J. H.; Wolfsberger, T.; Carreras, H. A.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.

    2012-01-01

    A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642

  11. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  12. Divergence in Eco-Physiological Responses to Drought Mirrors the Distinct Distribution of Chamerion angustifolium Cytotypes in the Himalaya–Hengduan Mountains Region

    PubMed Central

    Guo, Wen; Yang, Jie; Sun, Xu-Dong; Chen, Guang-Jie; Yang, Yong-Ping; Duan, Yuan-Wen

    2016-01-01

    Polyploid species generally occupy harsher habitats (characterized by cold, drought and/or high altitude) than diploids, but the converse was observed for Chamerion angustifolium, in which diploid plants generally inhabit higher altitudes than their polyploid derivatives. Plants at high altitudes may experience cold-induced water stress, and we therefore examined the physiological responses of diploid and hexaploid C. angustifolium to water stress to better understand the ecological differentiation of plants with different ploidy levels. We conducted a common garden experiment by subjecting seedlings of different ploidy levels to low, moderate, and severe water stress. Fourteen indicators of physiological fitness were measured, and the anatomical characteristics of the leaves of each cytotype were determined. Both cytotypes were influenced by drought, and diploids exhibited higher fitness in terms of constant root:shoot ratio (R:S ratio) and maximum quantum yield of PS II (Fv/Fm), less reduced maximal photosynthetic rate (Amax), transpiration rate (E), intercellular CO2 concentration (Ci) and stomatal conductance (gs), and higher long-term water use efficiency (WUEL) under severe water stress than did hexaploids. Analysis of leaf anatomy revealed morphological adjustments for tolerating water deficiency in diploids, in the form of closely packed mesophyll cells and small conduits in the midvein. Our results indicate that diploid C. angustifolium is more tolerant of drought than hexaploid plants, ensuring the successful survival of the diploid at high altitudes. This eco-physiological divergence may facilitate the species with different cytotypes to colonize new and large geographic ranges with heterogeneous environmental conditions. PMID:27630654

  13. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions.

    PubMed

    Chapman, Robert W; Mancia, Annalaura; Beal, Marion; Veloso, Artur; Rathburn, Charles; Blair, Anne; Holland, A F; Warr, G W; Didinato, Guy; Sokolova, Inna M; Wirth, Edward F; Duffy, Edward; Sanger, Denise

    2011-04-01

    Understanding the mechanisms by which organisms adapt to environmental conditions is a fundamental question for ecology and evolution. In this study, we evaluate changes in gene expression of a marine mollusc, the eastern oyster Crassostrea virginica, associated with the physico-chemical conditions and the levels of metals and other contaminants in their environment. The results indicate that transcript signatures can effectively disentangle the complex interactive gene expression responses to the environment and are also capable of disentangling the complex dynamic effects of environmental factors on gene expression. In this context, the mapping of environment to gene and gene to environment is reciprocal and mutually reinforcing. In general, the response of transcripts to the environment is driven by major factors known to affect oyster physiology such as temperature, pH, salinity, and dissolved oxygen, with pollutant levels playing a relatively small role, at least within the range of concentrations found in the studied oyster habitats. Further, the two environmental factors that dominate these effects (temperature and pH) interact in a dynamic and nonlinear fashion to impact gene expression. Transcriptomic data obtained in our study provide insights into the mechanisms of physiological responses to temperature and pH in oysters that are consistent with the known effects of these factors on physiological functions of ectotherms and indicate important linkages between transcriptomics and physiological outcomes. Should these linkages hold in further studies and in other organisms, they may provide a novel integrated approach for assessing the impacts of climate change, ocean acidification and anthropogenic contaminants on aquatic organisms via relatively inexpensive microarray platforms. © 2011 Blackwell Publishing Ltd.

  14. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation.

    PubMed

    Nielsen, Torben K; Højgaard, Martin; Andersen, Jon T; Poulsen, Henrik E; Lykkesfeldt, Jens; Mikines, Kári J

    2015-04-01

    Treatment with high-dose intravenous (IV) ascorbic acid (AA) is used in complementary and alternative medicine for various conditions including cancer. Cytotoxicity to cancer cell lines has been observed with millimolar concentrations of AA. Little is known about the pharmacokinetics of high-dose IV AA. The purpose of this study was to assess the basic kinetic variables in human beings over a relevant AA dosing interval for proper design of future clinical trials. Ten patients with metastatic prostate cancer were treated for 4 weeks with fixed AA doses of 5, 30 and 60 g. AA was measured consecutively in plasma and indicated first-order elimination kinetics throughout the dosing range with supra-physiological concentrations. The target dose of 60 g AA IV produced a peak plasma AA concentration of 20.3 mM. Elimination half-life was 1.87 hr (mean, S.D. ± 0.40), volume of distribution 0.19 L/kg (S.D. ±0.05) and clearance rate 6.02 L/hr (100 mL/min). No differences in pharmacokinetic parameters were observed between weeks/doses. A relatively fast first-order elimination with half-life of about 2 hr makes it impossible to maintain AA concentrations in the potential cytotoxic range after infusion stop in prostate cancer patients with normal kidney function. We propose a regimen with a bolus loading followed by a maintenance infusion based on the calculated clearance. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Optimized hyperventilation preserves 2,3-diphosphoglycerate in severe traumatic brain injury.

    PubMed

    Torres, Rayne Borges; Terzi, Renato Giuseppe Giovanni; Falcão, Antônio Luís Eiras; Höehr, Nelci Fenalti; Dantas Filho, Venâncio Pereira

    2007-09-01

    The concentration of 2,3-diphosphoglycerate (2,3-DPG/Hct) increases as a physiological occurrence to pH increase and hyperventilation. This response was tested in patients with severe traumatic brain injury (TBI). The concentration of 2,3-DPG/Hct was measured daily for six days in eleven patients with severe TBI in need of optimized hyperventilation because of intracranial hypertension. There was correlation between pH and the concentration of DPG/Hct. The concentration of 2,3-DPG/Hct remained predominantly within normal levels with slight increase in the sixth day of the study. The concentration of 2,3-DPG/Hct correlated significantly with measured partial pressure of oxygen that saturates 50% the hemoglobin of the blood (P50st), confirming the consistency of our data. The expected physiological response of a progressive increase in concentration of 2,3-DPG/Hct to hyperventilation was not observed. This fact may be explained by the intermittent and not sustained hyperventilation as dictated by the protocol of optimized ventilation.

  16. Nitrate pharmacokinetics: Taking note of the difference.

    PubMed

    James, Philip E; Willis, Gareth R; Allen, Jason D; Winyard, Paul G; Jones, Andrew M

    2015-08-01

    It is now recognised that administration of oral nitrate (NO3(-)), in its various forms, increases the level of nitric oxide (NO) metabolites in the circulation of humans. Its application to modulate physiology and alleviate cardiovascular dysfunction in some patients is now recorded and shows particular promise in hypertension, in modifying platelet activation/aggregation, and in conditions where tissue ischaemia prevails. The potential of oral NO3(-) to modify exercise/performance via elevation of plasma nitrite concentration ([NO2(-)]) has been applied across a range of human test systems. Herein we discuss how the choice of NO3(-) source, route of administration and resulting pharmacokinetics might influence the outcome of physiological measures and potentially contribute to discrepancies in performance trials. There are but a few examples of detailed pharmacokinetic data on which the majority of researchers base their test protocols in different cohorts/settings. We compare and contrast the results of key publications with the aim of highlighting a consensus of our current understanding and critical considerations for those entering the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    PubMed Central

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  18. Sensory reception of the primer pheromone ethyl oleate

    NASA Astrophysics Data System (ADS)

    Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang

    2012-05-01

    Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.

  19. Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation.

    PubMed

    Bianchini, Adalto; Lauer, Mariana Machado; Nery, Luiz Eduardo Maia; Colares, Elton Pinto; Monserrat, José María; Dos Santos Filho, Euclydes Antônio

    2008-11-01

    Neohelice granulata (Chasmagnathus granulatus) is an intertidal crab species living in salt marshes from estuaries and lagoons along the Atlantic coast of South America. It is a key species in these environments because it is responsible for energy transfer from producers to consumers. In order to deal with the extremely marked environmental salinity changes occurring in salt marshes, N. granulata shows important and interesting structural, biochemical, and physiological adaptations at the gills level. These adaptations characterize this crab as a euryhaline species, tolerating environmental salinities ranging from very diluted media to concentrated seawater. These characteristics had led to its use as an animal model to study estuarine adaptations in crustaceans. Therefore, the present review focuses on the influence of environmental salinity on N. granulata responses at the ecological, organismic and molecular levels. Aspects covered include salinity tolerance, osmo- and ionoregulatory patterns, morphological and structural adaptations at the gills, and mechanisms of ion transport and their regulation at the gills level during environmental salinity acclimation. Finally, this review compiles information on the effects of some environmental pollutants on iono- and osmoregulatory adaptations showed by N. granulata.

  20. Anthropogenic pollutants: a threat to ecosystem sustainability?

    PubMed

    Rhind, S M

    2009-11-27

    Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.

  1. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  2. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    PubMed

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17

  3. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.

    PubMed

    Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali

    2013-05-01

    Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.

  4. Sensitivity of the spiny dogfish (Squalus acanthias) to waterborne silver exposure.

    PubMed

    De Boeck, G; Grosell, M; Wood, C

    2001-10-01

    The physiological effects of waterborne silver exposure (added as AgNO(3)) on spiny dogfish, Squalus acanthias, were evaluated at 30, 200 and 685 microg silver per l in 30 per thousand seawater. These concentrations cover the toxic range observed for freshwater teleosts, where silver is extremely toxic, to seawater teleosts which tolerate higher silver concentrations. However, these levels are considerably higher than those that occur in the normal environment. At 685 microg l(-1), dogfish died within 24 h. Causes of death were respiratory as well as osmoregulatory failure. Arterial P(a)O(2) rapidly declined below 20 Torr, and blood acidosis (both respiratory and metabolic) occurred. Urea excretion increased dramatically and plasma urea dropped from 340 to 225 mM. There were pronounced increases in plasma Na(+), Cl(-), and Mg(2+), indicative of ionoregulatory failure due to increased diffusive permeability as well as inhibited NaCl excretion. At 200 microg l(-1), fish died between 24 and 72 h of silver exposure. The same physiological events occurred with a small time delay. At 30 microg l(-1), effects were much less severe, although slight mortality (12.5%) still occurred. Respiratory alkalosis occurred, together with moderate elevations in plasma Na(+) and Cl(-) levels. Silver accumulated to the highest concentrations on gills, with only low levels in the intestine, in accord with the virtual absence of drinking. Na(+)/K(+)-ATP-ase activities of gill and rectal gland tissue were impaired at the highest silver concentration. Normal gill function was impaired due to swelling and fusion of lamellae, lamellar aneurism and lifting of the lamellar epithelium. Our results clearly indicate that this elasmobranch is much more sensitive (about 10-fold) to silver than marine teleosts, with silver's toxic action exerted on the gill rather than on the intestine, in contrast to the latter.

  5. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    PubMed

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic drugs. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  6. Potentiation of TRPM7 Inward Currents by Protons

    PubMed Central

    Jiang, Jianmin; Li, Mingjiang; Yue, Lixia

    2005-01-01

    TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from −100 to −40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an ∼10-fold increase at pH 4.0 and 1–2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca2+ and Mg2+ for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca2+ and Mg2+ concentrations were increased. Third, the apparent affinity for Ca2+ and Mg2+ was significantly diminished at elevated external H+ concentrations. Fourth, the anomalous-mole fraction behavior of H+ permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca2+ and Mg2+ bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H+ concentrations, the affinity of TRPM7 for Ca2+ and Mg2+ is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg2+-inhibitable cation current (MIC) or Mg nucleotide–regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions. PMID:16009728

  7. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation ofmore » its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.« less

  8. Prediction of Fetal Darunavir Exposure by Integrating Human Ex-Vivo Placental Transfer and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M

    2017-07-25

    Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.

  9. Models and signal processing for an implanted ethanol bio-sensor.

    PubMed

    Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J

    2008-02-01

    The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.

  10. In vivo sodium concentration continuously monitored with fluorescent sensors.

    PubMed

    Dubach, J Matthew; Lim, Edward; Zhang, Ning; Francis, Kevin P; Clark, Heather

    2011-02-01

    Sodium balance is vital to maintaining normal physiological function. Imbalances can occur in a variety of diseases, during certain surgical operations or during rigorous exercise. There is currently no method to continuously monitor sodium concentration in patients who may be susceptible to hyponatremia. Our approach was to design sodium specific fluorescent sensors capable of measuring physiological fluctuations in sodium concentration. The sensors are submicron plasticized polymer particles containing sodium recognition components that are coated with biocompatible poly(ethylene) glycol. Here, the sensors were brought up in saline and placed in the subcutaneous area of the skin of mice by simple injection. The fluorescence was monitored in real time using a whole animal imager to track changes in sodium concentrations. This technology could be used to monitor certain disease states or warn against dangerously low levels of sodium during exercise.

  11. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    PubMed

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  12. Physiological and behavioural assessment of pain in ruminants: principles and caveats.

    PubMed

    Mellor, David J; Stafford, Kevin J

    2004-06-01

    Pain elicits a range of physiological and behavioural responses. These are commonly used to assess the impact of pain-inducing stimuli on animals, to determine whether or not significant pain is experienced and to devise strategies for alleviating pain. This paper outlines a range of principles and caveats to guide the evaluation of physiological and behavioural responses to painful stimuli, so that they can be better used to minimise pain in the experimental context. Although this advice is based on studies of farm animals responding to painful husbandry practices, it is more generally applicable.

  13. Measuring physiological stress in Australian flying-fox populations.

    PubMed

    McMichael, Lee A; Edson, Daniel; Field, Hume

    2014-09-01

    Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5-305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3-370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3-311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2-205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species.

  14. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise.

    PubMed

    Vercruyssen, Fabrice; Easthope, Christopher; Bernard, Thierry; Hausswirth, Christophe; Bieuzen, Francois; Gruet, Mathieu; Brisswalter, Jeanick

    2014-01-01

    The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.

  15. Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos.

    PubMed

    Wang, Fusheng; Yu, Xiaohan; Liu, Xiaona; Shen, Wanxia; Zhu, Shiping; Zhao, Xiaochun

    2016-09-01

    Limonoids are the important secondary metabolites in the citrus. In this study, the accumulation of limonoids at different fruit developmental stages and distribution among different genotypes, tissues and developmental stages were investigated in 12 pummelo varieties. The large variations on limonoids concentration were found among different varieties, which ranged from 233.78 mg/kg FW to 4090.41 mg/kg FW in the seeds at full color stage of the fruit. Classification of pummelos based on the limonoids content divided 12 varieties into three groups. It was matched well with the geographic origination of the pummelo varieties, suggesting that the accumulation of limonoids was mainly determined by the genotype of the pummelo. Accumulation of the limonoids in different tissues was highly variable, and in a tissue specific fashion. The trend of the change on the levels of nomilin and limonin in the seeds and segment membrane were corresponded to the physiological development of the fruit. The rapid accumulation of nomilin and limonoids was observed from the physiological ripening of the seeds. It suggested that physiological maturation of the seeds is a key point that the seeds accelerate the accumulation of nomilin and limonin. In most of pummelo varieties, 10% color break of the fruit was a phenotypic landmark associated with the maximum level of nomilin accumulated in the seeds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions.

    PubMed

    Watts-Williams, Stephanie J; Cavagnaro, Timothy R; Tyerman, Stephen D

    2018-06-22

    Association with arbuscular mycorrhizal fungi (AMF) can impact on plant water relations; mycorrhizal plants can exhibit increased stomatal conductance (g s ) and root hydraulic conductance (normalised to root dry weight, L o ), and altered expression of aquaporins (AQP). Many factors regulate such responses, however, plant intraspecific diversity effects have yet to be explored. Twenty geographically diverse accessions of Medicago truncatula were inoculated with the AMF Funneliformis mosseae or mock-inoculated, and grown under well-watered conditions. Biomass, g s , shoot nutrient concentrations and mycorrhizal colonisation were measured in all accessions, and L o and gene expression in five accessions. The diverse accessions varied in physiology and gene expression; some accessions were also larger or had higher g s when colonised by F. mosseae. In the five accessions, L o was higher in two accessions when colonised by AMF, and also maintained within a much smaller range than the mock-inoculated plants. Expression of MtPIP1 correlated with both g s and L o , and when plants were more than 3% colonised, mycorrhizal colonisation correlated with L o . Accession and AMF treatments had profound effects on M. truncatula, including several measures of plant water relations. Correlations between response variables, especially between molecular and physiological variables, across genotypes, highlight the findings of this study. This article is protected by copyright. All rights reserved.

  17. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    NASA Astrophysics Data System (ADS)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (<50 μM) compared to growth at 1 mM. Although the ammonia oxidation pathway has not been fully elucidated, we have shown that nitric oxide (NO) appears to be a key intermediate: exponentially growing HL72 produces significant NO and the removal of NO using a scavenger reversibly inhibits growth. In addition to AMO, the HL72 genome also contains sequences for a urease encoded by subunits ureABC and an active urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially consumed NH3 from NH4Cl when both substrates were provided in equal molar concentrations. However, the urease alpha subunit ureC was expressed in both the presence and absence of urea. One consequence of urea hydrolysis is consumption of intracellular protons during the reaction. As ammonia oxidation produces H+, leading to a decrease in pH, the hydrolysis of urea prior to ammonia oxidation may help alleviate metabolism-driven pH change in HL72. A survey of archaeal ureC sequences from metagenomic data covering a range of hydrothermal features revealed that ureolytic potential is common to many Nitrosocaldus-like organisms and is geographically widespread. Measurements of urea from siliceous circumneutral springs indicate that the concentrations are generally low, below 10 μM. One possible explanation for low steady state urea concentrations is high consumption rates by ureolytic organisms. This, combined with abiotic thermal degradation, may mask high fluxes of urea in microbial hot spring communities.

  18. The effect of naphthenic acids on physiological characteristics of the microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis.

    PubMed

    Zhang, Huanxin; Tang, Xuexi; Shang, Jiagen; Zhao, Xinyu; Qu, Tongfei; Wang, Ying

    2018-05-11

    Naphthenic acids (NAs) account for 1-2% of crude oil and represent its main acidic component. However, the aquatoxic effects of NAs on marine phytoplankton and their ecological risks have remained largely unknown. Using the marine microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis as the target, we studied the effects of NAs on their growth, cell morphology and physiological characteristics. The cell density decreased as the concentrations of NAs increased, indicating that they had an adverse effect on growth of the investigated algae in a concentration-dependent manner. Moreover, scanning electron microscopy revealed NAs exposure caused damage such as deformed cells, shrunken surface and ruptured cell structures. Exposure to NAs at higher concentrations for 48 h significantly increased the content of chlorophyll (Chl) a and b in P. tricornutum, but decreased their levels in P. helgolandica var. tsingtaoensis. NAs with concentrations no higher than 4 mg/L gradually enhanced the Chl fluorescence (ChlF) parameters and decreased the ChlF parameters at higher concentrations for the two marine microalgae. Additionally, NAs induced hormesis on photosynthetic efficiency of the two microalgae and also have the species difference in their aquatic toxicity. Overall, the results of this study provide a better understanding of the physiological responses of phytoplankton and will enable better risk assessments of NAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A PHYSIOLOGICALLY BASED COMPUTATIONAL MODEL OF THE BPG AXIS IN FATHEAD MINNOWS: PREDICTING EFFECTS OF ENDOCRINE DISRUPTING CHEMICAL EXPOSURE ON REPRODUCTIVE ENDPOINTS

    EPA Science Inventory

    This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...

  20. Environmental stressors alter relationships between physiology and behaviour.

    PubMed

    Killen, Shaun S; Marras, Stefano; Metcalfe, Neil B; McKenzie, David J; Domenici, Paolo

    2013-11-01

    Although correlations have frequently been observed between specific physiological and behavioural traits across a range of animal taxa, the nature of these associations has been shown to vary. Here we argue that a major source of this inconsistency is the influence of environmental stressors, which seem capable of revealing, masking, or modulating covariation in physiological and behavioural traits. These effects appear to be mediated by changes in the observed variation of traits and differential sensitivity to stressors among phenotypes. Considering that wild animals routinely face a range of biotic and abiotic stressors, increased knowledge of these effects is imperative for understanding the causal mechanisms of a range of ecological phenomena and evolutionary responses to stressors associated with environmental change. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid.

    PubMed

    Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; Koike, Yuta; Osawa, Misa; Takeda, Atsushi

    2017-02-17

    Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca 2+ and Mg 2+ , but not other divalent cations such as Zn 2+ , has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn 2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl 2 , indicating that extracellular Zn 2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl 2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl 2 , compared to perfusion with ACSF without Zn 2+ , but attenuated by perfusion with ACSF containing 100 nM ZnCl 2 . Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl 2 , but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn 2+ chelator. The present study indicates that the basal levels of extracellular Zn 2+ , which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently.

  2. In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid

    PubMed Central

    Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; koike, Yuta; Osawa, Misa; Takeda, Atsushi

    2017-01-01

    Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca2+ and Mg2+, but not other divalent cations such as Zn2+, has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl2, indicating that extracellular Zn2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl2, compared to perfusion with ACSF without Zn2+, but attenuated by perfusion with ACSF containing 100 nM ZnCl2. Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl2, but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn2+ chelator. The present study indicates that the basal levels of extracellular Zn2+, which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently. PMID:28211543

  3. The role of limited proteolysis of thyrotropin-releasing hormone in thermoregulation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, C.

    1982-01-01

    Cyclo (His-Pro) is a biologiclly active cyclic dipeptide derived from thyrotropin-releasing hormone by its limited proteolysis. We have developed a specific radioimmunoassay for this cyclic peptide and shown its presence throughout rat and monkey brains. The normal rat brain concentration of cyclo (His-Pro) ranged from 35-61 pmols/brain. The elution profiles of rat brain cyclo (His-Pro)-like immunoreactivity and synthetic radioactive cyclo (His-Pro) following gel filtration, ion-exchange chromatography and high pressure liquid chromatography were similar. An analysis of the regional distribution of cyclo (His-Pro) and TRH in rat and monkey brains exhibited no apparent precursor-product relationship. Studies on the neuroanatomic sites formore » the thermoregulatory effects of cyclo (His-Pro) suggested that the neural loci responsible for cyclo (His-Pro)-induced hypothermia resides within POA/AHA. The endogenous levels of brain cyclo (His-Pro) were elevated when rats were made either hypothyroid by surgical thyroidectomy or forced to drink alcohol for six weeks. These studies demonstrate that cyclo (His-Pro) is present throughout the central nervous system in physiologically relevant concentrations which can be modified by appropriate physiological and pharamacological manipulations. These data in conjunction with earlier reports of multiple biological activities of exogenous cyclo (His-Pro), suggest that endogenous cyclo (His-Pro) is a biological active peptide and it may play a neurotransmitter or neuromodulator role in the central nervous system.« less

  4. Assaying environmental nickel toxicity using model nematodes

    USGS Publications Warehouse

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  5. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  6. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    PubMed Central

    Webb, Michael R.; Min, Kyungmi; Ebeler, Susan E.

    2009-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study—cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 μM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  7. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems.

    PubMed

    Arnold, Kathryn E; Brown, A Ross; Ankley, Gerald T; Sumpter, John P

    2014-11-19

    Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Assaying Environmental Nickel Toxicity Using Model Nematodes

    PubMed Central

    Rudel, David; Douglas, Chandler D.; Huffnagle, Ian M.; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species. PMID:24116204

  9. Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine.

    PubMed

    Blois, Anna; Holmsen, Holm; Martino, Guglielmo; Corti, Angelo; Metz-Boutigue, Marie-Hélène; Helle, Karen B

    2006-03-15

    Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.

  10. Development and Clinical Application of a New Method for the Radioimmunoassay of Arginine Vasopressin in Human Plasma

    PubMed Central

    Robertson, Gary L.; Mahr, Ermelinda A.; Athar, Shahid; Sinha, Tushar

    1973-01-01

    A radioimmunoassay has been developed that permits reliable measurements of plasma arginine vasopressin (AVP) at concentrations as low as 0.5 pg/ml in sample volumes of 1 ml or less. Nonhormonal immunoreactivity associated with the plasma proteins is eliminated by acetone precipitation before assay, leaving unaltered a component that is immunologically and chromatographically indistinguishable from standard AVP. Storage of plasma results in a decline in AVP concentration and, thus, must be carefully regulated. The plasma AVP values obtained by our method approximate the anticipated levels and vary in accordance with physiologic expections. In recumbent normal subjects, plasma AVP ranged from (mean ±SD) 5.4±3.4 pg/ml after fluid deprivation to 1.4±0.8 pg/ml after water loading, and correlated significantly with both plasma osmolality (r=0.52; P<0.001) and urine osmolality (r=0.77; P<0.001). After fluid restriction, plasma AVP was uniformly normal relative to plasma osmolality in patients with nephrogenic diabetes insipidus and primary polydipsia but was distinctly subnormal in all patients with pituitary diabetes insipidus. The infusion of physiologic amounts of posterior pituitary extract caused a dose-related rise in plasma vasopressin that afterwards declined at the expected rate (t½=22.5±4 min). We conclude that, when used appropriately, our radioimmunoassay method provides a useful way of assessing AVP function in man. PMID:4727463

  11. LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range.

    PubMed

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M; Revsbech, Niels-Peter; Glud, Ronnie N; Canfield, Donald E; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.

  12. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    PubMed Central

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H.

    2016-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this site on the genome decreased drought tolerance, but increased glucosinolate concentration. PMID:26685218

  13. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    PubMed Central

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M.; Revsbech, Niels-Peter; Glud, Ronnie N.; Canfield, Donald E.; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented. PMID:26029920

  14. Lactational transfer of mercury and polychlorinated biphenyls in polar bears.

    PubMed

    Knott, Katrina K; Boyd, Daryle; Ylitalo, Gina M; O'Hara, Todd M

    2012-07-01

    We examined concentrations of total mercury (tHg, inorganic and methylated forms) and polychlorinated biphenyls (PCBs) in blood and milk from free-ranging Southern Beaufort-Chukchi Sea polar bears (Ursus maritimus) to assess maternal transfer of contaminants during lactation and the potential health risk to nursing young. Concentrations of contaminants in the blood of dependent and juvenile animals (ages 1-5 years) ranged from 35.9 to 52.2 μg kg(-1) ww for tHg and 13.9 to 52.2 μg kg(-1) ww (3255.81-11067.79 μg kg(-1) lw) for ΣPCB(7)s, similar to those of adult females, but greater than adult males. Contaminant concentrations in milk ranged from 5.7 to 71.8 μg tHg kg(-1)ww and 160 to 690 μg ΣPCB(11)s kg(-1) ww (547-5190 μg kg(-1) lw). The daily intake levels for tHg by milk consumption estimated for dependent young were below the tolerable daily intake level (TDIL) of tHg established for adult humans. Although the daily intake levels of PCBs through milk consumption for cubs of the year exceeded the TDIL thresholds, calculated dioxin equivalents for PCBs in milk were below adverse physiological thresholds for aquatic mammals. Relatively high concentrations of non-dioxin like PCBs in polar bear milk and blood could impact endocrine function of Southern Beaufort-Chukchi Sea polar bears, but this is uncertain. Transfer of contaminants during mid to late lactation likely limits bioaccumulation of dietary contaminants in female polar bears during spring. As polar bears respond to changes in their arctic sea ice habitat, the adverse health impacts associated with nutritional stress may be exacerbated by tHg and PCBs exposure, especially in ecologically and toxicologically sensitive polar bear cohorts such as reproductive females and young. Copyright © 2012. Published by Elsevier Ltd.

  15. Changes in passive tension of muscle in humans and animals after eccentric exercise

    PubMed Central

    Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U

    2001-01-01

    This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215

  16. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    PubMed

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Physiological indicators of nitrogen response in short-rotation sycamore plantations. [Platanus occidentalis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaplinski, T.J.; Norby, R.J.

    1989-04-01

    American sycamore (Platanus occidentalis L.) seedlings were grown in the field under urea-nitrogen fertilization regimes to identify physiological variables that characterize the growth responses. Treatments included trees fertilized at the beginning of the growing season with 450 kg N/ha, trees fertilized periodically (three times during the growing season) at 37.5 kg N/ha, and unfertilized controls. Above ground biomass accumulation in the heaviest nitrogen treatment was three times that of the controls, and nearly as much growth occurred when less nitrogen was added periodically. Photosynthesis, chlorophyll concentrations, and growth increased rapidly after a midseason application of a small amount of nitrogen,more » but not to a late-season application. There was no evidence that fertilization extended the physiologically active season or increased susceptibility to drought or cold. Sycamore leaves accumulated sucrose and mannose in response to water and cold stress in all treatments. Photosynthetic pigment concentrations, net photosynthetic rate, and leaf nitrate reductase activity were sensitive indicators of nitrogen fertilization, but foliar concentrations of nitrate, total nitrogen, soluble carbohydrate and soluble protein were not.« less

  18. A general multiple-compartment model for the transport of trace elements through animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.

    1991-08-01

    Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less

  19. Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research

    PubMed Central

    Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong‐Suk; Kanthasamy, Arthi

    2016-01-01

    Hydrogen sulfide (H2S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2S is known to cause brain damage, leading to neurodegeneration and long‐term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2S concentrations. This review focuses on the neuropathology of high acute H2S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2S‐induced neurodegeneration. PMID:27442775

  20. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov; Doerge, Daniel R.; Teeguarden, Justin G.

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult humanmore » model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.« less

Top