AN AUTOMATED MONITORING SYSTEM FOR FISH PHYSIOLOGY AND TOXICOLOGY
This report describes a data acquisition and control (DAC) system that was constructed to manage selected physiological measurements and sample control for aquatic physiology and toxicology. Automated DAC was accomplished with a microcomputer running menu-driven software develope...
Spangler, G
1997-08-01
The aim of the study was to compare emotional and physiological responses to real and control examinations and to assess their relation to personality characteristics. Emotional responses were assessed by state anxiety and perceived stress. The assessment of physiological responses included the activity of the cardiac system (heart periods, vagal tone), the adrenocortical system (cortisol) and the immune system (immune globulin A, sIgA). Emotional and physiological responses of 23 students (12 males, 11 females) were assessed during an oral exam at the end of a basic course in psychology which was a prerequisite for the students' final exams. For the control condition physiological responses were assessed one week before the examination during a memory test. The findings of the study demonstrate different emotional and physiological response patterns to examinations as compared to the control condition. Heightened anxiety was observed only before the exam. Whereas within-situation physiological responses (higher heart periods, cortisol, and sIgA; lower vagal tone) were observed both under the exam and control condition, responses to exam condition indicated pre-exam anticipatory activation and post-exam restricted recovery responses. With regard to personality characteristics subjects with high ego-resiliency showed more flexible adaptation than subjects with low ego-resiliency both on the emotional level (anxiety down-regulation after exam) and on the physiological level (situation-specific responses, quick recovery). Subjects with high ego-control exhibited a lower physiological reactivity under both conditions, i.e. they seemed to maintain longer their control also on a physiological level independent of the type of situation.
Specifications Physiological Monitoring System
NASA Technical Reports Server (NTRS)
1985-01-01
The operation of a physiological monitoring system (PMS) is described. Specifications were established for performance, design, interface, and test requirements. The PMS is a compact, microprocessor-based system, which can be worn in a pack on the body or may be mounted on a Spacelab rack or other appropriate structure. It consists of two modules, the Data Control Unit (DCU) and the Remote Control/Display Unit (RCDU). Its purpose is to collect and distribute data from physiological experiments in the Spacelab and in the Orbiter.
Investigations of respiratory control systems simulation
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1973-01-01
The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.
Fractal dynamics in physiology: Alterations with disease and aging
Goldberger, Ary L.; Amaral, Luis A. N.; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Peng, C.-K.; Stanley, H. Eugene
2002-01-01
According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era. PMID:11875196
NASA Technical Reports Server (NTRS)
Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)
2017-01-01
Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.
St Clair Gibson, A; Swart, J; Tucker, R
2018-02-01
Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel
2014-09-01
Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
The Analog (Computer) As a Physiology Adjunct.
ERIC Educational Resources Information Center
Stewart, Peter A.
1979-01-01
Defines and discusses the analog computer and its use in a physiology laboratory. Includes two examples: (1) The Respiratory Control Function and (2) CO-Two Control in the Respiratory System. Presents diagrams and mathematical models. (MA)
System and method for leveraging human physiological traits to control microprocessor frequency
Shye, Alex; Pan, Yan; Scholbrock, Benjamin; Miller, J. Scott; Memik, Gokhan; Dinda, Peter A; Dick, Robert P
2014-03-25
A system and method for leveraging physiological traits to control microprocessor frequency are disclosed. In some embodiments, the system and method may optimize, for example, a particular processor-based architecture based on, for example, end user satisfaction. In some embodiments, the system and method may determine, for example, whether their users are satisfied to provide higher efficiency, improved reliability, reduced power consumption, increased security, and a better user experience. The system and method may use, for example, biometric input devices to provide information about a user's physiological traits to a computer system. Biometric input devices may include, for example, one or more of the following: an eye tracker, a galvanic skin response sensor, and/or a force sensor.
Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.
Conceptual design of wearpack with physiology detector feature based on wearable instrumentation
NASA Astrophysics Data System (ADS)
Sukirman, Melani; Laksono, Pringgo Widyo; Priadythama, Ilham; Susmartini, Susy; Suhardi, Bambang
2017-11-01
Every company in Indonesia is responsible for their worker health and safety condition as mentioned in UU No I year 1970. In manufacturing industries, there are many manual tasks dealing with high work load and risk, so that they require excellent concentration and physical condition. There is no ideal way to guarantee worker safety without a real time physiological monitoring. This paper reports our ongoing study in conceptual design development of worker's clothing which is equipped with a wearable instrumentation system. The system is designed to detect and measure body temperature and pulse in real time. Some electrical components such as, LCD (liquid crystal display), LEDs (light emitting diode), batteries, and physiological sensors were assembled. All components are controlled by a wearable on board controller. LEDs is used as alert which can indicate abnormal physical conditions. The LCD was added to provide more detail information. TMP 36 and XD-58C were selected as the physiological sensors. Finally, an Arduino Lilypad was chosen for the controller. This instrumentation system was verified by accurately detected and inform physiological condition of 3 subjects. Further we are going to attach the system to a worker's clothing which was specifically designed to simplify and comfortable usage.
Acquisition and analysis of primate physiologic data for the Space Shuttle
NASA Astrophysics Data System (ADS)
Eberhart, Russell C.; Hogrefe, Arthur F.; Radford, Wade E.; Sanders, Kermit H.; Dobbins, Roy W.
1988-03-01
This paper describes the design and prototypes of the Physiologic Acquisition and Telemetry System (PATS), which is a multichannel system, designed for large primates, for the data acquisition, telemetry, storage, and analysis of physiological data. PATS is expected to acquire data from units implanted in the abdominal cavities of rhesus monkeys that will be flown aboard the Spacelab. The system will telemeter both stored and real-time internal physiologic measurements to an external Flight Support Station (FSS) computer system. The implanted Data Acquition and Telemetry Subsystem subunit will be externally activated, controlled and reprogrammed from the FSS.
Variable setpoint as a relaxing component in physiological control.
Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod
2017-09-01
Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong
2018-01-01
Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.
Shift of a limit cycle in biology: From pathological to physiological homeostasia*
NASA Astrophysics Data System (ADS)
Claude, Daniel
1995-03-01
Biological systems may show homeostatic behaviors that are similar to the ones of forced dynamic systems with a stable limit cycle. For a large class of dynamic systems, it is shown that a shift of a pathological limit cycle over the physiological limit cycle can never be executed by means of a control with a desired periodicity. The above statement shows that the only possibility is to reduce as much as possible the dimensions of a small residual limit cycle. Moreover, it is possible to give some information about the structure of feedback laws that would allow the shift of the limit cycle. The fact that it is generally not possible to recover a physiological limit cycle from a pathological one, results into the fear of never or hardly ever reaching a physiological behavior, and it seems that any hope of therapeutics is given up. This leads to introduce the locking concept, which permits system parameters to change and provides the basis for an adaptive and iterative control, which allows a step by step approach and to finally reach the physiological limit cycle.
Physiological Factors Contributing to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
The development of a tele-monitoring system for physiological parameters based on the B/S model.
Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai
2010-01-01
The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.
Interpersonal Biocybernetics: Connecting Through Social Psychophysiology
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Stephens, Chad L.
2012-01-01
One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment
Kim, H C; Khanwilkar, P S; Bearnson, G B; Olsen, D B
1997-01-01
An automatic physiological control system for the actively filled, alternately pumped ventricles of the volumetrically coupled, electrohydraulic total artificial heart (EHTAH) was developed for long-term use. The automatic control system must ensure that the device: 1) maintains a physiological response of cardiac output, 2) compensates for an nonphysiological condition, and 3) is stable, reliable, and operates at a high power efficiency. The developed automatic control system met these requirements both in vitro, in week-long continuous mock circulation tests, and in vivo, in acute open-chested animals (calves). Satisfactory results were also obtained in a series of chronic animal experiments, including 21 days of continuous operation of the fully automatic control mode, and 138 days of operation in a manual mode, in a 159-day calf implant.
Emotional Processing in High-Functioning Autism--Physiological Reactivity and Affective Report
ERIC Educational Resources Information Center
Bolte, Sven; Feineis-Matthews, Sabine; Poustka, Fritz
2008-01-01
This study examined physiological response and affective report in 10 adult individuals with autism and 10 typically developing controls. An emotion induction paradigm using stimuli from the International Affective Picture System was applied. Blood pressure, heart and self-ratings of experienced valence (pleasure), arousal and dominance (control)…
Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin
Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.
A novel control architecture for physiological tremor compensation in teleoperated systems.
Ghorbanian, A; Zareinejad, M; Rezaei, S M; Sheikhzadeh, H; Baghestan, K
2013-09-01
Telesurgery delivers surgical care to a 'remote' patient by means of robotic manipulators. When accurate positioning of the surgeon's tool is required, as in microsurgery, physiological tremor causes unwanted imprecision during a surgical operation. Accurate estimation/compensation of physiological tremor in teleoperation systems has been shown to improve performance during telesurgery. A new control architecture is proposed for estimation and compensation of physiological tremor in the presence of communication time delays. This control architecture guarantees stability with satisfactory transparency. In addition, the proposed method can be used for applications that require modifications in transmitted signals through communication channels. Stability of the bilateral tremor-compensated teleoperation is preserved by extending the bilateral teleoperation to the equivalent trilateral Dual-master/Single-slave teleoperation. The bandlimited multiple Fourier linear combiner (BMFLC) algorithm is employed for real-time estimation of the operator's physiological tremor. Two kinds of stability analysis are employed. In the model-base controller, Llewellyn's Criterion is used to analyze the teleoperation absolute stability. In the second method, a nonmodel-based controller is proposed and the stability of the time-delayed teleoperated system is proved by employing a Lyapunov function. Experimental results are presented to validate the effectiveness of the new control architecture. The tremorous motion is measured by accelerometer to be compensated in real time. In addition, a Needle-Insertion setup is proposed as a slave robot for the application of brachytherapy, in which the needle penetrates in the desired position. The slave performs the desired task in two classes of environments (free motion of the slave and in the soft tissue). Experiments show that the proposed control architecture effectively compensates the user's tremorous motion and the slave follows only the master's voluntary motion in a stable manner. Copyright © 2012 John Wiley & Sons, Ltd.
Coordinated three-dimensional motion of the head and torso by dynamic neural networks.
Kim, J; Hemami, H
1998-01-01
The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.
A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...
Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V
2014-04-01
A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrative approaches for modeling regulation and function of the respiratory system.
Ben-Tal, Alona; Tawhai, Merryn H
2013-01-01
Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. Copyright © 2013 Wiley Periodicals, Inc.
Forebrain networks and the control of feeding by environmental learned cues
Petrovich, Gorica D.
2013-01-01
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food intake. Often, however, environmental influences rival physiological control and stimulate eating irrespective of satiety, or inhibit eating irrespective of hunger. If persistent, such maladaptive challenges to the physiological system could lead to dysregulated eating and ultimately to eating disorders. Nevertheless, the brain mechanisms underlying environmental contribution in the control of food intake are poorly understood. This paper provides an overview in recent advances in deciphering the critical brain systems using rodent models for environmental control by learned cues. These models use associative learning to compete with the physiological control, and in one preparation food cues stimulate a meal despite satiety, while in another preparation fear cues stop a meal despite hunger. Thus far, four forebrain regions have been identified as part of the essential cue induced feeding circuitry. These are telencephalic areas critical for associative learning, memory encoding, and decision making, the amygdala, hippocampus and prefrontal cortex and the lateral hypothalamus, which functions to integrate feeding, reward, and motivation. This circuitry also engages two orexigenic peptides, ghrelin and orexin. A parallel amygdalar circuitry supports fear cue cessation of feeding. These findings illuminate the brain mechanisms underlying environmental control of food intake and might be also relevant to aspects of human appetite and maladaptive overeating and undereating. PMID:23562305
Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H
1997-01-01
Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.
Riley, Callum James; Gavin, Matthew
2017-06-01
Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.
Statistical physics and physiology: monofractal and multifractal approaches
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.
1999-01-01
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.
Advantages and Disadvantages of Physiological Assessment For Next Generation Control Room Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Ronald L. Boring; Donald D. Dudenhoeffer
2007-08-01
Abstract - We propose using non-obtrusive physiological assessment (e.g., eye tracking,) to assess human information processing errors (e.g., loss of vigilance) and limitations (e.g., workload) for advanced energy systems early in the design process. This physiological approach for assessing risk will circumvent many limitations of current risk methodologies such as subjective rating (e.g., rater’s biases) and performance modeling (e.g., risk assessment is scripted and is based upon the individual modeler’s judgment). Key uses will be to evaluate (early in the design process) novel control room equipment and configurations as well as newly developed automated systems that will inevitably place amore » high information load on operators. The physiological risk assessment tool will allow better precision in pinpointing problematic design issues and will provide a “real-time” assessment of risk. Furthermore, this physiological approach would extend the state-of-the-art of human reliability methods from a “static” measure to more “dynamic.” This paper will discuss a broad range of the current popular online performance gauges as well as its advantages and disadvantages for use in next generation control room.« less
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Artificial blood circulation: stabilization, physiological control, and optimization.
Lerner, A Y
1990-04-01
The requirements for creating an efficient Artificial Blood Circulation System (ABCS) have been determined. A hierarchical three-level adaptive control system is suggested for ABCS to solve the following problems: stabilization of the circulation conditions, left and right pump coordination, physiological control for maintaining a proper relation between the cardiac output and the level of gas exchange required for metabolism, and optimization of the system behavior. The adaptations to varying load and body parameters will be accomplished using the signals which characterize the real-time computer-processed values of correlations between the changes in hydraulic resistance of blood vessels, or the changes in aortic pressure, and the oxygen (or carbon dioxide) concentration.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.;
2011-01-01
Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
Design of Plant Eco-physiology Monitoring System Based on Embedded Technology
NASA Astrophysics Data System (ADS)
Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu
A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.
Advanced Physiological Estimation of Cognitive Status (APECS)
2009-09-15
REPORT Advanced Physiological Estimation of Cognitive Status (APECS) Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: EEG...fitness and transmit data to command and control systems. Some of the signals that the physiological sensors measure are readily interpreted, such as...electroencephalogram (EEG) and other signals requires a complex series of mathematical transformations or algorithms. Overall, research on algorithms
A portable personal cooling system for mine rescue operations
NASA Technical Reports Server (NTRS)
Webbon, B.; Williams, B.; Kirk, P.; Elkins, W.; Stein, R.
1977-01-01
Design of a portable personal cooling system to reduce physiological stress in high-temperature, high-humidity conditions is discussed. The system, based on technology used in the thermal controls of space suits, employs a combination of head and thoracic insulation and cooling through a heat sink unit. Average metabolic rates, heart rates, rectal temperature increase and sweat loss were monitored for test subjects wearing various configurations of the cooling system, as well as for a control group. The various arrangements of the cooling garment were found to provide significant physiological benefits; however, increases in heat transfer rate of the cooling unit and more effective insulation are suggested to improve the system's function.
Physiological assessment of tongue function in dysarthria following traumatic brain injury.
Goozée, J V; Murdoch, B E; Theodoros, D G
2001-01-01
A tongue pressure transducer system was used to assess tongue strength, endurance, fine pressure control and rate of repetitive movement in a group of 20 individuals, aged 17 to 60 years, with dysarthria following severe traumatic brain injury (TBI). Comparison of the TBI group's results against data obtained from a group of 20 age and sex matched control subjects revealed reductions in tongue endurance and rate of repetitive movement. Tongue strength and fine pressure control, however, were found not to differ significantly from the control group. Pearson's product-moment correlations indicated there to be only weak correlations between the physiological nonspeech tongue parameters and the deviant perceptual articulatory features exhibited by the TBI group. Further analysis of the results on an individual subject basis revealed no clear relationships between the physiological and perceptual parameters suggesting that the TBI subjects may have been compensating in different ways for the physiological impairments.
Orderly recruitment of motor units under optical control in vivo.
Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L
2010-10-01
A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.
Ong, M L; Ng, E Y K
2005-12-01
In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.
Terrestrial implications of mathematical modeling developed for space biomedical research
NASA Technical Reports Server (NTRS)
Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.
Automated patient monitoring system
NASA Technical Reports Server (NTRS)
Bedard, R. E.; Buxton, R. L.; Dawson, W. S.
1968-01-01
Radio-linked patient monitoring system collects several channels of physiological data from as many as 64 hospital patients and transmits the data in digital form to a central control station. The system consists of a central control station and battery-operated patient units comprising small strap-on electronics packages.
Two Archetypes of Motor Control Research.
Latash, Mark L
2010-07-01
This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.
Development of a cerebral circulation model for the automatic control of brain physiology.
Utsuki, T
2015-01-01
In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.
The effects of gravity on the circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1994-01-01
The physiological system responsible for the temporal coordination of an organism is the circadian timing system (CTS). This system provides two forms of temporal coordination. First, the CTS provides for synchronization of the organism with the 24 hour period of the external environment. This synchronization of the organism with the environment is termed entrainment. Second, this system also provides for internal coordination of the various physiological, behavioral, and biochemical events within the organism. When either of these two temporal relationships are disturbed, various dysfunctions can be manifest within the organism. Homeostatic capacity of other physiological systems may be reduced. Performance is decreased and sleep disorders, mental health impairment (e.g., depression), jet lag syndrome, and shift work maladaptation frequently occur. Over the last several years, several studies have evaluated the potential influence of gravity on this physiological control system by examining changes in rhythmic characteristics of organisms exposed to altered gravitational environments. The altered gravitational environments have included the microgravity of spaceflight as well as hyperdynamic fields produced via centrifugation.
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.
Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne
2017-06-01
Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.
1997-01-01
We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.
Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis
Murray, Heath; Koh, Alan
2014-01-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815
Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.
Murray, Heath; Koh, Alan
2014-10-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
Circadian system and glucose metabolism: implications for physiology and disease
Qian, Jingyi; Scheer, Frank AJL
2016-01-01
The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-hr rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption. PMID:27079518
Evolution and physiology of neural oxygen sensing
Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.
2014-01-01
Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625
A miniaturized digital telemetry system for physiological data transmission
NASA Technical Reports Server (NTRS)
Portnoy, W. M.; Stotts, L. J.
1978-01-01
A physiological date telemetry system, consisting basically of a portable unit and a ground base station was designed, built, and tested. The portable unit to be worn by the subject is composed of a single crystal controlled transmitter with AM transmission of digital data and narrowband FM transmission of voice; a crystal controlled FM receiver; thirteen input channels follwed by a PCM encoder (three of these channels are designed for ECG data); a calibration unit; and a transponder control system. The ground base station consists of a standard telemetry reciever, a decoder, and an FM transmitter for transmission of voice and transponder signals to the portable unit. The ground base station has complete control of power to all subsystems in the portable unit. The phase-locked loop circuit which is used to decode the data, remains in operation even when the signal from the portable unit is interrupted.
Stevenson, Tyler J; Small, Thomas W; Ball, Gregory F; Moore, Ignacio T
2012-08-01
Seasonal breeding in temperate zone vertebrates is characterised by pronounced variation in both central and peripheral reproductive physiology as well as behaviour. In contrast, many tropical species have a comparatively longer and less of a seasonal pattern of breeding than their temperate zone counterparts. These extended, more "flexible" reproductive periods may be associate with a lesser degree of annual variation in reproductive physiology. Here we investigated variation in the neuroendocrine control of reproduction in relation to the changes in the neural song control system in a tropical breeding songbird the rufous-collared sparrows (Zonotrichia capensis). Using in situ hybridization, we show that the optical density of GnRH1 mRNA expression is relatively constant across pre-breeding and breeding states. However, males were found to have significantly greater expression compared to females regardless of breeding state. Both males and females showed marked variation in measures of peripheral reproductive physiology with greater gonadal volumes and concentrations of sex steroids in the blood (i.e. testosterone in males; estrogen in females) during the breeding season as compared to the pre-breeding season. These findings suggest that the environmental cues regulating breeding in a tropical breeding bird ultimately exert their effects on physiology at the level of the median eminence and regulate the release of GnRH1. In addition, histological analysis of the song control system HVC, RA and Area X revealed that breeding males had significantly larger volumes of these brain nuclei as compared to non-breeding males, breeding females, and non-breeding females. Females did not exhibit a significant difference in the size of song control regions across breeding states. Together, these data show a marked sex difference in the extent to which there is breeding-associated variation in reproductive physiology and brain plasticity that is dependent on the reproductive state in a tropical breeding songbird. Copyright © 2012 Elsevier Inc. All rights reserved.
Multifractality of cerebral blood flow
NASA Astrophysics Data System (ADS)
West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz
2003-02-01
Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.
Fishing for an ECG: A Student-Directed Electrocardiographic Laboratory Using Rainbow Trout
ERIC Educational Resources Information Center
Cotter, Paul A.; Rodnick, Kenneth J.
2007-01-01
Cardiac physiology is emphasized in many undergraduate physiology courses, but few nonmammalian vertebrate model systems exist that 1) can be studied fairly noninvasively, 2) are well suited for controlled experimentation, and 3) emphasize principles characteristic of the vertebrate heart. We have developed an inquiry-based…
Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing
2017-10-01
This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.
Lee-Montiel, Felipe T; George, Subin M; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing
2017-01-01
This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices. PMID:28409533
Preliminary results of Physiological plant growth modelling for human life support in space
NASA Astrophysics Data System (ADS)
Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline
2012-07-01
Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the physiological plant model, in the case of lettuce (since the leaf metabolic model predominates), the developed model was verified with the carbon consumption of plant, as input. The model predicts the biomass production (as output) with respect to the quantum of light absorbed by the plant. The obtained result was found satisfying for the first initiation in the physiological plant modelling.
Implantable physiologic controller for left ventricular assist devices with telemetry capability.
Asgari, Siavash S; Bonde, Pramod
2014-01-01
Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.
Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M
2016-06-13
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana
2018-06-01
Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.
Monitoring of physiological parameters from multiple patients using wireless sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y
2008-10-01
This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
Central Neural Control of the Cardiovascular System: Current Perspectives
ERIC Educational Resources Information Center
Dampney, Roger A. L.
2016-01-01
This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…
Interactive Videodisc as a Component in a Multi-Method Approach to Anatomy and Physiology.
ERIC Educational Resources Information Center
Wheeler, Donald A.; Wheeler, Mary Jane
At Cuyahoga Community College (Ohio), computer-controlled interactive videodisc technology is being used as one of several instructional methods to teach anatomy and physiology. The system has the following features: audio-visual instruction, interaction with immediate feedback, self-pacing, fill-in-the-blank quizzes for testing total recall,…
USDA-ARS?s Scientific Manuscript database
Knowledge of the physiological and genetic basis of stress tolerance has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in controlled conditions or laboratories, not in the field. To test the comparability o...
Subjective and physiological emotional response in euthymic bipolar patients: a pilot study.
Lemaire, Mathieu; Aguillon-Hernandez, Nadia; Bonnet-Brilhault, Frédérique; Martineau, Joëlle; El-Hage, Wissam
2014-12-15
The euthymic phase of bipolar disorders may be associated with residual emotional and/or subsyndromal symptoms. The aim of this study was to compare subjective and physiologic emotional response to negative, neutral and positive emotion eliciting pictures between euthymic bipolar patients (n=26) and healthy controls (n=30). We evaluated emotional response using an emotional induction method with emotional pictures from the International Affective Picture System. We measured subjective emotional response with the Self-Assessment Manikin and physiological emotional response by measuring pupil size. No difference was found between euthymic bipolar patients and controls regarding subjective emotional response. However, upon viewing positive pictures, pupil dilation was significantly lower in euthymic bipolar patients compared to controls. This finding suggests that euthymic bipolar phase may be associated with reduced physiologic emotional response to positive valence, which is consistent with a more general negative emotional bias or can be understood as a residual emotional subsyndromal symptom. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hemodynamic and Thermal Responses to Head and Neck Cooling in Men and Women
NASA Technical Reports Server (NTRS)
Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Carbo, Jorge E.; Webbon, Bruce W.
1995-01-01
Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. Configurations of these systems include passive ice vests and circulating liquid cooling garments (LCGs) in the forms of vests, cooling caps and combined head and neck cooling systems. However, little information is available oil the amount or heat that can be extracted from the body with these systems or the physiologic changes produced by routine operation of these systems. The objective of this study was to determine the operating characteristics and the physiologic change, produced by short term use of one commercially available thermal control system.
Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E D
2017-05-01
Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined "norm." Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team.
Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics
NASA Astrophysics Data System (ADS)
Yang, Albert C.-C.; Hseu, Shu-Shya; Yien, Huey-Wen; Goldberger, Ary L.; Peng, C.-K.
2003-03-01
Complex physiologic signals may carry unique dynamical signatures that are related to their underlying mechanisms. We present a method based on rank order statistics of symbolic sequences to investigate the profile of different types of physiologic dynamics. We apply this method to heart rate fluctuations, the output of a central physiologic control system. The method robustly discriminates patterns generated from healthy and pathologic states, as well as aging. Furthermore, we observe increased randomness in the heartbeat time series with physiologic aging and pathologic states and also uncover nonrandom patterns in the ventricular response to atrial fibrillation.
Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.
2016-01-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571
Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H
2017-05-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.
Homeostasis, inflammation, and disease susceptibility.
Kotas, Maya E; Medzhitov, Ruslan
2015-02-26
While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R
2014-08-05
The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.
Bestmann, Sven; Duque, Julie
2016-08-01
Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. © The Author(s) 2015.
Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Fox, Elaine
2009-10-01
Individuals who report sensitivity to electromagnetic fields often report cognitive impairments that they believe are due to exposure to mobile phone technology. Previous research in this area has revealed mixed results, however, with the majority of research only testing control individuals. Two studies using control and self-reported sensitive participants found inconsistent effects of mobile phone base stations on cognitive functioning. The aim of the present study was to clarify whether short-term (50 min) exposure at 10 mW/m(2) to typical Global System for Mobile Communication (GSM) and Universal Mobile Telecommunications System (UMTS) base station signals affects attention, memory, and physiological endpoints in sensitive and control participants. Data from 44 sensitive and 44 matched-control participants who performed the digit symbol substitution task (DSST), digit span task (DS), and a mental arithmetic task (MA), while being exposed to GSM, UMTS, and sham signals under double-blind conditions were analyzed. Overall, cognitive functioning was not affected by short-term exposure to either GSM or UMTS signals in the current study. Nor did exposure affect the physiological measurements of blood volume pulse (BVP), heart rate (HR), and skin conductance (SC) that were taken while participants performed the cognitive tasks.
ERIC Educational Resources Information Center
Schiamberg, Lawrence B.
This paper provides a brief review of theory, research, and educational implications for the role of exercise in controlling select biological and physiological changes which have traditionally been assumed to simply "happen" to the older adult. It is noted that recent research has suggested that many biological and physiological effects of…
Presbypropria: the effects of physiological ageing on proprioceptive control.
Boisgontier, Matthieu P; Olivier, Isabelle; Chenu, Olivier; Nougier, Vincent
2012-10-01
Several changes in the human sensory systems, like presbycusis or presbyopia, are well-known to occur with physiological ageing. A similar change is likely to occur in proprioception, too, but there are strong and unexplained discrepancies in the literature. It was proposed that assessment of the attentional cost of proprioceptive control could provide information able to unify these previous studies. To this aim, 15 young adults and 15 older adults performed a position matching task in single and dual-task paradigms with different difficulty levels of the secondary task (congruent and incongruent Stroop-type tasks) to assess presumed age-related deficits in proprioceptive control. Results showed that proprioceptive control was as accurate and as consistent in older as in young adults for a single proprioceptive task. However, performing a secondary cognitive task and increasing the difficulty of this secondary task evidenced both a decreased matching performance and/or an increased attentional cost of proprioceptive control in older adults as compared to young ones. These results advocated for an impaired proprioception in physiological ageing.
Neuropathophysiology of functional gastrointestinal disorders
Wood, Jackie D
2007-01-01
The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis. PMID:17457962
Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.
1979-01-01
The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3
Physiological correlates and emotional specificity of human piloerection
Benedek, Mathias; Kaernbach, Christian
2011-01-01
Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. PMID:21276827
Physiological correlates and emotional specificity of human piloerection.
Benedek, Mathias; Kaernbach, Christian
2011-03-01
Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.
Physiological principles of vestibular function on earth and in space
NASA Technical Reports Server (NTRS)
Minor, L. B.
1998-01-01
Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.
NASA Astrophysics Data System (ADS)
Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.
2014-11-01
In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.
A Database as a Service for the Healthcare System to Store Physiological Signal Data.
Chang, Hsien-Tsung; Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records- 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users-we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance.
A Database as a Service for the Healthcare System to Store Physiological Signal Data
Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records– 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users—we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance. PMID:28033415
Luz, Maria; Manzey, Dietrich; Modemann, Susanne; Strauss, Gero
2015-01-01
Image-guided navigation (IGN) systems provide automation support of intra-operative information analysis and decision-making for surgeons. Previous research showed that navigated-control (NC) systems which represent high levels of decision-support and directly intervene in surgeons' workflow provide benefits with respect to patient safety and surgeons' physiological stress but also involve several cost effects (e.g. prolonged surgery duration, reduced secondary-task performance). It was hypothesised that less automated distance-control (DC) systems would provide a better solution in terms of human performance consequences. N = 18 surgeons performed a simulated mastoidectomy with NC, DC and without IGN assistance. Effects on surgical performance, physiological effort, workload and situation awareness (SA) were compared. As expected, DC technology had the same benefits as the NC system but also led to less unwanted side effects on surgery duration, subjective workload and SA. This suggests that IGN systems just providing information analysis support are overall more beneficial than higher automated decision-support. This study investigates human performance consequences of different concepts of IGN support for surgeons. Less automated DC systems turned out to provide advantages for patient safety and surgeons' stress similar to higher automated NC systems with, at the same time, reduced negative consequences on surgery time and subjective workload.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.
1971-01-01
Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.
Medical, Psychophysiological, and Human Performance Problems During Extended EVA
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.
Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-Ming; Nishimura, Ichiro
2013-12-05
Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering.
Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-ming; Nishimura, Ichiro
2013-01-01
Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering. PMID:24305548
Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E.D.
2017-01-01
Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined “norm.” Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team. PMID:27832032
Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis
Pamenter, Matthew E.; Powell, Frank L.
2016-01-01
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896
Improving excellence in scoliosis rehabilitation: a controlled study of matched pairs.
Weiss, H-R; Klein, R
2006-01-01
Physiotherapy programmes so far mainly address the lateral deformity of scoliosis, a few aim at the correction of rotation and only very few address the sagittal profile. Meanwhile, there is evidence that correction forces applied in the sagittal plane are also able to correct the scoliotic deformity in the coronal and frontal planes. So it should be possible to improve excellence in scoliosis rehabilitation by the implementation of exercises to correct the sagittal deformity in scoliosis patients. An exercise programme (physio-logic exercises) aiming at a physiologic sagittal profile was developed to add to the programme applied at the centre or to replace certain exercises or exercising positions. To test the hypothesis that physio-logic exercises improve the outcome of Scoliosis Intensive Rehabilitation (SIR), the following study design was chosen: Prospective controlled trial of pairs of patients with idiopathic scoliosis matched by sex, age, Cobb angle and curve pattern. There were 18 patients in the treatment group (SIR + physio-logic exercises) and 18 patients in the control group (SIR only), all in matched pairs. Average Cobb angle in the treatment group was 34.5 degrees (SD 7.8) Cobb angle in the control group was 31.6 degrees (SD 5.8). Age in the treatment group was at average 15.3 years (SD 1.1) and in the control group 14.7 years (SD 1.3). Thirteen of the 18 patients in either group had a brace. Outcome parameter: average lateral deviation (mm), average surface rotation ( degrees ) and maximum Kyphosis angle ( degrees ) as evaluated with the help of surface topography (Formetric-system). Lateral deviation (mm) decreased significantly after the performance of the physio-logic programme and highly significantly in the physio-logic ADL posture; however, it was not significant after completion of the whole rehabilitation programme (2.3 vs 0.3 mm in the controls). Surface rotation improved at average 1.2 degrees in the treatment group and 0.8 degrees in the controls while Kyphosis angle did not improve in both groups. The physio-logic programme has to be regarded as a useful 'add on' to Scoliosis Rehabilitation with regards to the lateral deviation of the scoliotic trunk. A longitudinal controlled study is necessary to evaluate the long-term effect of the the physio-logic programme also with the help of X-rays.
Jones, R
1990-08-01
Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.
Twelfth Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Wempe, T. E.
1976-01-01
Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems.
[Sociophysiology: basic processes of empathy].
Haker, Helene; Schimansky, Jenny; Rössler, Wulf
2010-01-01
The aim of this review is to describe sociophysiological and social cognitive processes that underlie the complex phenomenon of human empathy. Automatic reflexive processes such as physiological contagion and action mirroring are mediated by the mirror neuron system. They are a basis for further processing of social signals and a physiological link between two individuals. This link comprises simultaneous activation of shared motor representations. Shared representations lead implicitly via individual associations in the limbic and vegetative system to a shared affective state. These processes are called sociophysiology. Further controlled- reflective, self-referential processing of those social signals leads to explicit, conscious representations of others' minds. Those higher-order processes are called social cognition. The interaction of physiological and cognitive social processes lets arise the phenomenon of human empathy.
The Impact of Stress on Odor Perception.
Hoenen, Matthias; Wolf, Oliver T; Pause, Bettina M
2017-01-01
The olfactory system and emotional systems are highly intervened and share common neuronal structures. The current study investigates whether emotional (e.g., anger and fear) and physiological (saliva cortisol) stress responses are associated with odor identification ability and hedonic odor judgments (intensity, pleasantness, and unpleasantness). Nineteen men participated in the modified Trier Social Stress Test (TSST) and a control session (cycling on a stationary bike). The physiological arousal was similar in both sessions. In each session, participants' odor identification score was assessed using the University of Pennsylvania Smell Identification Test, and their transient mood was recorded on the dimensions of valence, arousal, anger, and anxiety. Multivariate regression analyses show that an increase of cortisol in the TSST session (as compared with the control session) is associated with better odor identification performance (β = .491) and higher odor intensity ratings (β = .562). However, increased anger in the TSST session (as compared with the control session) is associated with lower odor identification performance (β = -.482). The study shows divergent effects of the emotional and the physiological stress responses, indicating that an increase of cortisol is associated with better odor identification performance, whereas increased anger is associated with poorer odor identification performance.
Man as the main component of the closed ecological system of the spacecraft or planetary station.
Parin, V V; Adamovich, B A
1968-01-01
Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.
Therapeutic applications of hydrogels in oral drug delivery
Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A
2015-01-01
Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309
Advanced Physiological Estimation of Cognitive Status. Part 2
2011-05-24
Neurofeedback Algorithms and Gaze Controller EEG Sensor System g.USBamp *, ** • internal 24-bit ADC and digital signal processor • 16 channels (expandable...SUBJECT TERMS EEG eye-tracking mental state estimation machine learning Leonard J. Trejo Pacific Development and Technology LLC 999 Commercial St. Palo...fatigue, overload) Technology Transfer Opportunity Technology from PDT – Methods to acquire various physiological signals ( EEG , EOG, EMG, ECG, etc
DOT National Transportation Integrated Search
1973-12-01
The reductions in task load resulting from the increasing automation of air traffic control may actually increase the requirement for controllers to maintain high levels of sustained attention in order to detect infrequent system malfunctions. A prev...
Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions
NASA Astrophysics Data System (ADS)
Martin, W. Blake
Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic coating could limit the adsorption of glucose to the surface but still allow physiological monitoring. Three middle infrared optoelectronic absorption systems have been designed for monitoring glucose in a physiological solution. The systems are applicable for the monitoring of glucose. These systems may lead to a useful monitoring device for the diabetic so that the universal complications associated with the disease may be limited.
Jordaens, L; Arias-Alvarez, M; Pintelon, I; Thys, S; Valckx, S; Dezhkam, Y; Bols, P E J; Leroy, J L M R
2015-10-01
Elevated non-esterified fatty acids (NEFAs) have been recognized as an important link between lipolytic metabolic conditions and impaired fertility in high-yielding dairy cows. However, NEFA effects on the oviductal micro-environment currently remain unknown. We hypothesize that elevated NEFAs may contribute to the complex pathology of subfertility by exerting a negative effect on bovine oviductal epithelial cell (BOEC) physiology. Therefore, the objectives of this study were to elucidate direct NEFA effects on BOEC physiology in three different in vitro cell culture systems. Bovine oviductal epithelial cells (four replicates) were mechanically isolated, pooled, and cultured as conventional monolayers, as explants, and in a polarized cell culture system with Dulbecco's modified Eagle's medium/F12-based culture medium. Bovine oviductal epithelial cells were exposed to an NEFA mixture of oleic, stearic, and palmitic acids for 24 hours at both physiological and pathologic concentrations. A control (0 μM NEFA) and a solvent control (0 μM NEFA + 0.45% ethanol) group were implemented. Bovine oviductal epithelial cells physiology was assessed by means of cell number and viability, a sperm binding assay, transepithelial electric resistance (TER), and a wound-healing assay. Bovine oviductal epithelial cell morphology was assessed by scanning electron microscopy on cell polarity, presence of microvilli and cilia, and monolayer integrity. Bovine oviductal epithelial cell number was negatively affected by increasing NEFAs, however, cell viability was not. Sperm binding affinity significantly decreased with increasing NEFAs and tended (P = 0.051) to be more affected by the direction of NEFA exposure in the polarized cell culture system. The absolute TER increase after NEFA exposure in the control (110 ± 11 Ω.cm(2)) was significantly higher than that in all the other treatments and was also different depending on the exposure side. Bidirectional exposed monolayers were even associated with a significant TER reduction (-15 ± 10 Ω.cm(2); P < 0.05). Cell proliferation capacity showed a decreased cell migration with increasing NEFA concentrations but was irrespective of the exposure side. Bovine oviductal epithelial cell morphology was not affected. In conclusion, in an in vitro setting, NEFAs exert a negative effect on BOEC physiology but not morphology. Ultimately, these physiological alterations in its microenvironment may result in suboptimal development of the pre-implantation embryo and a reduced reproductive outcome in dairy cattle. Copyright © 2015 Elsevier Inc. All rights reserved.
Cardiovascular Physiology for First-Year Medical Students: Teaching and Learning through Games.
ERIC Educational Resources Information Center
France, Vanetia M.
1978-01-01
Describes a card game designed to help medical students learn to manipulate concepts fundamental to the functions of the cardiovascular system (CVS) and to understand the interrelationships between different controlled variables in the system. (Author/MA)
Andrysek, Jan; Chau, Gilbert
2007-12-01
Microprocessor-controlled prostheses facilitate a more natural and efficient gait for individuals with above-knee amputations by continually adjusting the level of swing-phase damping. One caveat associated with these technologies is that the user must charge the onboard batteries on a daily basis. It is, therefore, the aim of this study to examine the feasibility of using an electromechanical system to provide prosthetic swing-phase damping and, concomitantly, the function of converting physiological energy that is normally dissipated during the swing phase, to electrical energy. Gait data from a single subject and data from a kinematic simulator were used to develop an empirical model. The findings in this study indicate that an electromagnetic system has appropriate characteristics for use in swing-phase control and also has the potential to recover energy under particular conditions.
Transcriptional Control of Antioxidant Defense by the Circadian Clock
Patel, Sonal A.; Velingkaar, Nikkhil S.
2014-01-01
Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970
Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali
2013-05-01
Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.
Engineering challenges for instrumenting and controlling integrated organ-on-chip systems.
Wikswo, John P; Block, Frank E; Cliffel, David E; Goodwin, Cody R; Marasco, Christina C; Markov, Dmitry A; McLean, David L; McLean, John A; McKenzie, Jennifer R; Reiserer, Ronald S; Samson, Philip C; Schaffer, David K; Seale, Kevin T; Sherrod, Stacy D
2013-03-01
The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.
Small peptide signaling pathways modulating macronutrient utilization in plants.
de Bang, Thomas C; Lay, Katerina S; Scheible, Wolf-Rüdiger; Takahashi, Hideki
2017-10-01
Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
[3D-TV health assessment system by the multi-modal physiological signals].
Li, Zhongqiang; Xing, Lidong; Qian, Zhiyu; Wang, Xiao; Yu, Defei; Liu, Baoyu; Jin, Shuai
2014-03-01
In order to meet the requirements of the multi-physiological signal measurement of the 3D-TV health assessment, try to find the suitable biological acquisition chips and design the hardware system which can detect different physiological signals in real time. The systems mainly uses ARM11/S3C6410 microcontroller to control the EEG/EOG acquisition chip RHA2116 and the ECG acquisition chip ADS1298, and then the microcontroller transfer the data collected by the chips to the PC software by the USB port which can display and save the experimental data in real time, then use the Matlab software for further processing of the data, finally make a final health assessment. In the meantime, for the different varieties in the different brain regions of watching 3D-TV, developed the special brain electrode placement and the experimental data processing methods, then effectively disposed the multi-signal data in the multilevel.
Hallow, K M; Gebremichael, Y
2017-06-01
Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt-sensitive hypertension. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
NASA Technical Reports Server (NTRS)
Smedal, Harald A.; Holden, George R.; Smith, Joseph R., Jr.
1960-01-01
A physiological instrumentation system capable of recording the electrocardiogram, pulse rate, respiration rate, and systolic and diastolic blood pressures during flight has been developed. This instrumentation system was designed for use during control studies at varied levels of acceleration in order to monitor the well-being of the pilot and at the same time to obtain data for study of the relationships between his various physiological functions and his performance capability. Flights, made in a T-33 aircraft, demonstrated the ability of the system to obtain the desired physiological data in flight. The data obtained in these flights, although limited in nature, indicate a slowing of the pulse rate under the subgravity conditions of brief duration. There appeared to be a proportional nearly in-phase relationship between pulse rate and acceleration. A decrease in diastolic blood pressure together with an increase in pulse pressure was noted during subgravity conditions and an elevation of the diastolic pressure together with a decrease in pulse pressure du-ring increased accelerations. No change worthy of note was seen in the records of the systolic blood pressure, the respiration rate, or the electrocardiogram over the range of acceleration studied (0 to 3 g).
A physiologist's view of homeostasis
Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann
2015-01-01
Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the “milieu interieur,” but his discussion was rather abstract. Walter Cannon introduced the term “homeostasis” and expanded Bernard's notion of “constancy” of the internal environment in an explicit and concrete way. In the 1960s, homeostatic regulatory mechanisms in physiology began to be described as discrete processes following the application of engineering control system analysis to physiological systems. Unfortunately, many undergraduate texts continue to highlight abstract aspects of the concept rather than emphasizing a general model that can be specifically and comprehensively applied to all homeostatic mechanisms. As a result, students and instructors alike often fail to develop a clear, concise model with which to think about such systems. In this article, we present a standard model for homeostatic mechanisms to be used at the undergraduate level. We discuss common sources of confusion (“sticky points”) that arise from inconsistencies in vocabulary and illustrations found in popular undergraduate texts. Finally, we propose a simplified model and vocabulary set for helping undergraduate students build effective mental models of homeostatic regulation in physiological systems. PMID:26628646
Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology
Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A
2006-01-01
Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548
Wayne, Peter M; Manor, Brad; Novak, Vera; Costa, Madelena D; Hausdorff, Jeffrey M; Goldberger, Ary L; Ahn, Andrew C; Yeh, Gloria Y; Peng, C-K; Lough, Matthew; Davis, Roger B; Quilty, Mary T; Lipsitz, Lewis A
2013-01-01
Aging is typically associated with progressive multi-system impairment that leads to decreased physical and cognitive function and reduced adaptability to stress. Due to its capacity to characterize complex dynamics within and between physiological systems, the emerging field of complex systems biology and its array of quantitative tools show great promise for improving our understanding of aging, monitoring senescence, and providing biomarkers for evaluating novel interventions, including promising mind-body exercises, that treat age-related disease and promote healthy aging. An ongoing, two-arm randomized clinical trial is evaluating the potential of Tai Chi mind-body exercise to attenuate age-related loss of complexity. A total of 60 Tai Chi-naïve healthy older adults (aged 50-79) are being randomized to either six months of Tai Chi training (n=30), or to a waitlist control receiving unaltered usual medical care (n=30). Our primary outcomes are complexity-based measures of heart rate, standing postural sway and gait stride interval dynamics assessed at 3 and 6months. Multiscale entropy and detrended fluctuation analysis are used as entropy- and fractal-based measures of complexity, respectively. Secondary outcomes include measures of physical and psychological function and tests of physiological adaptability also assessed at 3 and 6months. Results of this study may lead to novel biomarkers that help us monitor and understand the physiological processes of aging and explore the potential benefits of Tai Chi and related mind-body exercises for healthy aging. Copyright © 2012 Elsevier Inc. All rights reserved.
Multiple-time scales analysis of physiological time series under neural control
NASA Technical Reports Server (NTRS)
Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.
1998-01-01
We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.
Neurocardiology: Structure-Based Function.
Ardell, Jeffrey L; Armour, John Andrew
2016-09-15
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Posttranscriptional control of neuronal development by microRNA networks.
Gao, Fen-Biao
2008-01-01
The proper development of the nervous system requires precise spatial and temporal control of gene expression at both the transcriptional and translational levels. In different experimental model systems, microRNAs (miRNAs) - a class of small, endogenous, noncoding RNAs that control the translation and stability of many mRNAs - are emerging as important regulators of various aspects of neuronal development. Further dissection of the in vivo physiological functions of individual miRNAs promises to offer novel mechanistic insights into the gene regulatory networks that ensure the precise assembly of a functional nervous system.
Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany;
2014-01-01
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. ISS crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after reambulation.
Vegetation physiology controls continental water cycle responses to climate change
NASA Astrophysics Data System (ADS)
Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.
2017-12-01
Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the precipitation), and under no single driver influence (grey). Based on an article in review at Nature Climate Change as of Aug, 2nd 2017
A closed-loop hybrid physiological model relating to subjects under physical stress.
El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A
2006-11-01
The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse-engineering' fashion to control stress via the specification of a safe operating range for the psycho-physiological variables.
1975-08-01
memory difficulties. Psychic changes that include unstable mood, hypochondriasis, and anxiety have been observed. Compared to those in control groups ...and extrapyremidal motor systems. The incidence of neurosis was significantly higher than in controls . Experimental physiologic and EEG methods...differentiated from those in the control group and consequently could not be related to their microwave exposure (13). In a study reported by Czerski and
DOT National Transportation Integrated Search
2004-01-01
This document defines the protocol standards for the Internet Protocol Suite (IPS), which is commonly referred to as Transmission Control Protocol/Internet Protocol (TCP/IP) protocols used for data communications within the National Airspace System (...
A modular, programmable measurement system for physiological and spaceflight applications
NASA Technical Reports Server (NTRS)
Hines, John W.; Ricks, Robert D.; Miles, Christopher J.
1993-01-01
The NASA-Ames Sensors 2000! Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required.
A modular, programmable measurement system for physiological and spaceflight applications
NASA Astrophysics Data System (ADS)
Hines, John W.; Ricks, Robert D.; Miles, Christopher J.
1993-02-01
The NASA-Ames Sensors 2000] Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required.
Kindgen-Milles, D; Holthusen, H
1997-06-05
To test the hypothesis that vascular pain depends on sympathetic drive under physiological conditions we studied the effects of both alpha-adrenoceptor stimulation by noradrenaline and alpha-adrenoceptor blockade by phentolamine on the intensity of physicochemically evoked pain from veins in humans. In seven healthy volunteers, a vascularly isolated hand vein segment was perfused continuously with noradrenaline (6 x 10(-9)-6 x 10(-6) M), or phentolamine (1.24 x 10(-4) M). Pain was evoked by intraluminal electrostimulation or by injection of hyperosmolar saline during control perfusion of isoosmolar saline and after each noradrenaline concentration, as well as after perfusion of phentolamine. Subjects rated pain intensity continuously on an electronically controlled visual analogue scale (VAS) between 0% VAS (no pain) and 100% VAS (tolerance maximum). Intravenous electrostimulation as well as hyperosmolar solutions evoked pain in each subject. The intensity of pain was neither influenced by noradrenaline, nor by phentolamine, so that nociception from blood vessels is unlikely to be modulated by the sympathetic nervous system under physiological conditions in humans.
A cardiovascular system model for lower-body negative pressure response
NASA Technical Reports Server (NTRS)
Mitchell, B. A., Jr.; Giese, R. P.
1971-01-01
Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.
von Haaren, Birte; Ottenbacher, Joerg; Muenz, Julia; Neumann, Rainer; Boes, Klaus; Ebner-Priemer, Ulrich
2016-02-01
The cross-stressor adaptation hypothesis suggests that regular exercise leads to adaptations in the stress response systems that induce decreased physiological responses to psychological stressors. Even though an exercise intervention to buffer the detrimental effects of psychological stressors on health might be of utmost importance, empirical evidence is mixed. This may be explained by the use of cross-sectional designs and non-personally relevant stressors. Using a randomized controlled trial, we hypothesized that a 20-week aerobic exercise training does reduce physiological stress responses to psychological real-life stressors in sedentary students. Sixty-one students were randomized to either a control group or an exercise training group. The academic examination period (end of the semester) served as a real-life stressor. We used ambulatory assessment methods to assess physiological stress reactivity of the autonomic nervous system (heart rate variability: LF/HF, RMSSD), physical activity and perceived stress during 2 days of everyday life and multilevel models for data analyses. Aerobic capacity (VO2max) was assessed pre- and post-intervention via cardiopulmonary exercise testing to analyze the effectiveness of the intervention. During real-life stressors, the exercise training group showed significantly reduced LF/HF (β = -0.15, t = -2.59, p = .01) and increased RMSSD (β = 0.15, t = 2.34, p = .02) compared to the control group. Using a randomized controlled trial and a real-life stressor, we could show that exercise appears to be a useful preventive strategy to buffer the effects of stress on the autonomic nervous system, which might result into detrimental health outcomes.
Note: A micro-perfusion system for use during real-time physiological studies under high pressure
NASA Astrophysics Data System (ADS)
Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul
2014-10-01
We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.
Note: A micro-perfusion system for use during real-time physiological studies under high pressure.
Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul
2014-10-01
We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.
NASA Technical Reports Server (NTRS)
Palsson, Olafur S. (Inventor); Harris, Randall L., Sr. (Inventor); Pope, Alan T. (Inventor)
2002-01-01
Apparatus and methods for modulating the control authority (i.e., control function) of a computer simulation or game input device (e.g., joystick, button control) using physiological information so as to affect the user's ability to impact or control the simulation or game with the input device. One aspect is to use the present invention, along with a computer simulation or game, to affect physiological state or physiological self-regulation according to some programmed criterion (e.g., increase, decrease, or maintain) in order to perform better at the game task. When the affected physiological state or physiological self-regulation is the target of self-regulation or biofeedback training, the simulation or game play reinforces therapeutic changes in the physiological signal(s).
Regulation of Blood Pressure and Salt Homeostasis by Endothelin
KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.
2011-01-01
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162
[Age factor in a complex evaluation of health of air staff].
Ushakov, I B; Batishcheva, G A; Chernov, Iu N; Khomenko, M N; Soldatov, S K
2010-03-01
Was elaborated program of a complex of estimation of health condition of air staff with determination of capability of early diagnostic of functional tension of physiological systems. According to this system there were observed 73 airmen using a complex of tests (estimation of level of pectoral control, of personal and reactive anxiety, vegetal regulation etc.). Was detected, that length of service and sympato-adrenaline activeness with vicarious decrease of adrenoreactiveness are in direct proportion. Were marked the most informative indexes of estimation of functional tension of psycho-physiological functions, vegetative regulation and cardiovascular system. Was shown that the elaborated system of individual estimation of health of air staff permits diagnose prenosological conditions and determine indexes for rehabilitation treatment.
Controlled ecological life support system higher plant flight experiments
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Wheeler, R. M.
1984-01-01
Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.
Leptin and the central nervous system control of glucose metabolism.
Morton, Gregory J; Schwartz, Michael W
2011-04-01
The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.
Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.
2015-01-01
Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376
A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements
USDA-ARS?s Scientific Manuscript database
Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...
A wireless body measurement system to study fatigue in multiple sclerosis.
Yu, Fei; Bilberg, Arne; Stenager, Egon; Rabotti, Chiara; Zhang, Bin; Mischi, Massimo
2012-12-01
Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant differences between fatigued MS patients and healthy controls. In conclusion, the FAMOS enables continuous data acquisition and estimation of multiple physiological and functional parameters. It provides a new, flexible and objective approach to study fatigue in MS, which can distinguish between fatigued MS patients and healthy controls. The usability and reliability of the FAMOS should however be further improved and validated through larger clinical trials.
Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction.
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S
2013-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich
2016-07-01
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Condensate Recycling in Closed Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.
1994-01-01
Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.
1978-12-01
analysis. retrieval parachute concepts are being investigated. The development of recovery systems for fast flying, possible out-of-control missiles proved...system. 21 •, . , r, _ . .. , . " , , . : . .. . " . , ,- Reference 32 suggests certain applications (speed/ Fast Opening. An emergency escape...operation, physiological aspect of flying and escape. fast parachute opening., Low Rate of Descent. A sea level rate of descent low parachute opening
Fundaments of plant cybernetics.
Zucconi, F
2001-01-01
A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.
NASA Technical Reports Server (NTRS)
Chato, J. C.; Hertig, B. A.
1972-01-01
Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.
Tavladaki, Theonymfi; Spanaki, Anna Maria; Dimitriou, Helen; Kondili, Efmorfia; Choulaki, Christianna; Georgopoulos, Dimitris; Briassoulis, George
2017-11-01
To examine whether the septic profiles of heat shock protein 72, heat shock protein 90α, resistin, adiponectin, oxygen consumption, CO2 production, energy expenditure, and metabolic pattern, along with illness severity, nutritional, and inflammatory indices, differ between adult and pediatric patients compared with systemic inflammatory response syndrome and healthy controls. To evaluate whether these biomolecules may discriminate sepsis from systemic inflammatory response syndrome in adult and pediatric patients. Prospective cohort study. University ICU and PICU. Seventy-eight adults (sepsis/23; systemic inflammatory response syndrome/23; healthy controls/33), 67 children (sepsis/18; systemic inflammatory response syndrome/23; controls/27), mechanically ventilated. None. Flow cytometry determined mean fluorescence intensity for monocyte or neutrophil heat shock protein expression. Resistin, adiponectin, and extracellular heat shock proteins were measured using enzyme-linked immunosorbent assay; energy expenditure by E-COVX (GE Healthcare). Genomic DNA was extracted with PureLink Genomic DNA kit (Invitrogen, Carlsbad, CA) to detect heat shock protein 72 single nucleotide polymorphisms. Similarly, in adult and pediatric patients, Acute Physiology and Chronic Evaluation-II/Acute Physiology and Pediatric Risk of Mortality-III, Simplified Acute Physiology Score-III, C-reactive protein, lactate, and resistin were higher and myocardial contractility, monocyte heat shock protein 72, oxygen consumption, CO2 production, energy expenditure, metabolic pattern, glucose, and albumin lower in sepsis compared with systemic inflammatory response syndrome or controls (p < 0.05). For discriminating sepsis from systemic inflammatory response syndrome, resistin, extracellular heat shock protein 90α, and lactate achieved a receiver operating characteristic curve greater than 0.80 in children and greater than 0.75 in adults (p < 0.05). In both, adults and children, genotype heat shock protein 72 analysis did not disclose any diagnosis or mortality group differences regarding either rs6457452 or rs1061581 haplotypes. Sepsis presents with similar profiles in adult and pediatric patients, characterized by enhanced inflammatory hormonal response and by repressed innate immunity, metabolism, and myocardial contractility. These features early distinguish sepsis from systemic inflammatory response syndrome across all age groups.
Multiple regression for physiological data analysis: the problem of multicollinearity.
Slinker, B K; Glantz, S A
1985-07-01
Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.
NASA Astrophysics Data System (ADS)
Clites, Tyler R.; Carty, Matthew J.; Srinivasan, Shriya; Zorzos, Anthony N.; Herr, Hugh M.
2017-06-01
Objective. Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. Approach. (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. Main results. Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. Significance. These results indicate that the AMI has the potential to communicate meaningful kinesthetic feedback from a prosthetic limb by replicating the agonist-antagonist relationships that are fundamental to physiological proprioception.
NASA Technical Reports Server (NTRS)
Paul, Heather; Trevino, Luis; Bue,Grant; Rugh, John
2006-01-01
An Advanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA's liquid cooling garments (LCGs) used in advanced space suits for extravehicular applications. The manikin has 120 separate heated/sweating zones and is controlled by a finite element physiological model of the human thermoregulatory system. Previous testing showed the thermal sensation and comfort followed the expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/Arctic suit combination are compared to NASA physiological data to validate the manikin/model. Additional LCG configurations are assessed using the manikin and compared to the baseline LCG. Results can extend to other personal protective clothing, including HAZMAT suits, nuclear/biological/chemical protective suits, and fire protection suits.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
How Placebo Needles Differ From Placebo Pills?
Chae, Younbyoung; Lee, Ye-Seul; Enck, Paul
2018-01-01
Because acupuncture treatment is defined by the process of needles penetrating the body, placebo needles were originally developed with non-penetrating mechanisms. However, whether placebo needles are valid controls in acupuncture research is subject of an ongoing debate. The present review provides an overview of the characteristics of placebo needles and how they differ from placebo pills in two aspects: (1) physiological response and (2) blinding efficacy. We argue that placebo needles elicit physiological responses similar to real acupuncture and therefore provide similar clinical efficacy. We also demonstrate that this efficacy is further supported by ineffective blinding (even in acupuncture-naïve patients) which may lead to opposite guesses that will further enhances efficacy, as compared to no-treatment, e.g., with waiting list controls. Additionally, the manner in which placebo needles can exhibit therapeutic effects relative to placebo pills include enhanced touch sensations, direct stimulation of the somatosensory system and activation of multiple brain systems. We finally discuss alternative control strategies for the placebo effects in acupuncture therapy.
BIOCONAID System (Bionic Control of Acceleration Induced Dimming).
1981-07-01
Howard, P. , "The Physiology of Positive Acceleration," Chapter 23 in A Textbook of Aviation Physiology, Edited by J. A. Gilles, Pergamon Press...of the Carotid Sinus Baroreceptor Process in a Dog ," IEEE Trans. Biomed. Engineering, BME , Vol. 22, No. 3, pp. 502-507, 1975. 16. Leverett, S. D...Electromyogram, ’ IEEE Transactions on Biomedical Engineering. Vol. BME -24, No. 5, pp. 417-424, 1977. 26. Stoll, Alice M., "Human Tolerance to Positive G as
Sensor Systems for Space Life Sciences
NASA Technical Reports Server (NTRS)
Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)
1995-01-01
Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.
Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.
1996-01-01
Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.
Myocardial contrast echocardiography in mice: technical and physiological aspects.
Verkaik, Melissa; van Poelgeest, Erik M; Kwekkeboom, Rick F J; Ter Wee, Piet M; van den Brom, Charissa E; Vervloet, Marc G; Eringa, Etto C
2018-03-01
Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.
Controlled Ecological Life Support System: Use of Higher Plants
NASA Technical Reports Server (NTRS)
Tibbits, T. W.; Alford, D. K.
1982-01-01
Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.
Golda, Rachel L; Golda, Mark D; Hayes, Jacqueline A; Peterson, Tawnya D; Needoba, Joseph A
2017-05-01
Laboratory investigations of physiological processes in phytoplankton require precise control of experimental conditions. Chemostats customized to control and maintain stable pH levels (pHstats) are ideally suited for investigations of the effects of pH on phytoplankton physiology, for example in context of ocean acidification. Here we designed and constructed a simple, flexible pHstat system and demonstrated its operational capabilities under laboratory culture conditions. In particular, the system is useful for simulating natural cyclic pH variability within aquatic ecosystems, such as diel fluctuations that result from metabolic activity or tidal mixing in estuaries. The pHstat system operates in two modes: (1) static/set point pH, which maintains pH at a constant level, or (2) dynamic pH, which generates regular, sinusoidal pH fluctuations by systematically varying pH according to user-defined parameters. The pHstat is self-regulating through the use of interchangeable electronically controlled reagent or gas-mediated pH-modification manifolds, both of which feature flow regulation by solenoid valves. Although effective pH control was achieved using both liquid reagent additions and gas-mediated methods, the liquid manifold exhibited tighter control (±0.03pH units) of the desired pH than the gas manifold (±0.10pH units). The precise control provided by this pHstat system, as well as its operational flexibility will facilitate studies that examine responses by marine microbiota to fluctuations in pH in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Booth, David A
2008-11-01
As reviewed by [Cooper, S. J. (2008). From Claude Bernard to Walter Cannon: emergence of the concept of homeostasis. Appetite 51, 419-27.] Claude Bernard's idea of stabilisation of bodily states, as realised in Walter B. Cannon's conception of homeostasis, took mathematical form during the 1940s in the principle that externally originating disturbance of a physiological parameter can feed an informative signal around the brain to trigger counteractive processes--a corrective mechanism known as negative feedback, in practice reliant on feedforward. Three decades later, enough was known of the physiology and psychology of eating and drinking for calculations to show how experimentally demonstrated mechanisms of feedforward that had been learnt from negative feedback combine to regulate exchanges of water and energy between the body and the surroundings. Subsequent systemic physiology, molecular neuroscience and experimental psychology, however, have been traduced by a misconception that learnt controls of intake are 'non-homeostatic', the myth of biological 'set points' and an historic failure to address evidence for the ingestion-adapting information-processing mechanisms on which an operationally integrative theory of eating and drinking relies.
[Portable multi-purpose device for monitoring of physiological informations].
Tamura, T; Togawa, T
1983-05-01
Unconstrained system that measures physiological information as skin temperatures and heart rate per unit time of a human subject was developed. The system contained portable device included memory control unit, instrumentation unit, timer and batteries, read-out unit, test unit and verify unit. Total number of data and channels, and interval were selected by switches in the memory control unit. The data from the instrumentation unit were transferred to memory control unit and stored in the Erasable Programmable ROM (EPROM). After measurement, EPROM chip was taken off the memory control unit and put on the read-out unit which transferred the data to the microcomputer. The data were directly calculated and analyzed by microcomputer. In application of the instrumentation unit, 8-channel skin thermometer was developed and tested. After amplification, 8 analog signals were multiplexed and converted into the binary codes. The digital signals were sequentially transferred to memory control unit and stored in the EPROM under controlled signal. The accuracy of the system is determined primarily by the accuracy of the sensor of instrumentation unit. The overall accuracy of 8-channel skin thermometer is conservatively stated within 0.1 degree C. This may prove to be useful in providing an objective measurement of human subjects, and can be used in studying environmental effect for human body and sport activities in a large population setting.
Somvanshi, Pramod Rajaram; Venkatesh, K V
2014-03-01
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.
Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich
2017-06-06
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
An integrated mathematical model of the human cardiopulmonary system: model development.
Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W
2016-04-01
Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.
Instrumentation enabling study of plant physiological response to elevated night temperature
Mohammed, Abdul R; Tarpley, Lee
2009-01-01
Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base), which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors. PMID:19519906
Construction and control of a physiological articulatory model
NASA Astrophysics Data System (ADS)
Dang, Jianwu; Honda, Kiyoshi
2004-02-01
A physiological articulatory model has been constructed using a fast computation method, which replicates midsagittal regions of the speech organs to simulate articulatory movements during speech. This study aims to improve the accuracy of modeling by using the displacement-based finite-element method and to develop a new approach for controlling the model. A ``semicontinuum'' tongue tissue model was realized by a discrete truss structure with continuum viscoelastic cylinders. Contractile effects of the muscles were systemically examined based on model simulations. The results indicated that each muscle drives the tongue toward an equilibrium position (EP) corresponding to the magnitude of the activation forces. The EPs shifted monotonically as the activation force increased. The monotonic shift revealed a unique and invariant mapping, referred to as an EP map, between a spatial position of the articulators and the muscle forces. This study proposes a control method for the articulatory model based on the EP maps, in which co-contractions of agonist and antagonist muscles are taken into account. By utilizing the co-contraction, the tongue tip and tongue dorsum can be controlled to reach their targets independently. Model simulation showed that the co-contraction of agonist and antagonist muscles could increase the stability of a system in dynamic control.
A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.
Yu, Sung-Nien; Cheng, Jen-Chieh
2005-01-01
This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.
Metabolic Adaptation to Muscle Ischemia
NASA Technical Reports Server (NTRS)
Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.
2000-01-01
Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.
Optogenetics and pharmacogenetics: principles and applications.
Jiang, Jingwei; Cui, Huxing; Rahmouni, Kamal
2017-12-01
Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond. Copyright © 2017 the American Physiological Society.
Fluid and electrolyte control systems in the human body: A study report
NASA Technical Reports Server (NTRS)
White, R. J.
1973-01-01
Research in the area of modeling of the fluid and electrolyte system is briefly reviewed and a model of this system, which is adequate for a basic description of the requisite physiological processes, is presented. The use of this model as an individual subsystem model and as a component of a more complete human model is discussed.
Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.
Krepkovich, Eileen T; Perreault, Eric J
2008-01-01
This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
New modes of assisted mechanical ventilation.
Suarez-Sipmann, F
2014-05-01
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The morphology of the female reproductive system in Megamelus scutellaris Berg (Hemiptera:Delphacidae), a biocontrol agent of Eichhornia crassipes (Mart.) Solms, was examined using standard light microscopy techniques. Ovaries extracted from individuals dissected in phosphate buffered saline were ex...
Microsensor Technologies for Plant Growth System Monitoring
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo
2004-01-01
This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.
Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equally
USDA-ARS?s Scientific Manuscript database
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdepen...
Wearable sensors for human health monitoring
NASA Astrophysics Data System (ADS)
Asada, H. Harry; Reisner, Andrew
2006-03-01
Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.
New approaches to thyroid hormones and purinergic signaling.
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
New Approaches to Thyroid Hormones and Purinergic Signaling
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925
Monteiro, Diana A.; Taylor, Edwin W.; Sartori, Marina R.; Cruz, André L.; Rantin, Francisco T.; Leite, Cleo A. C.
2018-01-01
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems. PMID:29507882
Monteiro, Diana A; Taylor, Edwin W; Sartori, Marina R; Cruz, André L; Rantin, Francisco T; Leite, Cleo A C
2018-02-01
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.
NASA Astrophysics Data System (ADS)
Termos, Mohamad Hani
2011-12-01
The Classroom Performance System (CPS) is an instructional technology tool that increases student performance and addresses different learning styles. Instructional technologies are used to promote active learning; however, student embarrassment issue in a multicultural setting is not addressed. This study assessed the effect of the CPS on student participation, attendance, and achievement in multicultural college-level anatomy and physiology classes at South Texas College, where the first spoken language is not English. Quantitative method and quasi-experimental design were employed and comparative statistic methods and pre-post tests were used to collect the data. Participants were college students and sections of study were selected by convenient sampling. Participation was 100% during most of the lectures held and participation rate did not strike above 68% in control group. Attendance was significantly higher in CPS sections than the control group as shown by t-tests. Experimental sections had a higher increase in the pre-post test scores and student averages on lecture exams increased at a higher rate as compared to the control group. Therefore, the CPS increased student participation, attendance, and achievement in multicultural anatomy and physiology classes. The CPS can be studied in other settings where the first spoken language is English or in other programs, such as special education programs. Additionally, other variables can be studied and other methodologies can be employed.
Rault, Aline; Bouix, Marielle; Béal, Catherine
2009-07-01
This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.
Bye, Robin T; Neilson, Peter D
2010-10-01
Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.
Process- and controller-adaptations determine the physiological effects of cold acclimation.
Werner, Jürgen
2008-09-01
Experimental results on physiological effects of cold adaptation seem confusing and apparently incompatible with one another. This paper will explain that a substantial part of such a variety of results may be deduced from a common functional concept. A core/shell treatment ("model") of the thermoregulatory system is used with mean body temperature as the controlled variable. Adaptation, as a higher control level, is introduced into the system. Due to persistent stressors, either the (heat transfer) process or the controller properties (parameters) are adjusted (or both). It is convenient to call the one "process adaptation" and the other "controller adaptation". The most commonly demonstrated effect of autonomic cold acclimation is a change in the controller threshold. The analysis shows that this necessarily means a lowering of body temperature because of a lowered metabolic rate. This explains experimental results on both Europeans in the climatic chamber and Australian Aborigines in a natural environment. Exclusive autonomic process adaptation occurs in the form of a better insulation. The analysis explains why the post-adaptive steady-state can only be achieved, if the controller system reduces metabolism and why in spite of this the new state is inevitably characterized by a rise in body temperature. If both process and controller adaptations are simultaneously present, there may be not any change of body temperature at all, e.g., as demonstrated in animal experiments. Whether this kind of adaptation delivers a decrease, an increase or no change of mean body temperature, depends on the proportion of process and controller adaptation.
Surface Acoustic Waves to Drive Plant Transpiration
NASA Astrophysics Data System (ADS)
Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.
2017-03-01
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.
Surface Acoustic Waves to Drive Plant Transpiration.
Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T
2017-03-31
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.
Neuropeptide physiology in helminths.
Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A
2010-01-01
Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points to neuropeptidergic signaling as a very promising field from which to harvest future drug targets.
Foot massage and physiological stress in people with dementia: a randomized controlled trial.
Moyle, Wendy; Cooke, Marie Louise; Beattie, Elizabeth; Shum, David H K; O'Dwyer, Siobhan T; Barrett, Sue; Sung, Billy
2014-04-01
The anxiety associated with unfamiliar surroundings, the disorientation and mental confusion, and the social isolation that accompanies dementia can often create increased stress for people living in long-term care settings. Such a response is thought to affect the autonomic nervous system and result in emotional and physical symptoms of distress that may be manifested as agitation. There is the potential for such distress to influence the physiological response and in particular Blood Pressure and Heart Rate. A relaxation intervention such as massage may influence the physiological stress response. This randomized controlled trial aimed to compare the effect of foot massage (FM) versus a control activity (quiet presence, QP) on physiological stress response (i.e., blood pressure [BP] and heart rate [HR]) in people living with moderate-to-severe dementia in long-term-care settings. Fifty-three residents were randomized to intervention (10-minute FM) or control group (QP). While the FM group experienced a greater reduction in HR than the control group, these reductions were not significantly different between groups (p=0.83; see Table 1 ), or across time (p=0.46). Both groups experienced a reduction in systolic BP and diastolic BP, while the mean reduction in systolic BP was greater for those in the FM group. While the findings do not provide strong support for FM, the finding that both conditions allowed the person with dementia to rest in the presence of another human being is of importance in the care of people with dementia. The close presence of another person may in fact promote relaxation and therefore improve BP and HR measures.
Cushing's syndrome: from physiological principles to diagnosis and clinical care.
Raff, Hershel; Carroll, Ty
2015-02-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic-pituitary-adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism--Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model
NASA Astrophysics Data System (ADS)
Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.
2014-12-01
In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.
Kolyva, Christina; Biglino, Giovanni; Pepper, John R; Khir, Ashraf W
2012-03-01
A mock circulatory system (MCS) was designed to replicate a physiological environment for in vitro testing and was assessed with the intra-aortic balloon pump (IABP). The MCS was comprised of an artificial left ventricle (LV), connected to a 14-branch polyurethane-compound aortic model. Physiological distribution of terminal resistance and compliance according to published data was implemented with capillary tubes of different sizes and syringes of varying air volume, respectively, fitted at the outlets of the branches. The ends of the aortic branches were connected to a common tube representing the venous system and an overhead reservoir provided atrial pressure. An IABP operating a 40-cc balloon was set to counterpulsate with the LV. Total arterial compliance of the system was 0.94 mL/mm Hg and total arterial resistance was 20.3 ± 3.3 mm Hg/L/min. At control, physiological flow distribution was achieved and both mean and phasic aortic pressure and flow were physiological. With the IABP, aortic pressure exhibited the major features of counterpulsation: diastolic augmentation during inflation, inflection point at onset of deflation, and end-diastolic reduction at the end of deflation. The contribution of balloon inflation and deflation was also evident on the aortic flow pattern. This MCS was verified to be suitable for IABP testing and with further adaptations it could be used for studying other hemodynamic problems and ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S.
2012-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction. PMID:23482509
Samuels, E. R; Szabadi, E
2008-01-01
The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system. PMID:19506724
Bekele, Esubalew; Zheng, Zhi; Swanson, Amy; Crittendon, Julie; Warren, Zachary; Sarkar, Nilanjan
2013-01-01
Autism Spectrum Disorders (ASD) are characterized by atypical patterns of behaviors and impairments in social communication. Among the fundamental social impairments in the ASD population are challenges in appropriately recognizing and responding to facial expressions. Traditional intervention approaches often require intensive support and well-trained therapists to address core deficits, with many with ASD having tremendous difficulty accessing such care due to lack of available trained therapists as well as intervention costs. As a result, emerging technology such as virtual reality (VR) has the potential to offer useful technology-enabled intervention systems. In this paper, an innovative VR-based facial emotional expression presentation system was developed that allows monitoring of eye gaze and physiological signals related to emotion identification to explore new efficient therapeutic paradigms. A usability study of this new system involving ten adolescents with ASD and ten typically developing adolescents as a control group was performed. The eye tracking and physiological data were analyzed to determine intragroup and intergroup variations of gaze and physiological patterns. Performance data, eye tracking indices and physiological features indicated that there were differences in the way adolescents with ASD process and recognize emotional faces compared to their typically developing peers. These results will be used in the future for an online adaptive VR-based multimodal social interaction system to improve emotion recognition abilities of individuals with ASD. PMID:23428456
Bekele, Esubalew; Zheng, Zhi; Swanson, Amy; Crittendon, Julie; Warren, Zachary; Sarkar, Nilanjan
2013-04-01
Autism Spectrum Disorders (ASD) are characterized by atypical patterns of behaviors and impairments in social communication. Among the fundamental social impairments in the ASD population are challenges in appropriately recognizing and responding to facial expressions. Traditional intervention approaches often require intensive support and well-trained therapists to address core deficits, with many with ASD having tremendous difficulty accessing such care due to lack of available trained therapists as well as intervention costs. As a result, emerging technology such as virtual reality (VR) has the potential to offer useful technology-enabled intervention systems. In this paper, an innovative VR-based facial emotional expression presentation system was developed that allows monitoring of eye gaze and physiological signals related to emotion identification to explore new efficient therapeutic paradigms. A usability study of this new system involving ten adolescents with ASD and ten typically developing adolescents as a control group was performed. The eye tracking and physiological data were analyzed to determine intragroup and intergroup variations of gaze and physiological patterns. Performance data, eye tracking indices and physiological features indicated that there were differences in the way adolescents with ASD process and recognize emotional faces compared to their typically developing peers. These results will be used in the future for an online adaptive VR-based multimodal social interaction system to improve emotion recognition abilities of individuals with ASD.
Physiological and Mood Changes Induced by Exercise Withdrawal
2004-01-01
parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an
Simulation environment and graphical visualization environment: a COPD use-case.
Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip
2014-11-28
Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations.
J. Renée Brooks; Frederick C. Meinzer; Jeffery M. Warren; Jean-Christophe Domec; Rob Coulombe
2006-01-01
Hydraulic redistribution (HR) occurs in many ecosystems; however, key questions remain about its consequences at the ecosystem level. The objectives of the present study were to quantify seasonal variation in HR and its driving force, and to manipulate the soil-root system to elucidate physiological components controlling HR and utilization of redistributed water. In...
Peptide neuromodulation in invertebrate model systems
Taghert, Paul H.; Nitabach, Michael N.
2012-01-01
Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms. PMID:23040808
Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun
2016-01-01
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Schmidt, John E; Carlson, Charles R
2009-01-01
To investigate (1) differences in heart rate variability (HRV) indices between masticatory muscle pain (MMP) patients and pain-free controls at rest, during a stressor condition, and during a post-stressor recovery period, and (2) factors including psychological distress, social environment, and family-of-origin characteristics in the MMP sample compared to a pain-free matched control sample. Physiological activation and emotional reactivity were assessed in 22 MMP patients and 23 controls during baseline, stressor, and recovery periods. Physiological activity was assessed with frequency domain HRV indices. Emotional reactivity was assessed with the Emotional Assessment Scale. Analytic strategy began with overall 2 x 3 multivariate analyses of variance on physiological data followed by focused contrasts to test specific hypotheses regarding physiological and emotional status. Hypothesized differences between study groups on psychological and social-environmental variables were compared with univariate analyses of variance. The MMP patients showed physiological activation during the baseline period and significantly more physiological activation during the recovery period compared to the controls. This pattern was also present in emotional reactivity between the groups. The emotional and physiological differences between the groups across study periods were more pronounced in pain patients reporting a traumatic stressor. These results provide further evidence of physiological activation and emotional responding in MMP patients that differentiates them from matched pain-free controls. The use of HRV indices to measure physiological functioning quantifies the degree of sympathetic and parasympathetic activation. Study results suggest the use of these HRV indices may improve understanding of the role of excitatory and inhibitory mechanisms in patients with MMP conditions.
Digital Microfluidics Sample Analyzer
NASA Technical Reports Server (NTRS)
Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.
2010-01-01
Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.
Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine
2007-11-01
Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself.
Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine
2007-01-01
Background Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. Objectives This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Methods Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. Results During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Conclusions Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself. PMID:18007992
Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A
2010-07-01
Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.
Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W
2017-01-01
The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca 2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Complexity analysis of human physiological signals based on case studies
NASA Astrophysics Data System (ADS)
Angelova, Maia; Holloway, Philip; Ellis, Jason
2015-04-01
This work focuses on methods for investigation of physiological time series based on complexity analysis. It is a part of a wider programme to determine non-invasive markers for healthy ageing. We consider two case studies investigated with actigraphy: (a) sleep and alternations with insomnia, and (b) ageing effects on mobility patterns. We illustrate, using these case studies, the application of fractal analysis to the investigation of regulation patterns and control, and change of physiological function. In the first case study, fractal analysis techniques were implemented to study the correlations present in sleep actigraphy for individuals suffering from acute insomnia in comparison with healthy controls. The aim was to investigate if complexity analysis can detect the onset of adverse health-related events. The subjects with acute insomnia displayed significantly higher levels of complexity, possibly a result of too much activity in the underlying regulatory systems. The second case study considered mobility patterns during night time and their variations with age. It showed that complexity metrics can identify change in physiological function with ageing. Both studies demonstrated that complexity analysis can be used to investigate markers of health, disease and healthy ageing.
Effects of perch access on physiological parameters in caged White Leghorn pullets
USDA-ARS?s Scientific Manuscript database
The neuroendocrine system controls animals' adaptability to their environments by releasing psychotropic compounds such as catecholamines [epinephrine (EP), norepinephrine (NE), and dopamine (DA)], corticosterone (CORT), and serotonin (5-HT). Changes of these neuroendocrine compounds have been used ...
The Soil-Plant-Atmosphere System - Past and Present.
NASA Astrophysics Data System (ADS)
Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.
2012-12-01
Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.
Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.
2018-01-01
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568
Plant growth chamber based on space proven controlled environment technology
NASA Astrophysics Data System (ADS)
Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.
1997-01-01
Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.
Catalog of Audiovisual Productions. Volume 1. Army Productions
1984-06-01
Anatomy and physiology of respiration, and diseases of the trespiratory system such as tuberculosis , bronchitis and pleurisy. ((Body Includes thorax...TOPES, HOING R7 TUBERCULOSIS C/02.58 TO/ERS, CONTROL TUBES, CATHODE RAY E-" TOWERS, AIRCRAFT CONTROL A 02 TUBES, ELECTRON EI"l TONING, AIRCRAFT 05 TUGS...PRACTICAL RAT CONTROL.. PATIENT WITH PULMONARY TREATMENT OF TESTICULAR RATPROOFING TUBERCULOSIS TUMORS 29812.DA MALARIA • CAUSE AND 30475.DA THERE’S
[PSYCHO PHYSIOLOGICAL MARKERS OF ACCELERATED AGING AMONG THOSE WORKING WITH OCCUPATIONAL HAZARDS].
Bashkireva, A S; Kachan, Ye Yu; Kulapina, M E
2015-01-01
We assessed the significance of psycho physiological markers of accelerated aging of the function of attention using comparative analysis of two occupational groups in order to reveal how the working process affects mental work capacity. We revealed peculiarities of systemic structure of functions which determine mental work capacity depending on the age and length of service in lorry drivers. It was proved that decrease in the mnestic functions of lorry-drivers takes place 10-15 years earlier compared to the control group. Psycho physiological indices, reflecting the functioning of attention, decreased not only with aging but also with longer driving experience. Our results show that it is necessary to conduct further studies of psycho physiological markers of age-related decrease in short-term memory depending on the activities at work in order to prevent accelerated aging and achieve professional longevity.
Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence
NASA Technical Reports Server (NTRS)
Lipsitz, L. A.; Goldberger, A. L.
1992-01-01
The concept of "complexity," derived from the field of nonlinear dynamics, can be adapted to measure the output of physiologic processes that generate highly variable fluctuations resembling "chaos." We review data suggesting that physiologic aging is associated with a generalized loss of such complexity in the dynamics of healthy organ system function and hypothesize that such loss of complexity leads to an impaired ability to adapt to physiologic stress. This hypothesis is supported by observations showing an age-related loss of complex variability in multiple physiologic processes including cardiovascular control, pulsatile hormone release, and electroencephalographic potentials. If further research supports this hypothesis, measures of complexity based on chaos theory and the related geometric concept of fractals may provide new ways to monitor senescence and test the efficacy of specific interventions to modify the age-related decline in adaptive capacity.
A multiple disk centrifugal pump as a blood flow device.
Miller, G E; Etter, B D; Dorsi, J M
1990-02-01
A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.
A Physiological Approach to Prolonged Recovery From Sport-Related Concussion.
Leddy, John; Baker, John G; Haider, Mohammad Nadir; Hinds, Andrea; Willer, Barry
2017-03-01
Management of the athlete with postconcussion syndrome (PCS) is challenging because of the nonspecificity of PCS symptoms. Ongoing symptoms reflect prolonged concussion pathophysiology or conditions such as migraine headaches, depression or anxiety, chronic pain, cervical injury, visual dysfunction, vestibular dysfunction, or some combination of these. In this paper, we focus on the physiological signs of concussion to help narrow the differential diagnosis of PCS in athletes. The physiological effects of exercise on concussion are especially important for athletes. Some athletes with PCS have exercise intolerance that may result from altered control of cerebral blood flow. Systematic evaluation of exercise tolerance combined with a physical examination of the neurologic, visual, cervical, and vestibular systems can in many cases identify one or more treatable postconcussion disorders.
Pustovit, Ruslan V; Callaghan, Brid; Ringuet, Mitchell T; Kerr, Nicole F; Hunne, Billie; Smyth, Ian M; Pietra, Claudio; Furness, John B
2017-08-01
In laboratory animals and in human, centrally penetrant ghrelin receptor agonists, given systemically or orally, cause defecation. Animal studies show that the effect is due to activation of ghrelin receptors in the spinal lumbosacral defecation centers. However, it is not known whether there is a physiological role of ghrelin or the ghrelin receptor in the control of defecation. Using immunohistochemistry and immunoassay, we detected and measured ghrelin in the stomach, but were unable to detect ghrelin by either method in the lumbosacral spinal cord, or other regions of the CNS In rats in which the thoracic spinal cord was transected 5 weeks before, the effects of a ghrelin agonist on colorectal propulsion were significantly enhanced, but defecation caused by water avoidance stress (WAS) was reduced. In knockout rats that expressed no ghrelin and in wild-type rats, WAS-induced defecation was reduced by a ghrelin receptor antagonist, to similar extents. We conclude that the ghrelin receptors of the lumbosacral defecation centers have a physiological role in the control of defecation, but that their role is not dependent on ghrelin. This implies that a transmitter other than ghrelin engages the ghrelin receptor or a ghrelin receptor complex. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Sensorimotor System Measurement Techniques
Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.
2002-01-01
Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672
Aerospace Medicine and Biology. A continuing bibliography with indexes
NASA Technical Reports Server (NTRS)
1982-01-01
This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.
Aerospace medicine and biology. A continuing bibliography with indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-03-01
This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.
Simulation system of arrhythmia using ActiveX control.
Takeuchi, Akihiro; Hirose, Minoru; Hamada, Atsushi; Ikeda, Noriaki
2005-07-01
A simulation system for arrhythmias has been developed using Windows-based software technology, ActiveX control. The cardiac module consists of six cells, the sinus, atrium, AV node, ventricle, and ectopic foci. The physiological properties of the cells, the automaticity and conduction delay, were modelled, respectively, by the phase response curve and the excitability recovery curve. Cell functions were implemented in the ActiveX control and incorporated into the cardiac module. The system draws the ECG sequence as a ladder diagram in real time. The system interactively shows diverse arrhythmias for various user settings of the cell function and bidirectional conduction between the cells. Users are able to experiment virtually by setting up a so-called electrophysiological stimulation. This system is useful for learning and for teaching the interaction between the cells and arrhythmias.
Hanaue, H; Tokuda, Y; Machimura, T; Tsukui, M; Mizutani, K; Huang, C M; Kamijoh, A; Kondo, Y; Ogoshi, K; Makuuchi, H
1989-08-20
The effect of oral administration of lentinan (LTN), a biological response modifier, in the control of systemic immune function was studied in 6-week old male Wistar-Imamichi SPF rats. In the LTN group, 1 mg LTN dissolved in 1 ml physiological saline was administration forcibly into the stomach twice weekly. Physiological saline alone was administered in a similar fashion to the control group. Blood samples were obtained prior to and after four and eight weeks of administration. White blood cells and lymphocyte counts were obtained and lymphocyte subsets were measured using monoclonal antibodies W3/13, W3/25 and 0 X 8 (Sera-Lab), and a laser flow cytometry system (Orthospectrum III, Orthodiagnostic System). The T cell ratio, helper/inducer T (Th) cell ratio, and suppressor/cytotoxic T (Ts) cell ratio were measured. The peripheral white blood cell count and lymphocyte count were not significantly different between the control and LTN groups. After four weeks of LTN administration, however, the LTN group showed a significantly higher T cell ratio, Th cell ratio and Th/Ts cell ratio than did the control group, and the Ts cell ratio was significantly lower. In the groups undergoing administration for eight weeks, no difference was noted in the lymphocyte subsets between the two groups. Oral administration of LTN apparently modulates the systemic immune function through T cell stimulation, especially Th cells, but continued administration may induce a tolerance to the effect of LTN.
Human-centric predictive model of task difficulty for human-in-the-loop control tasks
Majewicz Fey, Ann
2018-01-01
Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301
Foot Massage and Physiological Stress in People with Dementia: A Randomized Controlled Trial
Cooke, Marie Louise; Beattie, Elizabeth; Shum, David H.K.; O'Dwyer, Siobhan T.; Barrett, Sue; Sung, Billy
2014-01-01
Abstract Background: The anxiety associated with unfamiliar surroundings, the disorientation and mental confusion, and the social isolation that accompanies dementia can often create increased stress for people living in long-term care settings. Such a response is thought to affect the autonomic nervous system and result in emotional and physical symptoms of distress that may be manifested as agitation. There is the potential for such distress to influence the physiological response and in particular Blood Pressure and Heart Rate. A relaxation intervention such as massage may influence the physiological stress response. Methods: This randomized controlled trial aimed to compare the effect of foot massage (FM) versus a control activity (quiet presence, QP) on physiological stress response (i.e., blood pressure [BP] and heart rate [HR]) in people living with moderate-to-severe dementia in long-term-care settings. Results: Fifty-three residents were randomized to intervention (10-minute FM) or control group (QP). While the FM group experienced a greater reduction in HR than the control group, these reductions were not significantly different between groups (p=0.83; see Table 1), or across time (p=0.46). Both groups experienced a reduction in systolic BP and diastolic BP, while the mean reduction in systolic BP was greater for those in the FM group. Conclusions: While the findings do not provide strong support for FM, the finding that both conditions allowed the person with dementia to rest in the presence of another human being is of importance in the care of people with dementia. The close presence of another person may in fact promote relaxation and therefore improve BP and HR measures. PMID:24047244
Physiological and Functional Alterations after Spaceflight and Bed Rest.
Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J
2018-04-03
Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.
C3 generic workstation: Performance metrics and applications
NASA Technical Reports Server (NTRS)
Eddy, Douglas R.
1988-01-01
The large number of integrated dependent measures available on a command, control, and communications (C3) generic workstation under development are described. In this system, embedded communications tasks will manipulate workload to assess the effects of performance-enhancing drugs (sleep aids and decongestants), work/rest cycles, biocybernetics, and decision support systems on performance. Task performance accuracy and latency will be event coded for correlation with other measures of voice stress and physiological functioning. Sessions will be videotaped to score non-verbal communications. Physiological recordings include spectral analysis of EEG, ECG, vagal tone, and EOG. Subjective measurements include SWAT, fatigue, POMS and specialized self-report scales. The system will be used primarily to evaluate the effects on performance of drugs, work/rest cycles, and biocybernetic concepts. Performance assessment algorithms will also be developed, including those used with small teams. This system provides a tool for integrating and synchronizing behavioral and psychophysiological measures in a complex decision-making environment.
A wireless medical monitoring over a heterogeneous sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai
2007-01-01
This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
NASA Astrophysics Data System (ADS)
Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan
2014-01-01
Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.
Effect of intermittent standing and walking on physiological changes induced by head-down bed rest
NASA Technical Reports Server (NTRS)
Vernikos, J.; Ludwig, D. A.; Ertl, A. C.; Wade, C. E.; Keil, L.; OHara, D.
1994-01-01
Continuous exposure to gravity may not be necessary to prevent compromised physiological function resulting from exposure to microgravity. However, minimum gravity (G) exposure requirements, effectiveness of passive Gz versus activity in a G field, and optimal G stimulus amplitude, duration, and frequency are unknown. To partially address these questions, a 4-day, 6 degree head-down bed rest (HDBR) study (one ambulatory control day, 4 full HDBR days, one recovery day) was conducted. Nine males, 30-50 yr, were subjected to four different +1 Gz (head-foot) exposure protocols (periodic standing or controlled walking for 2 or 4 h/day in 15 min doses), plus a continuous HDBR (0 Gz) control. Standing 4 h completely prevented and standing 2 h partially prevented post-HDBR orthostatic intolerance. Both walking conditions (2 h and 4 h) attenuated the decrease in peak VO2 and prevented the increased urinary Ca2+ excretion associated with HDBR. Both 4 h conditions (standing and walking) attenuated plasma volume loss during HDBR. It was concluded that various physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz and the duration (2 h vs. 4 h) of the stimulus may be an important moderating factor.
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
3Mo: A Model for Music-Based Biofeedback
Maes, Pieter-Jan; Buhmann, Jeska; Leman, Marc
2016-01-01
In the domain of sports and motor rehabilitation, it is of major importance to regulate and control physiological processes and physical motion in most optimal ways. For that purpose, real-time auditory feedback of physiological and physical information based on sound signals, often termed “sonification,” has been proven particularly useful. However, the use of music in biofeedback systems has been much less explored. In the current article, we assert that the use of music, and musical principles, can have a major added value, on top of mere sound signals, to the benefit of psychological and physical optimization of sports and motor rehabilitation tasks. In this article, we present the 3Mo model to describe three main functions of music that contribute to these benefits. These functions relate the power of music to Motivate, and to Monitor and Modify physiological and physical processes. The model brings together concepts and theories related to human sensorimotor interaction with music, and specifies the underlying psychological and physiological principles. This 3Mo model is intended to provide a conceptual framework that guides future research on musical biofeedback systems in the domain of sports and motor rehabilitation. PMID:27994535
Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1985-01-01
A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.
Trends in communicative access solutions for children with cerebral palsy.
Myrden, Andrew; Schudlo, Larissa; Weyand, Sabine; Zeyl, Timothy; Chau, Tom
2014-08-01
Access solutions may facilitate communication in children with limited functional speech and motor control. This study reviews current trends in access solution development for children with cerebral palsy, with particular emphasis on the access technology that harnesses a control signal from the user (eg, movement or physiological change) and the output device (eg, augmentative and alternative communication system) whose behavior is modulated by the user's control signal. Access technologies have advanced from simple mechanical switches to machine vision (eg, eye-gaze trackers), inertial sensing, and emerging physiological interfaces that require minimal physical effort. Similarly, output devices have evolved from bulky, dedicated hardware with limited configurability, to platform-agnostic, highly personalized mobile applications. Emerging case studies encourage the consideration of access technology for all nonverbal children with cerebral palsy with at least nascent contingency awareness. However, establishing robust evidence of the effectiveness of the aforementioned advances will require more expansive studies. © The Author(s) 2014.
Effect of a puzzle on the process of students' learning about cardiac physiology.
Cardozo, Lais Tono; Miranda, Aline Soares; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein
2016-09-01
The aim of the present study was to evaluate the effects of using a puzzle to learn about cardiac physiology. Students were divided into control and game groups. In class 1, the control group had a 2-h theoretical class about cardiac physiology, including a detailed description of the phases of the cardiac cycle, whereas the game group had a 50-min theoretical class without the description of the cardiac cycle. In class 2, the control group did an assessment exercise before an activity with the cardiac puzzle and the game group answered questions after the above-mentioned activity. While solving the puzzle, the students had to describe the cardiac cycle by relating the concepts of heart morphology and physiology. To evaluate short-term learning, the number of wrong answers and grades in the assessment exercise were compared between the control and game groups. To evaluate medium-term learning, we compared the grades obtained by students of the control and game groups in questions about cardiac physiology that formed part of the academic exam. In the assessment exercise, the game group presented a lower number of errors and higher score compared with the control group. In the academic exam, applied after both groups had used the puzzle, there was no difference in the scores obtained by the control and game groups in questions about cardiac physiology. These results showed a positive effect of the puzzle on students' learning about cardiac physiology compared with those not using the puzzle. Copyright © 2016 The American Physiological Society.
The cardiovascular system after exercise.
Romero, Steven A; Minson, Christopher T; Halliwill, John R
2017-04-01
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete's training. Copyright © 2017 the American Physiological Society.
Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction
Zhang, Ying; Liao, Kin; Li, Chuan; Lai, Alvin C.K.; Foo, Ji-Jinn
2017-01-01
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell–matrix and cell–cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell–cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions. PMID:28952551
Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes.
Wehunt, Mark P; Winschel, Christine A; Khan, Ali K; Guo, Tai L; Abdrakhmanova, Galya R; Sidorov, Vladimir
2013-03-01
New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.
Sensory neurons that detect stretch and nutrients in the digestive system
Williams, Erika K.; Chang, Rui B.; Strochlic, David E.; Umans, Benjamin D.; Lowell, Bradford B.; Liberles, Stephen D.
2016-01-01
SUMMARY Neural inputs from internal organs are essential for normal autonomic function. The vagus nerve is a key body-brain connection that monitors the digestive, cardiovascular, and respiratory systems. Within the gastrointestinal tract, vagal sensory neurons detect gut hormones and organ distension. Here, we investigate the molecular diversity of vagal sensory neurons and their roles in sensing gastrointestinal inputs. Genetic approaches allowed targeted investigation of gut-to-brain afferents involved in homeostatic responses to ingested nutrients (GPR65 neurons) and mechanical distension of the stomach and intestine (GLP1R neurons). Optogenetics, in vivo ganglion imaging, and genetically guided anatomical mapping provide direct links between neuron identity, peripheral anatomy, central anatomy, conduction velocity, response properties in vitro and in vivo, and physiological function. These studies clarify the roles of vagal afferents in mediating particular gut hormone responses. Moreover, genetic control over gut-to-brain neurons provides a molecular framework for understanding neural control of gastrointestinal physiology. PMID:27238020
Translational neurocardiology: preclinical models and cardioneural integrative aspects.
Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H
2016-07-15
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Light-mediated control of DNA transcription in yeast
Hughes, Robert M.; Bolger, Steven; Tapadia, Hersh; Tucker, Chandra L.
2012-01-01
A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light / cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems. PMID:22922268
NASA Technical Reports Server (NTRS)
Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)
1992-01-01
The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.
Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction.
Acosta-Martinez, Maricedes; Horton, Teresa; Levine, Jon E
2007-03-01
Hypothalamic neuropeptide Y (NPY) neurons function as physiological integrators in at least two different neuroendocrine systems - one governing feeding and the other controlling reproduction. Estrogen might modulate both systems by regulating NPY gene expression; it might reduce food intake by suppressing NPY expression, and evoke reproductive hormone surges by stimulating it. How can estrogen exert opposing effects in an ostensibly homogeneous NPY neuronal population? Recent work with immortalized NPY-producing cells suggests that the ratio of estrogen receptor alpha:estrogen receptor beta can determine the direction and temporal pattern of transcriptional responses to estrogen. Because this ratio might itself be physiologically regulated, these findings provide one explanation for multiple neuropeptidergic responses to a single steroid hormone.
Engineering the robustness of industrial microbes through synthetic biology.
Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin
2012-02-01
Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Visual-motor recalibration in geographical slant perception
NASA Technical Reports Server (NTRS)
Bhalla, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1999-01-01
In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.
Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto
2016-05-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.
How might acupuncture work? A systematic review of physiologic rationales from clinical trials.
Moffet, Howard H
2006-07-07
Scientific interest in acupuncture has led numerous investigators to conduct clinical trials to test the efficacy of acupuncture for various conditions, but the mechanisms underlying acupuncture are poorly understood. The author conducted a PubMed search to obtain a fair sample of acupuncture clinical trials published in English in 2005. Each article was reviewed for a physiologic rationale, as well as study objectives and outcomes, experimental and control interventions, country of origin, funding sources and journal type. Seventy-nine acupuncture clinical trials were identified. Twenty-six studies (33%) offered no physiologic rationale. Fifty-three studies (67%) posited a physiologic basis for acupuncture: 33 (62% of 53) proposed neurochemical mechanisms, 2 (4%) segmental nervous system effects, 6 (11%) autonomic nervous system regulation, 3 (6%) local effects, 5 (9%) effects on brain function and 5 (9%) other effects. No rationale was proposed for stroke; otherwise having a rationale was not associated with objective, positive or negative findings, means of intervention, country of origin, funding source or journal type. The dominant explanation for how acupuncture might work involves neurochemical responses and is not reported to be dependent on treatment objective, specific points, means or method of stimulation. Many acupuncture trials fail to offer a meaningful rationale, but proposing a rationale can help investigators to develop and test a causal hypothesis, choose an appropriate control and rule out placebo effects. Acupuncture may stimulate self-regulatory processes independent of the treatment objective, points, means or methods used; this would account for acupuncture's reported benefits in so many disparate pathologic conditions.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
NASA Technical Reports Server (NTRS)
Lange, K. A.
1980-01-01
Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.
Annotation and prediction of stress and workload from physiological and inertial signals.
Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals.
A centre for accommodative vergence motor control
NASA Technical Reports Server (NTRS)
Wilson, D.
1973-01-01
Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.
A multi-channel instrumentation system for biosignal recording.
Yu, Hong; Li, Pengfei; Xiao, Zhiming; Peng, Chung-Ching; Bashirullah, Rizwan
2008-01-01
This paper reports a highly integrated battery operated multi-channel instrumentation system intended for physiological signal recording. The mixed signal IC has been fabricated in standard 0.5microm 5V 3M-2P CMOS process and features 32 instrumentation amplifiers, four 8b SAR ADCs, a wireless power interface with Li-ion battery charger, low power bidirectional telemetry and FSM controller with power gating control for improved energy efficiency. The chip measures 3.2mm by 4.8mm and dissipates approximately 2.1mW when fully operational.
Yang, Dong-Ping; Robinson, P A
2017-04-01
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
NASA Astrophysics Data System (ADS)
Yang, Dong-Ping; Robinson, P. A.
2017-04-01
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
Biomechanics-based in silico medicine: the manifesto of a new science.
Viceconti, Marco
2015-01-21
In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.
Physiology in Medicine: neuromuscular consequences of diabetic neuropathy.
Allen, Matti D; Doherty, Timothy J; Rice, Charles L; Kimpinski, Kurt
2016-07-01
Diabetic polyneuropathy (DPN) refers to peripheral nerve dysfunction as a complication of diabetes mellitus. This condition is relatively common and is likely a result of vascular and/or metabolic disturbances related to diabetes. In the early or less severe stages of DPN it typically results in sensory impairments but can eventually lead to major dysfunction of the neuromuscular system. Some of these impairments may include muscle atrophy and weakness, slowing of muscle contraction, and loss of power and endurance. Combined with sensory deficits these changes in the motor system can contribute to decreased functional capacity, impaired mobility, altered gait, and increased fall risk. There is no pharmacological disease-modifying therapy available for DPN and the mainstay of treatment is linked to treating the diabetes itself and revolves around strict glycemic control. Exercise therapy (including aerobic, strength, or balance training-based exercise) appears to be a promising preventative and treatment strategy for patients with DPN and those at risk. The goal of this Physiology in Medicine article is to highlight important and overlooked dysfunction of the neuromuscular system as a result of DPN with an emphasis on the physiologic basis for that dysfunction. Additionally, we sought to provide information that clinicians can use when following patients with diabetes or DPN including support for the inclusion of exercise-based therapy as an effective, accessible, and inexpensive form of treatment. Copyright © 2016 the American Physiological Society.
The Manned Spacecraft Center and medical technology
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Pool, S. L.
1974-01-01
A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.
Neuroendocrine Disruption: More than Hormones are Upset
Waye, Andrew; Trudeau, Vance L.
2011-01-01
Only a small proportion of the published research on endocrine-disrupting chemicals (EDC) directly examined effects on neuroendocrine processes. There is an expanding body of evidence that anthropogenic chemicals exert effects on neuroendocrine systems and that these changes might impact peripheral organ systems and physiological processes. Neuroendocrine disruption extends the concept of endocrine disruption to include the full breadth of integrative physiology (i.e., more than hormones are upset). Pollutants may also disrupt numerous other neurochemical pathways to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. Several examples are presented in this review, from both vertebrates and invertebrates, illustrating that diverse environmental pollutants including pharmaceuticals, organochlorine pesticides, and industrial contaminants have the potential to disrupt neuroendocrine control mechanisms. While most investigations on EDC are carried out with vertebrate models, an attempt is also made to highlight the importance of research on invertebrate neuroendocrine disruption. The neurophysiology of many invertebrates is well described and many of their neurotransmitters are similar or identical to those in vertebrates; therefore, lessons learned from one group of organisms may help us understand potential adverse effects in others. This review argues for the adoption of systems biology and integrative physiology to address the effects of EDC. Effects of pulp and paper mill effluents on fish reproduction are a good example of where relatively narrow hypothesis testing strategies (e.g., whether or not pollutants are sex steroid mimics) have only partially solved a major problem in environmental biology. It is clear that a global, integrative physiological approach, including improved understanding of neuroendocrine control mechanisms, is warranted to fully understand the impacts of pulp and paper mill effluents. Neuroendocrine disruptors are defined as pollutants in the environment that are capable of acting as agonists/antagonists or modulators of the synthesis and/or metabolism of neuropeptides, neurotransmitters, or neurohormones, which subsequently alter diverse physiological, behavioral, or hormonal processes to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. By adopting a definition of neuroendocrine disruption that encompasses both direct physiological targets and their indirect downstream effects, from the level of the individual to the ecosystem, a more comprehensive picture of the consequences of environmentally relevant EDC exposure may emerge. PMID:21790312
Peinado, Ana B; Rojo, Jesús J; Calderón, Francisco J; Maffulli, Nicola
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential.
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential. PMID:24818009
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Classical Renin-Angiotensin System in Kidney Physiology
Sparks, Matthew A.; Crowley, Steven D.; Gurley, Susan B.; Mirotsou, Maria; Coffman, Thomas M.
2014-01-01
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardio-vascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the “classical” renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the “classical” renin-angiotensin system, with an emphasis on new developments and modern concepts. PMID:24944035
Grobler, Josias M B; Wood, Chris M
2018-02-01
Our goals were: (i) to determine whether sublethal concentrations of water-borne ammonia would prevent the formation of a dominance hierarchy, or alter its structure, in groups of 4 juvenile trout; (ii) to investigate the behavioral and physiological responses of individuals of different social rank exposed to a concentration of ammonia that still allowed hierarchy formation. Social hierarchies were created by using a technique in which a food delivery system that created competition also served to isolate individual fish for respirometry. Groups of 4 fish were exposed to elevated ammonia (NH 4 HCO 3 ) 12 h before first feeding; aggression was recorded by video camera during morning feedings. Experimental ammonia concentrations were 700, 1200 and 1500 μmol L -1 at pH 7.3, 12 °C (9.8, 16.8, and 21.0 mg L -1 as total ammonia-N, or 0.0515, 0.0884, and 0.1105 mg L -1 as NH 3 -N). Aggression was severely reduced by 1200 and abolished by 1500 μmol L -1 total ammonia, such that hierarchies did not form. However, groups exposed to 700 μmol L -1 total ammonia still formed stable hierarchies but displayed lower levels of aggression in comparison to control hierarchies. Exposure continued for 11 days. Physiological parameters were recorded on day 5 (end of period 1) and day 10 (end of period 2), while feeding and plasma cortisol were measured on day 11. In control hierarchies, dominant (rank 1) trout generally exhibited higher growth rates, greater increases in condition factor, higher food consumption, and lower cortisol levels than did fish of ranks 2, 3, and 4. In comparison to controls, the 700 μmol L -1 total ammonia hierarchies generally displayed lower growth, lower condition factor increases, lower O 2 consumption, lower cortisol levels, but similar feeding patterns, with smaller physiological differences amongst ranks during period 1. Effects attenuated during period 2, as aggression and physiological measures returned towards control levels, indicating both behavioral and physiological acclimation to ammonia. These disturbances in social behavior and associated physiology occurred at an ammonia concentration in the range of regulatory significance and relevance to aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.
A Physiological Approach to Prolonged Recovery From Sport-Related Concussion
Leddy, John; Baker, John G.; Haider, Mohammad Nadir; Hinds, Andrea; Willer, Barry
2017-01-01
Management of the athlete with postconcussion syndrome (PCS) is challenging because of the nonspecificity of PCS symptoms. Ongoing symptoms reflect prolonged concussion pathophysiology or conditions such as migraine headaches, depression or anxiety, chronic pain, cervical injury, visual dysfunction, vestibular dysfunction, or some combination of these. In this paper, we focus on the physiological signs of concussion to help narrow the differential diagnosis of PCS in athletes. The physiological effects of exercise on concussion are especially important for athletes. Some athletes with PCS have exercise intolerance that may result from altered control of cerebral blood flow. Systematic evaluation of exercise tolerance combined with a physical examination of the neurologic, visual, cervical, and vestibular systems can in many cases identify one or more treatable postconcussion disorders. PMID:28387557
A pervasive health monitoring service system based on ubiquitous network technology.
Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh
2008-07-01
The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.
Homeostasis control of building environment using sensor agent robot
NASA Astrophysics Data System (ADS)
Nagahama, Eri; Mita, Akira
2012-04-01
A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
The physiology of spacecraft and space suit atmosphere selection
NASA Astrophysics Data System (ADS)
Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.
The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.
The Development of Real-Time Physiological Monitoring and Training Software for Remote Applications
NASA Technical Reports Server (NTRS)
2005-01-01
Autogenic Feedback Training Exercise (AFTE) is an protocol and technology developed by Dr. Patricia Cowings and her associates at NASA Ames Research Center as a means to facilitate astronaut adaptation to space and exposure to the microgravity. AFTE is a training method which involves teaching subjects to voluntarily control several of their own physiological responses to environmental stressors. As the procedures matured, the training program was expanded to determine if technology developed to facilitate astronaut adaptation to space would be valuable in treating patients suffering from autonomic and vestibular pathologies and symptomatic relief from nausea and/or blood pressure control anomalies such as hypo- or hypertension. The present study, performed in conjunction with Morehouse School of Medicine, Biomedical Engineering at The University of Akron and NASA Ames Research Center has demonstrated that this technology can be successfully applied over vast distances. The specific purpose of this research was to develop a PC based system which could handle processing of twenty channels of acquired physiological data in addition to the necessary duplex communication protocols that would, for example, permit a patient in Atlanta, GA to be trained by a clinician stationed in San Jose, CA. Sixteen channels of physiological data and 20 channels of processed data are included.
Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.
Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen
2012-02-13
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Beyond Fractals and 1/f Noise: Multifractal Analysis of Complex Physiological Time Series
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Amaral, Luis A. N.; Ashkenazy, Yosef; Stanley, H. Eugene; Goldberger, Ary L.; Hausdorff, Jeffrey M.; Yoneyama, Mitsuru; Arai, Kuniharu
2001-03-01
We investigate time series with 1/f-like spectra generated by two physiologic control systems --- the human heartbeat and human gait. We show that physiological fluctuations exhibit unexpected ``hidden'' structures often described by scaling laws. In particular, our studies indicate that when analyzed on different time scales the heartbeat fluctuations exhibit cascades of branching patterns with self-similar (fractal) properties, characterized by long-range power-law anticorrelations. We find that these scaling features change during sleep and wake phases, and with pathological perturbations. Further, by means of a new wavelet-based technique, we find evidence of multifractality in the healthy human heartbeat even under resting conditions, and show that the multifractal character and nonlinear properties of the healthy heart are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure. In contrast to the heartbeat, we find that the interstride interval time series of healthy human gait, a voluntary process under neural regulation, is described by a single fractal dimension (such as classical 1/f noise) indicating monofractal behavior. Thus our approach can help distinguish physiological and physical signals with comparable frequency spectra and two-point correlations, and guide modeling of their control mechanisms.
Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo
Torday, John S.; Rehan, V. K.
2009-01-01
Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136
Wuytack, Francesca; Meskell, Pauline; Conway, Aislinn; McDaid, Fiona; Santesso, Nancy; Hickey, Fergal G; Gillespie, Paddy; Raymakers, Adam J N; Smith, Valerie; Devane, Declan
2017-12-06
Changes to physiological parameters precede deterioration of ill patients. Early warning and track and trigger systems (TTS) use routine physiological measurements with pre-specified thresholds to identify deteriorating patients and trigger appropriate and timely escalation of care. Patients presenting to the emergency department (ED) are undiagnosed, undifferentiated and of varying acuity, yet the effectiveness and cost-effectiveness of using early warning systems and TTS in this setting is unclear. We aimed to systematically review the evidence on the use, development/validation, clinical effectiveness and cost-effectiveness of physiologically based early warning systems and TTS for the detection of deterioration in adult patients presenting to EDs. We searched for any study design in scientific databases and grey literature resources up to March 2016. Two reviewers independently screened results and conducted quality assessment. One reviewer extracted data with independent verification of 50% by a second reviewer. Only information available in English was included. Due to the heterogeneity of reporting across studies, results were synthesised narratively and in evidence tables. We identified 6397 citations of which 47 studies and 1 clinical trial registration were included. Although early warning systems are increasingly used in EDs, compliance varies. One non-randomised controlled trial found that using an early warning system in the ED may lead to a change in patient management but may not reduce adverse events; however, this is uncertain, considering the very low quality of evidence. Twenty-eight different early warning systems were developed/validated in 36 studies. There is relatively good evidence on the predictive ability of certain early warning systems on mortality and ICU/hospital admission. No health economic data were identified. Early warning systems seem to predict adverse outcomes in adult patients of varying acuity presenting to the ED but there is a lack of high quality comparative studies to examine the effect of using early warning systems on patient outcomes. Such studies should include health economics assessments.
A mobile care system with alert mechanism.
Lee, Ren-Guey; Chen, Kuei-Chien; Hsiao, Chun-Chieh; Tseng, Chwan-Lu
2007-09-01
Hypertension and arrhythmia are chronic diseases, which can be effectively prevented and controlled only if the physiological parameters of the patient are constantly monitored, along with the full support of the health education and professional medical care. In this paper, a role-based intelligent mobile care system with alert mechanism in chronic care environment is proposed and implemented. The roles in our system include patients, physicians, nurses, and healthcare providers. Each of the roles represents a person that uses a mobile device such as a mobile phone to communicate with the server setup in the care center such that he or she can go around without restrictions. For commercial mobile phones with Bluetooth communication capability attached to chronic patients, we have developed physiological signal recognition algorithms that were implemented and built-in in the mobile phone without affecting its original communication functions. It is thus possible to integrate several front-end mobile care devices with Bluetooth communication capability to extract patients' various physiological parameters [such as blood pressure, pulse, saturation of haemoglobin (SpO2), and electrocardiogram (ECG)], to monitor multiple physiological signals without space limit, and to upload important or abnormal physiological information to healthcare center for storage and analysis or transmit the information to physicians and healthcare providers for further processing. Thus, the physiological signal extraction devices only have to deal with signal extraction and wireless transmission. Since they do not have to do signal processing, their form factor can be further reduced to reach the goal of microminiaturization and power saving. An alert management mechanism has been included in back-end healthcare center to initiate various strategies for automatic emergency alerts after receiving emergency messages or after automatically recognizing emergency messages. Within the time intervals in system setting, according to the medical history of a specific patient, our prototype system can inform various healthcare providers in sequence to provide healthcare service with their reply to ensure the accuracy of alert information and the completeness of early warning notification to further improve the healthcare quality. In the end, with the testing results and performance evaluation of our implemented system prototype, we conclude that it is possible to set up a complete intelligent healt care chain with mobile monitoring and healthcare service via the assistance of our system.
Leptin and the CNS Control of Glucose Metabolism
Morton, Gregory J.; Schwartz, Michael W.
2012-01-01
The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system (CNS) plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders. PMID:21527729
[Physiology in Relation to Anesthesia Practice: Preface and Comments].
Yamada, Yoshitsugu
2016-05-01
It has been long recognized that anesthesia practice is profoundly based in physiology. With the advance of the technology of imaging, measurement and information, a serious gap has emerged between anesthesia mainly handling gross systemic parameters and molecular physiology. One of the main reasons is the lack of establishment of integration approach. This special series of reviews deals with systems physiology covering respiratory, cardiovascular, and nervous systems. It also includes metabolism, and fluid, acid-base, and electrolyte balance. Each review focuses on several physiological concepts in each area, explaining current understanding and limits of the concepts based on the new findings. They reaffirm the importance of applying physiological inference in anesthesia practice and underscore the needs of advancement of systems physiology.
Cushing's syndrome: from physiological principles to diagnosis and clinical care
Raff, Hershel; Carroll, Ty
2015-01-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic–pituitary–adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism – Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. PMID:25480800
Brugnera, A; Zarbo, C; Adorni, R; Gatti, A; Compare, A; Sakatani, K
2017-01-01
Aging is associated with changes in biological functions, such as reduced cardiovascular responses to stressful tasks. However, less is known about the influence of age on the reactivity of the prefrontal cortex (PFC) to acute stressors. Therefore, this study aimed to investigate the effects of a computerized-controlled stress task on the PFC and autonomic system activity in a sample of older and younger adults. We recruited a total of 55 healthy, right-handed persons (26 older adults with mean age 69.5, SD 5.8 years; and 29 younger adults with mean age 23.8, SD 3.3 years); groups were balanced for sex. Tasks included a control and an experimental condition: during both tasks individuals had to solve simple mental arithmetic problems. For the experimental condition, all participants were faced with a time limit that induced significant stress. Physiological indexes were collected continuously during the entire procedure using a 2-channel near infrared spectroscopy (NIRS) and an ECG monitoring system. Repeated measures ANOVA were used to assess changes in hemoglobin concentrations, and changes in both heart rate and performance outcomes. NIRS, ECG and performance data showed a significant interaction between the group and condition. Post-hoc analyses evidenced a significant increase in heart rate and Oxy-Hb concentration in the bilateral PFC between the control and experimental condition only in the younger group. Post-hoc analyses of behavioral data showed lower percentages of correct responses and higher response times in the older group. In summary, these results suggested that cardiovascular and cortical reactivity to stress tasks are a function of age. Older individuals seem to be characterized by blunted physiological reactivity, suggestive of impaired adaptive responses to acute stressors. Therefore, future studies should investigate the underlying physiological mechanisms of prefrontal and cardiovascular changes related to aging.
On the use of wearable physiological monitors to assess heat strain during occupational heat stress.
Notley, Sean R; Flouris, Andreas D; Kenny, Glen P
2018-05-04
Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.
Proportional Feedback Control of Energy Intake During Obesity Pharmacotherapy.
Hall, Kevin D; Sanghvi, Arjun; Göbel, Britta
2017-12-01
Obesity pharmacotherapies result in an exponential time course for energy intake whereby large early decreases dissipate over time. This pattern of declining drug efficacy to decrease energy intake results in a weight loss plateau within approximately 1 year. This study aimed to elucidate the physiology underlying the exponential decay of drug effects on energy intake. Placebo-subtracted energy intake time courses were examined during long-term obesity pharmacotherapy trials for 14 different drugs or drug combinations within the theoretical framework of a proportional feedback control system regulating human body weight. Assuming each obesity drug had a relatively constant effect on average energy intake and did not affect other model parameters, our model correctly predicted that long-term placebo-subtracted energy intake was linearly related to early reductions in energy intake according to a prespecified equation with no free parameters. The simple model explained about 70% of the variance between drug studies with respect to the long-term effects on energy intake, although a significant proportional bias was evident. The exponential decay over time of obesity pharmacotherapies to suppress energy intake can be interpreted as a relatively constant effect of each drug superimposed on a physiological feedback control system regulating body weight. © 2017 The Obesity Society.
ASTROCULTURE (TM) root metabolism and cytochemical analysis
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.
2000-01-01
Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.
Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.
Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl
2018-03-02
Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.
Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans
Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin
2013-01-01
Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638
Differential roles of NADPH oxidases in vascular physiology and pathophysiology
Amanso, Angelica M.; Griendling, Kathy K.
2012-01-01
Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics. PMID:22202108
Helping Video Games Rewire "Our Minds"
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Palsson, Olafur S.
2001-01-01
Biofeedback-modulated video games are games that respond to physiological signals as well as mouse, joystick or game controller input; they embody the concept of improving physiological functioning by rewarding specific healthy body signals with success at playing a video game. The NASA patented biofeedback-modulated game method blends biofeedback into popular off-the- shelf video games in such a way that the games do not lose their entertainment value. This method uses physiological signals (e.g., electroencephalogram frequency band ratio) not simply to drive a biofeedback display directly, or periodically modify a task as in other systems, but to continuously modulate parameters (e.g., game character speed and mobility) of a game task in real time while the game task is being performed by other means (e.g., a game controller). Biofeedback-modulated video games represent a new generation of computer and video game environments that train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies are poised to exploit the revolution in interactive multimedia home entertainment for the personal improvement, not just the diversion, of the user.
Physiological control of elaborate male courtship: Female choice for neuromuscular systems
Fusani, Leonida; Barske, Julia; Day, Lainy D.; Fuxjager, Matthew J.; Schlinger, Barney A.
2015-01-01
Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits. PMID:25086380
Revised Guidelines for Comprehensive Health Education, Grades 10-12.
ERIC Educational Resources Information Center
Nebraska State Dept. of Education, Lincoln. Div. of Instructional Services.
These health curriculum guidelines were designed for teachers of secondary students. Four major topic areas are covered: 1) anatomy, physiology, tissues, systems, heredity, physical activity, and nutriition; 2) family structures, functions, and responsibilities; 3) values, stress, and drug abuse; and 4) the environment, disease control, cancer,…
78 FR 29387 - Government-Owned Inventions, Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... System for Physiologically Modulating Action Role-playing Open World Video Games and Simulations Which... Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process; NASA Case No.: LAR-17887-1... Modulating Videogames and Simulations Which Use Gesture and Body Image Sensing Control Input Devices; NASA...
NASA Technical Reports Server (NTRS)
Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.
2016-01-01
The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.
Reward-based hypertension control by a synthetic brain-dopamine interface.
Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2013-11-05
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
Stokes, Alexander J; Wakano, Clay; Del Carmen, Kimberly A; Koblan-Huberson, Murielle; Turner, Helen
2005-03-01
The transient receptor potential, sub-family Vanilloid (TRPV)(2) cation channel is activated in response to extreme temperature elevations in sensory neurons. However, TRPV2 is widely expressed in tissues with no sensory function, including cells of the immune system. Regulation of GRC, the murine homolog of TRPV2 has been studied in insulinoma cells and myocytes. GRC is activated in response to certain growth factors and neuropeptides, via a mechanism that involves regulated access of the channel to the plasma membrane. This is likely to be an important primary control mechanism for TRPV2 outside the CNS. Here, we report that a regulated trafficking step controls the access of TRPV2 to the cell surface in mast cells. In mast cells, elevations in cytosolic cAMP are sufficient to drive plasma membrane localization of TRPV2. We have previously proposed that the recombinase gene activator protein (RGA), a four-transmembrane domain, intracellular protein, associates with TRPV2 during the biosynthesis and early trafficking of the channel. We use a polyclonal antibody to RGA to confirm the formation of a physiological complex between RGA and TRPV2. Finally, we show that over-expression of the RGA protein potentiates the basal surface localization of TRPV2. We propose that trafficking and activation mechanisms intersect for TRPV2, and that cAMP mobilizing stimuli may regulate TRPV2 localization in non-sensory cells. RGA participates in the control of TRPV2 surface levels, and co-expression of RGA may be a key component of experimental systems that seek to study TRPV2 physiology.
Current Concepts and Future Directions of CELSS
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Bredt, J.
1985-01-01
Bioregenerative life support systems for use in space were studied. Concepts of such systems include the use of higher plants and/or microalgae as sources of food, potable water and oxygen, and as sinks for carbon dioxide and metabolic wastes. Recycling of materials within the system will require processing of food organism and crew wastes using microbiological and/or physical chemical techniques. The dynamics of material flow within the system will require monitoring, control, stabilization and maintenance imposed by computers. Studies included higher plant and algal physiology, environmental responses, and control; flight experiments for testing responses of organisms to weightlessness and increased radiation levels; and development of ground based facilities for the study of recycling within a bioregenerative life support system.
Amphetamine enhances endurance by increasing heat dissipation.
Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav
2016-09-01
Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Coadaptive aiding and automation enhance operator performance.
Christensen, James C; Estepp, Justin R
2013-10-01
In this work, we expand on the theory of adaptive aiding by measuring the effectiveness of coadaptive aiding, wherein we explicitly allow for both system and user to adapt to each other. Adaptive aiding driven by psychophysiological monitoring has been demonstrated to be a highly effective means of controlling task allocation and system functioning. Psychophysiological monitoring is uniquely well suited for coadaptation, as malleable brain activity may be used as a continuous input to the adaptive system. To establish the efficacy of the coadaptive system, physiological activation of adaptation was directly compared with manual activation or no activation of the same automation and cuing systems. We used interface adaptations and automation that are plausible for real-world operations, presented in the context of a multi-remotely piloted aircraft control simulation. Each participant completed 3 days of testing during 1 week. Performance was assessed via proportion of targets successfully engaged. In the first 2 days of testing, there were no significant differences in performance between the conditions. However, in the third session, physiological adaptation produced the highest performance. By extending the data collection across multiple days, we offered enough time and repeated experience for user adaptation as well as online system adaptation, hence demonstrating coadaptive aiding. The results of this work may be employed to implement more effective adaptive workstations in a variety of work domains.
Jemec, Anita; Lešer, Vladka; Drobne, Damjana
2012-05-01
The aim of this work was to investigate if the activities of catalase and glutathione S-transferase in a control population of terrestrial isopods (Porcellio scaber) are correlated with the physiological condition of the isopods. For this purpose, the activities of these enzymes were analysed in isopods from a stock population and in parallel, the physiological condition of the same specimens was assessed using a histological approach based on epithelial thickness and lipid droplets. We found a correlation between antioxidant enzymes and the physiological condition of the isopods. This implies that these enzymes could be used as predictive indicators of the physiological condition in a stock population before comprehensive toxicological studies are conducted and also in control group after the experiment. When a control group is found to be very heterogeneous in terms of physiological condition, the experiment should be repeated with a larger number of experimental animals. The findings of this study will contribute to more accurate experimental design of toxicity tests when using biomarkers. This should encourage other researchers to increase their effort to know the physiological state of their test organisms. Copyright © 2011 Elsevier Inc. All rights reserved.
Clément, Gilles; Ngo-Anh, Jennifer Thu
2013-07-01
Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.
A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.
Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E
2016-08-01
This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.
Nonauditory-system response to noise and effects on health
NASA Technical Reports Server (NTRS)
1984-01-01
Continued exposure to noise in real life can be a source of physiological stress possibly capable of causing health disorders beyond that of direct damage to the auditory receptor system. Some theorists hold that some of these effects occur because of innate, reflexive responses to noise that cannot be prevented or, when suppressed, that require some effort that may itself become somewhat debilitting in time. An alternative theory is that the truly nonhabituating reflexive responses to noise are not sufficient in character to cause any ill health, and that those responses to noise that are or could be significant in this regard are not directly the result of exposure to noise but are responses to the emotional meanings conveyed by the sounds. Obviously, the degree to which noise can lead to harm to nonauditory physiological systems of the body are questions of utmost importance for the assessment of the need for noise control.
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2018-01-01
We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.
Yu, Yu-Ning; Doctor, Faiyaz; Fan, Shou-Zen; Shieh, Jiann-Shing
2018-04-13
During surgical procedures, bispectral index (BIS) is a well-known measure used to determine the patient's depth of anesthesia (DOA). However, BIS readings can be subject to interference from many factors during surgery, and other parameters such as blood pressure (BP) and heart rate (HR) can provide more stable indicators. However, anesthesiologist still consider BIS as a primary measure to determine if the patient is correctly anaesthetized while relaying on the other physiological parameters to monitor and ensure the patient's status is maintained. The automatic control of administering anesthesia using intelligent control systems has been the subject of recent research in order to alleviate the burden on the anesthetist to manually adjust drug dosage in response physiological changes for sustaining DOA. A system proposed for the automatic control of anesthesia based on type-2 Self Organizing Fuzzy Logic Controllers (T2-SOFLCs) has been shown to be effective in the control of DOA under simulated scenarios while contending with uncertainties due to signal noise and dynamic changes in pharmacodynamics (PD) and pharmacokinetic (PK) effects of the drug on the body. This study considers both BIS and BP as part of an adaptive automatic control scheme, which can adjust to the monitoring of either parameter in response to changes in the availability and reliability of BIS signals during surgery. The simulation of different control schemes using BIS data obtained during real surgical procedures to emulate noise and interference factors have been conducted. The use of either or both combined parameters for controlling the delivery Propofol to maintain safe target set points for DOA are evaluated. The results show that combing BIS and BP based on the proposed adaptive control scheme can ensure the target set points and the correct amount of drug in the body is maintained even with the intermittent loss of BIS signal that could otherwise disrupt an automated control system.
Some effects of acceleration in man and chimpanzees. [gravitational effects
NASA Technical Reports Server (NTRS)
Wood, E. H.; Sass, D. J.; Ritman, E. L.; Greenleaf, J. F.; Coulam, C. M.; Nathan, D.; Nolan, E. C.
1977-01-01
Early physiologic experiments using dogs and humans in centrifuges are reviewed. Because of the close similarity between the shape and dimensions of the thoraces of chimpanzees and humans, the former were used to obtain roentgenograms and photokymographic recordings of multiple physiologic variables before and during exposure to +5.8 Gy to study the effects of changes in the gravitational-inertial force environment on the cardiovascular and pulmonary systems during long duration space flight. A computer-controlled sciscanning system was used to obtain a two dimensional map of the amount of radiation emanating from the dorsal and ventricle surfaces after insertion of radioactive microspheres in the right ventricle. By using four different batches of microspheres tagged with isotopes of different energies, the spatial distribution of pulmonary blood flow under four conditions was determined.
Yoles-Frenkel, Michal; Cohen, Oksana; Bansal, Rohini; Horesh, Noa; Ben-Shaul, Yoram
2017-06-15
Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2μl. This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species. Copyright © 2017 Elsevier B.V. All rights reserved.
Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro.
Park, Gun-Seok; Park, Min Hee; Shin, Woojung; Zhao, Connie; Sheikh, Sameer; Oh, So Jung; Kim, Hyun Jung
2017-06-01
The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.
NASA Astrophysics Data System (ADS)
Belanger, Andrea J.; Higgs, Dennis M.
2005-04-01
The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.
From grasp to language: embodied concepts and the challenge of abstraction.
Arbib, Michael A
2008-01-01
The discovery of mirror neurons in the macaque monkey and the discovery of a homologous "mirror system for grasping" in Broca's area in the human brain has revived the gestural origins theory of the evolution of the human capability for language, enriching it with the suggestion that mirror neurons provide the neurological core for this evolution. However, this notion of "mirror neuron support for the transition from grasp to language" has been worked out in very different ways in the Mirror System Hypothesis model [Arbib, M.A., 2005a. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences 28, 105-167; Rizzolatti, G., Arbib, M.A., 1998. Language within our grasp. Trends in Neuroscience 21(5), 188-194] and the Embodied Concept model [Gallese, V., Lakoff, G., 2005. The brain's concepts: the role of the sensory-motor system in reason and language. Cognitive Neuropsychology 22, 455-479]. The present paper provides a critique of the latter to enrich analysis of the former, developing the role of schema theory [Arbib, M.A., 1981. Perceptual structures and distributed motor control. In: Brooks, V.B. (Ed.), Handbook of Physiology--The Nervous System II. Motor Control. American Physiological Society, pp. 1449-1480].
Bovine somatotropin and lactation: from basic science to commercial application.
Bauman, D E
1999-10-01
Bovine somatotropin (bST) results in increased milk yield and an unprecedented improvement in efficiency. Beginning in the 1930s to present day, investigations have examined animal-related factors such as nutrition, bioenergetics, metabolism, health and well being and consumer-related factors such as milk quality, manufacturing characteristics, and product safety. Overall, bST is a homeorhetic control involved in orchestrating many physiological processes. Direct effects involve adaptations in many tissues and the metabolism of all nutrient classes--carbohydrates, lipids, protein, and minerals. Mechanisms include alterations in key enzymes, intracellular signal transduction systems, and tissue response to homeostatic signals. Indirect effects involve the mammary gland and are thought to be mediated by the insulin-like growth factor (IGF) system. Specific changes include increased cellular rates of milk synthesis and enhanced maintenance of secretory cells. Indirect effects are modulated by environment and management factors, especially nutritional status. This modulation is a central component in allowing ST to play a key role in regulating nutrient utilization across a range of physiological situations. U.S. commercial use began in 1994, and adoption has been extensive. From a consumer perspective, bST was unique, and special interest groups loudly predicted dire consequences. However, introduction of bST had no impact on milk consumption, and milk labeled as recombinant bST-free occupies a minor niche market. From a producer perspective, commercial use verified scientific studies and enhanced net farm income. Overall, ST is a key homeorhetic control regulating nutrient partitioning, and the ST/IGF system plays a key role in animal performance and well being across a range of physiological situations.
Simulation environment and graphical visualization environment: a COPD use-case
2014-01-01
Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327
Coexistence of ZigBee-Based WBAN and WiFi for Health Telemonitoring Systems.
Kim, Yena; Lee, SeungSeob; Lee, SuKyoung
2016-01-01
The development of telemonitoring via wireless body area networks (WBANs) is an evolving direction in personalized medicine and home-based mobile health. A WBAN consists of small, intelligent medical sensors which collect physiological parameters such as electrocardiogram, electroencephalography, and blood pressure. The recorded physiological signals are sent to a coordinator via wireless technologies, and are then transmitted to a healthcare monitoring center. One of the most widely used wireless technologies in WBANs is ZigBee because it is targeted at applications that require a low data rate and long battery life. However, ZigBee-based WBANs face severe interference problems in the presence of WiFi networks. This problem is caused by the fact that most ZigBee channels overlap with WiFi channels, severely affecting the ability of healthcare monitoring systems to guarantee reliable delivery of physiological signals. To solve this problem, we have developed an algorithm that controls the load in WiFi networks to guarantee the delay requirement for physiological signals, especially for emergency messages, in environments with coexistence of ZigBee-based WBAN and WiFi. Since WiFi applications generate traffic with different delay requirements, we focus only on WiFi traffic that does not have stringent timing requirements. In this paper, therefore, we propose an adaptive load control algorithm for ZigBee-based WBAN/WiFi coexistence environments, with the aim of guaranteeing that the delay experienced by ZigBee sensors does not exceed a maximally tolerable period of time. Simulation results show that our proposed algorithm guarantees the delay performance of ZigBee-based WBANs by mitigating the effects of WiFi interference in various scenarios.
[Psychological and physiological evaluations of music listening for mental stress].
Hasegawa, Hiroki; Uozumi, Takashi; Ono, Koichi
2004-05-01
Music elicits emotional and physiological responses in humans, providing excitement, mood elevation, relaxation, sedation and so on. Previous studies have been conducted on the effects of music, while little is known about the effects for the cognitive information processing. In this study we introduced various types of physiological indices, and explored the effects of music on participants' subjective and physiological responses to stress. First, eight participants (mean age; 25.6) were requested to perform a mental calculation task for 30 minutes. After that, they were exposed to music ("Bolero" by M. Ravel) for 13 minutes, while others were exposed to noise or just stayed in silence as controls. State-Trait Anxiety Inventory (STAI), salivary Immunoglobulin A (sigA), auditory event-related potentials (ERPs), heart rate (HR) and spectral analysis of heart rate variability (HRV) were assessed through the experiment. 1) After the calculation task: P300 amplitude of auditory ERPs significantly diminished (p = 0.027). Saliva secretion rate decreased (p = 0.028) and salivary IgA levels rose (p = 0.017) significantly. LF/HF ratio significantly increased (p = 0.042). 2) After music ("Bolero"): P300 amplitude significantly expanded (p = 0.048). State anxiety levels significantly lowered (p = 0.007). No significant physiological effect was found in those exposed to noise or silence. Our results of salivary IgA and LF/HF ratio suggest that the calculation task activates immune and sympathetic nervous system, while these systems are not affected by music. On the other hand, the result of P300 amplitude suggests that the central nervous system for the cognitive information processing is inactivated by the calculation task, and it can be recovered by music. The results of this study indicated that relaxing music is useful for the stress management, which invite further empirical investigation.
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
High fat diet blunts the effects of leptin on ventilation and on carotid body activity.
Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V
2017-12-22
Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca 2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Maranon, Rodrigo O; Reckelhoff, Jane F
2016-02-01
Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P < 0.05). Losartan reduced MAP in both sham and RD rats similarly (numerically and by percentage) (142 ± 10 vs. 161 ± 6 mm Hg; P < 0.05 vs. RD, P < 0.05 vs. baseline). However, female SHR rats remained significantly hypertensive despite both pharmacological intervention and RD. The data suggest that both the renal sympathetic nervous system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
The mathematical model that has been a cornerstone for the systems analysis of space-flight physiological studies is the Guyton model describing circulatory, fluid and electrolyte regulation. The model and the modifications that are made to permit simulation and analysis of the stress of weightlessness are described.
NASA Astrophysics Data System (ADS)
Khotiaintsev, Sergei N.; Doger-Guerrero, E.; Glebova, L.; Svirid, V.; Sirenko, Yuri
1996-11-01
This paper treats electro-physiological effects of the low- level laser irradiation of blood (LBI). The data presented here are based on the observation of almost 200 patients suffering from the acute disruption of coronary blood circulation, unstable angina pectoris and myocardial infarction. Statistically significant changes of the electro-physiological characteristics were observed in the group of 65 patients, treated by the LBI. In particular, the significant 6 percent extension of the effective refractory period was observed. The electrical situation threshold has increased by 20.6 percent. The significant changes of some other important electro-physiological characteristics were within the range of 5-15 percent. In this paper, the data obtained on the LBI effectiveness are compared also with the results obtained on 94 patients who in addition to the standard anti-angina therapy were treated by the autohaemo- transfusion performed simultaneously with the UV-light irradiation of the transfused blood. The results obtained demonstrate the significant positive effect of the low energy LBI. The electrophysiological data obtained have good correlation with observed anti-arrhythmic effect of the LBI. This is proved by the data obtained on the electro- physiological characteristics of the cardiovascular system and by other clinical data on the experimental and control group of patients. In the course of this research the exact effect of the low level LBI was established. LBI led to the pronounced positive changes in electro-physiological characteristics of the cardiovascular system of the patients, it also led to the pronounced anti-arrhythmic effect.
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
Park, Sungwon; Kim, Kiwoong
2011-12-01
The present study aimed to investigate the physiological reactivity and recognition to emotional stimuli in outpatients with schizophrenia and in healthy controls. Skin conductance response, skin conductance level, heart rate, respiration, corrugator muscle, and orbicularis muscle were all measured using five emotion-eliciting film clips. The patients reported lower intensity of experienced anger and disgust than controls. The patient and control groups did not differ in accuracy to recognize emotions except anger. Anger, fear, amusement, and sadness had a discriminative effect on physiological responses in the two groups. These findings provide helpful physiological evidence influenced by harmful or favorable emotional stimuli. Future directions may include to clarify how physiological reactivity and subject experience to emotion are related to their functioning. 2011 Elsevier Inc. All rights reserved.
Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.
Yuce, Mehmet R; Ho, Chee Keong
2008-01-01
A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.
Compartmentalized and systemic control of tissue immunity by commensals
Belkaid, Yasmine; Naik, Shruti
2013-01-01
The body is composed of various tissue microenvironments with finely tuned local immunosurveillance systems, many of which are in close apposition with distinct commensal niches. Mammals have formed an evolutionary partnership with the microbiota that is critical for metabolism, tissue development and host defense. Despite our growing understanding of the impact of this host-microbe alliance on immunity in the gastrointestinal tract, the extent to which individual microenvironments are controlled by resident microbiota remains unclear. In this Perspective we discuss how resident commensals outside the gastrointestinal tract can control unique physiological niches and the potential implications of the dialog between these commensals and the host for the establishment of immune homeostasis, protective responses and tissue pathology. PMID:23778791
Physiologic monitoring. A guide to networking your monitoring systems.
2011-10-01
There are many factors to consider when choosing a physiologic monitoring system. not only should these systems perform well clinically, but they should also be able to exchange data with other information systems. We discuss some of the ins and outs of physiologic monitoring system networking and highlight eight product lines from seven suppliers.
Baevskiĭ, R M; Bogomolov, V V; Funtova, I I; Slepchenkova, I N; Chernikova, A G
2009-01-01
Methods of investigating the physiological functions in space crews on extended missions during night sleep are of much fundamental and practical substance. The design of experiment "Sonocard" utilizes the method of seismocardiography. Purpose of the experiment is to validate the procedures of noncontact in-sleep physiological data recoding which are potent to enhance the space crew medical operations system. The experiment was performed systematically by ISS Russian crew members starting from mission-16. The experimental procedure is easy and does not cause discomfort to human subjects. Results of the initial experimental sessions demonstrated that, as on Earth, sleep in microgravity is crucial for the recovery of body functional reserves and that the innovative technology is instrumental in studying the recovery processes as well as person unique patterns of adaptation to extended space mission. It also allows conclusions about sleep quality, mechanisms of recreation, and body functionality. These data may enrich substantially the information used by medical operators of the space missions control centers.
Durant, Fallon; Lobo, Daniel; Hammelman, Jennifer
2016-01-01
Abstract Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large‐scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi‐scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering. PMID:27499881
NASA Technical Reports Server (NTRS)
Cowings, P.; Toscano, W.; Taylor, B.; DeRoshia, C.; Kornilova, L.; Koslovskaya, I.; Miller, N.
1999-01-01
The broad objective of the research was to study individual characteristics of human adaptation to long duration spaceflight and possibilities of their correction using autonomic conditioning. The changes in autonomic state during adaptation to microgravity can have profound effects on the operational efficiency of crewmembers and may result in debilitating biomedical symptoms. Ground-based and inflight experiment results showed that certain responses of autonomic nervous system were correlated with, or consistently preceded, reports of performance decrements or the symptoms. Autogenic-Feedback-Training Exercise (AFTE) is a physiological conditioning method that has been used to train people to voluntary control several of their own physiological responses. The specific objectives were: 1) To study human autonomic nervous system (ANS) responses to sustained exposure to microgravity; 2) To study human behavior/performance changes related to physiology; 3) To evaluate the effectiveness of preflight autonomic conditioning (AFTE) for facilitating adaptation to space and readaptation to Earth; and 4) To archive these data for the NASA Life Sciences Data Archive and thereby make this information available to the international scientific community.
Lovell, John T.; Shakirov, Eugene V.; Schwartz, Scott; ...
2016-05-31
Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responsesmore » to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits.« less
Schwartz, Scott; Lowry, David B.; Aspinwall, Michael J.; Palacio-Mejia, Juan Diego; Hawkes, Christine V.; Fay, Philip A.
2016-01-01
Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits. PMID:27246097
Multi-zone cooling/warming garment
NASA Technical Reports Server (NTRS)
Leon, Gloria R. (Inventor); Koscheyev, Victor S. (Inventor); Dancisak, Michael J. (Inventor)
2006-01-01
A thermodynamically efficient garment for cooling and/or heating a human body. The thermodynamic efficiency is provided in part by targeting the heat exchange capabilities of the garment to specific areas and/or structures of the human body. The heat exchange garment includes heat exchange zones and one or more non-heat exchange zones, where the heat exchange zones are configured to correspond to one or more high density tissue areas of the human body when the garment is worn. A system including the garment can be used to exchange heat with the adjacent HD tissue areas under the control of a feedback control system. Sensed physiological parameters received by the feedback control system can be used to adjust the characteristics of heat exchange fluid moving within the heat exchange garment.
Influence of Melatonin on the Immune System of Fish: A Review
Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-01-01
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958
System identification and sensorimotor determinants of flight maneuvers in an insect
NASA Astrophysics Data System (ADS)
Sponberg, Simon; Hall, Robert; Roth, Eatai
Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.
Influence of melatonin on the immune system of fish: a review.
Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-04-11
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.
Dissipative structures and biological rhythms
NASA Astrophysics Data System (ADS)
Goldbeter, Albert
2017-10-01
Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.
The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.
Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro
2017-10-01
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua
2015-01-01
The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-04-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.
A fast solution switching system with temperature control for single cell measurements
Koh, Duk-Su; Chen, Liangyi; Ufret-Vincenty, Carmen A.; Jung, Seung-Ryoung
2011-01-01
This article describes a perfusion system for biophysical single cell experiments at the physiological temperature. Our system regulates temperature of test solutions using a small heat exchanger that includes several capillaries. Water circulating inside the heat exchanger warms or cools test solutions flowing inside the capillaries. Temperature-controlled solutions are delivered directly to a single cell(s) through a multibarreled manifold that switches solutions bathing a cell in less than 1 s. This solution exchange is optimal for patch clamp, single-cell microamperometry, and microfluorometry experiments. Using this system, we demonstrate that exocytosis from pancreatic β cells and activation of TRPV1 channels are temperature sensitive. We also discuss how to measure local temperature near a single cell under investigation. PMID:21536068
Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL
NASA Technical Reports Server (NTRS)
1992-01-01
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.
Bayesian inference of physiologically meaningful parameters from body sway measurements.
Tietäväinen, A; Gutmann, M U; Keski-Vakkuri, E; Corander, J; Hæggström, E
2017-06-19
The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no formal parameter inference has previously been conducted and the expressive power of such models for real human subjects remains unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted a nonlinear control model to posturographic measurements, and we showed that it can accurately predict the sway characteristics of both simulated and real subjects. Our method provides a full statistical characterization of the uncertainty related to all model parameters as quantified by posterior probability density functions, which is useful for comparisons across subjects and test settings. The ability to infer intractable control models from sensor data opens new possibilities for monitoring and predicting body status in health applications.
We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...
What We Talk about when We Talk with Medical Students
ERIC Educational Resources Information Center
Joyner, Michael J.; Charkoudian, Nisha; Curry, Timothy B.; Eisenach, John H.; Wehrwein, Erica A.
2011-01-01
In this article, we review how we interact with medical students in our efforts to teach blood pressure regulation and systemic cardiovascular control along with related elements of respiratory and exercise physiology. Rather than provide a detailed lecture with key facts, we attempted to outline our approach to teaching integrative cardiovascular…
Bush bean (Phaseolus vulgaris L.) plants were exposed to ozone (O3) episodes in open-top chambers in early and late season studies at Corvallis, Oregon. lants were grown in cultural systems that controlled plant water status. he 7-h seasonal mean O3 concentrations were 0.067 and ...
ERIC Educational Resources Information Center
Hilley, Robert
This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…
Physiological responses in air traffic control personnel : Houston Intercontinental Tower.
DOT National Transportation Integrated Search
1973-12-01
Biochemical and physiological indices of stress showed that the level of stress of 16 air traffic controllers at the Houston Intercontinental Airport Tower was indistinguishable from that of control populations. While the level of stress was lower th...
Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1992-01-01
The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism regarding what the CCDS program and the biomedical/biotechnology industry can expect to gain from a permanent manned presence in space.
No Evidence for Emotional Empathy in Chickens Observing Familiar Adult Conspecifics
Edgar, Joanne L.; Paul, Elizabeth S.; Harris, Lauren; Penturn, Sarah; Nicol, Christine J.
2012-01-01
The capacity of animals to empathise is of high potential relevance to the welfare of group-housed domestic animals. Emotional empathy is a multifaceted and multilayered phenomenon which ranges from relatively simple processes such as emotional matching behaviour to more complex processes involving interaction between emotional and cognitive perspective taking systems. Our previous research has demonstrated that hens show clear behavioural and physiological responses to the mild distress of their chicks. To investigate whether this capacity exists outside the mother/offspring bond, we conducted a similar experiment in which domestic hens were exposed to the mild distress of unrelated, but familiar adult conspecifics. Each observer hen was exposed to two replicates of four conditions, in counterbalanced order; control (C); control with noise of air puff (CN); air puff to conspecific hen (APC); air puff to observer hen (APH). During each test, the observer hens' behaviour and physiology were measured throughout a 10 min pre-treatment and a 10 min treatment period. Despite showing signs of distress in response to an aversive stimulus directed at themselves (APH), and using methodology sufficiently sensitive to detect empathy-like responses previously, observer hens showed no behavioural or physiological responses to the mild distress of a familiar adult conspecific. The lack of behavioural and physiological response indicates that hens show no basis for emotional empathy in this context. PMID:22348100
Lathe, R
2001-05-01
Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure. Evidence is presented that its role in memory may be ancillary to physiological regulation. Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress. Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes. This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception'). Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function. It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli. Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (e.g. long-term potentiation) could facilitate throughput inhibition. This may have implications for the role of the hippocampus and long-term potentiation in memory.
The physiological effects of slow breathing in the healthy human
Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean
2017-01-01
Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide a comprehensive overview of normal human respiratory physiology and the documented effects of slow breathing in healthy humans. To review and discuss the evidence and hypotheses regarding the mechanisms underlying slow breathing physiological effects in humans. To provide a definition of slow breathing and what may constitute “autonomically optimised respiration”. To open discussion on the potential clinical implications of slow breathing techniques and the need for further research. PMID:29209423
Structure-Function Relations in Physiology Education: Where's the Mechanism?
ERIC Educational Resources Information Center
Lira, Matthew E.; Gardner, Stephanie M.
2017-01-01
Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…
NASA Technical Reports Server (NTRS)
Max, S. R.; Markelonis, G. J.
1983-01-01
Cholinergic innervation regulates the physiological and biochemical properties of skeletal muscle. The mechanisms that appear to be involved in this regulation include soluble, neurally-derived polypeptides, transmitter-evoked muscle activity and the neurotransmitter, acetylcholine, itself. Despite extensive research, the interacting neural mechanisms that control such macromolecules as acetylcholinesterase, the acetylcholine receptor and glucose 6-phosphate dehydrogenase remain unclear. It may be that more simplified in vitro model systems coupled with recent dramatic advances in the molecular biology of neurally-regulated proteins will begin to allow researchers to unravel the mechanisms controlling the expression and maintenance of these macromolecules.
Automated agitation management accounting for saturation dynamics.
Rudge, A D; Chase, J G; Shaw, G M; Lee, D
2004-01-01
Agitation-sedation cycling in critically ill is damaging to patient health and increases length of and cost. A physiologically representative model of the agitation-sedation system is used as a platform to evaluate feedback controllers offering improved agitation management. A heavy-derivative controller with upper and infusion rate bounds maintains minimum plasma concentrations through a low constant infusion, and minimizes outbursts of agitation through strong, timely boluses. controller provides improved agitation management using from 37 critically ill patients, given the saturation of effect at high concentration. Approval was obtained the Canterbury Ethics Board for this research.
Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra
2012-04-01
This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.
Enabling Medical Device Interoperability for the Integrated Clinical Environment
2016-02-01
Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In
Controlled environment crop production - Hydroponic vs. lunar regolith
NASA Technical Reports Server (NTRS)
Bugbee, Bruce G.; Salisbury, Frank B.
1989-01-01
The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-07-25
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-01-01
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176
A real-time multi-channel monitoring system for stem cell culture process.
Xicai Yue; Drakakis, E M; Lim, M; Radomska, A; Hua Ye; Mantalaris, A; Panoskaltsis, N; Cass, A
2008-06-01
A novel, up to 128 channels, multi-parametric physiological measurement system suitable for monitoring hematopoietic stem cell culture processes and cell cultures in general is presented in this paper. The system aims to measure in real-time the most important physical and chemical culture parameters of hematopoietic stem cells, including physicochemical parameters, nutrients, and metabolites, in a long-term culture process. The overarching scope of this research effort is to control and optimize the whole bioprocess by means of the acquisition of real-time quantitative physiological information from the culture. The system is designed in a modular manner. Each hardware module can operate as an independent gain programmable, level shift adjustable, 16 channel data acquisition system specific to a sensor type. Up to eight such data acquisition modules can be combined and connected to the host PC to realize the whole system hardware. The control of data acquisition and the subsequent management of data is performed by the system's software which is coded in LabVIEW. Preliminary experimental results presented here show that the system not only has the ability to interface to various types of sensors allowing the monitoring of different types of culture parameters. Moreover, it can capture dynamic variations of culture parameters by means of real-time multi-channel measurements thus providing additional information on both temporal and spatial profiles of these parameters within a bioreactor. The system is by no means constrained in the hematopoietic stem cell culture field only. It is suitable for cell growth monitoring applications in general.
Higher Plants in life support systems: design of a model and plant experimental compartment
NASA Astrophysics Data System (ADS)
Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles
The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi-ronmental control of plant behavior: this requires an extended knowledge of plant response to environment variations. This needs a large number of experiments, which would be easier to perform in a high-throughput system.
Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2014-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists. PMID:25261247
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-01-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca2+ oscillations. Here, we have unraveled the molecular basis of cellular Ca2+ signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca2+ imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca2+ signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.—Hoff M., Balfanz, S., Ehling, P., Gensch, T., Baumann, A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. PMID:21478261
Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle
2006-09-01
A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.
Integrative Cardiac Health Project
2013-03-01
insulin and leptin is presented below. Table 8 shows levels of insulin and leptin, as well as physiological measures, at baseline. Change over time in...Ornish participants and controls for insulin, leptin, and physiological measures is presented in Tables 9 and 10. Table 11 shows medications known...with other therapeutic or lifestyle regimens. 16 Table 8. Insulin, Leptin, and Physiological Measures at Baseline by Case/Control Status
The C23A system, an exmaple of quantitative control of plant growth associated with a data base
NASA Technical Reports Server (NTRS)
Andre, M.; Daguenet, A.; Massimino, D.; Gerbaud, A.
1986-01-01
The architecture of the C23A (Chambers de Culture Automatique en Atmosphere Artificielles) system for the controlled study of plant physiology is described. A modular plant growth chambers and associated instruments (I.R. CO2 analyser, Mass spectrometer and Chemical analyser); network of frontal processors controlling this apparatus; a central computer for the periodic control and the multiplex work of processors; and a network of terminal computers able to ask the data base for data processing and modeling are discussed. Examples of present results are given. A growth curve analysis study of CO2 and O2 gas exchanges of shoots and roots, and daily evolution of algal photosynthesis and of the pools of dissolved CO2 in sea water are discussed.
The cardiovascular system after exercise
Romero, Steven A.; Minson, Christopher T.
2017-01-01
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete’s training. PMID:28153943
Formative assessment in physiology teaching using a wireless classroom communication system.
Paschal, Cynthia B
2002-12-01
Systems physiology, studied by biomedical engineers, is an analytical way to approach the homeostatic foundations of basic physiology. In many systems physiology courses, students attend lectures and are given homework and reading assignments to complete outside of class. The effectiveness of this traditional approach was compared with an approach in which a wireless classroom communication system was used to provide instant feedback on in-class learning activities and reading assignment quizzes. Homework was eliminated in this approach. The feedback system used stimulated 100% participation in class and facilitated rapid formative assessment. The results of this study indicate that learning of systems physiology concepts including physiology is at least, as if not more, effective when in-class quizzes and activities with instant feedback are used in place of traditional learning activities including homework. When results of this study are interpreted in light of possible effects of the September 11, 2001 terrorist attacks on student learning in the test group, it appears that the modified instruction may be more effective than the traditional instruction.
NASA Astrophysics Data System (ADS)
Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera
2008-12-01
Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.
Stress Counter-Response Training Via Physiological Self-Regulation During Flight Simulation
NASA Technical Reports Server (NTRS)
Palsson, Olafur S.
2000-01-01
This study provided the first evaluation of a new training concept and technology aimed at training pilots to maintain physiological equilibrium during circumstances in an airplane cockpit. Thirty healthy subjects (16 males and 14 females) between the ages of 18 and 35 were randomized into two study groups, A and B. Subjects participated individually in a sequence of four study sessions. In the first visit, subjects were taught to operate a desktop fighter jet flight simulation program. In the three sessions that followed, subjects in group A were trained to minimize their autonomic deviation from baseline values while operating the desktop flight simulation. This was done by making their skin conductance and hand temperature deviations from baseline impair the functionality of the aircraft controls. Subjects also received auditory and visual cues about their autonomic deviation, and were instructed to keep these within pre-set limits to retain full control of the aircraft. Subjects in group B were subjected to periods of impaired aircraft functionality independent of their physiologic activity, and thus served as a control group. No statistically significant group differences were found in the flight performance scores from the three training sessions, and post-training flight performance scores of the two groups were not different. We conclude that this study did not provide clear support for this training methodology in optimizing pilot performance. However, a number of shortcomings in the current status of this training methodology may account for the lack of demonstrable training benefit to the experimental group. Suggested future modifications for research on this training methodology include: Limiting the amount of instrument impairment resulting from physiological deviations; conducting a greater number of physiological training sessions per subject; using pre-post training performance tests which invoke a greater amount of stress in subjects; and developing a more detailed performance scoring system.
Argus, R E; Colmer, T D; Grierson, P F
2015-06-01
We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.
Subjective and physiological reactivity to chocolate images in high and low chocolate cravers.
Rodríguez, Sonia; Fernández, María Carmen; Cepeda-Benito, Antonio; Vila, Jaime
2005-09-01
Cue-reactivity to chocolate images was assessed using self-report and physiological measures. From a pre-screening sample of 454, young women were selected and assigned to high and low chocolate craving groups (N = 36/group). The experimental procedure consisted in the elicitation and measurement of the cardiac defense and startle reflexes while viewing chocolate and standard affective images selected from the International Affective Picture System. In response to chocolate images, high cravers reported more pleasure and arousal but less control than low cravers. In high cravers, viewing chocolate images inhibited the cardiac defense but potentiated the startle reflex, as compared to low cravers. The results confirmed at the physiological level that the motivational state that underlies the experience of chocolate craving include both appetitive (inhibition of the defense reflex) and aversive (potentiation of the startle response) components. The findings supported a motivational conflict theory of chocolate craving.
Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.
Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T
2013-12-01
It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.
NASA Astrophysics Data System (ADS)
Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.
2012-06-01
Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and imagined movements of the affected hand, can enable stroke survivors to control a one-dimensional computer cursor rapidly and accurately. This ipsilateral motor activity enabled users to achieve final target accuracies between 68% and 91% within 15 min. These findings suggest that ipsilateral motor activity from the unaffected hemisphere in stroke survivors could provide a physiological substrate for BCI operation that can be further developed as a long-term assistive device or potentially provide a novel tool for rehabilitation.
Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella
2014-05-27
This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.
Hybrid Enhanced Epidermal SpaceSuit Design Approaches
NASA Astrophysics Data System (ADS)
Jessup, Joseph M.
A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.
Results from the EPL monkey-pod experiment conducted as part of the 1974 NASA/Ames shuttle CVT-2
NASA Technical Reports Server (NTRS)
Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.
1974-01-01
The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continuously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general spacecraft sources.
Results from the EPL monkey-pod flight experiments conducted aboard the NASA/Ames CV-990, May 1976
NASA Technical Reports Server (NTRS)
Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.
1976-01-01
The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general space craft sources.
Affective and physiological responses to the suffering of others: compassion and vagal activity.
Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher
2015-04-01
Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity. (c) 2015 APA, all rights reserved).
Zeng, Lu-Sheng; Liao, Min; Chen, Cheng-Li; Huang, Chang-Yong
2006-10-01
The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (<300 mg kg-1) as lead acetate resulted in a slight increase in soil microbial activities compared with the control, and had an inhibitory influence at high concentration (>500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.
Lee, Min-sun; Park, Bum-jin; Lee, Juyoung; Park, Kun-tae; Ku, Ja-hyeong; Lee, Jun-woo; Oh, Kyung-ok; Miyazaki, Yoshifumi
2013-10-10
Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants' physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities.
2013-01-01
Background Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. Results The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants’ physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. Conclusions This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities. PMID:24112302
Manipulations of the reproductive system of fishes by means of exogenous chemicals
Patino, R.
1997-01-01
Environmental control of reproductive activity of captive fish is feasible (or potentially feasible) but, with few exceptions, is currently impractical for most species. Therefore, chemical methods of manipulating reproductive activity continue to be widely used in fish production operations worldwide. However, the control of fish reproduction in captivity cannot be exercised without regard to adequate environmental conditions, which can differ markedly for different species. This review provides a synopsis of relevant aspects of fish reproductive physiology and addresses current and promising future chemical methods of sex control, gonadal recrudescence, and spawning. Most research on the control of reproduction in fishes has focused on female physiology because ovarian development and maturation are easily disturbed by environmental stressors. Control of sex ratios by steroid treatment has become a well-established technique for several fish species, but the technique continues to be problematic in some cases. Final gonadal growth and spawning usually can be achieved by implant treatment with gonadotropin-releasing hormone analogs (GnRHa), which in some species have to be applied in combination with dopamine antagonists to enhance responsiveness to GnRHa. However, efforts to accelerate gonadal recrudescence and maturational competence by chemical means have yielded mixed results, reflecting a relative lack of understanding of the basic physiological and biochemic mechanisms controlling these processes. The potential benefits of using reproductive pheromone, to manipulate gonadal development and spawning has been demonstrated in a few species, but further research is needed to determine whether this technique is applicable to fish culture. Because a reliable supply of young fish is critical for the expansion and diversification of fish culture operations, the use of chemicals in combination with adequate environmental conditions to contain gametogenesis and spawning in fishes will continue to be an important tool for the fish culture.
A wearable device for emotional recognition using facial expression and physiological response.
Jangho Kwon; Da-Hye Kim; Wanjoo Park; Laehyun Kim
2016-08-01
This paper introduces a glasses-typed wearable system to detect user's emotions using facial expression and physiological responses. The system is designed to acquire facial expression through a built-in camera and physiological responses such as photoplethysmogram (PPG) and electrodermal activity (EDA) in unobtrusive way. We used video clips for induced emotions to test the system suitability in the experiment. The results showed a few meaningful properties that associate emotions with facial expressions and physiological responses captured by the developed wearable device. We expect that this wearable system with a built-in camera and physiological sensors may be a good solution to monitor user's emotional state in daily life.
Topical negative pressure for the treatment of neonatal post-sternotomy wound dehiscence.
Hardwicke, J; Richards, H; Jagadeesan, J; Jones, T; Lester, R
2012-01-01
The use of topical negative pressure (TNP) dressings for sternal wound dehiscence or mediastinitis in the neonatal population is rare. The majority of case reports have focused on wound healing as an endpoint and have not discussed the physiological advantage that TNP dressings may impart with regard to sternal stabilisation, improved respiratory function and early weaning from mechanical ventilation. We present a case of the use of TNP in neonatal post-sternotomy wound dehiscence and mediastinitis, from a UK perspective, with an emphasis on wound healing and physiological optimisation. As well as an improvement in sternal wound healing due to the local effects of the TNP system, serial arterial blood gas analysis revealed a significant improvement in systemic physiological parameters, including a reduction in pCO(2) in the period (days 20-31) after application of TNP (p<0.0001) compared to the period before where simple occlusive dressings were applied. Hydrogen ion concentration also significantly reduced in this period (p=0.0058). The use of the TNP system in association with systemic antibiotics successfully treated the mediastinitis. A sealed, controlled wound environment also allowed ease of nursing and an expedited return to care by the parents. We would recommend the consideration of TNP dressings in similar cases of neonatal and paediatric sternal wound dehiscence. Not only do we observe the local effects of improved wound healing, the systemic effects of improved lung function are also valuable in the early management of such complex cases.
Sensory response system of social behavior tied to female reproductive traits.
Tsuruda, Jennifer M; Amdam, Gro V; Page, Robert E
2008-01-01
Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees. Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization. Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.
Morris, John A; Norris, Patrick R; Ozdas, Asli; Waitman, Lemuel R; Harrell, Frank E; Williams, Anna E; Cao, Hanqing; Jenkins, Judith M
2006-06-01
Measurements of a patient's physiologic reserve (age, injury severity, admission lactic acidosis, transfusion requirements, and coagulopathy) reflect robustness of response to surgical insult. We have previously shown that cardiac uncoupling (reduced heart rate variability, HRV) in the first 24 hours after injury correlates with mortality and autonomic nervous system failure. We hypothesized: Deteriorating physiologic reserve correlates with reduced HRV and cardiac uncoupling. There were 1,425 trauma ICU patients that satisfied the inclusion criteria. Differences in mortality across categorical measurements of the domains of physiologic reserve were assessed using the chi test. The relationship of cardiac uncoupling and physiologic reserve was examined using multivariate logistic regression models for various levels of cardiac uncoupling (>0 through 28% reduced HRV in the first 24 hours). Of these, 797 (55.9%) patients exhibited cardiac uncoupling. Deteriorating measures of physiologic reserve reflected increased risk of death. Measures of acidosis (admission lactate, time to lactate normalization, and lactate deterioration over the first 24 hours), coagulopathy, age, and injury severity contributed significantly to the risk of cardiac uncoupling (area under receiver operator curve, ROC=0.73). The association between deteriorating reserve and cardiac uncoupling increases with the threshold for uncoupling (ROC=0.78). Reduced heart rate variability is a new biomarker reflecting the loss of command and control of the heart (cardiac uncoupling). Risk of cardiac uncoupling increases significantly as a patient's physiologic reserve deteriorates and physiologic exhaustion approaches. Cardiac uncoupling provides a noninvasive, overall measure of a patient's clinical trajectory over the first 24 hours of ICU stay.
A Hybrid Robotic Control System Using Neuroblastoma Cultures
NASA Astrophysics Data System (ADS)
Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.
The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.
2014-06-01
austere circumstances, providing a physiologic bridge to definitive hemorrhage control. The clinical use of this technique was first described in the...Support Hospital in Camp Bastion , Helmand Province, Southern Afghanistan. This hospital is unique in the theater of Afghanistan as it is a joint UK–US
USDA-ARS?s Scientific Manuscript database
Eco-friendly approaches to postharvest disease management in harvested commodities, such as heat treatments and biological control utilizing antagonistic yeasts, is an active research field. The current review focuses on the physiological and molecular aspects of heat treatment on all the major par...
ERIC Educational Resources Information Center
Moharic, Metka
2010-01-01
Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-07-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.
Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo
2017-09-01
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Physiological monitoring and analysis of a manned stratospheric balloon test program.
Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B
2014-02-01
The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.
... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...
Bistability and State Transition of a Delay Differential Equation Model of Neutrophil Dynamics
NASA Astrophysics Data System (ADS)
Ma, Suqi; Zhu, Kaiyi; Lei, Jinzhi
This paper studies the existence of bistable states and control strategies to induce state transitions of a delay differential equation model of neutrophil dynamics. We seek the conditions that a stable steady state and an oscillatory state coexist in the neutrophil dynamical system. Physiologically, stable steady state represents the healthy state, while oscillatory state is usually associated with diseases such as cyclical neutropenia. We study the control strategies to induce the transitions from the disease state to the healthy state by introducing temporal perturbations to system parameters. This study is valuable in designing clinical protocols for the treatment of cyclical neutropenia.
Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A
2018-02-05
Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.
Arenas, Ana M.; Sun, Tingxiao
2018-01-01
Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754
Sejian, Veerasamy; Srivastava, Rajendra Swaroop
2010-12-01
The purpose of the investigation was to observe the pineal-adrenal-immune system relationships and their influence on non-specific immune response in female goats under short-term thermal stress. Six female goats had been exposed to 40°C and 60% relative humidity in the psychrometric chamber for 17 days. Blood samples were obtained on days 0 and 10 to establish control and thermal stress effects, respectively. Chemical adrenalectomy was achieved by injecting metyrapone (100 mg/kg body weight) followed by exogenous melatonin treatment (0.1 mg/kg body weight) from 11th to 17th day of experiment. Thermal stress significantly (P≤0.05) altered the physiological responses. Metyrapone and melatonin treatment significantly (P≤0.05) reduced the thermal-stress-induced increase in plasma concentrations of cortisol and corticosterone while significantly (P≤0.05) increased the plasma melatonin on days 11 and 17. Furthermore, these treatments significantly (P<0.05) increased the phagocytic activity of neutrophils as compared to both control and thermal exposure values from 11-17 days of experiment. The data generated from this study help us to understand the functional relationship between pineal, adrenal, and immune system, and how this relationship modifies the non-specific immune response for the well being of goats during thermal stress.
Druege, Uwe; Franken, Philipp
2018-05-17
Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro
2005-04-01
In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.
Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate
2014-01-01
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626
Pandey, Priyanka; Hooda, O. K.; Kumar, Sunil
2017-01-01
Aim: The present investigation was undertaken to study the impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries (KF) heifers. Materials and Methods: The animals of both the breeds of Tharparkar and KF were exposed at different temperatures and CO2 levels. Exposure conditions of 25°C, 400 ppm CO2 level, and 60% relative humidity (RH) were taken as a control condition. The exposure conditions 40°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% and exposure conditions 42°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% were taken as treatments. The exposure period in each condition was 4 h daily for 5 consecutive days. Results: Physiological responses (respiration rate [RR], pulse rate [PR], and rectal temperature [RT]) were significantly (p<0.01) higher and different during all exposure conditions compared to control condition in both the breeds of cattle. KF heifers had higher RR, PR, and RT than Tharparkar heifers. Hematological parameters, namely, red blood cell, hemoglobin, and packed cell volume were significantly higher and different during all exposure condition than control in both the breeds, whereas no significant changes were observed in total leukocyte count and differential leukocyte count. Blood pH increased with increase in temperature and CO2 levels and was significantly higher than control conditions. PCO2 and base excess were significantly (p<0.05) lower, and PO2 was higher during different exposure conditions than control in both breeds. Restlessness and excitement signs were observed in all the exposure conditions as compared to control condition in both the breeds. Conclusion: Changes in physiological responses, behavioral pattern, and hematological parameters reflect the current functional status of the body system, and it can be used as an index for assessing the adaptation capacity of cattle to predict changes occurring in climate variables due to increasing CO2 levels and environmental temperature. PMID:29062208
The neurophysiology of the esophagus.
Woodland, Philip; Sifrim, Daniel; Krarup, Anne Lund; Brock, Christina; Frøkjaer, Jens Brøndum; Lottrup, Christian; Drewes, Asbjørn Mohr; Swanstrom, Lee L; Farmer, Adam D
2013-10-01
This paper reports on the neurophysiology of the esophagus, including on the uneven distribution of innervation in the esophagus, reflected by the increased sensitivity and perception of gastroesophageal reflux disease (GERD) events in the proximal rather than distal esophagus; the role of the enteric nervous system (ENS) in swallowing; the role of the physiological stress-responsive systems, including the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in mediating esophageal pain; the advances in understanding pain mechanisms and brain structure provided by technological imaging advances; investigations into the efficacy of the descending-pain control system, including diffuse noxious inhibitory control (DNIC); the role of abnormal nervous signaling in afferent pathways in the pathogenesis of Barrett's esophagus (BE); and the contribution of the esophageal mucosa to reflux symptoms. © 2013 New York Academy of Sciences.
Lisa J. Samuelson; John Butnor; Chris Maier; Tom A. Stokes; Kurt Johnsen; Michael Kane
2008-01-01
Leaf physiology and stem growth were assessed in loblolly pine (Pinus taeda L.) in response to 10 to 11 years of treatment with weed control (W), weed control plus irrigation (WI), weed control plus irrigation and fertigation (WIF), or weed control plus irrigation, fertigation, and pest control (WIFP) to determine whether increased resource...
Vuletic, L; Spalj, S; Peros, K
2016-02-01
The primary objective of this study was to assess whether exposing dental students to visual stimuli related to dental profession during the medical physiology seminar could affect their perception of the clinical relevance of the topic. A self-administered questionnaire on attitudes towards medical physiology was conducted amongst 105 students of the School of Dental Medicine in Zagreb, Croatia, aged 19-24 years (80% females) following a seminar on respiratory system physiology. Power-point presentation accompanying the seminar for a total of 52 students (study group) was enriched with pictures related to dental practice in order to assess whether these pictures could make the topic appear more clinically relevant for a future dentist. The results of the survey indicated that dental students in the study group perceived the topic of the seminar as more important for them as future dentists when compared to the perception of the control group (P = 0.025). The results of this survey encourage physiology lecturers to present medical physiology as clinically relevant for dental students whenever possible as this could increase students' interest in the subject and their motivation for learning. Such an approach could be particularly beneficial if there is a significant time gap between basic courses and involvement of students into clinical training for it could promote meaningful learning. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schwanz, Lisa; Warner, Daniel A; McGaugh, Suzanne; Di Terlizzi, Roberta; Bronikowski, Anne
2011-01-01
Energy allocation among somatic maintenance, reproduction and growth varies not only among species, but among individuals according to states such as age, sex and season. Little research has been conducted on the somatic (physiological) maintenance of long-lived organisms, particularly ectotherms such as reptiles. In this study, we examined sex differences and age- and season-related variation in immune function and DNA repair efficiency in a long-lived reptile, the painted turtle (Chrysemys picta). Immune components tended to be depressed during hibernation, in winter, compared with autumn or spring. Increased heterophil count during hibernation provided the only support for winter immunoenhancement. In juvenile and adult turtles, we found little evidence for senescence in physiological maintenance, consistent with predictions for long-lived organisms. Among immune components, swelling in response to phytohemagglutinin (PHA) and control injection increased with age, whereas basophil count decreased with age. Hatchling turtles had reduced basophil counts and natural antibodies, indicative of an immature immune system, but demonstrated higher DNA repair efficiency than older turtles. Reproductively mature turtles had reduced lymphocytes compared with juvenile turtles in the spring, presumably driven by a trade-off between maintenance and reproduction. Sex had little influence on physiological maintenance. These results suggest that components of physiological maintenance are modulated differentially according to individual state and highlight the need for more research on the multiple components of physiological maintenance in animals of variable states.
Visual information without thermal energy may induce thermoregulatory-like cardiovascular responses
2013-01-01
Background Human core body temperature is kept quasi-constant regardless of varying thermal environments. It is well known that physiological thermoregulatory systems are under the control of central and peripheral sensory organs that are sensitive to thermal energy. If these systems wrongly respond to non-thermal stimuli, it may disturb human homeostasis. Methods Fifteen participants viewed video images evoking hot or cold impressions in a thermally constant environment. Cardiovascular indices were recorded during the experiments. Correlations between the ‘hot-cold’ impression scores and cardiovascular indices were calculated. Results The changes of heart rate, cardiac output, and total peripheral resistance were significantly correlated with the ‘hot-cold’ impression scores, and the tendencies were similar to those in actual thermal environments corresponding to the impressions. Conclusions The present results suggest that visual information without any thermal energy can affect physiological thermoregulatory systems at least superficially. To avoid such ‘virtual’ environments disturbing human homeostasis, further study and more attention are needed. PMID:24373765
Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo
2010-01-01
Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.
Physical culture as the basis of students' healthy lifestyle.
Kharissova, N; Kharissova, L; Smirnov, I; Kosibaeva, A; Mindubaeva, F
2015-04-01
The present study aimed at investigation of the relationship between physiological features of cardiorespiratory system of a group of athletes with individually-typological charac-teristics of the organism (age, type of constitution, sports experience, the degree of adaptation) to physical activities on the basis of a comprehensive study of the cardiorespiratory system. The study was conducted on 450 students from 18 to 24 years of age from Kazakhstan, Russia, India, and Pakistan to evaluate the influence of physical culture and sports on the formation of a healthy lifestyle of young people in higher education institutions. The students were divided into groups - the first group - student 18-20 years of age; the second group - students 21-24 years of age; the control group included students of the same age not actively involved in sports (2 lessons of physical training per week). The relationship between physiological features of cardiorespiratory system of athletes and individually-typological characteristics of the organism (age, type of constitution, sports experience, the degree of adaptation) was determined.
Redox Signaling Mechanisms in Nervous System Development.
Olguín-Albuerne, Mauricio; Morán, Julio
2018-06-20
Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Papetti, Michael; Kozlowski, Piotr
2018-04-01
Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (<$410) self-contained apparatus, consisting of a closed-loop, feedback-controlled system regulated by a PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
The concept of "buffering" in systems and control theory: from metaphor to math.
Schmitt, Bernhard M
2004-10-04
The paradigm of "buffering" is used increasingly for the description of diverse "systemic" phenomena encountered in evolutionary genetics, ecology, integrative physiology, and other areas. However, in this new context, the paradigm has not yet matured into a truly quantitative concept inasmuch as it lacks a corresponding quantitative measure of "systems-level buffering strength". Here, I develop such measures on the basis of a formal and general approach to the quantitation of buffering action. "Systems-level buffering" is shown to be synonymous with "disturbance rejection" in feedback-control systems, and can be quantitated by means of dimensionless proportions between partial flows in two-partitioned systems. The units allow either the time-independent, "static" buffering properties or the time-dependent, "dynamic" ones to be measured. Analogous to this "resistance to change", one can define and measure the "conductance to change"; this quantity corresponds to "set-point tracking" in feedback-control systems. Together, these units provide a systematic framework for the quantitation of buffering action in systems biology, and reveal the common principle behind systems-level buffering, classical acid-base buffering, and multiple other manifestations of buffering.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence.
Ordaz, Sarah; Luna, Beatriz
2012-08-01
Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence
Ordaz, Sarah; Luna, Beatriz
2012-01-01
Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210
Gschwind, Yves J; Eichberg, Sabine; Ejupi, Andreas; de Rosario, Helios; Kroll, Michael; Marston, Hannah R; Drobics, Mario; Annegarn, Janneke; Wieching, Rainer; Lord, Stephen R; Aal, Konstantin; Vaziri, Daryoush; Woodbury, Ashley; Fink, Dennis; Delbaere, Kim
2015-01-01
Falls and fall-related injuries are a serious public health issue. Exercise programs can effectively reduce fall risk in older people. The iStoppFalls project developed an Information and Communication Technology-based system to deliver an unsupervised exercise program in older people's homes. The primary aims of the iStoppFalls randomized controlled trial were to assess the feasibility (exercise adherence, acceptability and safety) of the intervention program and its effectiveness on common fall risk factors. A total of 153 community-dwelling people aged 65+ years took part in this international, multicentre, randomized controlled trial. Intervention group participants conducted the exercise program for 16 weeks, with a recommended duration of 120 min/week for balance exergames and 60 min/week for strength exercises. All intervention and control participants received educational material including advice on a healthy lifestyle and fall prevention. Assessments included physical and cognitive tests, and questionnaires for health, fear of falling, number of falls, quality of life and psychosocial outcomes. The median total exercise duration was 11.7 h (IQR = 22.0) over the 16-week intervention period. There were no adverse events. Physiological fall risk (Physiological Profile Assessment, PPA) reduced significantly more in the intervention group compared to the control group (F1,127 = 4.54, p = 0.035). There was a significant three-way interaction for fall risk assessed by the PPA between the high-adherence (>90 min/week; n = 18, 25.4 %), low-adherence (<90 min/week; n = 53, 74.6 %) and control group (F2,125 = 3.12, n = 75, p = 0.044). Post hoc analysis revealed a significantly larger effect in favour of the high-adherence group compared to the control group for fall risk (p = 0.031), postural sway (p = 0.046), stepping reaction time (p = 0.041), executive functioning (p = 0.044), and quality of life (p for trend = 0.052). The iStoppFalls exercise program reduced physiological fall risk in the study sample. Additional subgroup analyses revealed that intervention participants with better adherence also improved in postural sway, stepping reaction, and executive function. Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651 International Standard Randomised Controlled Trial Number: ISRCTN15932647.
EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
Yin, Yue H; Fan, Yuan J; Xu, Li D
2012-07-01
Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.
Organomatics and organometrics: Novel platforms for long-term whole-organ culture
Bruinsma, Bote G.; Yarmush, Martin L.; Uygun, Korkut
2014-01-01
Organ culture systems are instrumental as experimental whole-organ models of physiology and disease, as well as preservation modalities facilitating organ replacement therapies such as transplantation. Nevertheless, a coordinated system of machine perfusion components and integrated regulatory control has yet to be fully developed to achieve long-term maintenance of organ function ex vivo. Here we outline current strategies for organ culture, or organomatics, and how these systems can be regulated by means of computational algorithms, or organometrics, to achieve the organ culture platforms anticipated in modern-day biomedicine. PMID:25035864
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
WAT-on-a-chip: A physiologically relevant microfluidic system incorporating white adipose tissue
Loskill, Peter; Sezhian, Thiagarajan; Tharp, Kevin; Lee-Montiel, Felipe T.; Jeeawoody, Shaheen; Reese, Willie Mae; Zushin, Pete-James H.; Stahl, Andreas; Healy, Kevin E.
2017-01-01
Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes. PMID:28418430
Martin-Fardon, Rémi; Zorrilla, Eric P.; Ciccocioppo, Roberto; Weiss, Friedbert
2010-01-01
Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides. PMID:20026088
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355
Physiological stress in air traffic controllers : a review.
DOT National Transportation Integrated Search
1982-08-01
Ten years of research on physiological stress in air traffic control specialists (ATCS's) is reviewed. Data were derived from 20 tasks involving the experimental variables of workload, shift-rotation patterns, and automation. : Laboratories at the Ci...
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
Mind over motor mapping: Driver response to changing vehicle dynamics.
Bruno, Jennifer L; Baker, Joseph M; Gundran, Andrew; Harbott, Lene K; Stuart, Zachary; Piccirilli, Aaron M; Hosseini, S M Hadi; Gerdes, J Christian; Reiss, Allan L
2018-06-08
Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real-world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal-parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver-car communication. © 2018 Wiley Periodicals, Inc.
Postural balance and the risk of falling during pregnancy.
Cakmak, Bulent; Ribeiro, Ana Paula; Inanir, Ahmet
2016-01-01
Pregnancy is a physiological process and many changes occur in a woman's body during pregnancy. These changes occur in all systems to varying degrees, including the cardiovascular, respiratory, genitourinary, and musculoskeletal systems. The hormonal, anatomical, and physiological changes occurring during pregnancy result in weight gain, decreased abdominal muscle strength and neuromuscular control, increased ligamentous laxity, and spinal lordosis. These alterations shift the centre of gravity of the body, altering the postural balance and increasing the risk of falls. Falls during pregnancy can cause maternal and foetal complications, such as maternal bone fractures, head injuries, internal haemorrhage, abruption placenta, rupture of the uterus and membranes, and occasionally maternal death or intrauterine foetal demise. Preventative strategies, such as physical exercise and the use of maternity support belts, can increase postural stability and reduce the risk of falls during pregnancy. This article reviews studies that have investigated changes in postural balance and risk of falling during pregnancy.
Arduino control of a pulsatile flow rig.
Drost, S; de Kruif, B J; Newport, D
2018-01-01
This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Low subjective socioeconomic status stimulates orexigenic hormone ghrelin - A randomised trial.
Sim, A Y; Lim, E X; Leow, M K; Cheon, B K
2018-03-01
Recent evidence suggests that lower perceived socioeconomic status is linked to increased appetite and intake of greater calories. Yet, whether insecurity of socioeconomic resources directly influences regulatory systems of appetite and energy intake is not known. Considering psychological states, mindsets and beliefs have shown to meaningfully affect physiological responses to food, the present study tested the hypothesis that low subjective socioeconomic status (SSS) will have a direct influence on physiological responses, such as appetite-related hormones (ghrelin, pancreatic polypeptide and insulin). Forty-eight healthy males were randomly (crossover, counterbalanced) assigned, to two experimental conditions where participants were either experimentally induced to feel low SSS or not (control; CON). Feelings of low SSS resulted in an increase in active ghrelin (an orexigenic hormone) following the SSS manipulation compared with baseline, while no change in active ghrelin was observed in CON. Furthermore, participants reported lower fullness and satiety following low SSS compared with CON. Our findings demonstrate that SSS may influence hunger regulation and appetite, and suggest that physiological systems regulating energy balance (i.e. caloric resources) may also be sensitive to perceived deprivation or imbalances in critical non-food resources (socioeconomic resources). Copyright © 2018 Elsevier Ltd. All rights reserved.
On Optimizing H. 264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics
NASA Astrophysics Data System (ADS)
Zhu, Zhongjie; Wang, Yuer; Bai, Yongqiang; Jiang, Gangyi
2010-12-01
The state-of-the-art JVT-G012 rate control algorithm of H.264 is improved from two aspects. First, the quadratic rate-distortion (R-D) model is modified based on both empirical observations and theoretical analysis. Second, based on the existing physiological and psychological research findings of human vision, the rate control algorithm is optimized by incorporating the main characteristics of the human visual system (HVS) such as contrast sensitivity, multichannel theory, and masking effect. Experiments are conducted, and experimental results show that the improved algorithm can simultaneously enhance the overall subjective visual quality and improve the rate control precision effectively.
2003-03-01
51 Figure 30. SpO2 vs G Profile...and physiological monitoring. The system will be composed of a shirt having non- invasive physiological sensors , Global Positioning System (GPS...Positioning System (GPS)), and other sensor technology. It is now possible to transmit large amounts of data at a high rate in real-time. These
Physiological changes in neurodegeneration - mechanistic insights and clinical utility.
Ahmed, Rebekah M; Ke, Yazi D; Vucic, Steve; Ittner, Lars M; Seeley, William; Hodges, John R; Piguet, Olivier; Halliday, Glenda; Kiernan, Matthew C
2018-05-01
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime
2012-01-01
Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.
Disease-responsive drug delivery: the next generation of smart delivery devices.
Wanakule, Prinda; Roy, Krishnendu
2012-01-01
With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.
Team Electronic Gameplay Combining Different Means of Control
NASA Technical Reports Server (NTRS)
Palsson, Olafur S. (Inventor); Pope, Alan T. (Inventor)
2014-01-01
Disclosed are methods and apparatuses provided for modifying the effect of an operator controlled input device on an interactive device to encourage the self-regulation of at least one physiological activity by a person different than the operator. The interactive device comprises a display area which depicts images and apparatus for receiving at least one input from the operator controlled input device to thus permit the operator to control and interact with at least some of the depicted images. One effect modification comprises measurement of the physiological activity of a person different from the operator, while modifying the ability of the operator to control and interact with at least some of the depicted images by modifying the input from the operator controlled input device in response to changes in the measured physiological signal.
NASA Astrophysics Data System (ADS)
Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka
2018-01-01
The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.
Zhang, Ao; Liu, Tingting; Zheng, Kaiyuan; Liu, Ningbo; Huang, Fei; Li, Weidong; Liu, Tong; Fu, Weihua
2017-01-01
Abstract Laparoscopic colorectal surgery had been widely used for colorectal cancer patient and showed a favorable outcome on the postoperative morbidity rate. We attempted to evaluate physiological status of patients by mean of Estimation of physiologic ability and surgical stress (E-PASS) system and to analyze the difference variation of postoperative morbidity rate of open and laparoscopic colorectal cancer surgery in patients with different physiological status. In total 550 colorectal cancer patients who underwent surgery treatment were included. E-PASS and some conventional scoring systems were reviewed to examine their mortality prediction ability. The preoperative risk score (PRS) in the E-PASS system was used to evaluate the physiological status of patients. The difference of postoperative morbidity rate between open and laparoscopic colorectal cancer surgeries was analyzed respectively in patients with different physiological status. E-PASS had better prediction ability than other conventional scoring systems in colorectal cancer surgeries. Postoperative morbidities were developed in 143 patients. The parameters in the E-PASS system had positive correlations with postoperative morbidity. The overall postoperative morbidity rate of laparoscopic surgeries was lower than open surgeries (19.61% and 28.46%), but the postoperative morbidity rate of laparoscopic surgeries increased more significantly than in open surgery as PRS increased. When PRS was more than 0.7, the postoperative morbidity rate of laparoscopic surgeries would exceed the postoperative morbidity rate of open surgeries. The E-PASS system was capable to evaluate the physiological and surgical risk of colorectal cancer surgery. PRS could assist preoperative decision-making on the surgical method. Colorectal cancer patients who were assessed with a low physiological risk by PRS would be safe to undergo laparoscopic surgery. On the contrary, surgeons should make decisions prudently on the operation method for patient with a high physiological risk. PMID:28816959
Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans.
Bershad, Anya K; Miller, Melissa A; Norman, Greg J; de Wit, Harriet
2018-06-01
Both preclinical and clinical evidence suggests that the endogenous opioid system is involved in responses to stress. For example, in animal models opioid agonists reduce isolation distress whereas opioid antagonists increase isolation distress. We recently reported that the mixed mu agonist and kappa antagonist buprenorphine dampened responses to acute psychosocial stress in humans. Now we extend this to study the effects of a pure mu-opioid agonist, hydromorphone, and a non-opioid analgesic, acetaminophen, on response to social stress. We compared the effect of hydromorphone (2 and 4 mg), acetaminophen (1000 mg) to a placebo using a between subject design. Healthy adult volunteers were randomly assigned to receive placebo (N = 13), 2 mg hydromorphone (N = 12), 4 mg hydromorphone (N = 12), or 1000 mg acetaminophen (paracetamol; N = 13) under double-blind conditions before undergoing a stress task or a control task on two separate sessions. The stress task, consisting of a standardized speaking task and the non-stressful control task were presented in counterbalanced order. Dependent measures included mood ratings, subjective appraisal of the stress (or no-stress) task, salivary cortisol, pupil diameter, heart rate, and blood pressure. The stress task produced its expected increase in heart rate, blood pressure, salivary cortisol, pupil diameter, and subjective ratings of anxiety and negative mood. Hydromorphone dose-dependently dampened cortisol responses to stress, and decreased ratings of how "challenging" participants found the task. Acetaminophen did not affect physiological responses, but, like hydromorphone, decreased ratings of how "challenging" the task was. The hydromorphone results support the idea that the mu-opioid system is involved in physiological responses to acute stress in humans, in line with results from preclinical studies. The non-opioid analgesic acetaminophen did not dampen physiological responses, but did reduce some components of psychological stress. It remains to be determined how both opioid and non-opioid systems mediate the complex physiological and psychological responses to social stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
Lee, Ji Soo; Romero, Roberto; Han, Yu Mi; Kim, Hee Chan; Kim, Chong Jai; Hong, Joon-Seok; Huh, Dongeun
2016-01-01
Studying the biology of the human placenta represents a major experimental challenge. Although conventional cell culture techniques have been used to study different types of placenta-derived cells, current in vitro models have limitations in recapitulating organ-specific structure and key physiological functions of the placenta. Here we demonstrate that it is possible to leverage microfluidic and microfabrication technologies to develop a microengineered biomimetic model that replicates the architecture and function of the placenta. A "Placenta-on-a-Chip" microdevice was created by using a set of soft elastomer-based microfabrication techniques known as soft lithography. This microsystem consisted of two polydimethylsiloxane (PDMS) microfluidic channels separated by a thin extracellular matrix (ECM) membrane. To reproduce the placental barrier in this model, human trophoblasts (JEG-3) and human umbilical vein endothelial cells (HUVECs) were seeded onto the opposite sides of the ECM membrane and cultured under dynamic flow conditions to form confluent epithelial and endothelial layers in close apposition. We tested the physiological function of the microengineered placental barrier by measuring glucose transport across the trophoblast-endothelial interface over time. The permeability of the barrier study was analyzed and compared to that obtained from acellular devices and additional control groups that contained epithelial or endothelial layers alone. Our microfluidic cell culture system provided a tightly controlled fluidic environment conducive to the proliferation and maintenance of JEG-3 trophoblasts and HUVECs on the ECM scaffold. Prolonged culture in this model produced confluent cellular monolayers on the intervening membrane that together formed the placental barrier. This in vivo-like microarchitecture was also critical for creating a physiologically relevant effective barrier to glucose transport. Quantitative investigation of barrier function was conducted by calculating permeability coefficients and metabolic rates in varying conditions of barrier structure. The rates of glucose transport and metabolism were consistent with previously reported in vivo observations. The "Placenta-on-a-Chip" microdevice described herein provides new opportunities to simulate and analyze critical physiological responses of the placental barrier. This system may be used to address the major limitations of existing placenta model systems and serve to enable research platforms for reproductive biology and medicine.
Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.
Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir
2009-01-01
Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.
Reintrepreting the cardiovascular system as a mechanical model
NASA Astrophysics Data System (ADS)
Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto
2013-10-01
The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.
Siefkes, Michael J
2017-01-01
Sea lamprey ( Petromyzon marinus ) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
2017-01-01
Abstract Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species. PMID:28580146
cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging
Bork, Nadja I.; Nikolaev, Viacheslav O.
2018-01-01
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460
Amer, Hatem; Griffin, Matthew D
2014-02-01
In follow-up to a recently published randomized controlled clinical trial, Issa et al. provide evidence that systemic activity and physiological responsiveness of the renin aldosterone angiotensin system (RAAS) are well within normal limits in most kidney recipients during the first 5 years post-transplant. Implications of the results include the need to better understand intra-renal RAAS activity in transplanted kidneys and to identify patients in which the graft-protective effects of RAAS blockade are most relevant.
Bioengineering Spin-Offs from Dynamical Systems Theory
NASA Astrophysics Data System (ADS)
Collins, J. J.
1997-03-01
Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.
ERIC Educational Resources Information Center
Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.
2006-01-01
Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.…
Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J
2015-07-15
Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. Copyright © 2015 the American Physiological Society.
McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y
2017-12-28
Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.
LabVIEW: a software system for data acquisition, data analysis, and instrument control.
Kalkman, C J
1995-01-01
Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.
Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.
2011-01-01
Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934
Endogenous neuropeptide S tone influences sleep-wake rhythm in rats.
Oishi, Masafumi; Kushikata, Tetsuya; Niwa, Hidetomo; Yakoshi, Chihiro; Ogasawara, Chihiro; Calo, Girolamo; Guerrini, Remo; Hirota, Kazuyoshi
2014-10-03
Neuropeptide S (NPS) is an endogenous peptide that exerts wakefulness promoting, analgesic, and anxiolytic effects when administered exogenously. However, it remains to be determined if endogenous NPS tone is involved in the control of the diurnal sleep-wake cycle, or spontanous behavior. In this study, we examined the effects of the NPS receptor antagonist [D-Cys((t)Bu)(5)]NPS (2 and 20 nmol, icv) on physiological sleep and spontaneous locomotor behavior. The higher dose of [D-Cys((t)Bu)(5)]NPS decreased the amount of time spent in wakefulness [control 782.5 ± 25.5 min, treatment 751.7 ± 28.1 min; p<0.05] and increased the time spent in NREMS [control 572.6 ± 17.2 min, treatment 600.2 ± 26.1 min; p<0.05]. There was no statistically significant difference in time spent in REMS. There were no behavioral changes including abnormal gross motor behavior in response to [D-Cys((t)Bu)(5)]NPS administration. Collectively these data suggest an involvement of the endogenous NPS/NPS receptor system in physiological sleep architecture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.
Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin
2014-08-07
All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shibata, Shin-Ichi; Satou, Fumitake; Kimura, Haruhiko; Oyabu, Takashi
Recently, there is a problem of the steady supply of food therefore plant factory has been establishing and takes off in world wide countries. In the plant factory, the growing environment can be controlled and the crop can also be controlled. The products are growing in an enclosed environment, therefore agricultural chemicals has no use. Secure and safe food producing system can be constructed. However, efficient production formula for the plant (for example vegetable) is not defined well. It is an effective way to control the growing environmental factors using physiology information which are directly obtained from the vegetable. The chlorophyll fluorescence is used as evaluation of plant condition. It is necessary to clarify the bioelectric potential in the growth condition of the plant. In this study, we examined the relationship between the chlorophyll fluorescence and the plant bioelectric potential in bad condition. The plant in spraying chemical herbicides was assumed as the condition. In future, plant physiological function and environmental response can be understood by directly monitoring the bioelectric potential.
Physiological and environmental control of yeast prions
Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.
2014-01-01
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
Abbaszadeh, Yaser; Allahbakhshian, Atefeh; Seyyedrasooli, Alehe; Sarbakhsh, Parvin; Goljarian, Sakineh; Safaei, Naser
2018-05-01
This study aimed to investigate the effect of foot reflexology on anxiety and physiological parameters in patients after CABG surgery. This was a single-blind, three-arm, parallel-group, randomized controlled trial with three groups of 40 male patients undergoing CABG. Participants were placed in three groups, named intervention, placebo, and control. Physiological parameters were measured including systolic and diastolic blood pressure, mean arterial pressure, heart rate, respiratory rate, percutaneous oxygen saturation, and anxiety of participants. Results showed a statistically significant difference between intervention and control groups in terms of the level of anxiety (p < 0.05). Also, results showed a statistically significant effect on all physiological parameters except heart rate (p < 0.05). This study indicated that foot reflexology may be used by nurses as an adjunct to standard ICU care to reduce anxiety and stabilize physiological parameters such as systolic, diastolic, mean arterial pressure, and heart rate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Williams, Natalie A; Allen, Michael T; Phipps, Sean
2011-10-01
Repressive adaptation has been conceptualized as one pathway to psychological resilience in children with cancer, but the physiological costs of maintaining a repressive adaptive style are currently unknown. The goal of this study was to examine physiological functioning as a function of adaptive style in children with cancer (N = 120) and healthy controls (N = 120). Children completed self-report measures of state anxiety and defensiveness prior to participating in three verbal stress tasks while monitoring blood pressure, electrocardiogram, and electrodermal response, and rated their anxiety following each task. Findings indicated no consistent differences in baseline indices and physiological reactivity as a function of adaptive style or health status (cancer vs. control). In addition, children identified as having a repressive adaptive style did not exhibit greater verbal-autonomic discrepancy than low-anxious children. In contrast to findings with adults, children with a repressive adaptive style do not appear to experience adverse effects of this coping style in terms of physiological reactivity.
A probabilistic approach to identify putative drug targets in biochemical networks.
Murabito, Ettore; Smallbone, Kieran; Swinton, Jonathan; Westerhoff, Hans V; Steuer, Ralf
2011-06-06
Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual components, responds to specific perturbations in different physiological conditions. Proteins exerting little control over normal cells and larger control over altered cells may be considered as good candidates for drug targets. The application of network-based drug design would greatly benefit from using an explicit computational model describing the dynamics of the system under investigation. However, creating a fully characterized kinetic model is not an easy task, even for relatively small networks, as it is still significantly hampered by the lack of data about kinetic mechanisms and parameters values. Here, we propose a Monte Carlo approach to identify the differences between flux control profiles of a metabolic network in different physiological states, when information about the kinetics of the system is partially or totally missing. Based on experimentally accessible information on metabolic phenotypes, we develop a novel method to determine probabilistic differences in the flux control coefficients between the two observable phenotypes. Knowledge of how differences in flux control are distributed among the different enzymatic steps is exploited to identify points of fragility in one of the phenotypes. Using a prototypical cancerous phenotype as an example, we demonstrate how our approach can assist researchers in developing compounds with high efficacy and low toxicity. © 2010 The Royal Society
Prediction and diagnosis of apple fruit physiological disorders
USDA-ARS?s Scientific Manuscript database
Apple postharvest physiological disorders, characterized by peel or flesh necrosis, result in significant yearly financial losses in commercial operations. Stakeholders have identified the need for effective, consistent control measures for apple postharvest physiological disorders and the developme...
Fernandes, T; Soci, U P R; Oliveira, E M
2011-09-01
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
NASA Astrophysics Data System (ADS)
Talavera-Pech, William A.; Esparza-Ruiz, Adriana; Quintana-Owen, Patricia; Vilchis-Nestor, Alfredo R.; Barrón-Zambrano, Jesus A.; Ávila-Ortega, Alejandro
2018-03-01
This report describes the synthesis of a controlled drug delivery system that was obtained by coating mesoporous silica nanoparticles (MSNs) with poly(β-amino ester) (PbAE), which is a solid and stable material at physiological pH, but is dissolved at acidic pH values, such as those in tumor tissues (from 5.0 to 6.5). To synthesize the system, PbAE chains were grafted onto amino-functionalized MSNs through a reaction between the surface amino groups of MSNs and the ends of acrylate chains of a PbAE. The system was physicochemically characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectrometry, and X-ray diffraction analyses. In addition, the in vitro release of doxorubicin (DOX) and doxycycline (DXY) in acidic and physiological media was evaluated. It was observed that the PbAE modification did not affect the mesoporous structure of MSNs. When the amount of 3-aminopropyltriethoxysilane was increased during functionalization, the amount of PbAE binding to MSNs increased as well. With respect to drug release, the sample with the highest amount of PbAE showed better control in the delivery of DXY and DOX in acidic media, because at pH 5.5, the release of both drugs was 40% higher than that at pH 7.4. These results reveal two aspects about the presence of PbAE in MSNs: PbAE does not affect the mesoporous structure of the nanoparticles, and PbAE is the main factor controlling the delivery of drugs in acidic media.
NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,
TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN
Role of pigment epithelium-derived factor in the reproductive system.
Chuderland, Dana; Ben-Ami, Ido; Bar-Joseph, Hadas; Shalgi, Ruth
2014-10-01
The physiological function of the female reproductive organs is hormonally controlled. In each cycle, the reproductive organs undergo tissue modifications that are accompanied by formation and destruction of blood vessels. Proper angiogenesis requires an accurate balance between stimulatory and inhibitory signals, provided by pro- and anti-angiogenic factors. As with many other tissues, vascular endothelial growth factor (VEGF) appears to be one of the major pro-angiogenic factors in the female reproductive organs. Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serine protease inhibitors (serpin) superfamily, possessing potent physiologic anti-angiogenic activity that negates VEGF activity. The role of PEDF in decreasing abnormal neovascularization by exerting its anti-angiogenic effect that inhibits pro-angiogenic factors, including VEGF, has been investigated mainly in the eye and in cancer. This review summarizes the function of PEDF in the reproductive system, showing its hormonal regulation and its anti-angiogenic activity. Furthermore, some pathologies of the female reproductive organs, including endometriosis, ovarian hyperstimulation syndrome, polycystic ovary syndrome, and others, are associated with a faulty angiogenic process. This review illuminates the role of PEDF in their pathogenesis and treatment. Collectively, we can conclude that although PEDF seems to play an essential role in the physiology and pathophysiology of the reproductive system, its full role and mechanism of action still need to be elucidated. © 2014 Society for Reproduction and Fertility.
Physiology in Medicine: neuromuscular consequences of diabetic neuropathy
Doherty, Timothy J.; Rice, Charles L.; Kimpinski, Kurt
2016-01-01
Diabetic polyneuropathy (DPN) refers to peripheral nerve dysfunction as a complication of diabetes mellitus. This condition is relatively common and is likely a result of vascular and/or metabolic disturbances related to diabetes. In the early or less severe stages of DPN it typically results in sensory impairments but can eventually lead to major dysfunction of the neuromuscular system. Some of these impairments may include muscle atrophy and weakness, slowing of muscle contraction, and loss of power and endurance. Combined with sensory deficits these changes in the motor system can contribute to decreased functional capacity, impaired mobility, altered gait, and increased fall risk. There is no pharmacological disease-modifying therapy available for DPN and the mainstay of treatment is linked to treating the diabetes itself and revolves around strict glycemic control. Exercise therapy (including aerobic, strength, or balance training-based exercise) appears to be a promising preventative and treatment strategy for patients with DPN and those at risk. The goal of this Physiology in Medicine article is to highlight important and overlooked dysfunction of the neuromuscular system as a result of DPN with an emphasis on the physiologic basis for that dysfunction. Additionally, we sought to provide information that clinicians can use when following patients with diabetes or DPN including support for the inclusion of exercise-based therapy as an effective, accessible, and inexpensive form of treatment. PMID:26989220
Magnesium degradation observed in situ under flow by synchrotron radiation based microtomography
NASA Astrophysics Data System (ADS)
Feyerabend, Frank; Dose, Thomas; Xu, Yuling; Beckmann, Felix; Stekker, Michael; Willumeit-Römer, Regine; Schreyer, Andreas; Wilde, Fabian; Hammel, Jörg U.
2016-10-01
The use of degradable magnesium based implants is becoming clinically relevant, e.g. for the use as bone screws. Still there is a lack of analyzing techniques to characterize the in vitro degradation behavior of implant prototypes. The aim of this study was to design an in situ environment to continuously monitor the degradation processes under physiological conditions by time-lapse SRμCT. The use of physiological conditions was chosen to get a better approach to the in vivo situation, as it could be shown by many studies, that these conditions change on the one hand the degradation rate and on the other hand also the formed degradation products. The resulting in situ environment contains a closed bioreactor system to control and monitor the relevant parameters (37°C, 5 % O2, 20 % CO2) and to grant sterility of the setup. A flow cell was designed and manufactured from polyether etherketone (PEEK), which was chosen because of the good mechanical properties, high thermal and chemical resistance and radiographic translucency. Sterilization of the system including the sample was reached by a transient flush with 70 % ethanol and subsequent replacement by physiological medium (Modified Eagle Medium alpha). As proof of principle it could be shown that the system remained sterile during a beamtime of several days and that the continuous SRμCT imaging was feasible.
Ross, Sara N.; Ware, Ken
2013-01-01
We aim for this contribution to operate bi-directionally, both as a “bedside to bench” reverse-translational fractal physiological hypothesis and as a methodological innovation to inform clinical practice. In 25 years using gym equipment therapeutically in non-research settings, the standardized therapy is consistently observed to trigger universal responses of micro to macro waves of system transition dynamics in the human nervous system. These are associated with observably desirable impacts on disorders, injuries, diseases, and athletic performance. Requisite conditions are therapeutic coaching, erect posture, extremely slow movements in mild resistance exercises, and executive control over arousal and attention. To motivate research into the physiological improvements and in validation studies, we integrate from across disciplines to hypothesize explanations for the relationships among the methods, the system dynamics, and evident results. Key hypotheses include: (1) Correctly-directed system efforts may reverse a system's heretofore misdirected efforts, restoring healthier neurophysiology. (2) The enhanced information processing accompanying good posture is an essential initial condition. (3) Behaviors accompanying exercises performed with few degrees of freedom amplify information processing, triggering destabilization and transition dynamics. (4) Executive control over arousal and attention is essential to release system constraints, amplifying and complexifying information. (5) The dynamics create necessary and in many cases evidently sufficient conditions for the body to resolve or improve its own conditions within often short time periods. Literature indicates how the human system possesses material self-awareness. A broad explanation for the nature and effects of the therapy appears rooted in the cascading recursions of the systems' dynamics, which appear to trigger health-fostering self-reorganizing processes when this therapy provides catalytic initial conditions. PMID:24312056
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
NASA Astrophysics Data System (ADS)
Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang
2013-02-01
Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.
Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish
Forlano, Paul M.; Sisneros, Joseph A.; Rohmann, Kevin N.; Bass, Andrew H.
2014-01-01
Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain. PMID:25168757
Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan
2017-11-01
Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks
Heiney, Shane A.; Blazquez, Pablo M.
2018-01-01
The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
Taylor, Zoe E.; Spinrad, Tracy L.; VanSchyndel, Sarah K.; Eisenberg, Nancy; Huynh, Jacqueline; Sulik, Michael J.; Granger, Douglas A.
2012-01-01
Early sociodemographic risk, parenting, and temperament were examined as predictors of the activity of children’s (N = 148; 81 boys, 67 girls) hypothalamic-pituitary-adrenal axis and autonomic nervous system. Demographic risk was assessed at 18 months (T1), intrusive-overcontrolling parenting and effortful control were assessed at 30 months (T2), and salivary cortisol and alpha-amylase were collected at 72 (T3) months of age. Demographic risk at T1 predicted lower levels of children’s effortful control and higher levels of mothers’ intrusive-overcontrolling parenting at T2. Intrusive-overcontrolling parenting at T2 predicted higher levels of children’s cortisol and alpha-amylase at T3, but effortful control did not uniquely predict children’s cortisol or alpha-amylase. Findings support the open nature of stress responsive physiological systems to influence by features of the early caregiving environment and underscore the utility of including measures of these systems in prevention trials designed to influence child outcomes by modifying parenting behavior. PMID:22949301
Physiological responses in air traffic control personnel : O'Hare Tower.
DOT National Transportation Integrated Search
1971-01-01
Physiological and biochemical measurements were made on 22 air traffic controllers at O'Hare tower during five days of the heavy traffic evening shift (1600-2400) and five days of the light traffic morning shift (0000-0800). : Pulse rates were higher...
Gut-central nervous system axis is a target for nutritional therapies.
Pimentel, Gustavo D; Micheletti, Thayana O; Pace, Fernanda; Rosa, José C; Santos, Ronaldo V T; Lira, Fabio S
2012-04-10
Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.
Partial gravity reaction experiment sysytem on graund using multi-Copter
NASA Astrophysics Data System (ADS)
Hasegawa, Katsuya; Maeda, Naoko
2016-07-01
In order to enable further space exploration into the space, Moon, Mars, and other planets, it is essential to understand the physiological response to low gravity environments. However, We made low gravity environment for studies using the satellite parabolic flight and drop tower. It is very expensive experiment that low gravity physiological response. Because, it requires rockets and airplanes and dedicated Tower, low gravity conditions test have not been conducted sufficiently due to the extraordinary high cost for conducting experiments. The study present is to develop the radio-controlled multicopter system that is used for the controlled falling flight vehicle (not free fall). During the controlled falling, the payload is exposed to a certain level of low gravity. 1) G profile: low gravity from 0 g to 1 g that will last approximately 5seconds, 50 kg. 2) Supply limited imaging techniques, high-speed or normal video and X ray images. 3) Wireless transmission of up to 64 channels of analog and digital signals. This vehicle is designed for experimentation on various model organisms, from cells to animals and plants. The multicopter flight system enables conducting experiments in low gravity conditions with less than 1% of the budget for spaceflight or parabolic flights. Experiment is possible to perform repeated many times in one day. We can expect reproducible results from many repeated trials at the lowest cost.
Physiology of ejaculation: emphasis on serotonergic control.
Giuliano, François; Clément, Pierre
2005-09-01
Ejaculation is constituted by two distinct phases, emission and expulsion. Orgasm, a feature perhaps unique in humans, is a cerebral process that occurs, in normal conditions, concomitantly to expulsion of semen. Normal antegrade ejaculation is a highly coordinated physiological process with emission and expulsion phases being under the control of autonomic and somatic nervous systems respectively. The central command of ejaculation is located at the thoracolumbar and lumbosacral levels of the spinal cord and is activated by stimuli from genital, mainly penile, origin although cerebral descending pathways exert both inhibitory and excitatory regulatory roles. Cerebral structures specifically activated during ejaculation form a tightly interconnected network comprising hypothalamic, diencephalic and pontine areas. A rational neurobiological approach has led to identify several neurotransmitters contributing to the ejaculatory process. Amongst them, serotonin (5-HT) has received strong experimental evidences indicating its inhibitory role in the central control of ejaculation. In particular, 5-HT1A cerebral autoreceptors but also spinal 5-HT1B and, in a lesser extent, 5-HT2C receptors have been shown to mediate the effects of 5-HT on ejaculation. Pharmacological strategies, especially those targeting serotonergic system, for the treatment of ejaculatory disorders in human will undoubtedly benefit from the application of basic and clinical research findings. In this perspective, the use of selective serotonin reuptake inhibitors (SSRIs) which basically increase the amount of central 5-HT and delay ejaculation in humans seems promising.
Is the metabolic cost of walking higher in people with diabetes?
Petrovic, M; Deschamps, K; Verschueren, S M; Bowling, F L; Maganaris, C N; Boulton, A J M; Reeves, N D
2016-01-01
People with diabetes walk slower and display biomechanical gait alterations compared with controls, but it remains unknown whether the metabolic cost of walking (CoW) is elevated. The aim of this study was to investigate the CoW and the lower limb concentric joint work as a major determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy (DPN). Thirty-one nondiabetic controls (Ctrl), 22 diabetic patients without peripheral neuropathy (DM), and 14 patients with moderate/severe DPN underwent gait analysis using a motion analysis system and force plates and treadmill walking using a gas analyzer to measure oxygen uptake. The CoW was significantly higher particularly in the DPN group compared with controls and also in the DM group (at selected speeds only) compared with controls, across a range of matched walking speeds. Despite the higher CoW in patients with diabetes, concentric lower limb joint work was significantly lower in DM and DPN groups compared with controls. The higher CoW is likely due to energetic inefficiencies associated with diabetes and DPN reflecting physiological and biomechanical characteristics. The lower concentric joint work in patients with diabetes might be a consequence of kinematic gait alterations and may represent a natural strategy aimed at minimizing the CoW. Copyright © 2016 the American Physiological Society.
Focus on the emerging new fields of network physiology and network medicine
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.
2016-10-01
Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.
Scott, Brandon G.; Weems, Carl F.
2014-01-01
This study tested the associations of both resting vagal tone and vagal response to stress with anxiety control beliefs, anxiety, and aggression among 80 youth (aged 11-17 years). Measures included physiological assessments of emotion regulation along with youth self-report of anxiety control beliefs, anxiety, and aggression and caregiver reports of their child's anxiety and aggression. Resting vagal tone was positively related to anxiety control beliefs, but negatively associated with anxiety. Conversely, higher levels of anxiety and aggression were associated with increased vagal tone during a cognitive stress task. Findings suggest associations between physiological and self-report of emotion regulation (anxiety control beliefs) and that anxiety and aggression may have specific and non-specific relations with physiological indices of emotion regulation. PMID:24708059
Personalized physiological medicine.
Ince, Can
2017-12-28
This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.
Ali, Nida; Nitschke, Jonas P; Cooperman, Cory; Pruessner, Jens C
2017-04-01
Acute psychosocial stress activates the physiological and endocrine stress systems and increases the subjective emotional experience of stress. While considerable efforts have been made to link changes in the activity of the biological stress systems with changes in the subjective emotional experience of stress, results so far have been mixed, at best. To investigate this association in a study employing experimental manipulation, we pharmacologically suppressed both the autonomic and the endocrine stress responses, and investigated the effects of acute psychosocial stress on the emotional stress experience. 22 healthy men and women received dexamethasone (2mg) the day before, and propranolol (80mg) one hour before psychosocial stress induction. A control group (n=24) received placebo pills on each occasion. Salivary cortisol, alpha-amylase and heart-rate responses to stress were assessed before, during and after stress induction. Subjective stress, mood, and state self-esteem assessments were made before and after stress. In the pharmacological manipulation group, subjects demonstrated no increase in autonomic or endocrine stress response, after exposure to psychosocial stress. Despite these effects, the emotional stress experience was intact in this group and identical to the control group. Participants in the experimental group showed an increase in subjective stress, greater mood dysregulation, and lower state self-esteem following stress exposure, with the response magnitude comparable to the control group. Our findings suggest that at least acutely, the physiological stress arousal systems and the emotional experience of stress are dissociated. This raises important questions about the efficacy of our measurement of subjective stress, and the unique contributions of the autonomic and endocrine responses in the subjective stress experience. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effects of Gravity on the Circadian Timing System
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1999-01-01
All vertebrates have a physiological control system that regulates the timing of the rhythms of their daily life. Dysfunction of this system, the circadian timing system (CTS), adversely affects an organism's ability to respond to environmental challenges and has been linked to physiological and psychological disorders. Exposure to altered gravitational environments (the microgravity of space and hyperdynamic environments produced via centrifugation) produces changes in both the functioning of the CTS and the rhythmic variables it controls. The earliest record of primate rhythms in a spaceflight environment come from Biosatellite III. The subject, a pig-tailed macaque, showed a loss of synchronization of the body temperature rhythm and a fragmented sleep-wake cycle. Alterations in the rhythm of body temperature were also seen in rhesus macaques flown on COSMOS 1514. Squirrel monkeys exposed to chronic centrifugation showed an initial decrease in the amplitude and mean of their body temperature and activity rhythms. In a microgravity environment, Squirrel monkeys on Spacelab-3 showed a reduction in the mean and amplitude of their feeding rhythms. Since 1992 we have had the opportunity to participate on three US/Russian sponsored biosatellite missions on which a total of six juvenile male rhesus macaques were flown. These animals uniformly exhibited delays in the phasing of their temperature rhythms, but not their heart rate or activity rhythms during spaceflight. There was also a tendency for changes in waveform mean and amplitude. These data suggest that the spaceflight environment may have a differential effect on the different oscillators controlling different rhythmic variables. Ongoing studies are examining the effects of +G on the CTS. The long-term presence of humans in space highlights the need for effective countermeasures to gravitational effects on the CTS.
Timing of breeding in variable environments: tropical birds as model systems.
Hau, M
2001-09-01
Animals need to adjust reproductive decisions to environmental seasonality. In contrast to species from the well-studied temperate zones, little is known for tropical birds about the environmental cues that stimulate reproductive activity and the physiological mechanisms that regulate reproduction. I am investigating the environmental and endocrine mechanisms that underlie the timing of reproduction in spotted antbirds from the near-equatorial Panamanian rainforest and in small ground finches from the equatorial arid Galápagos islands. Spotted antbirds live in a fairly predictable seasonal environment and show regular changes in gonad sizes and some reproductive hormones. Despite the small annual variation in photoperiod close to the equator, these birds can measure slight photoperiodic increases and use it to initiate reproductive activity. Spotted antbirds also respond to seasonal changes in food availability, which allows them to flexibly adjust gonad growth to environmental conditions. Testosterone is involved in regulating song and aggressive behavior in these year-round territorial birds, although it can remain at low plasma levels throughout the year. In contrast, small ground finches exposed to a rather unpredictable climate on Galápagos appear to grow their gonads whenever heavy rains fall and have regressed gonads during other times of the year. The lack of a physiological preparation for the breeding season and their response to short-term cues related to rainfall indicate a striking flexibility in the regulation of breeding in small ground finches. I suggest that tropical birds can serve as model systems to study the physiological adaptations to different environments. Unraveling the neuroendocrine mechanisms behind the flexibility in reproductive timing will clarify whether differences found between temperate and tropical birds represent variations of the same basic mechanism or instead reflect a fundamental divergence in physiological control systems. Copyright 2001 Academic Press.
Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera
2018-03-26
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Pruneti, Carlo; Giusti, Mariarosa; Boem, Adriano; Luisi, Michele
2002-01-01
The aim of this study was to determine the behavioral and physiological effects of the central nervous system depressant alprazolam on a group of cardiac patients. Immediately after hospital discharge, the Crown and Crisp Experiential Index (CCEI) was administered, the salivary cortisol was detected and a psycho-physiological profile was recorded in 52 subjects who had suffered from myocardial infarction. Half of the subjects represented the experimental group and the remaining 26 individuals acted as a control group not undergoing treatment. The benzodiazepine alprazolam (0.25 mg) was administered twice daily to the treated group only. With the exception of the administration of the drug, all recruited subjects underwent the same clinical evaluation. The CCEI data of the treated group showed significant decreases for the following scales: free floating anxiety (p < 0.001), phobic anxiety (p < 0.01), somatic complaints (p < 0.05), and depression (p < 0.01). In the same group, with regard to the physiological parameters, the skin conductance response significantly decreased during the baseline phase (p < 0.01), and almost all parameters showed decreased values during mental stress test administration. Cortisol levels also decreased during the recovery phase of the psycho-physiological profile assessment. Alprazolam seems to be able to reduce sympathetic discharge and some stress-related behavioral and physiological responses. This could be of benefit for selected cardiac patients for whom increases in sympathetic tone may constitute a risk factor.
NASA Technical Reports Server (NTRS)
Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1999-01-01
An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.
Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T
2012-04-01
In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.
Berthoumieux, Sara; de Jong, Hidde; Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Ropers, Delphine; Geiselmann, Johannes
2013-01-01
Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology. PMID:23340840
Effects of weightlessness in man.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.
Sloman, Katherine A
2010-08-01
Even before fertilisation, exposure of ova to high levels of stress corticosteroids can have significant effects on offspring in a variety of animals. In fish, high levels of cortisol in ovarian fluid can elicit morphological changes and reduce offspring survival. Whether there are other more subtle effects, including behavioural effects, of exposure to cortisol pre-fertilisation in fish is unclear. Here I demonstrate that a brief (3h) exposure of brown trout eggs to a physiologically relevant ( approximately 500 microg l(-)(1)) concentration of cortisol pre-fertilisation resulted in changes to developing offspring. Embryos exposed to cortisol pre-fertilisation displayed elevated oxygen consumption and ammonia excretion rates during development. After hatch, in contrast to the effects of cortisol exposure in juvenile fish, fish exposed to cortisol as eggs were more aggressive than control individuals and responded differently within a maze system. Thus, a transient exposure to corticosteroids in unfertilised eggs results in both physiological and behavioural alterations in fish. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemordant, Léo; Gentine, Pierre; Swann, Abigail S.; Cook, Benjamin I.; Scheff, Jacob
2018-04-01
Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2. This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land.
Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update
Astier, Jeremy; Lindermayr, Christian
2012-01-01
Nitric oxide (NO) has been demonstrated as an essential regulator of several physiological processes in plants. The understanding of the molecular mechanism underlying its critical role constitutes a major field of research. NO can exert its biological function through different ways, such as the modulation of gene expression, the mobilization of second messengers, or interplays with protein kinases. Besides this signaling events, NO can be responsible of the posttranslational modifications (PTM) of target proteins. Several modifications have been identified so far, whereas metal nitrosylation, the tyrosine nitration and the S-nitrosylation can be considered as the main ones. Recent data demonstrate that these PTM are involved in the control of a wide range of physiological processes in plants, such as the plant immune system. However, a great deal of effort is still necessary to pinpoint the role of each PTM in plant physiology. Taken together, these new advances in proteomic research provide a better comprehension of the role of NO in plant signaling. PMID:23203119
Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I
1997-01-01
Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205
SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.
Shimano, Hitoshi; Sato, Ryuichiro
2017-12-01
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.
2015-01-01
Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
Anatomy and Physiology. Health Occupations Education. Teacher's Guide.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
Nine units on anatomy and physiology are presented in this teacher's guide. The units are the following: organization and general plan of the body; skeletal and muscular systems; digestive system; circulatory system; respiratory system; nervous system and special senses; urinary system; reproductive system; and endocrine glands. Each instructional…
Complete scanpaths analysis toolbox.
Augustyniak, Piotr; Mikrut, Zbigniew
2006-01-01
This paper presents a complete open software environment for control, data processing and assessment of visual experiments. Visual experiments are widely used in research on human perception physiology and the results are applicable to various visual information-based man-machine interfacing, human-emulated automatic visual systems or scanpath-based learning of perceptual habits. The toolbox is designed for Matlab platform and supports infra-red reflection-based eyetracker in calibration and scanpath analysis modes. Toolbox procedures are organized in three layers: the lower one, communicating with the eyetracker output file, the middle detecting scanpath events on a physiological background and the one upper consisting of experiment schedule scripts, statistics and summaries. Several examples of visual experiments carried out with use of the presented toolbox complete the paper.
Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang
2014-12-01
This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.
Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries
2006-05-01
Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.
[On-board medical support system (MSS) of flights of promising aerospace sets (design)].
Ushakov, I B; Bednenko, V S
2010-01-01
It was suggested as the main compositive fractions MSS to consider the base system of automated evaluation of blood redistribution (BR) in body means of crew members protection and prophylaxis (CMPP) of unfavourable effects of flight factors to organism and also the automated circuit of CMPP' control. The advanced MSS includes 4 original measuring channels for registration of the base physiologic indices (electrocardiogram, venous-arterial pulsegram of neck vessels, reogram of head, earlap vessels pulsegram) the dynamic of which allows to determine with the help of computer the BR-integral parameter. The CMPP automated control circuit unites the separate protecting means in common system and executes the individual selection of regimes and CM PP-composition in accord with, first of all, body reactions manifestation and, secondly, individual physiologic status of spaceman. As CMPP was selected the negative pressure production around lower body part. Approlation of constructed active laboratory engineering mock-up MSS has performed investigations with participation of 29 subjects (Volunteers) under the modeling of hemodynamic shifts, developing in human body in short-term antiorthostatic hypokinesia (-10 degrees), as well as, in combined effect of antiorthostatic hypokinesia (-10 degrees), Coriolis acceleration and optokinetic stimulation. Results of investigations have showed, that the use of advanced MSS gives the indices of operator professional activity on the average of 17-32% under the decrease of hemodynamic stressful.