Sample records for physiological phenomena including

  1. Teaching cardiovascular physiology with equivalent electronic circuits in a practically oriented teaching module.

    PubMed

    Ribaric, Samo; Kordas, Marjan

    2011-06-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.

  2. Teaching Cardiovascular Physiology with Equivalent Electronic Circuits in a Practically Oriented Teaching Module

    ERIC Educational Resources Information Center

    Ribaric, Samo; Kordas, Marjan

    2011-01-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time…

  3. Hooke's Law: Applications of a Recurring Principle

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; Palani, Gurunanthan; DiCarlo, Stephen E.

    2009-01-01

    Students generally approach topics in physiology as a series of unrelated phenomena that share few underlying principles. However, if students recognized that the same underlying principles can be used to explain many physiological phenomena, they may gain a more unified understanding of physiological systems. To address this concern, we…

  4. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm.

    PubMed

    Reinert, Anna E; Simon, James A

    2017-07-01

    The study of the human orgasm has shown a core set of physiologic and psychological symptoms experienced by most individuals. The study of normal sheds light on the abnormal and has spotlighted rare physical and psychological symptoms experienced by some individuals in association with orgasm. These phenomena are rare and, as is typical of rare phenomena, their documentation in the medical literature is largely confined to case studies. To identify peri-orgasmic phenomena, defined as unusual physical or psychological symptoms subjectively experienced by some individuals as part of the orgasm response, distinct from the usual or normal orgasm response. A list of peri-orgasmic phenomena was made with help from sexual health colleagues and, using this list as a foundation, a literature search was performed of articles published in English. Publications included in this review report on physical or psychological phenomena at the time of orgasm that are distinct from psychological, whole-body, and genito-pelvic sensations commonly experienced at the time of orgasm. Cases of physical symptoms related to the physiology of sexual intercourse and not specifically to orgasm were excluded. Case studies of peri-orgasmic phenomena were reviewed, including cases describing cataplexy (weakness), crying, dysorgasmia, dysphoria, facial and/or ear pain, foot pain, headache, pruritus, laughter, panic attack, post-orgasm illness syndrome, seizures, and sneezing. The literature review confirms the existence of diverse and frequently replicated peri-orgasmic phenomena. The value of case studies is in the collection and recording of observations so that hypotheses can be formed about the observed phenomena. Accordingly, this review could inspire further research on the neurophysiologic mechanisms of orgasm. Reinert AE, Simon JA. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm. Sex Med Rev 2017;5:275-281. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning.

    PubMed

    Crossley, Matthew J; Horvitz, Jon C; Balsam, Peter D; Ashby, F Gregory

    2016-01-01

    The basal ganglia are a collection of subcortical nuclei thought to underlie a wide variety of vertebrate behavior. Although a great deal is known about the functional and physiological properties of the basal ganglia, relatively few models have been formally developed that have been tested against both behavioral and physiological data. Our previous work (Ashby FG, Crossley MJ. J Cogn Neurosci 23: 1549-1566, 2011) showed that a model grounded in the neurobiology of the basal ganglia could account for basic single-neuron recording data, as well as behavioral phenomena such as fast reacquisition that constrain models of conditioning. In this article we show that this same model accounts for a variety of appetitive instrumental conditioning phenomena, including the partial reinforcement extinction (PRE) effect, rapid and slowed reacquisition following extinction, and renewal of previously extinguished instrumental responses by environmental context cues. Copyright © 2016 the American Physiological Society.

  6. The Medawar Lecture 2001 Knowledge for vision: vision for knowledge

    PubMed Central

    Gregory, Richard L

    2005-01-01

    An evolutionary development of perception is suggested—from passive reception to active perception to explicit conception—earlier stages being largely retained and incorporated in later species. A key is innate and then individually learned knowledge, giving meaning to sensory signals. Inappropriate or misapplied knowledge produces rich cognitive phenomena of illusions, revealing normally hidden processes of vision, tentatively classified here in a ‘peeriodic table’. Phenomena of physiology are distinguished from phenomena of general rules and specific object knowledge. It is concluded that vision uses implicit knowledge, and provides knowledge for intelligent behaviour and for explicit conceptual understanding including science. PMID:16147519

  7. Epigenetics: a new bridge between nutrition and health

    USDA-ARS?s Scientific Manuscript database

    Nutrients can reverse or change epigenetic phenomena such as DNA methylation and histone modifications, thereby modifying the expression of critical genes associated with physiologic and pathologic processes, including embryonic development, aging, and carcinogenesis. It appears that nutrients and b...

  8. The big and intricate dreams of little organelles: Embracing complexity in the study of membrane traffic.

    PubMed

    Liu, Allen P; Botelho, Roberto J; Antonescu, Costin N

    2017-09-01

    Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Hooke's law: applications of a recurring principle.

    PubMed

    Giuliodori, Mauricio J; Lujan, Heidi L; Briggs, Whitney S; Palani, Gurunanthan; DiCarlo, Stephen E

    2009-12-01

    Students generally approach topics in physiology as a series of unrelated phenomena that share few underlying principles. However, if students recognized that the same underlying principles can be used to explain many physiological phenomena, they may gain a more unified understanding of physiological systems. To address this concern, we developed a simple, inexpensive, and easy to build model to demonstrate the underlying principles regarding Starling's Law of the Heart as well as lung and arterial elastic recoil. A model was chosen because models significantly enhance student understanding. Working with models also encourages research-oriented learning and helps our students understand complex ideas. Students are drawn into discussion by the power of learning that is associated with manipulating and thinking about objects. Recognizing that the same underlying principles can be used to explain many physiological phenomena may help students gain a more complete understanding of physiological systems.

  10. [Pre- and post-conditioning phenomena: the protective physiological mechanisms in the aspect of pathogenesis and the theory of treatment of ENT pathology].

    PubMed

    Zhuravskiĭ, S G; Galagudza, M M; Ivanov, S A

    2013-01-01

    The objective of the present work was to expose the universal general biological significance of the protective pre- and postconditioning phenomena and to provide an insight into the possibility of application of therapeutic modalities based on these effects in current otorhinolaryngological practice. Pre- and postconditioning phenomena (Pre-C and Post-C respectively) began to be studied as protective physiological mechanisms since the 1980s, first in cardiology and thereafter in other fields of experimental medicine. At the same time, their protective properties had been known and intuitively used much earlier among the established human cultural and social stereotypes, psychophysical training techniques, and methods of traditional and empirical medicine. The widespread application of these phenomena gives evidence of their universal biological nature as factors involved in the interactions between the organism and pathogens (including co-morbidity), the process leading to the enhancement of non-specific resistance, mechanisms underlying realization of pharmacodynamic effects of a number of pharmaceutical products,etc. The understanding of the protective potential of PreC and PostC dictates the necessity to revise and further elaborate the present-day strategy of prophylaxis and treatment of the most serious chronic ENT diseases.

  11. Color-Coded Organelles.

    ERIC Educational Resources Information Center

    McLaughlin, Esther; And Others

    1994-01-01

    Describes how red beets can be used to demonstrate a variety of membrane phenomena. Some of the activities include observation of vacuoles; vacuoles in intact cells; isolation of vacuoles in physiological studies; demonstration of membrane integrity; and demonstration of ion diffusion and active transport with purified vacuoles. (ZWH)

  12. [Sensory illusions in hang-gliding].

    PubMed

    Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier

    1997-01-01

    Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.

  13. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  14. Psychophysiological reactions associated with qigong therapy.

    PubMed

    Xu, S H

    1994-03-01

    Qigong as a part of the traditional Chinese medicine is similar to western "meditation", Indian "Yoga" or Japanese "Zen", which can all be included in the category of traditional psychotherapy. A series of physiological and psychological effects occur in the course of Qigong training, but inappropriate training can lead to physical and mental disturbances. Physiological effects include changes in EEG, EMG, respiratory movement, heart rate, skin potential, skin temperature and finger tip volume, sympathetic nerve function, function in stomach and intestine, metabolism, endocrine and immunity systems. Psychological effects are motor phenomena and perceptual changes: patients experienced warmness, chilliness, itching sensation in the skin, numbness, soreness, bloatedness, relaxation, tenseness, floating, dropping, enlargement or constriction of the body image, a sensation of rising to the sky, falling off, standing upside down, playing on the swing following respiration, circulation of the intrinsic Qi, electric shock, formication, during Qigong exercise. Some patients experienced dreamland illusions, unreality and pseudohallucination. These phenomena were transient and vanished as the exercise terminated. Qigong deviation syndrome has become a diagnostic term and is now used widely in China.

  15. Light and Color in Nature and Art

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel J.; Cummins, Herman Z.

    1983-02-01

    An introduction to the science of light and color and its applications to photography, art, natural phenomena, and other related areas. Explains the origin of phenomena commonly encountered in nature and art, emphasizing the physical aspects but also touching on aspects of physiology and psychology that directly influence how visual images are perceived. Covers the effect of mixing color, the notion of color spaces, how atoms and molecules affect light, how light can be measured, the effect of using a lens, and many other topics. Requires little or no mathematical background. Includes questions and references for further reading.

  16. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  17. Fractal Physiology and the Fractional Calculus: A Perspective

    PubMed Central

    West, Bruce J.

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355

  18. The XIIIth International Physiological Congress in Boston in 1929: American Physiology Comes of Age

    ERIC Educational Resources Information Center

    Rall, Jack A.

    2016-01-01

    In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological…

  19. Female ejaculation orgasm vs. coital incontinence: a systematic review.

    PubMed

    Pastor, Zlatko

    2013-07-01

    Women may expel various kinds of fluids during sexual arousal and at orgasm. Their origins, quantity, compositions, and expulsion mechanisms depend on anatomical and pathophysiological dispositions and the degree of sexual arousal. These are natural sexual responses but may also represent symptoms of urinary incontinence. The study aims to clarify the etiology of fluid leakage at orgasm, distinguish between associated physiological sexual responses, and differentiate these phenomena from symptoms of illness. A systematic literature review was performed. EMBASE (OvidSP) and Web of Science databases were searched for the articles on various phenomena of fluid expulsions in women during sexual arousal and at orgasm. Articles included focused on female ejaculation and its variations, coital incontinence (CI), and vaginal lubrication. Female ejaculation orgasm manifests as either a female ejaculation (FE) of a smaller quantity of whitish secretions from the female prostate or a squirting of a larger amount of diluted and changed urine. Both phenomena may occur simultaneously. The prevalence of FE is 10-54%. CI is divided into penetration and orgasmic forms. The prevalence of CI is 0.2-66%. Penetration incontinence occurs more frequently and is usually caused by stress urinary incontinence (SUI). Urodynamic diagnoses of detrusor overactivity (DOA) and SUI are observed in orgasmic incontinence. Fluid expulsions are not typically a part of female orgasm. FE and squirting are two different physiological components of female sexuality. FE was objectively evidenced only in tens of cases but its reported high prevalence is based mostly on subjective questionnaire research. Pathophysiology of squirting is rarely documented. CI is a pathological sign caused by urethral disorder, DOA, or a combination of both, and requires treatment. An in-depth appreciation of these similar but pathophysiologically distinct phenomena is essential for distinguishing normal, physiological sexual responses from signs of illness. © 2013 International Society for Sexual Medicine.

  20. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.

  1. Physiological training courses for civil aviation pilots.

    DOT National Transportation Integrated Search

    2003-12-03

    Pilots who are knowledge able about physiological phenomena encountered in the aviation environment are better prepared to deal with such potentially fatal in flight events. The FAA Civil Aerospace Medical Institute offers a 1-day training course to ...

  2. Hydrodynamics in Cell Studies

    PubMed Central

    2018-01-01

    Hydrodynamic phenomena are ubiquitous in living organisms and can be used to manipulate cells or emulate physiological microenvironments experienced in vivo. Hydrodynamic effects influence multiple cellular properties and processes, including cell morphology, intracellular processes, cell–cell signaling cascades and reaction kinetics, and play an important role at the single-cell, multicellular, and organ level. Selected hydrodynamic effects can also be leveraged to control mechanical stresses, analyte transport, as well as local temperature within cellular microenvironments. With a better understanding of fluid mechanics at the micrometer-length scale and the advent of microfluidic technologies, a new generation of experimental tools that provide control over cellular microenvironments and emulate physiological conditions with exquisite accuracy is now emerging. Accordingly, we believe that it is timely to assess the concepts underlying hydrodynamic control of cellular microenvironments and their applications and provide some perspective on the future of such tools in in vitro cell-culture models. Generally, we describe the interplay between living cells, hydrodynamic stressors, and fluid flow-induced effects imposed on the cells. This interplay results in a broad range of chemical, biological, and physical phenomena in and around cells. More specifically, we describe and formulate the underlying physics of hydrodynamic phenomena affecting both adhered and suspended cells. Moreover, we provide an overview of representative studies that leverage hydrodynamic effects in the context of single-cell studies within microfluidic systems. PMID:29420889

  3. Potential formulation of sleep dynamics

    NASA Astrophysics Data System (ADS)

    Phillips, A. J. K.; Robinson, P. A.

    2009-02-01

    A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.

  4. Effect of noisy stimulation on neurobiological sensitization systems and its role for normal and pathological physiology

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian

    2004-03-01

    Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.

  5. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  6. Phage Therapy: Eco-Physiological Pharmacology

    PubMed Central

    Abedon, Stephen T.

    2014-01-01

    Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies), impact on body-associated microbiota (as ecological communities), and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology. PMID:25031881

  7. Physiological-Cognitive-Emotional Responses to Defense-Arousing Communication: Overview and Sex Differences.

    ERIC Educational Resources Information Center

    Gordon, Ronald D.

    A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…

  8. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 9, Number 2, April - June 1984,

    DTIC Science & Technology

    1984-06-01

    minutes. The DH unit is also used for aluminum killing, removal of nonmetallic inclusions (mainly oxides ), calcium treatment for sulfide inclusion...life sciences. His scientific interests include environmental physiology and a more recent interest in membrane phenomena. Dr. lampietro is a member...and 35 kV and is applied to a 5 mm vacuum spark gap but the gap does not break down -. - until a laser pulse is focused on the sharp anode . Enough of

  9. The circle of the soul: the role of spirituality in health care.

    PubMed

    Moss, Donald

    2002-12-01

    This paper examines the critical attitude of behavioral professionals toward spiritual phenomena, and the current growing openness toward a scientific study of spirituality and its effects on health. Health care professionals work amidst sickness and suffering, and become immersed in the struggles of suffering persons for meaning and spiritual direction. Biofeedback and neurofeedback training can facilitate relaxation, mental stillness, and the emergence of spiritual experiences. A growing body of empirical studies documents largely positive effects of religious involvement on health. The effects of religion and spirituality on health are diverse, ranging from such tangible and easily understood phenomena as a reduction of health-risk behaviors in church-goers, to more elusive phenomena such as the distant effects of prayer on health and physiology. Psychophysiological methods may prove useful in identifying specific physiological mechanisms mediating such effects. Spirituality is also a dimension in much of complementary and alternative medicine (CAM), and the CAM arena may offer a window of opportunity for biofeedback practice.

  10. Modulation of Emotional Appraisal by False Physiological Feedback during fMRI

    PubMed Central

    Gray, Marcus A.; Harrison, Neil A.; Wiens, Stefan; Critchley, Hugo D.

    2007-01-01

    Background James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. Methodology/Principal Findings We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. Conclusions/Significance Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order “cognitive” representations of bodily arousal state. PMID:17579718

  11. An eye for an I: a 35-year-old woman with fluctuating oculomotor deficits and dissociative identity disorder.

    PubMed

    Bhuvaneswar, Chaya; Spiegel, David

    2013-01-01

    Physiologic changes, including neurological or pseudo-neurological symptoms, occur across identity states in dissociative identity disorder DID) and can be objectively measured. The idea that dissociative phenomena might be associated with changes in brain function is consistent with research on the brain effects of hypnosis. The authors report a case of psycho-physiologic differences among 4 alter personalities manifested by a 35-year-old woman with DID. Differences in visual acuity, frequency of pendular nystagmus, and handedness were observed in this patient both when the alter personalities appeared spontaneously and when elicited under hypnosis. The authors consider several diagnostic possibilities for these findings and discuss whether prevailing treatment recommendations for DID patients could possibly be modified to ameliorate such visual and neurologic symptoms.

  12. Reminiscing about Jan Evangelista Purkinje: a pioneer of modern experimental physiology.

    PubMed

    Cavero, Icilio; Guillon, Jean-Michel; Holzgrefe, Henry H

    2017-12-01

    This article reminisces about the life and key scientific achievements of Jan Evangelista Purkinje (1787-1869), a versatile 19th century Czech pioneer of modern experimental physiology. In 1804, after completing senior high school, Purkinje joined the Piarist monk order, but, after a 3-yr novitiate, he gave up the religious calling "to deal more freely with science." In 1818, he earned a Medical Doctor degree from Prague University by defending a dissertation on intraocular phenomena observed in oneself. In 1823, Purkinje became a Physiology and Pathology professor at the Prussian Medical University in Breslau, where he innovated the traditional teaching methods of physiology. Purkinje's contributions to physiology were manifold: accurate descriptions of various visual phenomena (e.g., Purkinje-Sanson images, Purkinje phenomenon), discovery of the terminal network of the cardiac conduction system (Purkinje fibers), identification of cerebellar neuronal bodies (Purkinje cells), formulation of the vertigo law (Purkinje's law), discovery of criteria to classify human fingerprints, etc. In 1850, Purkinje accepted and held until his death the Physiology chair at Prague Medical Faculty. During this period, he succeeded in introducing the Czech idiom (in addition to long-established German and Latin) as a Medical Faculty teaching language. Additionally, as a zealous Czech patriot, he actively contributed to the naissance and consolidation of a national Czech identity conscience. Purkinje was a trend-setting scientist who, throughout his career, worked to pave the way for the renovation of physiology from a speculative discipline, ancilla of anatomy, into a factual, autonomous science committed to the discovery of mechanisms governing in-life functions. Copyright © 2017 the American Physiological Society.

  13. Undergraduate students' misconceptions about respiratory physiology.

    PubMed

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  14. Multi-sector thermo-physiological head simulator for headgear research

    NASA Astrophysics Data System (ADS)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  15. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented. © 2015 Scandinavian Plant Physiology Society.

  16. Future needs for biomedical transducers

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  17. Social, Biological and Physical Meta-Mechanisms a tale of Tails

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    The tale concerns the uncertainty of knowledge in the natural, social and life sciences and the tails are associated with the statistical distributions and correlation functions describing these scientific uncertainties. The tails in many phenomena are mentioned, including the long-range correlations in DNA sequences, the longtime memory in human gait and heart beats, the patterns over time in the births of babies to teenagers, as well as in the sexual pairings of homosexual men, and the volatility in financial markets among many other exemplars. I shall argue that these phenomena are so complex that no one is able to understand them completely. However, insights and partial knowledge about such complex mechanistic understanding of the phenomena being studied. These strategies include the development of models, using the fractal stochastic processes, chaotic dynamical systems, and the fractional calculus; all of which are tied together, using the concept of scaling, and therein hangs the tale. The perspective adopted in this lecture is not the dogmatic presentation often found in text books, in large part because there is no "right answer" to the questions being posed. Rather than answers, there are clues, indications, suggestions and tracks in the snow, as there always are at the frontiers of science. Is is my perspective of this frontier that I will be presenting and which is laid out in detail in Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails25.

  18. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup

    PubMed Central

    2016-01-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the “minimal physiological requirements” to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple “parsimonious” rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important “emergent” phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid “building-block” to generate more detailed ionic models to represent complex rabbit electrophysiology. PMID:27749895

  19. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.

    PubMed

    Gray, Richard A; Pathmanathan, Pras

    2016-10-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the "minimal physiological requirements" to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple "parsimonious" rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important "emergent" phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid "building-block" to generate more detailed ionic models to represent complex rabbit electrophysiology.

  20. Models of Behavior Disorder: A Formal Analysis Based on Woods' Taxonomy of Instrumental Conditioning

    ERIC Educational Resources Information Center

    Tryon, Warren W.

    1976-01-01

    Among the phenomena covered are superstitious behavior, learned helplessness, experimental neurosis, anaclitic depression as a result of maternal separation, and physiological disturbances such as ulceration. (Author/AM)

  1. The XIIIth International Physiological Congress in Boston in 1929: American physiology comes of age.

    PubMed

    Rall, Jack A

    2016-03-01

    In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological Congress occurred in 1889 in Switzerland with an emphasis on experimental demonstrations. The XIIIth Congress, the first to be held outside of Europe, took place in Boston, MA, in 1929. It was a watershed meeting and indicated that American physiology had come of age. Meticulously organized, it was the largest congress to date, with over 1,200 participants from more than 40 countries. Getting to the congress was a cultural adventure, especially for the 400 scientists and their families from over 20 European countries, who sailed for 10 days on the S.S. Minnekahda. Many of the great physiologists of the world were in attendance, including 22 scientists who were either or would become Nobel Laureates. There were hundreds of platform presentations and many experimental demonstrations. The meeting was not without controversy as a conflict, still not completely settled, arose over the discovery of ATP. After the meeting, hundreds of participants made a memorable trip to the Marine Biological Laboratory at Woods Hole, MA, which culminated in a "good old fashioned Cape Cod Clambake." Although not as spectacular as the 1929 congress, the physiological congresses have continued with goals similar to those established more than a century ago. Copyright © 2016 The American Physiological Society.

  2. Multi-sector thermo-physiological head simulator for headgear research.

    PubMed

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  3. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.

    PubMed

    Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping

    2014-11-01

    Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.

  4. PANCREATITIS AND CARCINOMA OF THE PANCREAS—Some Aspects of the Pathologic Physiology

    PubMed Central

    Edmondson, Hugh A.

    1952-01-01

    The physiological phenomena accompanying pancreatic disease in adults are related to the local and generalized reaction of the body to the blockage and/or leakage of the three enzymes—amylase, lipase and trypsin. The measurements of amylase and lipase in the serum are the most reliable criteria in the diagnosis of acute disease. Related changes may include hypocalcemia, hypopotassemia, hyperlipemia, hyperglycemia and decreased renal function. In chronic pancreatitis, there is less fluctuation in the amounts of the enzymes in the blood. The presence of diabetes mellitus, demonstration of calculi by x-ray, and examination of the stools for excess fat and meat fibers are more important diagnostic guides. In cancer of the pancreas, function tests using secretin stimulation of the gland followed by an examination of the external secretion or determination of the serum amylase have been used with some success. PMID:12988052

  5. Pancreatitis and carcinoma of the pancreas; some aspects of the pathologic physiology.

    PubMed

    EDMONDSON, H A

    1952-09-01

    The physiological phenomena accompanying pancreatic disease in adults are related to the local and generalized reaction of the body to the blockage and/or leakage of the three enzymes-amylase, lipase and trypsin. The measurements of amylase and lipase in the serum are the most reliable criteria in the diagnosis of acute disease. Related changes may include hypocalcemia, hypopotassemia, hyperlipemia, hyperglycemia and decreased renal function. In chronic pancreatitis, there is less fluctuation in the amounts of the enzymes in the blood. The presence of diabetes mellitus, demonstration of calculi by x-ray, and examination of the stools for excess fat and meat fibers are more important diagnostic guides. In cancer of the pancreas, function tests using secretin stimulation of the gland followed by an examination of the external secretion or determination of the serum amylase have been used with some success.

  6. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression.

    PubMed

    Pavlatou, M G; Remaley, A T; Gold, P W

    2016-08-30

    Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.

  7. Descartes' embodied psychology: Descartes' or Damasio's error?

    PubMed

    Kirkebøen, G

    2001-08-01

    Damasio (1994) claims that Descartes imagined thinking as an activity separate from the body, and that the effort to understand the mind in general biological terms was retarded as a consequence of Descartes' dualism. These claims do not hold; they are "Damasio's error". Descartes never considered what we today call thinking or cognition without taking the body into account. His new dualism required an embodied understanding of cognition. The article gives an historical overview of the development of Descartes' radically new psychology from his account of algebraic reasoning in the early Regulae (1628) to his "neurobiology of rationality" in the late Passions of the soul (1649). The author argues that Descartes' dualism opens the way for mechanistic and mathematical explanations of all kinds of physiological and psychological phenomena, including the kind of phenomena Damasio discusses in Descartes' error. The models of understanding Damasio puts forward can be seen as advanced version of models which Descartes introduced in the 1640s. A far better title for his book would have been Descartes' vision.

  8. Physiology or psychic powers? William Carpenter and the debate over spiritualism in Victorian Britain.

    PubMed

    Delorme, Shannon

    2014-12-01

    This paper analyses the attitude of the British Physiologist William Benjamin Carpenter (1813-1885) to spiritualist claims and other alleged psychical phenomena in the second half of the Nineteenth Century. It argues that existing portraits of Carpenter as a critic of psychical studies need to be refined so as to include his curiosity about certain 'unexplained phenomena', as well as broadened so as to take into account his overarching epistemological approach in a context of theological and social fluidity within nineteenth-century British Unitarianism. Carpenter's hostility towards spiritualism has been well documented, but his interest in the possibility of thought-transference or his secret fascination with the medium Henry Slade have not been mentioned until now. This paper therefore highlights Carpenter's ambivalences and focuses on his conciliatory attitude towards a number of heterodoxies while suggesting that his Unitarian faith offers the keys to understanding his unflinching rationalism, his belief in the enduring power of mind, and his effort to resolve dualisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plant anesthesia supports similarities between animals and plants: Claude Bernard's forgotten studies.

    PubMed

    Grémiaux, Alexandre; Yokawa, Ken; Mancuso, Stefano; Baluška, František

    2014-01-01

    The French scientist Claude Bernard (1813-1878) is famous for his discoveries in physiology and for introducing rigorous experimental methods to medicine and biology. One of his major technical innovations was the use of chemicals in order to disrupt normal physiological function to test hypotheses. But less known is his conviction that the physiological functions of all living organisms rely on the same underlying principles. He hypothesized that similarly to animals, plants are also able to sense changes in their environment. He called this ability "sensitivity." In order to test his ideas, he performed anesthesia on plants and the results of these experiments were presented in 1878 in "Leçonssur les phénomènes de la vie communs aux animaux et aux végétaux." The phenomena described by Claude Bernard more than a century ago are not fully understood yet. Here, we present a short overview of anesthetic effects in animals and we discuss how anesthesia affects plant movements, seed germination, and photosynthesis. Surprisingly, these phenomena may have ecological relevance, since stressed plants generate anesthetics such as ethylene and ether. Finally, we discuss Claude Bernard's interpretations and conclusions in the perspective of modern plant sciences.

  10. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    DTIC Science & Technology

    1991-04-01

    week and two years (subchronic GMRL studies versus chronic ITRI and Fh-ITA studies ); exposure concentrations were changed by a factor of 40 (Fh-ITA...a forum for the publication of studies involving inhalation of particles and gases in the respiratory tract, covering the use of aerosols as tools to... study basic physiologic phenomena, their use as selective delivery systems for medication, and the toxic effects of inhaled agents. JOURNAL OF AEROSOL

  11. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum1[CC-BY

    PubMed Central

    Lenser, Teresa; Adigüzel, Nezaket; Dönmez, Ali A.; Grosche, Christopher; Kettermann, Marcel; Mayland-Quellhorst, Sara; Mohammadin, Setareh; Rümpler, Florian; Sperber, Katja; Wiegand, Nils

    2016-01-01

    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity. PMID:27702842

  12. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions.

    PubMed

    Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.

  13. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions

    PubMed Central

    Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943

  14. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.

  15. The interconnectivity of mind, brain, and behavior in altered states of consciousness: focus on shamanism.

    PubMed

    Wright, P A

    1995-07-01

    This paper examines possible interconnections between mind, brain, and behavior in the area of shamanism and altered states of consciousness. It offers a neurophysiological theory of shamanic altered states of consciousness that integrates theories by Mandell, Persinger, Prince, Winkelman, and Wright. Topics include the shamanic call and temporal lobe phenomena, possible neurological correlates of shamanic ecstasy, and the neurophysiological roles of endorphins, plant substances, and genetic factors in shamanic altered states of consciousness. The difficulty of developing such a theory because of the complexity of human physiology and psychological experience and because of the paucity of neurophysiological data from the field is acknowledged.

  16. [Proposal of a different interpretation of the physiology of labor useful in more edifying teaching of obstetric psychoprophylaxis courses].

    PubMed

    Mergoni, A

    1994-01-01

    Without underestimating the undeniable benefit which can be achieved from various physical and mental relaxation exercises, the author expresses the conviction that the didactic and cultural aspect of preparative courses during pregnancy by definition improve, to a greater extent than is widely believed, the positive outcome of obstetric psychoprophylaxis. It is therefore opportune that the didactic part of courses should cover a wider and more detailed range than is usually the case, in particular including a more exhaustive and accurate description of the mechanical phenomenon of birth. Without a clear knowledge and awareness of such mechanical aspects, pregnant women will not feel prepared for and in full and rational control of her own labour. Given that a correct knowledge of the physiology of labour inevitably includes aspects which will enrich the pregnant woman's psyche, the author hopes that interest will soon be reawakened in the physiology of labour whose interpretation has for a long time contained a number of basic and unresolved problems. In order to rectify and further our knowledge of the physiology of labour, it is important to be willing to consider other interpretative models which differ from the traditional one. On this subject, the author aims to rediscuss one model in which Pascal's principle is recognised as the decisive cause of the majority of the mechanical phenomena of labour, and which, in addition to providing solutions to many unresolved problems, makes the teaching of preparative courses during pregnancy more edifying in psychological terms.

  17. Conceiving "personality": Psychologist's challenges and basic fundamentals of the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals.

    PubMed

    Uher, Jana

    2015-09-01

    Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals' bodies, temporal extension, and physicality versus "non-physicality") that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena's accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals' "personality", which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals.

  18. [Progress on salt resistance in autopolyploid plants].

    PubMed

    Zhu, Hong Ju; Liu, Wen Ge

    2018-04-20

    Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.

  19. Mathematical modeling of fluid-electrolyte alterations during weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1984-01-01

    Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.

  20. Coping with expanding nursing practice, knowledge, and technology.

    PubMed

    Gaudinski, M A

    1979-10-01

    Nurses utilize transcultural, transactional, systems, primary, and interdisciplinary approaches to physiological and psychosocial components of patient care. Expanded roles, as well as advances in knowledge and technology have prepared nurses for critical, specialized, primary, aerospace, and independent nursing practice. Exciting as they are, nursing's expanded roles and practices frequently contribute to the burnout and distress phenomena increasingly observed in practicing health care professionals. Causes and symptoms of the burnout distress phenomena are many and varied. Selye, Shubin, Maslach, and others adeptly identified and wrote on the phenomena as it specifically relates to nurses and the many facets of nursing practice. Rather than utilizing crisis intervention coping techniques, preventive strategies and adaptations are suggested. This paper reviews and discusses: 1. Factors associated with burnout-distress phenomena identified in professional literature; 2. Identification of factors associated with expanded roles and practice which contribute to burnout stress; 3. Identification of factors in military and civilian air ambulance and aeromedical evacuation systems which contribute to burnout stress; 4. Recommendations for strategies to prevent and cope with burnout distress factors.

  1. Plant anesthesia supports similarities between animals and plants

    PubMed Central

    Grémiaux, Alexandre; Yokawa, Ken; Mancuso, Stefano; Baluška, František

    2014-01-01

    The French scientist Claude Bernard (1813–1878) is famous for his discoveries in physiology and for introducing rigorous experimental methods to medicine and biology. One of his major technical innovations was the use of chemicals in order to disrupt normal physiological function to test hypotheses. But less known is his conviction that the physiological functions of all living organisms rely on the same underlying principles. He hypothesized that similarly to animals, plants are also able to sense changes in their environment. He called this ability “sensitivity.” In order to test his ideas, he performed anesthesia on plants and the results of these experiments were presented in 1878 in “Leçonssur les phénomènes de la vie communs aux animaux et aux végétaux.”1 The phenomena described by Claude Bernard more than a century ago are not fully understood yet. Here, we present a short overview of anesthetic effects in animals and we discuss how anesthesia affects plant movements, seed germination, and photosynthesis. Surprisingly, these phenomena may have ecological relevance, since stressed plants generate anesthetics such as ethylene and ether. Finally, we discuss Claude Bernard's interpretations and conclusions in the perspective of modern plant sciences. PMID:24476640

  2. The Unicellular State as a Point Source in a Quantum Biological System

    PubMed Central

    Torday, John S.; Miller, William B.

    2016-01-01

    A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413

  3. Human Cognition and 1/f Scaling

    ERIC Educational Resources Information Center

    Van Orden, Guy C.; Holden, John G.; Turvey, Michael T.

    2005-01-01

    Ubiquitous 1/f scaling in human cognition and physiology suggests a mind-body interaction that contradicts commonly held assumptions. The intrinsic dynamics of psychological phenomena are interaction dominant (rather than component dominant), and the origin of purposive behavior lies with a general principle of self-organization (rather than a…

  4. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and function

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms have been firmly established in both cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias). These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences, such as sympathetic activity. Virtually every...

  5. Student Approaches to Achieving Understanding--Approaches to Learning Revisited

    ERIC Educational Resources Information Center

    Fyrenius, Anna; Wirell, Staffan; Silen, Charlotte

    2007-01-01

    This article presents a phenomenographic study that investigates students' approaches to achieving understanding. The results are based on interviews, addressing physiological phenomena, with 16 medical students in a problem-based curriculum. Four approaches--sifting, building, holding and moving--are outlined. The holding and moving approaches…

  6. Use of an electrical resistance hygrometer to measure human sweat rates

    NASA Technical Reports Server (NTRS)

    Suga, T.

    1980-01-01

    The application of the resistance hygrometer as a tool to measure the localized sweat rate from the human body in both the active and passive sweat regions was studied. It was found that the physiological function of the skin membrane and fluid carrier transport phenomena from the outer skin have an indistinguishable effect on the observed findings from the instrument. The problems associated with the resistance hygrometer technique are identified and the usage of the instrument in the physiological experimentation from the engineering standpoint is evaluated.

  7. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  8. Reintrepreting the cardiovascular system as a mechanical model

    NASA Astrophysics Data System (ADS)

    Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto

    2013-10-01

    The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.

  9. Social dimensions of pain. Comment on “Facing the experience of pain: A neuropsychological perspective” by Fabbro and Crescentini

    NASA Astrophysics Data System (ADS)

    Avenanti, Alessio; Vicario, Carmelo Mario; Borgomaneri, Sara

    2014-09-01

    In this issue, Fabbro and Crescentini [1] provide an integrative review of neuroscientific, psychological, cultural and philosophical aspects of pain experience and discuss some critical examples of its regulation. Here we focus on the two main social phenomena that are addressed in the review, namely the 'pain of separation' and 'empathy for pain' and further support the idea that these phenomena are intrinsically linked to physical pain, which may provide a 'proximal' physiological base to further understand them. In addition, we discuss the evolutionary 'ultimate' bases of such phenomena and suggest that they are linked to the evolution of parental care in social animals and as such support the development of social bonds. We conclude by considering the effect that positive social relationships and empathy have on the experience of pain.

  10. An aura of confusion: 'seeing auras-vital energy or human physiology?' Part 1 of a three part series.

    PubMed

    Duerden, Tim

    2004-02-01

    The first of three papers that considers claims made for the perception or detection of vital energy. Many systems of Complementary and Alternative Medicine (CAM) assume the existence of a vital force that mediates therapeutic efficacy, for example chi or qi in Traditional Chinese medicine. Vital energy directly perceived or imaged that surrounds living organisms is frequently termed the aura. This paper aims to show how phenomena that arise as a consequence of the normal functioning of the human visual system can be inappropriately offered as support of claims for the direct perception of vital energy or the aura. Specifically, contrast and complementary colour phenomena, entoptic phenomena and the deformation phosphene, the 'flying corpuscle effect', the blind spot and the 'reverse telescope effect' are explained and discussed.

  11. Enrico Morselli's Psychology and "Spiritism": psychiatry, psychology and psychical research in Italy in the decades around 1900.

    PubMed

    Brancaccio, Maria Teresa

    2014-12-01

    This paper traces Enrico Morselli's intellectual trajectory from the 1870s to the early 1900s. His interest in phenomena of physical mediumship is considered against the backdrop of the theoretical developments in Italian psychiatry and psychology. A leading positivist psychiatrist and a prolific academic, Morselli was actively involved in the making of Italian experimental psychology. Initially sceptical of psychical research and opposed to its association with the 'new psychology', Morselli subsequently conducted a study of the physical phenomena produced by the medium Eusapia Palladino. He concluded that her phenomena were genuine and represented them as the effects of an unknown bio-psychic force present in all human beings. By contextualizing Morselli's study of physical mediumship within contemporary theoretical and disciplinary discourse, this study elaborates shifts in the interpretations of 'supernormal' phenomena put forward by leading Italian psychiatrists and physiologists. It demonstrates that Morselli's interest in psychical research stems from his efforts to comprehend the determinants of complex psychological phenomena at a time when the dynamic theory of matter in physics, and the emergence of neo-vitalist theories influenced the theoretical debates in psychiatry, psychology and physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  13. Towards understanding the complexity of cardiovascular oscillations: Insights from information theory.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Wiszt, Radovan; Faes, Luca

    2018-07-01

    Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges. Copyright © 2018. Published by Elsevier Ltd.

  14. Gravity related features of plant growth behavior studied with rotating machines

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1996-01-01

    Research in plant physiology consists mostly of studies on plant growth because almost everything a plant does is done by growing. Most aspects of plant growth are strongly influenced by the earth's gravity vector. Research on those phenomena address scientific questions specifically about how plants use gravity to guide their growth processes.

  15. Evaluation of Gastrointestinal Motility in Awake Rats: A Learning Exercise for Undergraduate Biomedical Students

    ERIC Educational Resources Information Center

    Souza, M. A. N.; Souza, M. H. L. P.; Palheta, R. C., Jr.; Cruz, P. R. M.; Medeiros, B. A.; Rola, F. H.; Magalhaes, P. J. C.; Troncon, L. E. A.; Santos, A. A.

    2009-01-01

    Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols.…

  16. Ultrashort Phenomena in Biochemistry and Biological Signaling

    NASA Astrophysics Data System (ADS)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  17. Phenomena Associated with EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  18. Phenomena Associated With EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  19. Aspects of human biometeorology in past, present and future.

    PubMed

    Höppe, P

    1997-02-01

    Human biometeorology is quite an old science: during the times of Hippokrates in ancient Greece the influence of weather changes on physiological processes in the human body were considered to exist. However, not until the progress in modern statistics, physics and physiology in the course of this century provided quantitative methods did human-biometeorology become an acknowledged natural science. In the first half of this century primarily the explanation of the phenomena of reactions of the body to weather changes was the general objective. In the second half of this century quantitative descriptions of thermal interchanges between the human body and the environment by means of energy balance models of the human body have gained increasing importance. The methods of modern human biometeorology increasingly are acknowledged by workers in disciplines of potential application, such as urban or regional planners or air conditioning engineers. Human biometeorology tries to assess all atmospheric influences in its entirety, including the air pollution pattern. The discipline considers itself as branch of science which is tied closely to environmental meteorology and environmental medicine.

  20. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  1. A Mixed Mode Cochlear Amplifier Including Neural Feedback

    NASA Astrophysics Data System (ADS)

    Flax, Matthew R.; Holmes, W. Harvey

    2011-11-01

    The mixed mode cochlear amplifier (MMCA) model is derived from the physiology of the cochlea. It is comprised of three main elements of the peripheral hearing system: the cochlear mechanics, hair cell motility, and neurophysiology. This model expresses both active compression wave and active traveling wave modes of operation. The inclusion of a neural loop with a time delay, and a new paradigm for the mechanical response of the outer hair cells, are believed to be unique features of the MMCA. These elements combine to form an active feedback loop to constitute the cochlear amplifier, whose input is a passive traveling wave vibration. The result is a cycle-by-cycle amplifier with nonlinear response. This system can assume an infinite number of different operating states. The stable state and the first few amplitude-limited unstable (Hopf-bifurcated) states are significant in describing the operation of the peripheral hearing system. A hierarchy of models can be constructed from this concept, depending on the amount of detail included. The simplest model of the MMCA is a nonlinear delay line resonator. It was found that even this simple MMCA version can explain a large number of hearing phenomena, at least qualitatively. This paper concentrates on explaining the fractional octave shift from the living to postmortem response in terms of the new model. Other mechanical, hair cell and neurological phenomena can also be accounted for by the MMCA, including two-tone suppression behavior, distortion product responses, otoacoustic emissions and neural spontaneous rates.

  2. Environmental stressors alter relationships between physiology and behaviour.

    PubMed

    Killen, Shaun S; Marras, Stefano; Metcalfe, Neil B; McKenzie, David J; Domenici, Paolo

    2013-11-01

    Although correlations have frequently been observed between specific physiological and behavioural traits across a range of animal taxa, the nature of these associations has been shown to vary. Here we argue that a major source of this inconsistency is the influence of environmental stressors, which seem capable of revealing, masking, or modulating covariation in physiological and behavioural traits. These effects appear to be mediated by changes in the observed variation of traits and differential sensitivity to stressors among phenotypes. Considering that wild animals routinely face a range of biotic and abiotic stressors, increased knowledge of these effects is imperative for understanding the causal mechanisms of a range of ecological phenomena and evolutionary responses to stressors associated with environmental change. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. [SCIENCE AND DREAMS IN THE MIDDLE AGES: IL "DE SOMNIIS" DI BOEZIO DI DACIA].

    PubMed

    Feti, Viola

    2015-01-01

    Boethius of Dacia's opera "De somnis" can be defined as a brief treaty that partially follows the traditional quaestio scheme. It includes a passage that seems to copy Etienne Tempier's proposition number sixty-five, which condemns the importance attributed to astrology by many medieval authors. Boethius moves off Aristotle's "De somno et vigilia" idea of physiological dreams to assert a new kind of oneiric phenomena linked to constellations, that, according to the author, aren't divinely inspired, whereas they are to be considered as natural events. Boethius isn't the only philosopher who writes about this particular type of dream as another medieval author, Albertus Magnus, in his "Speculum Astronomiae", describes astrology and its relationship to medicine.

  4. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases?

    PubMed

    Rustom, Amin

    2016-06-01

    Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer. © 2016 The Authors.

  5. A cascade model of information processing and encoding for retinal prosthesis.

    PubMed

    Pei, Zhi-Jun; Gao, Guan-Xin; Hao, Bo; Qiao, Qing-Li; Ai, Hui-Jian

    2016-04-01

    Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.

  6. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  7. [Cellular mechanisms of neuroplasticity].

    PubMed

    Bergado-Rosado, J A; Almaguer-Melian, W

    To present a unified vision of the principal known mechanisms of neuroplasticity, emphasizing their universality. The concept of the central nervous system as an immutable entity has been considerably modified during the second half of the 20th century. Neuroplasticity, that is the ability of the brain regarding change and repair is expressed in different ways, from functional modifications of existing structures to the formation, by growth and proliferation, of new structures and neurons. This study considers the molecular and cellular mechanisms of neuroplastic phenomena and classifies them into two main groups: plasticity due to growth, including the mechanisms of axonal regeneration, collateralization and reactive synaptogenesis; and functional plasticity, which includes changes in the efficacy of synaptic transmission such as long-term potentiation and the activation of silent synapses. We also describe some of the relations of neuroplastic phenomena with disease of the central nervous system, together with examples of physiological, physical and pharmacological factors which may be used in future as therapeutic tools to stimulate and modulate neuroplasticity. Neuroplastic mechanisms show a high degree of phylogenetic and ontogenetic conservation. They are important both in the genesis of disorders and disease of the nervous system and for its repair after different types of damage and trauma. Modulation of neuroplastic mechanisms by physical and chemical agents would appear to be one of the most powerful therapeutic tools of restorative neurology.

  8. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Treesearch

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  9. Spacelab

    NASA Image and Video Library

    1992-09-01

    Japanese astronaut, Mamoru Mohri, talks to Japanese students from the aft flight deck of the Space Shuttle Orbiter Endeavour during the Spacelab-J (SL-J) mission. The SL-J mission was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  10. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  11. Brain local and regional neuroglial alterations in Alzheimer's Disease: cell types, responses and implications.

    PubMed

    Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio

    2016-01-01

    From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.

  12. Physiological and pharmacologic aspects of peripheral nerve blocks

    PubMed Central

    Vadhanan, Prasanna; Tripaty, Debendra Kumar; Adinarayanan, S.

    2015-01-01

    A successful peripheral nerve block not only involves a proper technique, but also a thorough knowledge and understanding of the physiology of nerve conduction and pharmacology of local anesthetics (LAs). This article focuses on what happens after the block. Pharmacodynamics of LAs, underlying mechanisms of clinically observable phenomena such as differential blockade, tachyphylaxis, C fiber resistance, tonic and phasic blockade and effect of volume and concentration of LAs. Judicious use of additives along with LAs in peripheral nerve blocks can prolong analgesia. An entirely new group of drugs-neurotoxins has shown potential as local anesthetics. Various methods are available now to prolong the duration of peripheral nerve blocks. PMID:26330722

  13. Chronobiology --2017 Nobel Prize in Physiology or Medicine.

    PubMed

    Yuan, Li; Li, Yi-Rou; Xu, Xiao-Dong

    2018-01-20

    Chronobiology is a field of biology that examines the generation of biological rhythms in various creatures and in many parts of body, and their adaptive fitness to solar- and lunar-related periodic phenomena. The synchronization of internal circadian clocks with external timing signals confers accurate phase response and tissue homeostasis. Herein we state a series of studies on circadian rhythms and introduce the brief history of chronobiology. We also present a detailed timeline of the discoveries on molecular mechanisms controlling circadian rhythm in Drosophila, which was awarded the 2017 Nobel Prize in Physiology or Medicine. The latest findings and new perspectives are further summarized to indicate the significance of circadian research.

  14. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative

    PubMed Central

    Ping, Peipei; Gustafsson, Åsa B.; Bers, Don M.; Blatter, Lothar; Cai, Hua; Jahangir, Arshad; Kelly, Daniel; Muoio, Deborah; O'Rourke, Brian; Rabinovitch, Peter; Trayanova, Natalia; Van Eyk, Jennifer; Weiss, James N.; Wong, Renee; Longacre, Lisa Schwartz

    2015-01-01

    Summary Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful completion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles. PMID:26185209

  15. Between the laboratory and the museum: Claude Bernard and the problem of time.

    PubMed

    Schmidgen, Henning

    2013-01-01

    This paper explores the relation between biological and historical time with respect to Claude Bernard's Lectures on the Phenomena of Life Common to Animals and Plants (1878). These lectures mirror Bernard's turn from the experimental physiology of animal organisms to a "general physiology" of elementary organisms, or cells, and discuss the problematic interrelation of science, life, and time. The paper argues that experimental life sciences in Bernard's sense are always also "living sciences," i.e., sciences in dynamic development. The perspectives of this conception are discussed with reference to Hans-Jörg Rheinberger's historical studies concerning the materiality and semiotics of "experimental systems."

  16. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative.

    PubMed

    Ping, Peipei; Gustafsson, Åsa B; Bers, Don M; Blatter, Lothar A; Cai, Hua; Jahangir, Arshad; Kelly, Daniel; Muoio, Deborah; O'Rourke, Brian; Rabinovitch, Peter; Trayanova, Natalia; Van Eyk, Jennifer; Weiss, James N; Wong, Renee; Schwartz Longacre, Lisa

    2015-07-17

    Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles. © 2015 American Heart Association, Inc.

  17. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  18. Chronic Pain and Chronic Stress: Two Sides of the Same Coin?

    PubMed

    Abdallah, Chadi G; Geha, Paul

    2017-02-01

    Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.

  19. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  20. Energy and water in aestivating amphibians.

    PubMed

    Carvalho, José E; Navas, Carlos A; Pereira, Isabel C

    2010-01-01

    The physiological mechanisms, behavioral adjustments, and ecological associations that allow animal species to live in extreme environments have evoked the attention of many zoologists. Often, extreme environments are defined as those believed to be limiting to life in terms of water, energetic availability, and temperature. These three elements seem extreme in a number of arid and semi-arid settings that even so have been colonized by amphibians. Because this taxon is usually seen as the quintessential water-dependent ectotherm tetrapods, their presence in a number of semi-arid environments poses a number of intriguing questions regarding microhabitat choice and physiological plasticity, particularly regarding the ecological and physiological correlates of behaviors granting avoidance of the harshest conditions of semi-arid environments. Such avoidance states, generally associated to the concept of aestivation, are currently seen as a diverse and complex phenomena varying from species to species and involving numerous behavioral and metabolic adjustments that enhance survival during the drought. This chapter reviews the physiological ecology of anuran aestivation, mainly from the perspective of water and energy balance.

  1. Challenges and opportunities in developmental integrative physiology☆

    PubMed Central

    Mueller, C.A.; Eme, J.; Burggren, W.W.; Roghair, R.D.; Rundle, S.D.

    2015-01-01

    This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony — an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. ‘Critical windows’ are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. “Catch-up growth” in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of “fetal programing”). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development. PMID:25711780

  2. Immobilized Cell Research

    DTIC Science & Technology

    1990-10-31

    specifically with the biotech nologi cal side of cellular immobilization, there aje aspects of this research that have importance in other fields. 20 C...meetings dealt lem facing the Navy. The techniques reviewed here specifically with the biotechnological side of cellular im- should be of particular...phenomena. types of organisms, and the many techniques used to compare cellular physiologies. Undoubtedly, any tech- Why Use Immobilized Cells in

  3. Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?

    PubMed

    Castañeda-Hernández, G; Granados-Soto, V

    2000-03-01

    It is frequently assumed that pharmacological responses depend solely on the extent of drug binding to its receptor according to the occupational theory. It is therefore presumed that the intensity of the effect is determined by drug concentration at its receptor site, yielding a unique concentration-effect relationship. However, when dependence, abstinence, and tolerance phenomena occur, as well as for pharmacological responses in vivo that are modulated by homeostatic mechanisms, the rate of drug input shifts the concentration-effect relationship. Hence, such responses cannot be explained on the sole basis of the extent of drug binding to its receptor. Information on the cellular and molecular processes involved in the generation of abstinence, dependence, and tolerance will undoubtedly result in the development of pharmacodynamic models allowing a satisfactory explanation of drug effects modulated by these phenomena. Notwithstanding, integrative physiology concepts are required to develop pharmacokinetic-pharmacodynamic models allowing the description of drug effects in an intact organism. It is therefore important to emphasize that integrative physiology cannot be neglected in pharmacology teaching and research, but should be considered as an equally valuable tool as molecular biology and other biomedical disciplines for the understanding of pharmacological effects.

  4. [Unusual behaviors in sleep as "compensatory" reactions, aimed at normalizing sleep-alertness cycles].

    PubMed

    Gol'bin, A Ts; Guzeva, V I; Shepoval'nikov, A N

    2013-01-01

    The present article is an attempt to perform a conceptual clinical and physiological analysis of a large spec- trum of sleep-related phenomena called parasomnias in children, based on data from three independent in- stitutions. Parasonmias appear in the process of falling asleep, at the time of sleep stage changes, and upon awakening. They are common for both healthy children and those with neurological and psychiatric disorders. Brief descriptions of clinical pictures of several groups of parasomnias and their polysomnographic characteristics are presented. Instances of stereotyped rhythmic movements (e.g. head rocking), paroxysmal somatic and behavioral episodes (night terrors and nightmares), "static" phenomena (sleep with open eyes, strange body positions), as well as somnambulism are specifically described. Common features of parasomnias as a group have been identified (the "Parasomnia syndrome"). It was found that sleep architecture frequently normalizes after a parasomnia episode, whereas parasomnias are self-liquidated after sleep matures (self-cure). The significance of gender differences in parasomnias have been reviewed. Possible compensatory physiological functions of parasomnias acting as "switches" or "stabilizers" of sleep stages to "off-set" deviated or immature sleep-wake mechanisms were discussed.

  5. Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Albro, Michael B.; Maas, Steve; Weiss, Jeffrey A.

    2011-01-01

    Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898

  6. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  7. Leaky Bodies, Bawdy Books: Gonorrhea and Reading in Eighteenth-Century Britain.

    PubMed

    Wagner, Darren N

    In eighteenth-century Britain, reading lewd books was understood to exacerbate gonorrhea. That pathology corresponded to a specific physiological model, which historians describe as the leaky male body. This article demonstrates how the connection between reading and gonorrhea correlated to three phenomena: 1) the neuro-sexual economy of bodily fluids; 2) the effects of reading on the sensible mind and body; and 3) the crossover of erotic and medical literatures. Aware of the physiological power of imagination, authors intentionally wrote to elicit strong physiological and sexual responses in readers. Concerns about the pathological and moral consequences of reading provocative material similarly informed criticisms of both the outright pornographic and the ostensibly medical. Partly in response to such criticisms, medical authors developed a more careful, decorous, and objective tone for writing about sexual topics. Ultimately, the culture of sensibility receded, as did anxieties about involuntary leaks of bodily fluids caused by reading.

  8. Music performance anxiety in opera singers.

    PubMed

    Spahn, Claudia; Echternach, Matthias; Zander, Mark F; Voltmer, Edgar; Richter, Bernhard

    2010-12-01

    Music performance anxiety (MPA) represents a high challenge every vocal performer has to meet. MPA can be defined on a continuum going from a low to a high level. MPA and its phenomena can be considered in terms of four levels: affect, cognition, behaviour, and physiology. A study carried out on seven opera singers and two instrumentalists during performance situations showed highly elevated values for the performers' heart rate and blood pressure. This study, as several others, yielded no clear evidence pointing to a correspondence between the level of anxiety and of physiological arousal. At the end of the article a multimodal approach to the treatment of MPA is illustrated consisting of different psychotherapeutic and body-oriented methods.

  9. Motor Events during Healthy Sleep: A Quantitative Polysomnographic Study

    PubMed Central

    Frauscher, Birgit; Gabelia, David; Mitterling, Thomas; Biermayr, Marlene; Bregler, Deborah; Ehrmann, Laura; Ulmer, Hanno; Högl, Birgit

    2014-01-01

    Study Objectives: Many sleep disorders are characterized by increased motor activity during sleep. In contrast, studies on motor activity during physiological sleep are largely lacking. We quantitatively investigated a large range of motor phenomena during polysomnography in physiological sleep. Design: Prospective polysomnographic investigation. Setting: Academic referral sleep laboratory. Participants: One hundred healthy sleepers age 19-77 y were strictly selected from a representative population sample by a two-step screening procedure. Interventions: N/A. Measurements and Results: Polysomnography according to American Academy of Sleep Medicine (AASM) standards was performed, and quantitative normative values were established for periodic limb movements in sleep (PLMS), high frequency leg movements (HFLM), fragmentary myoclonus (FM), neck myoclonus (NM), and rapid eye movement (REM)-related electromyographic (EMG) activity. Thirty-six subjects had a PLMS index > 5/h, 18 had a PLMS index > 15/h (90th percentile: 24.8/h). Thirty-three subjects had HFLM (90th percentile: four sequences/night). All subjects had FM (90th percentile 143.7/h sleep). Nine subjects fulfilled AASM criteria for excessive FM. Thirty-five subjects had NM (90th percentile: 8.8/h REM sleep). For REM sleep, different EMG activity measures for the mentalis and flexor digitorum superficialis muscles were calculated: the 90th percentile for phasic mentalis EMG activity for 30-sec epochs according to AASM recommendation was 15.6%, and for tonic mentalis EMG activity 2.6%. Twenty-five subjects exceeded the recently proposed phasic mentalis cutoff of 11%. None of the subjects exceeded the tonic mentalis cutoff of 9.6%. Conclusion: Quantification of motor phenomena is a basic prerequisite to develop normative values, and is a first step toward a more precise description of the various motor phenomena present during sleep. Because rates of motor events were unexpectedly high even in physiological sleep, the future use of normative values for both research and clinical routine is essential. Citation: Frauscher B; Gabelia D; Mitterling T; Biermayr M; Bregler D; Ehrmann L; Ulmer H; Högl B. Motor events during healthy sleep: a quantitative polysomnographic study. SLEEP 2014;37(4):763-773. PMID:24744455

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibney, Patrick A.; Schieler, Ariel; Chen, Jonathan C.

    Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose permore » se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where demonstrate a direct role for trehalose in protecting cells against desiccation).« less

  11. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  12. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.

    PubMed

    Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee

    2015-08-15

    Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System.

    PubMed

    Angelini, Francesco; Pagano, Francesca; Bordin, Antonella; Milan, Marika; Chimenti, Isotta; Peruzzi, Mariangela; Valenti, Valentina; Marullo, Antonino; Schirone, Leonardo; Palmerio, Silvia; Sciarretta, Sebastiano; Murdoch, Colin E; Frati, Giacomo; De Falco, Elena

    2017-01-01

    Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed.

  14. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System

    PubMed Central

    Angelini, Francesco; Pagano, Francesca; Bordin, Antonella; Milan, Marika; Valenti, Valentina; Marullo, Antonino; Schirone, Leonardo; Palmerio, Silvia; Sciarretta, Sebastiano; Frati, Giacomo

    2017-01-01

    Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed. PMID:28607629

  15. Physiological and Cognitive Factors Related to Human Performance During the Grand Canyon Rim-to-Rim Hike

    DOE PAGES

    Divis, Kristin; Anderson-Bergman, Clifford; Abbott, Robert; ...

    2018-01-24

    Exposure to extreme environments is both mentally and physically taxing, leading to suboptimal performance and even life-threatening emergencies. Physiological and cognitive monitoring could provide the earliest indicator of performance decline and inform appropriate therapeutic intervention, yet little research has explored the relationship between these markers in strenuous settings. The Rim-to-Rim Wearables at the Canyon for Health (R2RWATCH) study is a research project at Sandia National Laboratories funded by the Defense Threat Reduction Agency to identify which physiological and cognitive phenomena collected by non-invasive wearable devices are the most related to performance in extreme environments. In a pilot study, data weremore » collected from civilians and military warfighters hiking the Rim-to-Rim trail at the Grand Canyon. Each participant wore a set of devices collecting physiological, cognitive, and environmental data such as heart rate, memory, ambient temperature, etc. Promising preliminary results found correlates between physiological markers recorded by the wearable devices and decline in cognitive abilities, although further work is required to refine those measurements. Planned follow-up studies will validate these findings and further explore outstanding questions.« less

  16. Physiological and Cognitive Factors Related to Human Performance During the Grand Canyon Rim-to-Rim Hike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divis, Kristin; Anderson-Bergman, Clifford; Abbott, Robert

    Exposure to extreme environments is both mentally and physically taxing, leading to suboptimal performance and even life-threatening emergencies. Physiological and cognitive monitoring could provide the earliest indicator of performance decline and inform appropriate therapeutic intervention, yet little research has explored the relationship between these markers in strenuous settings. The Rim-to-Rim Wearables at the Canyon for Health (R2RWATCH) study is a research project at Sandia National Laboratories funded by the Defense Threat Reduction Agency to identify which physiological and cognitive phenomena collected by non-invasive wearable devices are the most related to performance in extreme environments. In a pilot study, data weremore » collected from civilians and military warfighters hiking the Rim-to-Rim trail at the Grand Canyon. Each participant wore a set of devices collecting physiological, cognitive, and environmental data such as heart rate, memory, ambient temperature, etc. Promising preliminary results found correlates between physiological markers recorded by the wearable devices and decline in cognitive abilities, although further work is required to refine those measurements. Planned follow-up studies will validate these findings and further explore outstanding questions.« less

  17. Male victims of sexual assault: phenomenology, psychology, physiology.

    PubMed

    Bullock, Clayton M; Beckson, Mace

    2011-01-01

    Myths, stereotypes, and unfounded beliefs about male sexuality, in particular male homosexuality, are widespread in legal and medical communities, as well as among agencies providing services to sexual assault victims. These include perceptions that men in noninstitutionalized settings are rarely sexually assaulted, that male victims are responsible for their assaults, that male sexual assault victims are less traumatized by the experience than their female counterparts, and that ejaculation is an indicator of a positive erotic experience. As a result of the prevalence of such beliefs, there is an underreporting of sexual assaults by male victims; a lack of appropriate services for male victims; and, effectively, no legal redress for male sexual assault victims. By comparison, male sexual assault victims have fewer resources and greater stigma than do female sexual assault victims. Many male victims, either because of physiological effects of anal rape or direct stimulation by their assailants, have an erection, ejaculate, or both during the assault. This is incorrectly understood by assailant, victim, the justice system, and the medical community as signifying consent by the victim. Studies of male sexual physiology suggest that involuntary erections or ejaculations can occur in the context of nonconsensual, receptive anal sex. Erections and ejaculations are only partially under voluntary control and are known to occur during times of extreme duress in the absence of sexual pleasure. Particularly within the criminal justice system, this misconception, in addition to other unfounded beliefs, has made the courts unwilling to provide legal remedy to male victims of sexual assault, especially when the victim experienced an erection or an ejaculation during the assault. Attorneys and forensic psychiatrists must be better informed about the physiology of these phenomena to formulate evidence-based opinions.

  18. Maternal susceptibility to nausea and vomiting of pregnancy: is the vestibular system involved?

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    2002-01-01

    Nausea and vomiting of pregnancy shares many characteristics with motion sickness, a vestibular dependent phenomenon. A number of physiologic changes that occur in normal pregnancy are also known to accompany nausea and vomiting in patients with motion sickness and certain vestibular disorders. This chapter summarizes some shared features of both phenomena. The unmasking of subclinical vestibular disorders may account for some cases of hyperemesis gravidarum. Hormonal effects on neurotransmitter function may also play a role in nausea and vomiting of pregnancy and in some vestibular disorders; however, the specific neural mechanisms of nausea and vomiting have not been identified. Until the neurochemical processes underlying these phenomena are understood, prevention and management will remain in the domain of astute, but so far limited, clinical observation.

  19. [Healthy lifestyle formation and lower dependence on atmosphere oxygen in working].

    PubMed

    Usti'yantsev, S L

    2016-01-01

    Studies covered 38 males in laboratory and 81 males in industrial conditions of 13 metallurgic enterprises and revealed some reliable phenomena caused by dry voluntary apnea of 10-60 seconds. At muscular rest and during physical exertion, evidences are that voluntary apnea forms transitory hypercapnic portion of blood in pulmonary arterial flow. First finding is that this portion in other blood behaves as an anabolic wave carrying increased concentration of low-molecular CO2 material and releasing additional (wave, according to authors) O2 from its depot in the body. This oxygen, in conditions of increased blood pressure due to apnea, is used for synthesis of additional ATP. These phenomena characterize formation and development a new beneficial physiologic system in workers--a functional system of motivation to healthy lifestyle.

  20. Probing the brain with molecular fMRI.

    PubMed

    Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan

    2018-06-01

    One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Multiscale entropy-based methods for heart rate variability complexity analysis

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio

    2015-03-01

    Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divis, Kristin; Anderson-Bergman, Clifford; Abbott, Robert

    Exposure to extreme environments is both mentally and physically taxing, leading to suboptimal performance and even life-threatening emergencies. Physiological and cognitive monitoring could provide the earliest indicator of performance decline and inform appropriate therapeutic intervention, yet little research has explored the relationship between these markers in strenuous settings. The Rim-to-Rim Wearables at the Canyon for Health (R2RWATCH) study is a research project at Sandia National Laboratories funded by the Defense Threat Reduction Agency to identify which physiological and cognitive phenomena collected by non-invasive wearable devices are the most related to performance in extreme environments. In a pilot study, data weremore » collected from civilians and military warfighters hiking the Rim-to-Rim trail at the Grand Canyon. Each participant wore a set of devices collecting physiological, cognitive, and environmental data such as heart rate, memory, ambient temperature, etc. Promising preliminary results found correlates between physiological markers recorded by the wearable devices and decline in cognitive abilities, although further work is required to refine those measurements. Planned follow-up studies will validate these findings and further explore outstanding questions.« less

  3. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  4. Interdisciplinary research in global biogeochemical cycling Nitrous oxide in terrestrial ecosystems

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Peterson, D. L.

    1984-01-01

    NASA has begun an interdisciplinary research program to investigate various aspects of Global Biology and Global Habitability. An important element selected for the study of global phenomena is related to biogeochemical cycling. The studies involve a collaboration with recognized scientists in the areas of plant physiology, microbiology, nutrient cycling theory, and related areas. Selected subjects of study include nitrogen cycling dynamics in terrestrial ecosystems with special attention to biosphere/atmosphere interactions, and an identification of sensitive response variables which can be used in ecosystem models based on parameters derived from remotely sensed variables. A description is provided of the progress and findings over the past two years. Attention is given to the characteristics of nitrous oxide emissions, the approach followed in the investigations, the selection of study sites, radiometric measurements, and research in Sequoia.

  5. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes*

    PubMed Central

    Lee, Jung Hyun; Han, Ji Seul; Kong, Jinuk; Ji, Yul; Lv, Xuchao; Lee, Junho; Li, Peng; Kim, Jae Bum

    2016-01-01

    Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism. PMID:27496951

  6. Around Marshall

    NASA Image and Video Library

    1999-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  7. Around Marshall

    NASA Image and Video Library

    1992-09-18

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  8. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  9. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  10. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  11. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  12. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  13. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  14. STS-47 Spacelab-J, Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Japanese astronaut, Mamoru Mohri, talks to Japanese students from the aft flight deck of the Space Shuttle Orbiter Endeavour during the Spacelab-J (SL-J) mission. The SL-J mission was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  15. Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development

    PubMed Central

    Cork, Sarah M.

    2011-01-01

    While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia. PMID:21509575

  16. Joint Spacelab-J (SL-J) Activities at the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  17. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  18. Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas

    2003-11-01

    Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.

  19. A simple parameter can switch between different weak-noise-induced phenomena in a simple neuron model

    NASA Astrophysics Data System (ADS)

    Yamakou, Marius E.; Jost, Jürgen

    2017-10-01

    In recent years, several, apparently quite different, weak-noise-induced resonance phenomena have been discovered. Here, we show that at least two of them, self-induced stochastic resonance (SISR) and inverse stochastic resonance (ISR), can be related by a simple parameter switch in one of the simplest models, the FitzHugh-Nagumo (FHN) neuron model. We consider a FHN model with a unique fixed point perturbed by synaptic noise. Depending on the stability of this fixed point and whether it is located to either the left or right of the fold point of the critical manifold, two distinct weak-noise-induced phenomena, either SISR or ISR, may emerge. SISR is more robust to parametric perturbations than ISR, and the coherent spike train generated by SISR is more robust than that generated deterministically. ISR also depends on the location of initial conditions and on the time-scale separation parameter of the model equation. Our results could also explain why real biological neurons having similar physiological features and synaptic inputs may encode very different information.

  20. Physiology of Penile Erection—A Brief History of the Scientific Understanding up till the Eighties of the 20th Century

    PubMed Central

    2015-01-01

    Abstract Introduction Understanding the physiology of penile erection is important for all who work in the field of sexual medicine. Aim The aim of this study was to highlight and analyze historical aspects of the scientific understanding of penile erection. Methods (i) Review of the chapters on the physiology of erection out of the author's collection of books dealing with male sexual functioning published in the German, French, Dutch, and English language in between 1780 and 1940. (ii) Review of the topic “physiology of penile erection” of relevant chapters of C lassical writings on erectile dysfunction. A n annotated collection of original texts from three millennia, including the study of all relevant references mentioned in these books. Main Outcome Measure The main outcome measure used for the study was the scientific understanding of the physiology of penile erection. Results In Antiquity, Galen considered penile erection as the result the accumulation of air. His ideas so dominated medieval medicine that nearly everyone then alive was a Galenist. The beginning of the Renaissance shows meaningful examples of experimental scientific work on the penis. Da Vinci correctly concluded that erections were caused by blood, and in the 18th century, Von Haller from Switzerland was the first who explained that erections were under the control of the nervous system. In the 19th century, a mindset that emphasized on experimentation determined a new direction, namely experimental physiology. Animal studies clarified that stimulation of the nervi erigentes‐induced small muscle relaxation in the corpora cavernosa. Nearly all were published in the German language. That may be one of the reasons that the existence of the concept of smooth muscle relaxation remained controversial until the first World Congress on Impotence in 1984 in Paris. Conclusions As the Renaissance's innovative research defined neural and vascular physiologic phenomena responsible for penile erection. The concepts from animal experimentations in Europe in the 19th century significantly contributed to the current understanding of penile erection. van Driel MF. Physiology of penile erection—a brief history of the scientific understanding up till the eighties of the 20th century. Sex Med 2015;3:343–351. PMID:26797073

  1. Musical hallucinations: a brief review of functional neuroimaging findings.

    PubMed

    Bernardini, Francesco; Attademo, Luigi; Blackmon, Karen; Devinsky, Orrin

    2017-10-01

    Musical hallucinations are uncommon phenomena characterized by intrusive and frequently distressful auditory musical percepts without an external source, often associated with hypoacusis, psychiatric illness, focal brain lesion, epilepsy, and intoxication/pharmacology. Their physiological basis is thought to involve diverse mechanisms, including "release" from normal sensory or inhibitory inputs as well as stimulation during seizures, or they can be produced by functional or structural disorders in diverse cortical and subcortical areas. The aim of this review is to further explore their pathophysiology, describing the functional neuroimaging findings regarding musical hallucinations. A literature search of the PubMed electronic database was conducted through to 29 December 2015. Search terms included "musical hallucinations" combined with the names of specific functional neuroimaging techniques. A total of 18 articles, all clinical case reports, providing data on 23 patients, comprised the set we reviewed. Diverse pathological processes and patient populations with musical hallucinations were included in the studies. Converging data from multiple studies suggest that the superior temporal sulcus is the most common site and that activation is the most common mechanism. Further neurobiological research is needed to clarify the pathophysiology of musical hallucinations.

  2. Nanoscale live cell imaging using hopping probe ion conductance microscopy

    PubMed Central

    Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.

    2009-01-01

    We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505

  3. A brief history of bacterial growth physiology.

    PubMed

    Schaechter, Moselio

    2015-01-01

    Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid-19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism. Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the "Copenhagen School." During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell. Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  4. Dad's Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders.

    PubMed

    Morales-Lara, Daniela; De-la-Peña, Clelia; Murillo-Rodríguez, Eric

    2018-04-01

    The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light-dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep-wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants' physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.

  5. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Different scenarios like a long-term mission to Moon or Mars are evaluated, including countermeasures such as aerobic exercise. Initial results are compatible with the existing data, and provide useful insights regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions.

  6. Vitamin C physiology: the known and the unknown and Goldilocks

    PubMed Central

    Padayatty, Sebastian J; Levine, Mark

    2016-01-01

    Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful. PMID:26808119

  7. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less

  8. Multifractality of cerebral blood flow

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz

    2003-02-01

    Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.

  9. Novel aspects of live intestinal epithelial cell function revealed using a custom time-lapse video microscopy apparatus.

    PubMed

    Papetti, Michael; Kozlowski, Piotr

    2018-04-01

    Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (<$410) self-contained apparatus, consisting of a closed-loop, feedback-controlled system regulated by a PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  10. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  11. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    PubMed

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.

  12. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  13. Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter

    DOE PAGES

    Gibney, Patrick A.; Schieler, Ariel; Chen, Jonathan C.; ...

    2015-04-27

    Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose permore » se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where demonstrate a direct role for trehalose in protecting cells against desiccation).« less

  14. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    NASA Astrophysics Data System (ADS)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  15. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of regional brain systems or neural modules, but rather suggest highly complex and cross-linked neural networks individually shaped by livelong learning and experience [e.g., 6,7,10,13]. This holds in particular true for complex emotional phenomena such as aggression or empathy in social interaction [8,13]. It thus remains questionable, whether - beyond primary sensory and motor-processing - a small number of modular sub-systems sufficiently cover the organisation of specific phenomenological and social features of perception and behaviour [7,10].

  16. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Concise Review: Organ Engineering: Design, Technology, and Integration.

    PubMed

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  18. Tonic and Rhythmic Spinal Activity Underlying Locomotion.

    PubMed

    Ivanenko, Yury P; Gurfinkel, Victor S; Selionov, Victor A; Solopova, Irina A; Sylos-Labini, Francesca; Guertin, Pierre A; Lacquaniti, Francesco

    2017-05-12

    In recent years, many researches put significant efforts into understanding and assessing the functional state of the spinal locomotor circuits in humans. Various techniques have been developed to stimulate the spinal cord circuitries, which may include both diffuse and quite specific tuning effects. Overall, the findings indicate that tonic and rhythmic spinal activity control are not separate phenomena but are closely integrated to properly initiate and sustain stepping. The spinal cord does not simply transmit information to and from the brain. Its physiologic state determines reflex, postural and locomotor control and, therefore, may affect the recovery of the locomotor function in individuals with spinal cord and brain injuries. This review summarizes studies that examine the rhythmogenesis capacity of cervical and lumbosacral neuronal circuitries in humans and its importance in developing central pattern generator-modulating therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Charophytes: Evolutionary Giants and Emerging Model Organisms

    PubMed Central

    Domozych, David S.; Popper, Zoë A.; Sørensen, Iben

    2016-01-01

    Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on “Charophytes” provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants. PMID:27777578

  20. On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.

    PubMed

    Louarroudi, E; Sanchez, B

    2017-02-01

    When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.

  1. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  2. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling

    PubMed Central

    Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197

  3. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    PubMed

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  4. The importance of physiological ecology in conservation biology

    USGS Publications Warehouse

    Tracy, C.R.; Nussear, K.E.; Esque, T.C.; Dean-Bradley, K.; DeFalco, L.A.; Castle, K.T.; Zimmerman, L.C.; Espinoza, R.E.; Barber, A.M.

    2006-01-01

    Many of the threats to the persistence of populations of sensitive species have physiological or pathological mechanisms, and those mechanisms are best understood through the inherently integrative discipline of physiological ecology. The desert tortoise was listed under the Endangered Species Act largely due to a newly recognized upper respiratory disease thought to cause mortality in individuals and severe declines in populations. Numerous hypotheses about the threats to the persistence of desert tortoise populations involve acquisition of nutrients, and its connection to stress and disease. The nutritional wisdom hypothesis posits that animals should forage not for particular food items, but instead, for particular nutrients such as calcium and phosphorus used in building bones. The optimal foraging hypothesis suggests that, in circumstances of resource abundance, tortoises should forage as dietary specialists as a means of maximizing intake of resources. The optimal digestion hypothesis suggests that tortoises should process ingesta in ways that regulate assimilation rate. Finally, the cost-of-switching hypothesis suggests that herbivores, like the desert tortoise, should avoid switching food types to avoid negatively affecting the microbe community responsible for fermenting plants into energy and nutrients. Combining hypotheses into a resource acquisition theory leads to novel predictions that are generally supported by data presented here. Testing hypotheses, and synthesizing test results into a theory, provides a robust scientific alternative to the popular use of untested hypotheses and unanalyzed data to assert the needs of species. The scientific approach should focus on hypotheses concerning anthropogenic modifications of the environment that impact physiological processes ultimately important to population phenomena. We show how measurements of such impacts as nutrient starvation, can cause physiological stress, and that the endocrine mechanisms involved with stress can result in disease. Finally, our new syntheses evince a new hypothesis. Free molecules of the stress hormone corticosterone can inhibit immunity, and the abundance of "free corticosterone" in the blood (thought to be the active form of the hormone) is regulated when the corticosterone molecules combine with binding globulins. The sex hormone, testosterone, combines with the same binding globulin. High levels of testosterone, naturally occurring in the breeding season, may be further enhanced in populations at high densities, and the resulting excess testosterone may compete with binding globulins, thereby releasing corticosterone and reducing immunity to disease. This sequence could result in physiological and pathological phenomena leading to population cycles with a period that would be essentially impossible to observe in desert tortoise. Such cycles could obscure population fluctuations of anthropogenic origin. ?? 2006 The Author(s).

  5. High genetic load in the Pacific oyster Crassostrea gigas.

    PubMed Central

    Launey, S; Hedgecock, D

    2001-01-01

    The causes of inbreeding depression and the converse phenomenon of heterosis or hybrid vigor remain poorly understood despite their scientific and agricultural importance. In bivalve molluscs, related phenomena, marker-associated heterosis and distortion of marker segregation ratios, have been widely reported over the past 25 years. A large load of deleterious recessive mutations could explain both phenomena, according to the dominance hypothesis of heterosis. Using inbred lines derived from a natural population of Pacific oysters and classical crossbreeding experiments, we compare the segregation ratios of microsatellite DNA markers at 6 hr and 2-3 months postfertilization in F(2) or F(3) hybrid families. We find evidence for strong and widespread selection against identical-by-descent marker homozygotes. The marker segregation data, when fit to models of selection against linked deleterious recessive mutations and extrapolated to the whole genome, suggest that the wild founders of inbred lines carried a minimum of 8-14 highly deleterious recessive mutations. This evidence for a high genetic load strongly supports the dominance theory of heterosis and inbreeding depression and establishes the oyster as an animal model for understanding the genetic and physiological causes of these economically important phenomena. PMID:11560902

  6. Machine Vision Within The Framework Of Collective Neural Assemblies

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1990-03-01

    The proposed mechanism for designing a robust machine vision system is based on the dynamic activity generated by the various neural populations embedded in nervous tissue. It is postulated that a hierarchy of anatomically distinct tissue regions are involved in visual sensory information processing. Each region may be represented as a planar sheet of densely interconnected neural circuits. Spatially localized aggregates of these circuits represent collective neural assemblies. Four dynamically coupled neural populations are assumed to exist within each assembly. In this paper we present a state-variable model for a tissue sheet derived from empirical studies of population dynamics. Each population is modelled as a nonlinear second-order system. It is possible to emulate certain observed physiological and psychophysiological phenomena of biological vision by properly programming the interconnective gains . Important early visual phenomena such as temporal and spatial noise insensitivity, contrast sensitivity and edge enhancement will be discussed for a one-dimensional tissue model.

  7. Examining the nature of retrocausal effects in biology and psychology

    NASA Astrophysics Data System (ADS)

    Mossbridge, Julia

    2017-05-01

    Multiple laboratories have reported physiological and psychological changes associated with future events that are designed to be unpredictable by normal sensory means. Such phenomena seem to be examples of retrocausality at the macroscopic level. Here I will discuss the characteristics of seemingly retrocausal effects in biology and psychology, specifically examining a biological and a psychological form of precognition, predictive anticipatory activity (PAA) and implicit precognition. The aim of this examination is to offer an analysis of the constraints posed by the characteristics of macroscopic retrocausal effects. Such constraints are critical to assessing any physical theory that purports to explain these effects. Following a brief introduction to recent research on PAA and implicit precognition, I will describe what I believe we have learned so far about the nature of these effects, and conclude with a testable, yet embryonic, model of macroscopic retrocausal phenomena.

  8. Infrared thermography: A non-invasive window into thermal physiology.

    PubMed

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  10. Special cluster issue on tribocorrosion of dental materials

    NASA Astrophysics Data System (ADS)

    Mathew, Mathew T.; Stack, Margaret M.

    2013-10-01

    Tribocorrosion affects all walks of life from oil and gas conversion to biomedical materials. Wear can interact with corrosion to enhance it or impede it; conversely, corrosion can enhance or impede wear. The understanding of the interactions between physical and chemical phenomena has been greatly assisted by electrochemical and microscopic techniques. In dentistry, it is well recognized that erosion due to dissolution (a term physicists use to denote wear) of enamel can result in tooth decay; however, the effects of the oral environment, i.e. pH levels, electrochemical potential and any interactions due to the forces involved in chewing are not well understood. This special cluster issue includes investigations on the fundamentals of wear-corrosion interactions involved in simulated oral environments, including candidate dental implant and veneer materials. The issue commences with a fundamental study of titanium implants and this is followed by an analysis of the behaviour of commonly used temporomandibular devices in a synovial fluid-like environment. The analysis of tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs is addressed and is followed by a paper on fretting wear, on hydroxyapatite-titanium composites in simulated body fluid, supplemented with protein (bovine serum albumin). The effects of acid treatments on tooth enamel, and as a surface engineering technique for dental implants, are investigated in two further contributions. An analysis of the physiological parameters of intraoral wear is addressed; this is followed by a study of candidate dental materials in common beverages such as tea and coffee with varying acidity and viscosity and the use of wear maps to identify the safety zones for prediction of material degradation in such conditions. Hence, the special cluster issue consists of a range of tribocorrosion contributions involving many aspects of dental tribocorrosion, from analysis of physiological approaches and tissue engineering to studying of the effects of the environments encountered in clinical practice and management which lead to tooth decay. A wide range of analytical techniques and tribocorrosion experimental approaches is used to simulate, assess and model the synergistic interactions of wear and corrosion, many of them leading to new insights. We hope it will lead to increased awareness of tribocorrosion phenomena for researchers and dental clinicians alike and 'food for thought' for further studies in this field.

  11. Understanding immune function as a pace of life trait requires environmental context.

    PubMed

    Tieleman, B Irene

    2018-01-01

    This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds, evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with energy as the main currency of interest, inspired by David Lack's work in the preceding decades emphasizing how food availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate the role of immune function in a life history context and particularly to address the questions whether immune function (1) consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremendous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of free-living animals. Current developments in the fields of infectious wildlife diseases and host-microbe interactions provide promising steps in this direction.

  12. Seizure semiology identifies patients with bilateral temporal lobe epilepsy.

    PubMed

    Loesch, Anna Mira; Feddersen, Berend; Tezer, F Irsel; Hartl, Elisabeth; Rémi, Jan; Vollmar, Christian; Noachtar, Soheyl

    2015-01-01

    Laterality in temporal lobe epilepsy is usually defined by EEG and imaging results. We investigated whether the analysis of seizure semiology including lateralizing seizure phenomena identifies bilateral independent temporal lobe seizure onset. We investigated the seizure semiology in 17 patients in whom invasive EEG-video-monitoring documented bilateral temporal seizure onset. The results were compared to 20 left and 20 right consecutive temporal lobe epilepsy (TLE) patients who were seizure free after anterior temporal lobe resection. The seizure semiology was analyzed using the semiological seizure classification with particular emphasis on the sequence of seizure phenomena over time and lateralizing seizure phenomena. Statistical analysis included chi-square test or Fisher's exact test. Bitemporal lobe epilepsy patients had more frequently different seizure semiology (100% vs. 40%; p<0.001) and significantly more often lateralizing seizure phenomena pointing to bilateral seizure onset compared to patients with unilateral TLE (67% vs. 11%; p<0.001). The sensitivity of identical vs. different seizure semiology for the identification of bilateral TLE was high (100%) with a specificity of 60%. Lateralizing seizure phenomena had a low sensitivity (59%) but a high specificity (89%). The combination of lateralizing seizure phenomena and different seizure semiology showed a high specificity (94%) but a low sensitivity (59%). The analysis of seizure semiology including lateralizing seizure phenomena adds important clinical information to identify patients with bilateral TLE. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ethnic analogies and differences in fetal heart rate variability signal: A retrospective study.

    PubMed

    Tagliaferri, Salvatore; Esposito, Francesca Giovanna; Fagioli, Rosa; Di Cresce, Marco; Sacchi, Lucia; Signorini, Maria Gabriella; Campanile, Marta; Martinelli, Pasquale; Magenes, Giovanni

    2017-02-01

    We aimed to analyze computerized cardiotocographic (cCTG) parameters (including fetal heart rate baseline, short-term variability, Delta, long-term irregularity [LTI], interval index [II], low frequency [LF], movement frequency [MF], high frequency [HF], and approximate entropy [ApEn]) in physiological term pregnancies in order to correlate them with ethnic differences. The clinical meaning of numerical parameters may explain physiological or paraphysiological phenomena that occur in fetuses of different ethnic origins. A total of 696 pregnant women, including 384 from Europe, 246 from sub-Saharan Africa, 45 from South-East Asia, and 21 from South America, were monitored from the 37th to the 41st week of gestation. Statistical analysis was performed with the analysis of variance test, Pearson correlation test and receiver-operator curves (P < 0.05). Our results showed statistically significant differences (P < 0.05) between white and black women for Delta, LTI, LF, MF, HF, and ApEn; between white and Asian women for Delta, LTI, MF, and the LF/(HF + MF) ratio; and between white and Latina women for Delta, LTI, and ApEn. In particular, Delta and LTI performed better in the white group than in the black, Asian, and Latina groups. Instead, LF, MF, HF, and ApEn performed better in the black than in the white group. Our results confirmed the integrity and normal functionality of both central and autonomic nervous system components for all fetuses investigated. Therefore, CTG monitoring should include both linear and nonlinear components of fetal heart rate variability in order to avoid misinterpretations of the CTG trace among ethnic groups. © 2016 Japan Society of Obstetrics and Gynecology.

  14. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  15. EVEN VISITING SCIENTISTS COULD MAKE DISCOVERIES IN MONTREAL.

    PubMed

    Lázár, György

    2014-03-30

    This publication summarizes the scientific adventure with Professor Selye, and focuses on the specific effect of rare metal salts on reticuloendothelial functions. Rare earth metal ions markedly affect the functions of cells involved in inflammatory and immunological phenomena. The Kupffer cell blockade induced by GdCl3 is a generally accepted method for investigation of the physiological and pathophysiological roles of Kupffer cells. Potential beneficial effects of macrophage blockade have been demonstrated in different shock states, liver injury and obstructive jaundice.

  16. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 9, Number 3, July to September 1984,

    DTIC Science & Technology

    1984-09-01

    C-033-82 (1982). "Development of the Narrow Gap Submerged Arc Welding Process - NSA Process," Hirai, Y. et al., Kawasaki Steel Technical Report, 5, 81...upsurge in the resources committed to research in the neurosciences in general, and to membrane phenomena specifically. Because of this large...reader a review of most of the current research being conducted in Japan in the neuroscience and membrane physiology areas. The presentation of the

  17. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  18. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  19. The use of music therapy to address the suffering in advanced cancer pain.

    PubMed

    Magill, L

    2001-01-01

    Pain associated with advanced cancer is multifaceted and complex, and is influenced by physiological, psychological, social, and spiritual phenomena. Suffering may be identified in patients when pain is associated with impending loss, increased dependency, and an altered understanding of one's existential purpose. Comprehensive pain management aims to address problematic symptoms in order to improve comfort, peace of mind, and quality of life. Music therapy is a treatment modality of great diversity that can offer a range of benefits to patients with advanced cancer pain and symptoms of suffering. Music therapists perform comprehensive assessments that include reviews of social, cultural, and medical history; current medical status; and the ways in which emotions are affecting the pain. A variety of music therapy techniques may be used, including vocal techniques, listening, and instrumental techniques. These techniques provide opportunities for exploration of the feelings and issues compounding the pain experience. Case examples are presented to demonstrate the "lifting", "transporting", and "bringing of peace" qualities of music that offer patients moments of release, reflection, and renewal.

  20. Hierarchical organization as a diagnostic approach to volcano mechanics: Validation on Piton de la Fournaise

    NASA Astrophysics Data System (ADS)

    Grasso, J. R.; Bachèlery, P.

    Self-organized systems are often used to describe natural phenomena where power laws and scale invariant geometry are observed. The Piton de la Fournaise volcano shows power-law behavior in many aspects. These include the temporal distribution of eruptions, the frequency-size distributions of induced earthquakes, dikes, fissures, lava flows and interflow periods, all evidence of self-similarity over a finite scale range. We show that the bounds to scale-invariance can be used to derive geomechanical constraints on both the volcano structure and the volcano mechanics. We ascertain that the present magma bodies are multi-lens reservoirs in a quasi-eruptive condition, i.e. a marginally critical state. The scaling organization of dynamic fluid-induced observables on the volcano, such as fluid induced earthquakes, dikes and surface fissures, appears to be controlled by underlying static hierarchical structure (geology) similar to that proposed for fluid circulations in human physiology. The emergence of saturation lengths for the scalable volcanic observable argues for the finite scalability of complex naturally self-organized critical systems, including volcano dynamics.

  1. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners

    PubMed Central

    Muramatsu, Takashi

    2016-01-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. PMID:26684586

  2. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  3. A brief history of oxytocin and its role in modulating psychostimulant effects.

    PubMed

    Carson, Dean S; Guastella, Adam J; Taylor, Emily R; McGregor, Iain S

    2013-03-01

    Over the past century, the polypeptide oxytocin has played an important role in medicine with major highlights including the identification of its involvement in parturition and the milk let-down reflex. Oxytocin is now implicated in an extensive range of psychological phenomena including reward and memory processes and has been investigated as a treatment for several psychiatric disorders including addiction, anxiety, autism, and schizophrenia. In this review, we first provide an historical overview of oxytocin and describe key aspects of its physiological activity. We then outline some pharmacological limitations in this field of research before highlighting the role of oxytocin in a wide range of behavioral and neuronal processes. Finally, we review evidence for a modulatory role of oxytocin with regard to psychostimulant effects. Key findings suggest that oxytocin attenuates a broad number of cocaine and methamphetamine induced behaviors and associated neuronal activity in rodents. Evidence also outlines a role for oxytocin in the prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) in both rodents and humans. Clinical trials should now investigate the effectiveness of oxytocin as a novel intervention for psychostimulant addiction and should aim to determine its specific role in the therapeutic properties of MDMA that are currently being investigated.

  4. Introduction to Focus Issue: Time-delay dynamics

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  5. Biological Anomalies around the 2009 L’Aquila Earthquake

    PubMed Central

    Fidani, Cristiano

    2013-01-01

    Simple Summary Earthquakes have been seldom associated with reported non-seismic phenomena observed weeks before and after shocks. Non-seismic phenomena are characterized by radio disturbances and light emissions as well as degassing of vast areas near the epicenter with chemical alterations of shallow geospheres (aquifers, soils) and the troposphere. Many animals are sensitive to even the weakest changes in the environment, typically responding with behavioral and physiological changes. A specific questionnaire was developed to collect data on these changes around the time of the 2009 L’Aquila earthquake. Abstract The April 6, 2009 L’Aquila earthquake was the strongest seismic event to occur in Italy over the last thirty years with a magnitude of M = 6.3. Around the time of the seismic swarm many instruments were operating in Central Italy, even if not dedicated to biological effects associated with the stress field variations, including seismicity. Testimonies were collected using a specific questionnaire immediately after the main shock, including data on earthquake lights, gas leaks, human diseases, and irregular animal behavior. The questionnaire was made up of a sequence of arguments, based upon past historical earthquake observations and compiled over seven months after the main shock. Data on animal behavior, before, during and after the main shocks, were analyzed in space/time distributions with respect to the epicenter area, evidencing the specific responses of different animals. Several instances of strange animal behavior were observed which could causally support the hypotheses that they were induced by the physical presence of gas, electric charges and electromagnetic waves in atmosphere. The aim of this study was to order the biological observations and thereby allow future work to determine whether these observations were influenced by geophysical parameters. PMID:26479529

  6. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. Physiological and biochemical changes after boldenone injection in adult rabbits.

    PubMed

    Tousson, Ehab; El-Moghazy, Mostafa; Massoud, Ahmed; El-Atrash, Afaf; Sweef, Osama; Akel, Amani

    2016-01-01

    Boldenone (BOL) is an androgenic steroid that improves the growth and food conversion in food-producing animals. In most countries worldwide, this anabolic steroid is forbidden for human uses and meat production as it was developed for veterinary use. Recently, BOL is used by bodybuilders in both off season and pre-contest, where it is well known for increasing vascularity while preparing for a bodybuilding contest. The present study was designed to investigate the physiological and biochemical changes in rabbits after injection with the growth promoter BOL. A total of 32 adult New Zealand rabbits were divided into four groups, where the control group includes animals that were injected intramuscularly with olive oil and dissected after 3 weeks. The remaining three experimental groups included animals that received one, two and three intramuscular injections of 5 mg/kg body weight BOL, respectively, and were dissected after 3, 6 and 9 weeks, respectively. The animals from practice appeared healthy and did not show clinical signs of disease and none of the rabbits died during the experimental period. Serum total protein, globulin, alanine aminotransferase, asparate aminotransferase, urea, creatinine, testosterone, luteinizing hormone and follicle-stimulating hormone levels were significantly increased while serum direct bilirubin, albumin and albumin/globulin ratio were significantly decreased (p < 0.05) after one, two and three intramuscular injections of BOL as compared to their relative values in the control group. These findings explain the common phenomena in athletes and bodybuilders who suffer from infertility, renal and hepatic alterations following injection with some drugs as steroids (BOL) to build muscles. © The Author(s) 2013.

  8. Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues1[OPEN

    PubMed Central

    Outchkourov, Nikolay S.; Schrama, Xandra; Blilou, Ikram; Jongedijk, Esmer; Simon, Carmen Diez; Bosch, Dirk; Hall, Robert D.

    2018-01-01

    Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing compounds is often part of a more broad response of the plant to changes in the environment. Here we investigate how a transcription-factor-mediated program for controlling anthocyanin biosynthesis also has effects on formation of specialized cell structures and changes in the plant root architecture. A systems biology approach was developed in tomato (Solanum lycopersicum) for coordinated induction of biosynthesis of anthocyanins, in a tissue- and development-independent manner. A transcription factor couple from Antirrhinum that is known to control anthocyanin biosynthesis was introduced in tomato under control of a dexamethasone-inducible promoter. By application of dexamethasone, anthocyanin formation was induced within 24 h in vegetative tissues and in undifferentiated cells. Profiles of metabolites and gene expression were analyzed in several tomato tissues. Changes in concentration of anthocyanins and other phenolic compounds were observed in all tested tissues, accompanied by induction of the biosynthetic pathways leading from Glc to anthocyanins. A number of pathways that are not known to be involved in anthocyanin biosynthesis were observed to be regulated. Anthocyanin-producing plants displayed profound physiological and architectural changes, depending on the tissue, including root branching, root epithelial cell morphology, seed germination, and leaf conductance. The inducible anthocyanin-production system reveals a range of phenomena that accompanies anthocyanin biosynthesis in tomato, including adaptions of the plants architecture and physiology. PMID:29192027

  9. A mathematics for medicine: The Network Effect

    PubMed Central

    West, Bruce J.

    2014-01-01

    The theory of medicine and its complement systems biology are intended to explain the workings of the large number of mutually interdependent complex physiologic networks in the human body and to apply that understanding to maintaining the functions for which nature designed them. Therefore, when what had originally been made as a simplifying assumption or a working hypothesis becomes foundational to understanding the operation of physiologic networks it is in the best interests of science to replace or at least update that assumption. The replacement process requires, among other things, an evaluation of how the new hypothesis affects modern day understanding of medical science. This paper identifies linear dynamics and Normal statistics as being such arcane assumptions and explores some implications of their retirement. Specifically we explore replacing Normal with fractal statistics and examine how the latter are related to non-linear dynamics and chaos theory. The observed ubiquity of inverse power laws in physiology entails the need for a new calculus, one that describes the dynamics of fractional phenomena and captures the fractal properties of the statistics of physiological time series. We identify these properties as a necessary consequence of the complexity resulting from the network dynamics and refer to them collectively as The Network Effect. PMID:25538622

  10. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1985-01-01

    The physics of the solar wind acceleration phenomena (e.g. effect of transient momentum deposition on the temporal and spatial variation of the temperature, density and flow speed of the solar wind, formation of shocks, etc.) and the resultant effects on observational signatures, particularly spectroscopic signature are studied. Phenomena under study include: (1) wave motions, particularly spectroscopic signatures are studied. Phenomena under study include:(1) wave motions, particularly Alfven and fast mode waves, (2) the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind and (3) coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejections. Also included are the theoretical investigation of spectroscopic plasma diagnostics for the inner heliosphere and the analysis of existing Skylab and other relevant data.

  11. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  12. Dynamic systems approaches and levels of analysis in the nervous system

    PubMed Central

    Parker, David; Srivastava, Vipin

    2013-01-01

    Various analyses are applied to physiological signals. While epistemological diversity is necessary to address effects at different levels, there is often a sense of competition between analyses rather than integration. This is evidenced by the differences in the criteria needed to claim understanding in different approaches. In the nervous system, neuronal analyses that attempt to explain network outputs in cellular and synaptic terms are rightly criticized as being insufficient to explain global effects, emergent or otherwise, while higher-level statistical and mathematical analyses can provide quantitative descriptions of outputs but can only hypothesize on their underlying mechanisms. The major gap in neuroscience is arguably our inability to translate what should be seen as complementary effects between levels. We thus ultimately need approaches that allow us to bridge between different spatial and temporal levels. Analytical approaches derived from critical phenomena in the physical sciences are increasingly being applied to physiological systems, including the nervous system, and claim to provide novel insight into physiological mechanisms and opportunities for their control. Analyses of criticality have suggested several important insights that should be considered in cellular analyses. However, there is a mismatch between lower-level neurophysiological approaches and statistical phenomenological analyses that assume that lower-level effects can be abstracted away, which means that these effects are unknown or inaccessible to experimentalists. As a result experimental designs often generate data that is insufficient for analyses of criticality. This review considers the relevance of insights from analyses of criticality to neuronal network analyses, and highlights that to move the analyses forward and close the gap between the theoretical and neurobiological levels, it is necessary to consider that effects at each level are complementary rather than in competition. PMID:23386835

  13. Familial mesial temporal lobe epilepsy and the borderland of déjà vu.

    PubMed

    Perucca, Piero; Crompton, Douglas E; Bellows, Susannah T; McIntosh, Anne M; Kalincik, Tomas; Newton, Mark R; Vajda, Frank J E; Scheffer, Ingrid E; Kwan, Patrick; O'Brien, Terence J; Tan, K Meng; Berkovic, Samuel F

    2017-08-01

    The cause of mesial temporal lobe epilepsy (MTLE) is often unknown. We ascertained to what extent newly diagnosed nonlesional MTLE actually represents familial MTLE (FMTLE). We identified all consecutive patients presenting to the Austin Health First Seizure Clinic with MTLE and normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis over a 10-year period. Patients' first-degree relatives and pairwise age- and sex-matched controls underwent a comprehensive epilepsy interview. Each interview transcript was reviewed independently by 2 epileptologists, blinded to relative or control status. Reviewers classified each subject as follows: epilepsy, specifying if MTLE; manifestations suspicious for epilepsy; or unaffected. Physiological déjà vu was noted. Forty-four patients were included. At the Clinic, MTLE had been recognized to be familial in 2 patients only. Among 242 subjects interviewed, MTLE was diagnosed in 9 of 121 relatives versus 0 of 121 controls (p = 0.008). All affected relatives had seizures with intense déjà vu and accompanying features; 6 relatives had not been previously diagnosed. Déjà vu experiences that were suspicious, but not diagnostic, of MTLE occurred in 6 additional relatives versus none of the controls (p = 0.04). Physiological déjà vu was common, and did not differ significantly between relatives and controls. After completing the relatives' interviews, FMTLE was diagnosed in 8 of 44 patients (18.2%). FMTLE accounts for almost one-fifth of newly diagnosed nonlesional MTLE, and it is largely unrecognized without direct questioning of relatives. Relatives of patients with MTLE may experience déjà vu phenomena that clinically lie in the "borderland" between epileptic seizures and physiological déjà vu. Ann Neurol 2017;82:166-176. © 2017 American Neurological Association.

  14. The Use of Grafting to Study Systemic Signaling in Plants.

    PubMed

    Tsutsui, Hiroki; Notaguchi, Michitaka

    2017-08-01

    Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. On the multifractal effects generated by monofractal signals

    NASA Astrophysics Data System (ADS)

    Grech, Dariusz; Pamuła, Grzegorz

    2013-12-01

    We study quantitatively the level of false multifractal signal one may encounter while analyzing multifractal phenomena in time series within multifractal detrended fluctuation analysis (MF-DFA). The investigated effect appears as a result of finite length of used data series and is additionally amplified by the long-term memory the data eventually may contain. We provide the detailed quantitative description of such apparent multifractal background signal as a threshold in spread of generalized Hurst exponent values Δh or a threshold in the width of multifractal spectrum Δα below which multifractal properties of the system are only apparent, i.e. do not exist, despite Δα≠0 or Δh≠0. We find this effect quite important for shorter or persistent series and we argue it is linear with respect to autocorrelation exponent γ. Its strength decays according to power law with respect to the length of time series. The influence of basic linear and nonlinear transformations applied to initial data in finite time series with various levels of long memory is also investigated. This provides additional set of semi-analytical results. The obtained formulas are significant in any interdisciplinary application of multifractality, including physics, financial data analysis or physiology, because they allow to separate the ‘true’ multifractal phenomena from the apparent (artificial) multifractal effects. They should be a helpful tool of the first choice to decide whether we do in particular case with the signal with real multiscaling properties or not.

  16. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  17. Systemic analysis of desertification processes taking place in the Limpopo river basin

    NASA Astrophysics Data System (ADS)

    Messina, Mario; Attorre, Fabio; Vitale, Marcello

    2016-04-01

    Desertification and land degradation are phenomena that ranks among the greatest environmental challenges of our time. Desertification is a global issue, with serious implications worldwide for biodiversity, socio-economic stability and sustainable development. Biophysical indicators of land degradation and desertification, like Net Primary Productivity (NPP) and Total Ecosystem Respiration (Reco) were provided by remote sensing technology (MODIS). The study aims to evaluate the dynamical changes of NPP and Reco in the Limpopo river basin, a Southern African region that includes, Botswana, Mozambique, South Africa and Zimbabwe, during the time period 2001-2010. In particular, the relations between NPP, Reco, environmental, physiological and land use parameters have been widely investigated through the application of a new and powerful statistical classifier, the Random Forest Analysis (RFA), and a general non-linear model, the Response Surface Regression Model (GRM). RFA highlighted that Temperature is one of the most important predictors affecting NPP and Reco in the Limpopo river basin. Conversely, other environmental parameters like, Precipitation, Evapotranspiration and Vegetation cover rarely influence NPP and Reco. Our results provide information on desertification and land degradation phenomena and a first step for identifying practices to mitigate their negative impacts. However, it must be taken into account that NPP and Reco depend by a multitude of factors (e.g. human activities, socio-economic policies) and can vary in relation to spatial and temporal scale. In order to achieve a better understanding of land degradation and desertification processes, land use and socio-economic variables should be considered.

  18. An overview of challenges in modeling heat and mass transfer for living on Mars.

    PubMed

    Yamashita, Masamichi; Ishikawa, Yoji; Kitaya, Yoshiaki; Goto, Eiji; Arai, Mayumi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Hirafuji, Masayuki; Omori, Katsunori; Shiraishi, Atsushi; Tani, Akira; Toki, Kyoichiro; Yokota, Hiroki; Fujita, Osamu

    2006-09-01

    Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.

  19. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    NASA Astrophysics Data System (ADS)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  20. Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter

    PubMed Central

    Gibney, Patrick A.; Schieler, Ariel; Chen, Jonathan C.; Rabinowitz, Joshua D.; Botstein, David

    2015-01-01

    Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation). PMID:25918382

  1. Muscle cramps: A comparison of the two-leading hypothesis.

    PubMed

    Giuriato, Gaia; Pedrinolla, Anna; Federico, Schena; Venturelli, Massimo

    2018-05-26

    Exercise-Associated Muscle Cramps (EAMC) are a common painful condition of muscle spasms. Despite scientists tried to understand the physiological mechanism that underlies these common phenomena, the etiology is still unclear. From 1900 to nowadays, the scientific world retracted several times the original hypothesis of heat cramps. However, recent literature seems to focus on two potential mechanisms: the dehydration or electrolyte depletion mechanism, and the neuromuscular mechanism. The aim of this review is to examine the recent literature, in terms of physiological mechanisms of EAMC. A comprehensive search was conducted on PubMed and Google Scholar. The following terminology was applied: muscle cramps, neuromuscular hypothesis (or thesis), dehydration hypothesis, Exercise-Associated muscle cramps, nocturnal cramps, muscle spasm, muscle fatigue. From the initial literature of 424 manuscripts, sixty-nine manuscripts were included, analyzed, compared and summarized. Literature analysis indicates that neuromuscular hypothesis may prevails over the initial hypothesis of the dehydration as the trigger event of muscle cramps. New evidence suggests that the action potentials during a muscle cramp are generated in the motoneuron soma, likely accompanied by an imbalance between the rising excitatory drive from the muscle spindles (Ia) and the decreasing inhibitory drive from the Golgi tendon organs. In conclusion, from the latest investigations there seem to be a spinal involvement rather than a peripheral excitation of the motoneurons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  3. Molecular and physiological manifestations and measurement of aging in humans.

    PubMed

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Systems, Shocks and Time Bombs

    NASA Astrophysics Data System (ADS)

    Winder, Nick

    The following sections are included: * Introduction * Modelling strategies * Are time-bomb phenomena important? * Heuristic approaches to time-bomb phenomena * Three rational approaches to TBP * Two irrational approaches * Conclusions * References

  5. Ultrafast Phenomena XIV

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  6. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  7. Remarkable Changes in Behavior and Physiology of Laboratory Mice after the Massive 2011 Tohoku Earthquake in Japan

    PubMed Central

    Yanai, Shuichi; Semba, Yuki; Endo, Shogo

    2012-01-01

    A devastating earthquake and tsunami hit Japan on March 11, 2011, followed by several long and intense aftershocks. Laboratory mice housed in the Tokyo, located approximately 330 km south of this earthquake’s epicenter, displayed remarkable changes in a variety of behaviors and physiological measures. Although unusual pre-earthquake behaviors have been previously reported in laboratory animals, little is known about behavioral and physiological changes that occur after a great earthquake. In the present study, the effects of Tohoku earthquake on mice behavior were investigated. “Earthquake-experienced” mice displayed a marked increase in food consumption without gaining body weight in response to the earthquake. They also displayed enhanced anxiety, and in a formal fear memory task, showed significantly greater tone- and context-dependent conditioned freezing. Water maze performance of earthquake-experienced mice showed the quicker acquisition of the task, faster swim speed and longer swim distance than the naive mice. Serum corticosterone levels were elevated compared to the naive mice, indicating that the earthquake and aftershocks were stressful for the mice. These results demonstrate that great earthquakes strongly affect mouse behaviors and physiology. Although the effects of a variety of experimental manipulations on mouse behaviors in disease models or in models of higher cognitive functions have been extensively examined, researchers need to be aware how natural phenomena, such as earthquakes and perhaps other natural environmental factors, influence laboratory animal behaviors and physiology. PMID:22957073

  8. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  9. Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei

    2002-04-01

    In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.

  10. Multiple Functions of Endocannabinoid Signaling in the Brain

    PubMed Central

    Katona, István; Freund, Tamás F.

    2014-01-01

    Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters like glutamate or GABA, yet act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical and physiological characteristics of endocannabinoid signaling revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes thereby differentially governing homeostatic, short-term and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type- and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids. PMID:22524785

  11. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1987-01-01

    Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.

  12. [Pain in humans: experimental facts and hypotheses].

    PubMed

    Cesaro, P

    1994-09-15

    The description of painful phenomena in humans has to take into account its different components: sensory component (relevant to nociception), affective and emotional components. Nociceptor's (physiology is best understood with electrophysiological and neurochemical methods allowing a clear description of hyperalgesia, with its peripheral and spinal mechanisms. A functional model is partly available to explain allodynia, spontaneous burning pain and lightning pain, the three main consequences following deafferentation. At the thalamo-cortical level, one can describe nociceptive pathways and other pathways or neuronal networks involved in the affective and emotional components of pain.

  13. Update on Parasomnias

    PubMed Central

    Jaffe, Fredric; Doghramji, Karl

    2006-01-01

    Parasomnias, defined as undesirable behavioral, physiological, or experiential events that accompany sleep, are common in the general population. As a rule, they occur more frequently in children than in adults with the exception of REM sleep behavior disorder (RBD), which is more common in men over 50. No longer considered to be invariably a sign of psychopathology, parasomnias are currently understood as clinical phenomena that arise as brain transitions between REM sleep, non-REM sleep, and wakefulness. This paper presents a clinical approach to diagnosing and treating parasomnias in the general population and in psychiatric patients. PMID:20975819

  14. Comparative Earth history and Late Permian mass extinction

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J. P.

    1996-01-01

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  15. The Role of Family Phenomena in Posttraumatic Stress in Youth

    PubMed Central

    Deatrick, Janet A.

    2010-01-01

    Topic Youth face trauma that can cause posttraumatic stress (PTS). Purpose 1). To identify the family phenomena used in youth PTS research; and 2). Critically examine the research findings regarding the relationship between family phenomena and youth PTS. Sources Systematic literature review in PsycInfo, PILOTS, CINAHL, and MEDLINE. Twenty-six empirical articles met inclusion criteria. Conclusion Measurement of family phenomena included family functioning, support, environment, expressiveness, relationships, cohesion, communication, satisfaction, life events related to family, parental style of influence, and parental bonding. Few studies gave clear conceptualization of family or family phenomena. Empirical findings from the 26 studies indicate inconsistent empirical relationships between family phenomena and youth PTS, though a majority of the prospective studies support a relationship between family phenomena and youth PTS. Future directions for leadership by psychiatric nurses in this area of research and practice are recommended. PMID:21344778

  16. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    NASA Astrophysics Data System (ADS)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  17. Noise deconvolution based on the L1-metric and decomposition of discrete distributions of postsynaptic responses.

    PubMed

    Astrelin, A V; Sokolov, M V; Behnisch, T; Reymann, K G; Voronin, L L

    1997-04-25

    A statistical approach to analysis of amplitude fluctuations of postsynaptic responses is described. This includes (1) using a L1-metric in the space of distribution functions for minimisation with application of linear programming methods to decompose amplitude distributions into a convolution of Gaussian and discrete distributions; (2) deconvolution of the resulting discrete distribution with determination of the release probabilities and the quantal amplitude for cases with a small number (< 5) of discrete components. The methods were tested against simulated data over a range of sample sizes and signal-to-noise ratios which mimicked those observed in physiological experiments. In computer simulation experiments, comparisons were made with other methods of 'unconstrained' (generalized) and constrained reconstruction of discrete components from convolutions. The simulation results provided additional criteria for improving the solutions to overcome 'over-fitting phenomena' and to constrain the number of components with small probabilities. Application of the programme to recordings from hippocampal neurones demonstrated its usefulness for the analysis of amplitude distributions of postsynaptic responses.

  18. The role of wind-tunnel studies in integrative research on migration biology.

    PubMed

    Engel, Sophia; Bowlin, Melissa S; Hedenström, Anders

    2010-09-01

    Wind tunnels allow researchers to investigate animals' flight under controlled conditions, and provide easy access to the animals during flight. These increasingly popular devices can benefit integrative migration biology by allowing us to explore the links between aerodynamic theory and migration as well as the links between flight behavior and physiology. Currently, wind tunnels are being used to investigate many different migratory phenomena, including the relationship between metabolic power and flight speed and carry-over effects between different seasons. Although biotelemetry is also becoming increasingly common, it is unlikely that it will be able to completely supplant wind tunnels because of the difficulty of measuring or varying parameters such as flight speed or temperature in the wild. Wind tunnels and swim tunnels will therefore continue to be important tools we can use for studying integrative migration biology. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  19. Dynamic interaction between myocardial contraction and coronary flow.

    PubMed

    Beyar, R; Sideman, S

    1997-01-01

    Phasic coronary flow is determined by the dynamic interaction between central hemodynamics and myocardial and ventricular mechanics. Various models, including the waterfall, intramyocardial pump and myocardial structural models, have been proposed for the coronary circulation. Concepts such as intramyocardial pressure, local elastance and others have been proposed to help explain the coronary compression by the myocardium. Yet some questions remain unresolved, and a new model has recently been proposed, linking a muscle collagen fibrous model to a physiologically based coronary model, and accounting for transport of fluids across the capillaries and lymphatic flow between the interstitial space and the venous system. One of the unique features of this model is that the intramyocardial pressure (IMP) in the interstitial space is calculated from the balance of forces and fluid transport in the system, and is therefore dependent on the coronary pressure conditions, the myocardial function and the transport properties of the system. The model predicts a wide range of experimentally observed phenomena associated with coronary compression.

  20. Primary care management of patients following bariatric surgery.

    PubMed

    Doolen, Jessica L; Miller, Sally K

    2005-11-01

    To evaluate the nutritional, psychosocial, and other primary care issues faced by nurse practitioners (NPs) and their patients in the long-term management of the increasing population of patients who have had bariatric surgery. An extensive review of the literature provides the foundation for development of assessment and management strategies highlighted in a case study. Management of the patient after bariatric surgery does not end with successful surgical healing. Numerous long-term implications, including significant psychosocial and nutritional issues, require the informed attention of the primary care provider for the rest of the life span. Each year an increasing number of obese patients pursue a surgical solution to obesity, up to an estimated 100,000 in 2004. Numerous long-term health implications are specific to this population. NPs can improve the quality of primary care to these patients by being informed regarding the different procedures and their impact on physiologic phenomena, and the psychosocial issues inherent to extreme weight loss.

  1. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics

    PubMed Central

    Borsook, David; Becerra, Lino R

    2006-01-01

    This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005

  2. Probing Cytological and Reproductive Phenomena by Means of Bryophytes.

    ERIC Educational Resources Information Center

    Newton, M. E.

    1985-01-01

    Describes procedures (recommended for both secondary and college levels) to study mitosis, Giemsa C-banding, reproductive phenomena (including alternation of generations), and phototropism in mosses and liverworts. (JN)

  3. A quest for antipsychotic drug actions in the brain: personal experiences from 50 years of neuropsychiatric research at Karolinska Institutet.

    PubMed

    Sedvall, Göran

    2007-09-10

    The exploration of physiological and molecular actions of psychoactive drugs in the brain represents a fundamental approach to the understanding of emerging psychological phenomena. The author gives a personal account of his medical training and research career at Karolinska Institutet over the past 50 years. The paper aims at illustrating how a broad medical education and the integration of basic and clinical neuroscience research is a fruitful ground for the development of new methods and knowledge in this complicated field. Important aspects for an optimal research environment are recruitment of well-educated students, a high intellectual identity of teachers and active researchers, international input and collaboration in addition to good physical resources. In depth exploration of specific signaling pathways as well as an integrative analysis of genes, molecules and systems using multivariate modeling, and bioinformatics, brain mechanisms behind mental phenomena may be understood at a basic level and will ultimately be used for the alleviation and treatment of mental disorders.

  4. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  5. Contact enhancement of locomotion in spreading cell colonies

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte

    2017-10-01

    The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.

  6. Muscle and Limb Mechanics.

    PubMed

    Tsianos, George A; Loeb, Gerald E

    2017-03-16

    Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  7. Technical basis, supporting information, and strategy for development and implementation of DOE policy for natural phenomena hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1991-09-01

    Policy for addressing natural phenomenon comprises a hierarchy of interrelated documents. The top level of policy is contained in the code of Federal Regulations which establishes the framework and intent to ensure overall safety of DOE facilities when subjected to the effects of natural phenomena. The natural phenomena to be considered include earthquakes and tsunami, winds, hurricanes and tornadoes, floods, volcano effects and seiches. Natural phenomena criteria have been established for design of new facilities; evaluation of existing facilities; additions, modifications, and upgrades to existing facilities; and evaluation criteria for new or existing sites. Steps needed to implement these fourmore » general criteria are described. The intent of these criteria is to identify WHAT needs to be done to ensure adequate protection from natural phenomena. The commentary provides discussion of WHY this is needed for DOE facilities within the complex. Implementing procedures identifying HOW to carry out these criteria are next identified. Finally, short and long term tasks needed to identify the implementing procedure are tabulated. There is an overall need for consistency throughout the DOE complex related to natural phenomena including consistent terminology, policy, and implementation. 1 fig, 6 tabs.« less

  8. Conceptualizing Autism: The Role for Emergence

    ERIC Educational Resources Information Center

    Anderson, George M.

    2009-01-01

    The establishment of a criterion for operationally defining emergent phenomena in autism is needed. Key initial questions for autism researchers include how to define emergent phenomena in order to better diagnosis the condition.

  9. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase.

    PubMed

    Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S

    2015-05-01

    DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. © 2015 The Authors.

  10. In Vivo Predictive Dissolution (IPD) and Biopharmaceutical Modeling and Simulation: Future Use of Modern Approaches and Methodologies in a Regulatory Context.

    PubMed

    Lennernäs, H; Lindahl, A; Van Peer, A; Ollier, C; Flanagan, T; Lionberger, R; Nordmark, A; Yamashita, S; Yu, L; Amidon, G L; Fischer, V; Sjögren, E; Zane, P; McAllister, M; Abrahamsson, B

    2017-04-03

    The overall objective of OrBiTo, a project within Innovative Medicines Initiative (IMI), is to streamline and optimize the development of orally administered drug products through the creation and efficient application of biopharmaceutics tools. This toolkit will include both experimental and computational models developed on improved understanding of the highly dynamic gastrointestinal (GI) physiology relevant to the GI absorption of drug products in both fasted and fed states. A part of the annual OrBiTo meeting in 2015 was dedicated to the presentation of the most recent progress in the development of the regulatory use of PBPK in silico modeling, in vivo predictive dissolution (IPD) tests, and their application to biowaivers. There are still several areas for improvement of in vitro dissolution testing by means of generating results relevant for the intraluminal conditions in the GI tract. The major opportunity is probably in combining IPD testing and physiologically based in silico models where the in vitro data provide input to the absorption predictions. The OrBiTo project and other current research projects include definition of test media representative for the more distal parts of the GI tract, models capturing supersaturation and precipitation phenomena, and influence of motility waves on shear and other forces of hydrodynamic origin, addressing the interindividual variability in composition and characteristics of GI fluids, food effects, definition of biorelevant buffer systems, and intestinal water volumes. In conclusion, there is currently a mismatch between the extensive industrial usage of modern in vivo predictive tools and very limited inclusion of such data in regulatory files. However, there is a great interest among all stakeholders to introduce recent progresses in prediction of in vivo GI drug absorption into regulatory context.

  11. Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host.

    PubMed

    Sorek, Michal; Díaz-Almeyda, Erika M; Medina, Mónica; Levy, Oren

    2014-04-01

    To date, the association and synchronization between two organismal circadian clocks ticking in parallel as part of a meta-organism (termed a symbiotic association), have rarely been investigated. Reef-building corals exhibit complex rhythmic responses to diurnal, lunar, and annual changes. Understanding circadian, circatidal, and annual regulation in reef-building corals is complicated by the presence of photosynthetic endosymbionts, which have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while simultaneously responding to internal physiological changes imposed by the symbiont, is not clear. There is insufficient molecular or physiological evidence of the existence of a circadian pacemaker that controls the metabolism, photosynthesis, synchronized mass spawning, and calcification processes in symbiotic corals. In this review, we present current knowledge regarding the animal pacemaker and the symbiotic-algal pacemaker. We examine the evidence from behavioral, physiological, molecular, and evolutionary perspectives. We explain why symbiotic corals are an interesting model with which to study the complexities and evolution of the metazoan circadian clock. We also provide evidence of why the chronobiology of corals is fundamental and extremely important for explaining the biology, physiology, and metabolism of coral reefs. A deeper understanding of these complex issues can help explain coral mass spawning, one of the earth's greatest and most mysterious behavioral phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Computational model of cerebral blood flow redistribution during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  13. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species.

    PubMed

    Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar

    2016-01-01

    Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.

  14. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species

    PubMed Central

    Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar

    2016-01-01

    Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons. PMID:27127682

  15. Mass and energy budgets of animals: Behavioral and ecological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, W.P.

    1991-11-01

    The two major aims of our lab are as follows: First, to develop and field-test general mechanistic models that predict animal life history characteristics as influenced by climate and the physical, physiological behavioral characteristics of species. This involves: understanding how animal time and energy budgets are affected by climate and animal properties; predicting growth and reproductive potential from time and energy budgets; predicting mortality based on climate and time and energy budgets; and linking these individual based models to population dynamics. Second to conduct empirical studies of animal physiological ecology, particularly the effects of temperature on time and energy budgets.more » The physiological ecology of individual animals is the key link between the physical environment and population-level phenomena. We address the macroclimate to microclimate linkage on a broad spatial scale; address the links between individuals and population dynamics for lizard species; test the endotherm energetics and behavior model using beaver; address the spatial variation in climate and its effects on individual energetics, growth and reproduction; and address patchiness in the environment and constraints they may impose on individual energetics, growth and reproduction. These projects are described individually in the following section. 24 refs., 9 figs.« less

  16. Analyzing the texture changes in the quantitative phase maps of adipocytes

    NASA Astrophysics Data System (ADS)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  17. Spacelab

    NASA Image and Video Library

    1992-09-12

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  18. Sex Differences in Human and Animal Toxicology.

    PubMed

    Gochfeld, Michael

    2017-01-01

    Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics (TK), toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions (ADRs). Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise, Food and Drug Administration rules excluded women of childbearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more ADRs than men; the classic sex hormone paradigm (gonadectomy and replacement) reveals significant interaction of sex and TK including absorption, distribution, metabolisms, and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical, and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging.

  19. Quantitative theory of driven nonlinear brain dynamics.

    PubMed

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Activities During Spacelab-J Mission at Payload Operations and Control Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  1. Sex Differences in Human and Animal Toxicology: Toxicokinetics

    PubMed Central

    Gochfeld, Michael

    2016-01-01

    Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics, toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions. Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise FDA rules excluded women of child-bearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more adverse drug reactions than men, The Classic Sex Hormone Paradigm (gonadectomy and replacement) reveals significant interaction of sex and toxicokinetics including absorption, distribution, metabolisms and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging. PMID:27895264

  2. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.

    PubMed

    Muramatsu, Takashi

    2016-05-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society.

  3. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  4. Department of Energy Natural Phenomena Hazards Mitigation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  5. Understanding phenomena in the real world: the case for real time data collection in health services research.

    PubMed

    Jones, Martyn; Johnston, Derek

    2011-07-01

    Understanding the environmental and behavioural predictors of wellbeing is a key driver of health and social care research. Research set in the social world examines the relationships between behavioural, cognitive, emotional and environmental factors, linking these to disease or social ills with the aim of providing better preventive or treatment services. Much of this research is based on retrospective measurement tools, such as questionnaires or interviews. However, retrospective accounts are prone to bias arising from the influence of the participant's current affective state on autobiographical memory and error-inducing heuristic strategies related to memory. Participant introspection also biases self-reports of behaviour and symptoms. This essay offers a critical examination of the advantages of ecological momentary assessment (EMA) methods over retrospective accounts in understanding social phenomena. Advantages of EMA include collection of longitudinal data from a representative part of the participant's daily experience, in real time and in the participant's natural environment. EMA accounts are gathered more closely in time to the event and are less biased by heuristic, autobiographical memory strategies. Real-time longitudinal data may be combined from a range of devices or forms of data collection; for example, self-report can be linked with objective physiological data. EMA allows testing of within-person variation in variables of interest in a way that is difficult to achieve using retrospective measures and between-person (group level) designs. EMA approaches provide not just more data, but better data than previously, allowing the application of more powerful analytic techniques to critical, real life questions than ever before.

  6. Distinguish self- and hetero-perceived stress through behavioral imaging and physiological features.

    PubMed

    Spodenkiewicz, Michel; Aigrain, Jonathan; Bourvis, Nadège; Dubuisson, Séverine; Chetouani, Mohamed; Cohen, David

    2018-03-02

    Stress reactivity is a complex phenomenon associated to multiple and multimodal expressions. Response to stressors has an obvious survival function and may be seen as an internal regulation to adapt to threat or danger. The intensity of this internal response can be assessed as the self-perception of the stress response. In species with social organization, this response also serves a communicative function, so-called hetero-perception. Our study presents multimodal stress detection assessment - a new methodology combining behavioral imaging and physiological monitoring for analyzing stress from these two perspectives. The system is based on automatic extraction of 39 behavioral (2D+3D video recording) and 62 physiological (Nexus-10 recording) features during a socially evaluated mental arithmetic test. The analysis with machine learning techniques for automatic classification using Support Vector Machine (SVM) show that self-perception and hetero-perception of social stress are both close but different phenomena: self-perception was significantly correlated with hetero-perception but significantly differed from it. Also, assessing stress with SVM through multimodality gave excellent classification results (F1 score values: 0.9±0.012 for hetero-perception and 0.87±0.021 for self-perception). In the best selected feature subsets, we found some common behavioral and physiological features that allow classification of both self- and hetero-perceived stress. However, we also found the contributing features for automatic classifications had opposite distributions: self-perception classification was mainly based on physiological features and hetero-perception was mainly based on behavioral features. Copyright © 2017. Published by Elsevier Inc.

  7. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  8. Slow-Slip Phenomena Represented by the One-Dimensional Burridge-Knopoff Model of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yamamoto, Maho; Ueda, Yushi

    2018-05-01

    Slow-slip phenomena, including afterslips and silent earthquakes, are studied using a one-dimensional Burridge-Knopoff model that obeys the rate-and-state dependent friction law. By varying only a few model parameters, this simple model allows reproducing a variety of seismic slips within a single framework, including main shocks, precursory nucleation processes, afterslips, and silent earthquakes.

  9. Realistic generation of natural phenomena based on video synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Changbo; Quan, Hongyan; Li, Chenhui; Xiao, Zhao; Chen, Xiao; Li, Peng; Shen, Liuwei

    2009-10-01

    Research on the generation of natural phenomena has many applications in special effects of movie, battlefield simulation and virtual reality, etc. Based on video synthesis technique, a new approach is proposed for the synthesis of natural phenomena, including flowing water and fire flame. From the fire and flow video, the seamless video of arbitrary length is generated. Then, the interaction between wind and fire flame is achieved through the skeleton of flame. Later, the flow is also synthesized by extending the video textures using an edge resample method. Finally, we can integrate the synthesized natural phenomena into a virtual scene.

  10. Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.

    2010-09-24

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.

  11. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.

    PubMed

    Natali, Arturo N; Carniel, Emanuele L; Pavan, Piero G; Sander, Franz G; Dorow, Christina; Geiger, Martin

    2008-06-01

    The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data.

  12. Prospects for computing airfoil aerodynamics with Reynolds averaged Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Bailey, H. E.

    1979-01-01

    The Reynolds averaged Navier-Stokes equations are solved numerically for a variety of transonic airfoil configurations where viscous phenomena are important. Illustrative examples include flows past sensitive geometries, Reynolds number effects, and buffet phenomena.

  13. Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.

    PubMed

    Song, D; Lan, N; Loeb, G E; Gordon, J

    2008-06-01

    An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual Muscle (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (gamma(stat)) and dynamic (gamma(dyn)) controls and outputs of primary (I(a)) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (I(b)) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of alpha and gamma drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel .

  14. [Perception of physiological visual illusions by individuals with schizophrenia].

    PubMed

    Ciszewski, Słowomir; Wichowicz, Hubert Michał; Żuk, Krzysztof

    2015-01-01

    Visual perception by individuals with schizophrenia has not been extensively researched. The focus of this review is the perception of physiological visual illusions by patients with schizophrenia, a differences of perception reported in a small number of studies. Increased or decreased susceptibility of these patients to various illusions seems to be unconnected to the location of origin in the visual apparatus, which also takes place in illusions connected to other modalities. The susceptibility of patients with schizophrenia to haptic illusions has not yet been investigated, although the need for such investigation has been is clear. The emerging picture is that some individuals with schizophrenia are "resistant" to some of the illusions and are able to assess visual phenomena more "rationally", yet certain illusions (ex. Müller-Lyer's) are perceived more intensely. Disturbances in the perception of visual illusions have neither been classified as possible diagnostic indicators of a dangerous mental condition, nor included in the endophenotype of schizophrenia. Although the relevant data are sparse, the ability to replicate the results is limited, and the research model lacks a "gold standard", some preliminary conclusions may be drawn. There are indications that disturbances in visual perception are connected to the extent of disorganization, poor initial social functioning, poor prognosis, and the types of schizophrenia described as neurodevelopmental. Patients with schizophrenia usually fail to perceive those illusions that require volitional controlled attention, and show lack of sensitivity to the contrast between shape and background.

  15. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history.

    PubMed

    Ehrlich, Hermann; Koutsoukos, Petros G; Demadis, Konstantinos D; Pokrovsky, Oleg S

    2008-12-01

    In contrast to biomineralization phenomena, that are among the most widely studied topics in modern material and earth science and biomedicine, much less is systematized on modern view of demineralization. Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Demineralization is the process of removing the inorganic part, or the biominerals, that takes place in nature via either physiological or pathological pathways in organisms. In vitro demineralization processes, used to obtain mechanistic information, consist in the isolation of the mineral phase of the composite biomaterials from the organic matrix. Physiological and pathological demineralization include, for example, bone resorption mediated by osteoclasts. Bioerosion, a more general term for the process of deterioration of the composite biomaterials represents chemical deterioration of the organic and mineral phase followed by biological attack of the composite by microorganisms and enzymes. Bioerosional organisms are represented by endolithic cyanobacteria, fungi, algae, plants, sponges, phoronids and polychaetes, mollusks, fish and echinoids. In the history of demineralization studies, the driving force was based on problems of human health, mostly dental caries. In this paper we summarize and integrate a number of events, discoveries, milestone papers and books on different aspect of demineralization during the last 400 years. Overall, demineralization is a rapidly growing and challenging aspect of various scientific disciplines such as astrobiology, paleoclimatology, geomedicine, archaeology, geobiology, dentistry, histology, biotechnology, and others to mention just a few.

  16. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels.

    PubMed

    Podda, Maria Vittoria; Grassi, Claudio

    2014-07-01

    Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.

  17. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    PubMed

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  18. Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.; Oreilly, W.; Srnka, L. J.

    1977-01-01

    The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.

  19. Big River Reservoir Project - Pawcatuck River and Narragansett bay Drainage Basins - Water and related Land Resources Study Volume IV. Attachment I.

    DTIC Science & Technology

    1981-07-01

    U0O00,, 1 lrsLg’ilficant Jlani use changes have I j ixL(LUC L or has5 icure t. Lji river basil invo v- Wv nwj ek Hall ftwu siopping ceti-ers wich1...resources. Pesticides also coul! be diverted with flooe flews and assimilated by fishery resources. As a result of physiological phenomena exhibited by...accumulation relative to quantities of heavy metals and pesticides contained in river flood flows should be presented. Page 4-11, para. 4.60 - We question the

  20. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis.

    PubMed

    Jastreboff, Pawel J; Jastreboff, Margaret M

    2015-01-01

    Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment. © 2015 Elsevier B.V. All rights reserved.

  1. RESEARCH AREA 7.1: Exploring the Systematics of Controlling Quantum Phenomena

    DTIC Science & Technology

    2016-10-05

    the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of...SECURITY CLASSIFICATION OF: This research is concerned with the theoretical and experimental control quantum dynamics phenomena. Advances include new...algorithms to accelerate quantum control as well as provide physical insights into the controlled dynamics. The latter research includes the

  2. Analysis of Hypersonic Vehicle Wakes

    DTIC Science & Technology

    2015-09-17

    factor used with viscous Jacobian matrix of left eigenvectors for A R specific gas constant Re Reynolds number Recell cell Reynolds number......focus was shifted to characterizing other wake phenomena. The aerothermal phenomena of interest in the wake include: gas properties, chemical species

  3. Development of resource shed delineation in aquatic ecosystems

    EPA Science Inventory

    Environmental issues in aquatic ecosystems of high management priority involve spatially explicit phenomena that occur over vast areas. A "landscape" perspective is thus necessary, including an understanding of how ecological phenomena at a local scale are affected by physical fo...

  4. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS).

    PubMed

    Tsume, Yasuhiro; Matsui, Kazuki; Searls, Amanda L; Takeuchi, Susumu; Amidon, Gregory E; Sun, Duxin; Amidon, Gordon L

    2017-05-01

    The development of formulations and the assessment of oral drug absorption for Biopharmaceutical Classification System (BCS) class IIb drugs is often a difficult issue due to the potential for supersaturation and precipitation in the gastrointestinal (GI) tract. The physiological environment in the GI tract largely influences in vivo drug dissolution rates of those drugs. Thus, those physiological factors should be incorporated into the in vitro system to better assess in vivo performance of BCS class IIb drugs. In order to predict oral bioperformance, an in vitro dissolution system with multiple compartments incorporating physiologically relevant factors would be expected to more accurately predict in vivo phenomena than a one-compartment dissolution system like USP Apparatus 2 because, for example, the pH change occurring in the human GI tract can be better replicated in a multi-compartmental platform. The Gastrointestinal Simulator (GIS) consists of three compartments, the gastric, duodenal and jejunal chambers, and is a practical in vitro dissolution apparatus to predict in vivo dissolution for oral dosage forms. This system can demonstrate supersaturation and precipitation and, therefore, has the potential to predict in vivo bioperformance of oral dosage forms where this phenomenon may occur. In this report, in vitro studies were performed with dipyridamole and ketoconazole to evaluate the precipitation rates and the relationship between the supersaturation levels and oral absorption of BCS class II weak base drugs. To evaluate the impact of observed supersaturation levels on oral absorption, a study utilizing the GIS in combination with mouse intestinal infusion was conducted. Supersaturation levels observed in the GIS enhanced dipyridamole and ketoconazole absorption in mouse, and a good correlation between their supersaturation levels and their concentration in plasma was observed. The GIS, therefore, appears to represent in vivo dissolution phenomena and demonstrate supersaturation and precipitation of dipyridamole and ketoconazole. We therefore conclude that the GIS has been shown to be a good biopredictive tool to predict in vivo bioperformance of BCS class IIb drugs that can be used to optimize oral formulations. Copyright © 2017. Published by Elsevier B.V.

  5. Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Huebner, Mark A.; Price, William E.; Smith, L. S.; Coss, James R.

    1988-01-01

    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes.

  6. Theoretical research on color indirect effects

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Liao, Changjun; Liu, Songhao

    1995-05-01

    Color indirect effects (CIE) means the physiological and psychological effects of color resulting from color vision. In this paper, we study CIE from the viewpoints of the integrated western and Chinese traditional medicine and the time quantum theory established by C. Y. Liu et al., respectively, and then put forward the color-automatic-nervous-subsystem model that could color excites parasympathetic subsystem and hot color excites sympathetic subsystem. Our theory is in agreement with modern color vision theory, and moreover, it leads to the resolution of the conflict between the color code theory and the time code theory oncolor vision. For the latitude phenomena on athlete stars number and the average lifespan, we also discuss the possibility of UV vision. The applications of our theory lead to our succeeding in explaining a number of physiological and psychological effects of color, in explaining the effects of age on color vision, and in explaining the Chinese chromophototherapy. We also discuss its application to neuroimmunology. This research provides the foundation of the clinical applications of chromophototherapy.

  7. U.S. view of human problems to be addressed for long duration space flights. [physiological and psychological effects

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    The Russian and American space programs have consisted of several thousands of hours of exposure of man to the space environment. In spite of numerous biological phenomena of adaptation observed, the space travellers have displayed, after their return, no enduring pathological effect. Although the usable data remain too limited to reflect fully the effects of space flight, it is possible to sketch the biological responses in the absence of gravity and to define the work bases for the future. Beyond its basic physiological effects, weightlessness has operational consequences in the daily life of the astronauts. These consequences will be still more evident during missions of long duration. The conclusions drawn in flight as well as on the ground are reviewed, and future requirements concerning prolonged flights are outlined. The gaps in actual knowledge are discussed and solutions are suggested. The problems of habitability are considered, particularly those which remain at present without satisfactory solutions: psychological responses to a confined life, cleaning, hygiene, and used material.

  8. Numerical Simulation of the Flow in Vascular Grafts for Surgical Applications

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Aliseda, Alberto

    2009-11-01

    Numerical simulation of the human blood vessels, is becoming an important tool in surgical planning and research. Accurate vascular simulations might grant physicians the predictive capability to perform pre-surgical planning. We focus our attention on the implantation of vascular grafts. The high rate of failure of this common vascular interaction is intimately related to the fluid mechanics in the affected region and the subsequent wall tissue remodeling. Here, we will present our current work in developing a methodology for the numerical simulation of vascular grafts which incorporates physiologically realistic geometries and flow boundary conditions. In particular, we seek to correlate the wall shear stress and its spatial (WSSG) and temporal (OSI) variability to wall remodeling as observed in patient specific longitudinal studies. The pulsatility (Remean= 800 , Repeak= 2000, Wo = 2) of the flow gives rise to additional fluid dynamics phenomena such as instability, flow separation, transition, and unsteadiness. Our goal is to describe and evaluate their effect on the wall physiology.

  9. Molecular Mechanisms at the Basis of Plasticity in the Developing Visual Cortex: Epigenetic Processes and Gene Programs

    PubMed Central

    Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso

    2013-01-01

    Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210

  10. The electrocardiogram signal of Seba's short-tailed bat, Carollia perspicillata.

    PubMed

    Mihova, Diana; Hechavarría, Julio C

    2016-07-01

    A number of studies have successfully used electrocardiogram (ECG) signals to characterize complex physiological phenomena such as associative learning in bats. However, at present, no thorough characterization of the structure of ECG signals is available for these animals. The aim of the present study was to quantitatively characterize features of the ECG signals in the bat species Carollia perspicillata, a species that is commonly used in neuroethology studies. Our results show that the ECG signals of C. perspicillata follow the typical mammalian pattern, in that they are composed by a P wave, QRS complex and a T wave. Peak-to-peak amplitudes in the bats' ECG signals were larger in measuring configurations in which one of the electrodes was attached to the right thumb. In addition, large differences in the instantaneous heart rate (HR) distributions were observed between ketamine/xylazine anesthetized and awake bats. Ketamine/xylazine might target the neural circuits that control HR, therefore, instantaneous HR measurements should only be used as physiological marker in awake animals.

  11. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    PubMed Central

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  12. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.

    2014-11-01

    Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.

  13. Numerical simulation of gender differences in a long-term microgravity exposure

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Initial results are compatible with the existing data, and provide unique information regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions. More experimental work is needed to adjust some parameters of the model. This work may be seen as another contribution to a better understanding of the underlying processes involved for both women in man adaptation to long-term microgravity.

  14. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.

    PubMed

    Pörtner, H O; Peck, M A

    2010-11-01

    Ongoing climate change is predicted to affect individual organisms during all life stages, thereby affecting populations of a species, communities and the functioning of ecosystems. These effects of climate change can be direct, through changing water temperatures and associated phenologies, the lengths and frequency of hypoxia events, through ongoing ocean acidification trends or through shifts in hydrodynamics and in sea level. In some cases, climate interactions with a species will also, or mostly, be indirect and mediated through direct effects on key prey species which change the composition and dynamic coupling of food webs. Thus, the implications of climate change for marine fish populations can be seen to result from phenomena at four interlinked levels of biological organization: (1) organismal-level physiological changes will occur in response to changing environmental variables such as temperature, dissolved oxygen and ocean carbon dioxide levels. An integrated view of relevant effects, adaptation processes and tolerance limits is provided by the concept of oxygen and capacity-limited thermal tolerance (OCLT). (2) Individual-level behavioural changes may occur such as the avoidance of unfavourable conditions and, if possible, movement into suitable areas. (3) Population-level changes may be observed via changes in the balance between rates of mortality, growth and reproduction. This includes changes in the retention or dispersion of early life stages by ocean currents, which lead to the establishment of new populations in new areas or abandonment of traditional habitats. (4) Ecosystem-level changes in productivity and food web interactions will result from differing physiological responses by organisms at different levels of the food web. The shifts in biogeography and warming-induced biodiversity will affect species productivity and may, thus, explain changes in fisheries economies. This paper tries to establish links between various levels of biological organization by means of addressing the effective physiological principles at the cellular, tissue and whole organism levels. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  15. Transport phenomena in environmental engineering

    NASA Astrophysics Data System (ADS)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  16. Opportunities and Challenges for the Emerging Field of Positive Emotion Regulation: A Commentary on the Special Edition on Positive Emotions and Cognitions in Clinical Psychology.

    PubMed

    Dunn, Barnaby D

    2017-01-01

    The importance of developing a better understanding of positive emotion regulation in both healthy and clinical populations is now recognised. This special edition brings together leading figures in the positive emotion regulation field and has contributions characterizing positive phenomena, differentiating them from negative phenomena, and evaluating underlying psychological mechanisms that drive these phenomena. This commentary reviews these articles to highlight challenges and opportunities for this emerging field, including the need to better characterize positive phenomena, to be more explicit about how the links between negative and positive phenomena are conceptualised, to evaluate more robustly underlying mechanisms, to standardize measurement of positive constructs, and to ensure that these scientific findings lead to meaningful changes in real-world policy and practice.

  17. Information Science and the PSI Phenomenon.

    ERIC Educational Resources Information Center

    Levine, Emil H.

    1985-01-01

    Relates research in psychical occurrences (PSI) encompassing three types of phenomena--extrasensory perception, psychokinesis, and out-of-body survival after death--to the field of information science. Highlights include concepts facilitating acceptance of PSI, remote viewing, applications of PSI phenomena in the business field, and PSI and…

  18. A numerical solution of Duffing's equations including the prediction of jump phenomena

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.; Ghasghai-Abdi, E.

    1987-01-01

    Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.

  19. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression.

    PubMed

    Nabeshima, Kazuki; Iwasaki, Hiroshi; Koga, Kaori; Hojo, Hironobu; Suzumiya, Junji; Kikuchi, Masahiro

    2006-07-01

    Emmprin (basigin, CD147) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily. It is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases. Moreover, it has recently been shown that emmprin also stimulates expression of vascular endothelial growth factor and hyaluronan, which leads to angiogenesis and anchorage-independent growth/multidrug resistance, respectively. These findings have made emmprin an important molecule in tumor progression and, thus, more attractive as a target for antitumor treatment. However, other functions of emmprin, including as an activator of T cells, a chaperone for monocarboxylate transporters, a receptor for cyclophilin A and a neural recognition molecule, are also being identified in physiological and pathological conditions. Therefore, it is essential to develop specific means to control particular functions of emmprin, for which elucidation of each mechanism is crucial. This review will discuss the role of emmprin in tumor progression and recent advances in the molecular mechanisms of diverse phenomena regulated by emmprin.

  20. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation.

    PubMed

    Reiter, Sam; Liaw, Hua-Peng; Yamawaki, Tracy M; Naumann, Robert K; Laurent, Gilles

    2017-01-01

    Our ability to navigate through the world depends on the function of the hippocampus. This old cortical structure plays a critical role in spatial navigation in mammals and in a variety of processes, including declarative and episodic memory and social behavior. Intense research has revealed much about hippocampal anatomy, physiology, and computation; yet, even intensely studied phenomena such as the shaping of place cell activity or the function of hippocampal firing patterns during sleep remain incompletely understood. Interestingly, while the hippocampus may be a 'higher order' area linked to a complex cortical hierarchy in mammals, it is an old cortical structure in evolutionary terms. The reptilian cortex, structurally much simpler than the mammalian cortex and hippocampus, therefore presents a good alternative model for exploring hippocampal function. Here, we trace common patterns in the evolution of the hippocampus of reptiles and mammals and ask which parts can be profitably compared to understand functional principles. In addition, we describe a selection of the highly diverse repertoire of reptilian behaviors to illustrate the value of a comparative approach towards understanding hippocampal function. © 2017 S. Karger AG, Basel.

  1. Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response

    PubMed Central

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  2. Biofluid Mechanics Education at U Michigan

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2007-11-01

    At the University of Michigan, biofluid mechanics is taught in the Department of Biomedical Engineering with cross-listing in Mechanical Engineering. The course has evolved over 25 years and serves advanced undergraduates and graduate students. The course description is as follows: BiomedE/MechE 476 Biofluid Mechanics. CATALOG DESCRIPTION: This is an intermediate level fluid mechanics course which uses examples from biotechnology processes and physiologic applications including cellular, cardiovascular, respiratory, ocular, renal, orthopedic, and gastrointestinal systems. COURSE TOPICS: 1. Dimensional analysis (gastrointestinal, renal) 2. Approximation methods, numerical methods (biotechnology, respiratory) 3. Particle kinematics in Eulerian and Lagrangian references frames (biotechnology, respiratory) 4. Conservation of mass and momentum 5. Constitutive equations (blood, mucus) 6. Kinematic and stress boundary conditions: rigid, flexible, porous (cardio-pulmonary, cellular) 7. Surface tension phenomena (pulmonary, ocular) 8. Flow and wave propagation in flexible tubes (cardio-pulmonary) 9. Oscillatory and pulsatile flows (cardio-pulmonary, orthopedic) 10. High Reynolds number flows (cardio-pulmonary) 11. Low Reynolds number flows (biotechnology, cellular, vascular) 12. Lubrication theory (vascular, orthopedic) 13. Flow in poroelastic media (orthopedic, pulmonary, ocular) 14. Video presentations of laboratory experiments.

  3. An Overview of Biomolecular Event Extraction from Scientific Documents

    PubMed Central

    Vanegas, Jorge A.; Matos, Sérgio; González, Fabio; Oliveira, José L.

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed. PMID:26587051

  4. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression.

    PubMed

    Yan, Li; Zucker, Stanley; Toole, Bryan P

    2005-02-01

    Emmprin (basigin;CD147) is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily and is highly enriched on the surface of malignant tumour cells. Emmprin is involved in numerous physiological and pathological systems and exhibits several molecular and cellular characteristics, but a major function of emmprin is stimulation of synthesis of several matrix metalloproteinases. In tumours, emmprin most likely stimulates matrix metalloproteinase production in stromal fibroblasts and endothelial cells as well as in tumour cells themselves by a mechanism involving homophilic interactions between emmprin molecules on apposing cells or on neighbouring cells after membrane vesicle shedding. Membrane-associated cofactors, including caveolin-1 and annexin II, regulate emmprin activity. Emmprin induces angiogenesis via stimulation of VEGF production, invasiveness via stimulation of matrix metalloproteinase production and multidrug resistance via hyaluronan-mediated up-regulation of ErbB2 signaling and cell survival pathway activities. Although the detailed mechanisms whereby it regulates these numerous phenomena are not yet known, it is clear that emmprin is a major mediator of malignant cell behavior.

  5. Alcoholics Anonymous and twelve-step recovery: a model based on social and cognitive neuroscience.

    PubMed

    Galanter, Marc

    2014-01-01

    In the course of achieving abstinence from alcohol, longstanding members of Alcoholics Anonymous (AA) typically experience a change in their addiction-related attitudes and behaviors. These changes are reflective of physiologically grounded mechanisms which can be investigated within the disciplines of social and cognitive neuroscience. This article is designed to examine recent findings associated with these disciplines that may shed light on the mechanisms underlying this change. Literature review and hypothesis development. Pertinent aspects of the neural impact of drugs of abuse are summarized. After this, research regarding specific brain sites, elucidated primarily by imaging techniques, is reviewed relative to the following: Mirroring and mentalizing are described in relation to experimentally modeled studies on empathy and mutuality, which may parallel the experiences of social interaction and influence on AA members. Integration and retrieval of memories acquired in a setting like AA are described, and are related to studies on storytelling, models of self-schema development, and value formation. A model for ascription to a Higher Power is presented. The phenomena associated with AA reflect greater complexity than the empirical studies on which this article is based, and certainly require further elucidation. Despite this substantial limitation in currently available findings, there is heuristic value in considering the relationship between the brain-based and clinical phenomena described here. There are opportunities for the study of neuroscientific correlates of Twelve-Step-based recovery, and these can potentially enhance our understanding of related clinical phenomena. © American Academy of Addiction Psychiatry.

  6. How typical are 'typical' tremor characteristics? Sensitivity and specificity of five tremor phenomena.

    PubMed

    van der Stouwe, A M M; Elting, J W; van der Hoeven, J H; van Laar, T; Leenders, K L; Maurits, N M; Tijssen, M A J

    2016-09-01

    Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Retrospectively, we examined 210 tremor patients referred for electrophysiological recordings between January 2008 and January 2014. The final clinical diagnosis was used as the gold standard. The first step was to determine whether patients met neurophysiological criteria for their type of tremor. Once established, we focused on 'typical' characteristics: tremor frequency decrease upon loading (enhanced physiological tremor (EPT)), amplitude increase upon loading, distractibility and entrainment (functional tremor (FT)), and intention tremor (essential tremor (ET)). The prevalence of these phenomena in the 'typical' group was compared to the whole group. Most patients (87%) concurred with all core clinical neurophysiological criteria for their tremor type. We found a frequency decrease upon loading to be a specific (95%), but not a sensitive (42%) test for EPT. Distractibility and entrainment both scored high on sensitivity (92%, 91%) and specificity (94%, 91%) in FT, whereas a tremor amplitude increase was specific (92%), but not sensitive (22%). Intention tremor was a specific finding in ET (85%), but not a sensitive test (45%). Combination of characteristics improved sensitivity. In this study, we retrospectively determined sensitivity and specificity for five 'typical' tremor characteristics. Characteristics proved specific, but few were sensitive. These data on tremor phenomenology will help practicing neurologists to improve distinction between different tremor disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia.

    PubMed

    Saif, Muhammad Wasif; Hopkins, Jon L; Gore, Steven D

    2002-11-01

    Autoimmune paraneoplastic syndromes are commonly encountered in patients with myelodysplastic syndromes (MDS). A review of case reports and small series suggest as many as 10% of MDS patients may experience various autoimmune syndromes. Clinical manifestations of such phenomena may include an acute systemic vasculitic syndrome, skin vasculitis, fever, arthritis, pulmonary infiltrates, peripheral polyneuropathy, inflammatory bowel disease, glomerulonephritis, and even classical connective tissue disorders, such as relapsing polychondritis. On the other hand, asymptomatic immunologic abnormalities have also been reported in these patients. These autoimmune manifestations frequently respond to immunosuppressive agents including steroids and occasional hematologic responses to steroid therapy have also been reported. We report five patients with history of MDS who manifested different spectrums of autoimmune phenomena including: pyoderma gangrenosum (PG), vasculitis, Coombs negative hemolytic anemia, idiopathic thrombocytopenia, and chronic inflammatory demyelinating polyneuropathy (CIDP). We also review the incidence, nature, course and response to therapy of these manifestations and discuss potential pathogenic mechanisms.

  8. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  9. The Microscopic Representation of Complex Oscopic Phenomena Critical Slowing Down - a Blessing in Disguise

    NASA Astrophysics Data System (ADS)

    Solomon, S.

    The following sections are included: * The Microscopic Representation Paradigm * CSD Appearance and Measurement * Elimination of CSD as Understanding of oscopic Dynamics * MicRep Use in Multiscale Phenomena * Conclusions * Acknowledgements * References * Notes Added in Proof: Visualization Experiments * References Added in Proof

  10. Temperature affects transport of polysaccharides and proteins in articular cartilage explants.

    PubMed

    Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M

    2012-07-26

    Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs.

    PubMed

    Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama

    2012-03-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.

  12. Observing halos through airplane windows

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.

    2017-09-01

    A halo is one of the most frequent and impressive optical phenomena easily observable in the sky. It is also one of the natural optical phenomena most often visible through an airplane window. Halos and related phenomena vary from a single spot of light formed by reflection of the sun from the tops of plate-shaped ice crystals to large rings with splashes of colors, caused by a combination of reflection and refraction in ice crystals. Even with extreme heat at the ground, an airplane quickly rises through sufficient altitude to find ice crystals in the clouds, enabling an alert passenger (or pilot) to see ice-crystal optical phenomena. This paper briefly reviews these phenomena with photographs and diagrams. Photographs include commonly seen halos, as well as Bottlinger's rings, a rare halo that is still not fully explained. Tips are given for enhancing your chances of seeing and understanding halos.

  13. A fluorescence spotlight on the clockwork development and metabolism of bone.

    PubMed

    Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira

    2012-05-01

    Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.

  14. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of humans, animals and plants is significantly modified in such extraterrestrial environments. One physiological requirement shared by humans with larger plants and animals is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. The VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  15. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  16. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.

    PubMed

    Thakkar, M M; Ramesh, V; Cape, E G; Winston, S; Strecker, R E; McCarley, R W

    1999-01-01

    Orexin (hypocretin)-containing neurons of the hypothalamus project to brainstem sites that are involved in the neural control of REM sleep, including the locus coeruleus, the dorsal raphe nucleus, the cholinergic zone of the mesopontine tegmentum, and the pontine reticular formation (PRF). Orexin knockout mice exhibit narcolepsy/cataplexy, and a mutant and defective gene for the orexin type II receptor is present in dogs with an inherited form of narcolepsy/cataplexy. However, the physiological systems mediating these effects have not been described. We reasoned that, since the effector neurons for the majority of REM sleep signs, including muscle atonia, were located in the PRF, this region was likely implicated in the production of these orexin-related abnormalities. To test this possibility, we used microdialysis perfusion of orexin type II receptor antisense in the PRF of rats. Ten to 24 hours after antisense perfusion, REM sleep increased two- to three-fold during both the light period (quiescent phase) and the dark period (active phase), and infrared video showed episodes of behavioral cataplexy. Moreover, preliminary data indicated no REM-related effects following perfusion with nonsense DNA, or when perfusion sites were outside the PRF. More work is needed to provide precise localization of the most effective site of orexin-induced inhibition of REM sleep phenomena.

  17. Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Enevoldson, E. K.; Nguyen, L. T.

    1983-01-01

    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability.

  18. Teaching Bohr Theory.

    ERIC Educational Resources Information Center

    Latimer, Colin J.

    1983-01-01

    Discusses some lesser known examples of atomic phenomena to illustrate to students that the old quantum theory in its simplest (Bohr) form is not an antiquity but can still make an important contribution to understanding such phenomena. Topics include hydrogenic/non-hydrogenic spectra and atoms in strong electric and magnetic fields. (Author/JN)

  19. Middle Atmosphere Program. Handbook for MAP, Volume 10

    NASA Technical Reports Server (NTRS)

    Taubenheim, J. (Editor)

    1984-01-01

    The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.

  20. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  1. Angiotensin II and its different receptor subtypes in placenta and fetal membranes.

    PubMed

    Kalenga, M K; de Gasparo, M; Thomas, K; de Hertogh, R

    1996-01-01

    The recent discovery of a local renin-angiotensin system in trophoblastic tissues has raised many questions regarding its role in the physiology of normal gestation and its implications in the pathophysiology of hypertension during pregnancy. In this article, the authors first review the most interesting aspects of the chorioplacental renin-angiotensin system, dwelling on the tissue distribution of angiotensin II and its receptor subtypes in the placenta and fetal membranes of different species. The relationship between angiotensin II and other locally synthesized chorioplacental substances is also analysed and the therapeutic implications of phenomena observed in pregnancy-associated hypertension are discussed.

  2. Decoding ensemble activity from neurophysiological recordings in the temporal cortex.

    PubMed

    Kreiman, Gabriel

    2011-01-01

    We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.

  3. Femtosecond dynamics of a cardiotonic medicine (milrinone) in neutral water

    NASA Astrophysics Data System (ADS)

    Gil, M.; Douhal, A.

    2006-09-01

    Milrinone is a medicine used to attenuate heart attack disease. Understanding its interaction with water is of importance for the knowledge of its stability and related phenomena. This intimate information requires the unraveling of the dynamics under the physiological conditions. Here we report the first study of ultrafast processes of this medicine. We show that S 2 relaxation of the keto structure (K) occurs in ˜150 fs and the intramolecular-charge transfer reaction in less than 100 fs to produce a relaxed CT-K state. An observed ˜10 ps decay is assigned to vibrational relaxation/cooling and twisting in the formed CT-K.

  4. A multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources

    NASA Astrophysics Data System (ADS)

    Finnerty, W. R.

    1980-07-01

    Cellulytic bacteria, cellobiose fermentors, sulfate-reducing bacteria and methanogenic bacteria were isolated from established anaerobic mesophilic and thermophilic cellulose methane fermentations and these isolates, plus known laboratory strains, were employed to partially reconstitute highly active cellulose fermentations. These mixed cultures are utilized as model systems to study the parameters required for maximum production of CH4, H2 and chemical feedstocks such as acetate, ethanol, propionate, etc., from cellulose. The physiology of these reconstituted cultures is investigated as regards cultural conditions, microbial types, inoculum size, interspecies H2 transfer and specific regulatory phenomena, the accumulation of cellobiose and acetate.

  5. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    PubMed Central

    Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris

    2016-01-01

    Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405

  6. Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3.

    PubMed

    Paolini, Lucia; Orizio, Flavia; Busatto, Sara; Radeghieri, Annalisa; Bresciani, Roberto; Bergese, Paolo; Monti, Eugenio

    2017-12-05

    Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 μm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.

  7. Cato Guldberg and Peter Waage, the history of the Law of Mass Action, and its relevance to clinical pharmacology.

    PubMed

    Ferner, Robin E; Aronson, Jeffrey K

    2016-01-01

    We have traced the historical link between the Law of Mass Action and clinical pharmacology. The Law evolved from the work of the French chemist Claude Louis Berthollet, was first formulated by Cato Guldberg and Peter Waage in 1864 and later clarified by the Dutch chemist Jacobus van 't Hoff in 1877. It has profoundly influenced our qualitative and quantitative understanding of a number of physiological and pharmacological phenomena. According to the Law of Mass Action, the velocity of a chemical reaction depends on the concentrations of the reactants. At equilibrium the concentrations of the chemicals involved bear a constant relation to each other, described by the equilibrium constant, K. The Law of Mass Action is relevant to various physiological and pharmacological concepts, including concentration-effect curves, dose-response curves, and ligand-receptor binding curves, all of which are important in describing the pharmacological actions of medications, the Langmuir adsorption isotherm, which describes the binding of medications to proteins, activation curves for transmembrane ion transport, enzyme inhibition and the Henderson-Hasselbalch equation, which describes the relation between pH, as a measure of acidity and the concentrations of the contributory acids and bases. Guldberg and Waage recognized the importance of dynamic equilibrium, while others failed to do so. Their ideas, over 150 years old, are embedded in and still relevant to clinical pharmacology. Here we explain the ideas and in a subsequent paper show how they are relevant to understanding adverse drug reactions. © 2015 The British Pharmacological Society.

  8. Neurobiology and clinical implications of lucid dreaming.

    PubMed

    Mota-Rolim, Sérgio A; Araujo, John F

    2013-11-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversial. Since the frontal lobe plays a role in self-consciousness, working memory and attention, here we hypothesize that LD is associated with increased frontal activity during REMS. A possible way to test this hypothesis is to check whether transcranial magnetic or electric stimulation of the frontal region during REMS triggers LD. We further suggest that psychosis and LD are opposite phenomena: LD as a physiological awakening while dreaming due to frontal activity, and psychosis as a pathological intrusion of dream features during wake state due to hypofrontality. We further suggest that LD research may have three main clinical implications. First, LD could be important to the study of consciousness, including its pathologies and other altered states. Second, LD could be used as a therapy for recurrent nightmares, a common symptom of depression and post-traumatic stress disorder. Finally, LD may allow for motor imagery during dreaming with possible improvement of physical rehabilitation. In all, we believe that LD research may clarify multiple aspects of brain functioning in its physiological, altered and pathological states. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Publications of the Space Physiology and Countermeasures Program, Neuroscience Discipline: 1980-1990

    NASA Technical Reports Server (NTRS)

    Dickson, Katherine J.; Wallace-Robinson, Janice; Powers, Janet V.; Hess, Elizabeth

    1992-01-01

    A 10-year cumulative bibliography of publications resulting from research supported by the neuroscience discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are space motion sickness; vestibular performance, posture, and motor coordination; vestibular physiology; central and peripheral nervous system physiology; and general performance and methodologies. General physiology references are also included.

  10. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  11. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  12. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  13. Time-Frequency and Non-Laplacian Phenomena at Radio Frequencies

    DTIC Science & Technology

    2017-01-22

    Unlimited UU UU UU UU 22-01-2017 30-Sep-2012 30-Sep-2016 Final Report: Time -Frequency and Non-Laplacian Phenomena at Radio Frequencies The views...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... Time ‐Frequency and Non‐Laplacian Phenomena at Radio Frequencies  U.S. Army Research Office grant W911NF‐12‐1‐0526  Michael B. Steer  Department of

  14. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  15. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  16. Abstracts of Review Articles and Educational Materials in Physiology

    ERIC Educational Resources Information Center

    Physiology Teacher, 1977

    1977-01-01

    Contained are 99 abstracts of review articles, texts, books, manuals, learning programs, and audiovisual material used in teaching physiology. Specific fields include cell physiology, circulation, comparative physiology, development and aging, endocrinology and metabolism, environmental and exercise physiology, gastrointestinal physiology, muscle…

  17. Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrads, T.J.

    1997-09-12

    Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well asmore » for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, is Rev. 1 of that plan.« less

  18. Nanoflares, Spicules, and Other Small-Scale Dynamic Phenomena on the Sun

    NASA Technical Reports Server (NTRS)

    Klimchuk, James

    2010-01-01

    There is abundant evidence of highly dynamic phenomena occurring on very small scales in the solar atmosphere. For example, the observed pr operties of many coronal loops can only be explained if the loops are bundles of unresolved strands that are heated impulsively by nanoflares. Type II spicules recently discovered by Hinode are an example of small-scale impulsive events occurring in the chromosphere. The exist ence of these and other small-scale phenomena is not surprising given the highly structured nature of the magnetic field that is revealed by photospheric observations. Dynamic phenomena also occur on much lar ger scales, including coronal jets, flares, and CMEs. It is tempting to suggest that these different phenomena are all closely related and represent a continuous distribution of sizes and energies. However, this is a dangerous over simplification in my opinion. While it is tru e that the phenomena all involve "magnetic reconnection" (the changin g of field line connectivity) in some form, how this occurs depends s trongly on the magnetic geometry. A nanoflare resulting from the interaction of tangled magnetic strands within a confined coronal loop is much different from a major flare occurring at the current sheet form ed when a CME rips open an active region. I will review the evidence for ubiquitous small-scale dynamic phenomena on the Sun and discuss wh y different phenomena are not all fundamentally the same.

  19. Op art and visual perception.

    PubMed

    Wade, N J

    1978-01-01

    An attempt is made to list the visual phenomena exploited in op art. These include moire frinlude moiré fringes, afterimages, Hermann grid effects, Gestalt grouping principles, blurring and movement due to astigmatic fluctuations in accommodation, scintillation and streaming possibly due to eye movements, and visual persistence. The historical origins of these phenomena are also noted.

  20. Large-scale phenomena, chapter 3, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.

  1. State of the Art of Interpersonal Physiology in Psychotherapy: A Systematic Review.

    PubMed

    Kleinbub, Johann R

    2017-01-01

    Introduction: The fast expanding field of Interpersonal Physiology (IP) focuses on the study of co-ordination or synchronization dynamics between the physiological activities of two, or more, individuals. IP has been associated with various relational features (e.g., empathy, attachment security, rapport, closeness…) that overlap with desirable characteristics of clinical relationships, suggesting that the relevant studies might provide objective, economical, and theory-free techniques to investigate the clinical process. The goal of the present work is to systematically retrieve and review the literature on IP in the field of psychotherapy and psychological intervention, in order to consolidate the knowledge of this research domain, highlight its critical issues, and delineate possible developments. Method: Following the guidelines by Okoli and Schabram (2010), a systematic literature search was performed in Scopus, Web of Science, PsycINFO, and PubMed databases by means of multiple keyword combinations; the results were integrated with references to the retrieved articles' bibliography as well as to other published reviews on IP. Results: All the retrieved documents reported clinical interactions that are characterized, at least partially, by IP phenomena. They appear to use fragmented and sometimes ambiguous terminology and show a lack of both specific theory-informed hypotheses and sound analytical procedures. Conclusion: Although the psychological nature of IP and its role in the clinical relationship are still mostly unknown, the potential value of a physiology-based measure of implicit exchanges in psychotherapy drives an acceleration in this research field. On the basis of the highlighted critical issues, possible future directions for clinical IP researchers are discussed.

  2. Modelling complex phenomena in optical fibres

    NASA Astrophysics Data System (ADS)

    Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike

    2012-09-01

    We present a new model for predicting the performance of fibre systems in the multimode limit. This is based on ray-­-tracing but includes a semi-­-empirical description of Focal Ratio Degradation (FRD). We show how FRD is simulated by the model. With this ability, it can be used to investigate a wide variety of phenomena including scrambling and the loss of light close to the limiting numerical aperture. It can also be used to predict the performance of non-­-round and asymmetric fibres.

  3. Method and apparatus for identifying, locating and quantifying physical phenomena and structure including same

    DOEpatents

    Richardson, John G.

    2006-01-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  4. Australian Aboriginal Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical component includes a deep understanding of the motion of objects in the sky, and this knowledge was used for practical purposes such as constructing calendars. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, paid careful attention to unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees.

  5. Physiological changes in neurodegeneration - mechanistic insights and clinical utility.

    PubMed

    Ahmed, Rebekah M; Ke, Yazi D; Vucic, Steve; Ittner, Lars M; Seeley, William; Hodges, John R; Piguet, Olivier; Halliday, Glenda; Kiernan, Matthew C

    2018-05-01

    The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.

  6. Sensory phenomena related to tics, obsessive-compulsive symptoms, and global functioning in Tourette syndrome.

    PubMed

    Kano, Yukiko; Matsuda, Natsumi; Nonaka, Maiko; Fujio, Miyuki; Kuwabara, Hitoshi; Kono, Toshiaki

    2015-10-01

    Sensory phenomena, including premonitory urges, are experienced by patients with Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The goal of the present study was to investigate such phenomena related to tics, obsessive-compulsive symptoms (OCS), and global functioning in Japanese patients with TS. Forty-one patients with TS were assessed using the University of São Paulo Sensory Phenomena Scale (USP-SPS), the Premonitory Urge for Tics Scale (PUTS), the Yale Global Tic Severity Scale (YGTSS), the Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS), and the Global Assessment of Functioning (GAF) Scale. USP-SPS and PUTS total scores were significantly correlated with YGTSS total and vocal tics scores. Additionally, both sensory phenomena severity scores were significantly correlated with DY-BOCS total OCS scores. Of the six dimensional OCS scores, the USP-SPS scores were significantly correlated with measures of aggression and sexual/religious dimensions. Finally, the PUTS total scores were significantly and negatively correlated with GAF scores. By assessing premonitory urges and broader sensory phenomena, and by viewing OCS from a dimensional approach, this study provides significant insight into sensory phenomena related to tics, OCS, and global functioning in patients with TS. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. How to Measure Qualitative Understanding of DC-Circuit Phenomena - Taking a Closer Look at the External Representations of 9-Year-Olds

    NASA Astrophysics Data System (ADS)

    Kallunki, Veera

    2013-04-01

    Pupils' qualitative understanding of DC-circuit phenomena is reported to be weak. In numerous research reports lists of problems in understanding the functioning of simple DC-circuits have been presented. So-called mental model surveys have uncovered difficulties in different age groups, and in different phases of instruction. In this study, the concept of qualitative understanding, and the content or position of reported mental models of DC-circuit phenomena are discussed. On the grounds of this review, new tools for investigating qualitative understanding and analysing external representations of DC-circuit phenomena are presented. According to this approach, the external representations of DC-circuit phenomena that describe pupils' expressed conceptions of the topic should include both empirical-based models and theoretical explanations. In the empirical part of this study , third-graders (9-year-olds) learning DC-circuit phenomena in a comprehensive school in a small group were scrutinised. The focus of the study is the external representations manifested in the talk of the small group. The study challenges earlier studies, which claim that children exhibit a wide range of qualitative difficulties when learning DC-circuit phenomena. In this study it will be shown that even in the case of abstract subject matter like DC-circuit phenomena, small groups that highlight empirical-based modelling and activate talk can be a fruitful learning environment, where pupils' qualitative understanding really develops. Thus, the study proposes taking a closer look at pupils' external representations concerning DC-circuit phenomena.

  8. Publications of the space physiology and countermeasures program, regulatory physiology discipline: 1980 - 1990

    NASA Technical Reports Server (NTRS)

    Wallace-Robinson, Janice; Dickson, Katherine J.; Hess, Elizabeth; Powers, Janet V.

    1992-01-01

    A 10-year cumulative bibliography of publications resulting from research supported by the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are circadian rhythms, endocrinology, fluid and electrolyte regulation, hematology, immunology, metabolism and nutrition, temperature regulation, and general regulatory physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified by asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  9. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  10. Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans

    PubMed Central

    YOSHIDA, MANABU

    2005-01-01

    Activation of the sperm motility and chemotactic behavior of sperm toward eggs are the first communication between spermatozoa and eggs at fertilization, and understanding of the phenomena is a prerequisite for progress of not only basic biology, but also clinical aspects. The nature of molecules derived from eggs by which sperm are activated and attracted towards the eggs and the molecular mechanisms underlying the sperm activation and chemotaxis have been investigated in only a few invertebrate species, sea urchins, ascidians and herring fish. However, knowledge on this phenomena has been ignored in mammalian species including humans. The current review first introduces the studies on the activation and chemotaxis of sperm in marine invertebrates, and the same phenomena in mammals including humans, are described. (Reprod Med Biol 2005; 4: 101–115) PMID:29699215

  11. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system

    PubMed Central

    Rojas-Líbano, Daniel

    2008-01-01

    Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484

  12. Visualization of bioelectric phenomena.

    PubMed

    Palmer, T C; Simpson, E V; Kavanagh, K M; Smith, W M

    1992-01-01

    Biomedical investigators are currently able to acquire and analyze physiological and anatomical data from three-dimensional structures in the body. Often, multiple kinds of data can be recorded simultaneously. The usefulness of this information, either for exploratory viewing or for presentation to others, is limited by the lack of techniques to display it in intuitive, accessible formats. Unfortunately, the complexity of scientific visualization techniques and the inflexibility of commercial packages deter investigators from using sophisticated visualization methods that could provide them added insight into the mechanisms of the phenomena under study. Also, the sheer volume of such data is a problem. High-performance computing resources are often required for storage and processing, in addition to visualization. This chapter describes a novel, language-based interface that allows scientists with basic programming skills to classify and render multivariate volumetric data with a modest investment in software training. The interface facilitates data exploration by enabling experimentation with various algorithms to compute opacity and color from volumetric data. The value of the system is demonstrated using data from cardiac mapping studies, in which multiple electrodes are placed in an on the heart to measure the cardiac electrical activity intrinsic to the heart and its response to external stimulation.

  13. Sexual and Emotional Infidelity: Evolved Gender Differences in Jealousy Prove Robust and Replicable.

    PubMed

    Buss, David M

    2018-03-01

    Infidelity poses threats to high-investment mating relationships. Because of gender differences in some aspects of reproductive biology, such as internal female fertilization, the nature of these threats differs for men and women. Men, but not women, for example, have recurrently faced the problem of uncertainty in their genetic parenthood. Jealousy is an emotion hypothesized to have evolved to combat these threats. The 1992 article Sex Differences in Jealousy: Evolution, Physiology, and Psychology reported three empirical studies using two different methods, forced-choice and physiological experiments. Results supported the evolution-based hypotheses. The article became highly cited for several reasons. It elevated the status of jealousy as an important emotion to be explained by any comprehensive theory of human emotions. Subsequent meta-analyses robustly supported the evolutionary hypotheses. Moreover, the work supported the evolutionary meta-theory of gender differences, which posits differences only in domains in which the sexes have recurrently faced distinct adaptive problems. It also heralded the newly emerging field of evolutionary psychology as a useful perspective that possesses the scientific virtues of testability, falsifiability, and heuristic value in discovering previously unknown psychological phenomena.

  14. Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.

    PubMed

    Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2016-11-01

    With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Theoretical study on the constricted flow phenomena in arteries

    NASA Astrophysics Data System (ADS)

    Sen, S.; Chakravarty, S.

    2012-12-01

    The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

  16. The challenge of cardiac modeling--interaction and integration.

    PubMed

    Sideman, Samuel

    2006-10-01

    The goal of clinical cardiology is to obtain an integrated picture of the interacting parameters of muscle and vessel mechanics, blood circulation and myocardial perfusion, oxygen consumption and energy metabolism, and electrical activation and heart rate, thus relating to the true physiological and pathophysiological characteristics of the heart. Scientific insight into the cardiac physiology and performance is achieved by utilizing life sciences, for example, molecular biology, genetics and related intra- and intercellular phenomena, as well as the exact sciences, for example, mathematics, computer science, and related imaging and visualization techniques. The tools to achieve these goals are based on the intimate interactions between engineering science and medicine and the developments of modern, medically oriented technology. Most significant is the beneficiary effect of the globalization of science, the Internet, and the unprecedented international interaction and scientific cooperation in facing difficult multidisciplined challenges. This meeting aims to explore some important interactions in the cardiac system and relate to the integration of spatial and temporal interacting system parameters, so as to gain better insight into the structure and function of the cardiac system, thus leading to better therapeutic modalities.

  17. Yin Yang 1 Is a Critical Repressor of Matrix Metalloproteinase-9 Expression in Brain Neurons*

    PubMed Central

    Rylski, Marcin; Amborska, Renata; Zybura, Katarzyna; Mioduszewska, Barbara; Michaluk, Piotr; Jaworski, Jacek; Kaczmarek, Leszek

    2008-01-01

    Membrane depolarization controls long lasting adaptive neuronal changes in brain physiology and pathology. Such responses are believed to be gene expression-dependent. Notably, however, only a couple of gene repressors active in nondepolarized neurons have been described. In this study, we show that in the unstimulated rat hippocampus in vivo, as well as in the nondepolarized brain neurons in primary culture, the transcriptional regulator Yin Yang 1 (YY1) is bound to the proximal Mmp-9 promoter and strongly represses Mmp-9 transcription. Furthermore, we demonstrate that monoubiquitinated and CtBP1 (C-terminal binding protein 1)-bound YY1 regulates Mmp-9 mRNA synthesis in rat brain neurons controlling its transcription apparently via HDAC3-dependent histone deacetylation. In conclusion, our data suggest that YY1 exerts, via epigenetic mechanisms, a control over neuronal expression of MMP-9. Because MMP-9 has recently been shown to play a pivotal role in physiological and pathological neuronal plasticity, YY1 may be implicated in these phenomena as well. PMID:18940814

  18. 2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids

    NASA Astrophysics Data System (ADS)

    Denaro, F. M.; Sarghini, F.

    2002-04-01

    Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco-Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright

  19. A pharma perspective on the systems medicine and pharmacology of inflammation.

    PubMed

    Lahoz-Beneytez, Julio; Schnizler, Katrin; Eissing, Thomas

    2015-02-01

    Biological systems are complex and comprehend multiple scales of organisation. Hence, holistic approaches are necessary to capture the behaviour of these entities from the molecular and cellular to the whole organism level. This also applies to the understanding and treatment of different diseases. Traditional systems biology has been successful in describing different biological phenomena at the cellular level, but it still lacks of a holistic description of the multi-scale interactions within the body. The importance of the physiological context is of particular interest in inflammation. Regulatory agencies have urged the scientific community to increase the translational power of bio-medical research and it has been recognised that modelling and simulation could be a path to follow. Interestingly, in pharma R&D, modelling and simulation has been employed since a long time ago. Systems pharmacology, and particularly physiologically based pharmacokinetic/pharmacodynamic models, serve as a suitable framework to integrate the available and emerging knowledge at different levels of the drug development process. Systems medicine and pharmacology of inflammation will potentially benefit from this framework in order to better understand inflammatory diseases and to help to transfer the vast knowledge on the molecular and cellular level into a more physiological context. Ultimately, this may lead to reliable predictions of clinical outcomes such as disease progression or treatment efficacy, contributing thereby to a better care of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Alcoholics anonymous and twelve-step recovery: A model based on social and cognitive neuroscience.

    PubMed

    Galanter, Marc

    2013-08-12

    In the course of achieving abstinence from alcohol, longstanding members of Alcoholics Anonymous (AA) typically experience a change in their addiction-related attitudes and behaviors. These changes are reflective of physiologically grounded mechanisms which can be investigated within the disciplines of social and cognitive neuroscience. This article is designed to examine recent findings associated with these disciplines that may shed light on the mechanisms underlying this change. Literature review and hypothesis development. Pertinent aspects of the neural impact of drugs of abuse are summarized. After this, research regarding specific brain sites, elucidated primarily by imaging techniques, is reviewed relative to the following: Mirroring and mentalizing are described in relation to experimentally modeled studies on empathy and mutuality, which may parallel the experiences of social interaction and influence on AA members. Integration and retrieval of memories acquired in a setting like AA are described, and are related to studies on storytelling, models of self-schema development, and value formation. A model for ascription to a Higher Power is presented. The phenomena associated with AA reflect greater complexity than the empirical studies on which this article is based, and certainly require further elucidation. Despite this substantial limitation in currently available findings, there is heuristic value in considering the relationship between the brain-based and clinical phenomena described here. There are opportunities for the study of neuroscientific correlates of Twelve-Step-based recovery, and these can potentially enhance our understanding of related clinical phenomena. (Am J Addict 2013;XX:1-8). Copyright © American Academy of Addiction Psychiatry.

  1. Eighty phenomena about the self: representation, evaluation, regulation, and change

    PubMed Central

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  2. [Is the brain the creator of psychic phenomena or is a paradigm shift inevitable?].

    PubMed

    Bonilla, Ernesto

    2014-06-01

    Every day new scientific information is appearing that cannot be explained using the classical Newtonian model and is calling for the emergence of a new paradigm that would include the explanation of such phenomena as telepathy, clairvoyance, presentiment, precognition, out of the body experiences, psychic healing, after-death communication, near-death experiences and reincarnation. The materialist paradigm which considers the brain as the sole cause of consciousness and psychic phenomena has been challenged by a new paradigm that seems to demonstrate that there is not a cause-effect relationship between brain activity and psychic phenomena but only a correlation between them, since these phenomena can be experienced without the body and appear to have an extra-cerebral origin (cosmic field, cosmic consciousness?). Of course, the brain is intensely involved in the manifestation of consciousness in our daily life but this is not equivalent to affirm that brain creates consciousness. Recent findings force us to consider a non-physical, spiritual and transpersonal aspect of reality.

  3. Empirical Validation of Integrated Learning Performances for Hydrologic Phenomena: 3rd-Grade Students' Model-Driven Explanation-Construction

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Water is a crucial topic that spans the K-12 science curriculum, including the elementary grades. Students should engage in the articulation, negotiation, and revision of model-based explanations about hydrologic phenomena. However, past research has shown that students, particularly early learners, often struggle to understand hydrologic…

  4. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. Copyright 2002 S. Karger AG, Basel

  5. Wave Interactions and Fluid Flows

    NASA Astrophysics Data System (ADS)

    Craik, Alex D. D.

    1988-07-01

    This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.

  6. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  7. Systems biology: the case for a systems science approach to diabetes.

    PubMed

    Petrasek, Danny

    2008-01-01

    The unprecedented accumulation of biological data in recent decades has underscored the need to organize and integrate the massive collection of information. In addition, there is rising agreement among biologists that a complete understanding of a single cell will not lead directly to a complete understanding of a system of cells. The success of a systems science approach in engineering and physics may be of great value in the evolution of biological science. This article reviews some examples that suggest the importance of a systems biology approach and, in addition, advance one specific systems science principle, the conservation of uncertainty, which may give insight into the emergent behavior of numerous biological and physiological phenomena.

  8. Bifurcation analysis of nephron pressure and flow regulation

    NASA Astrophysics Data System (ADS)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    1996-09-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.

  9. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    PubMed Central

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  10. Use of the new levodopa agent Stalevo (levodopa/carbidopa/entacapone) in the treatment of Parkinson's disease in out-patient clinical practice (the START-M open trial).

    PubMed

    Boiko, A N; Batysheva, T T; Minaeva, N G; Babina, L A; Vdovichenko, T V; Zhuravleva, E Yu; Shikhkerimov, R K; Malykhina, E A; Khozova, A A; Zaitsev, K A; Kostenko, E V

    2008-11-01

    Despite the significant symptomatic effects of levodopa, stable 24-h treatment responses are in the vast majority of patients replaced 2-3 years from the start of treatment by oscillations in motor symptoms (fluctuation, dyskinesia), amelioration of which requires addition of constant (physiological) stimulation of postsynaptic dopamine receptors. To some extent this is provided by Stalevo, which contains levodopa and two enzyme inhibitors: the DDC inhibitor carbidopa and the COMT inhibitor entacapone. The results obtained in the present study demonstrated the advantages of Stalevo over traditional agents in patients with the "wearing off" and "on-off" phenomena.

  11. Asymmetry in power-law magnitude correlations.

    PubMed

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  12. The Astronomy of Aboriginal Australia

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    2011-06-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, which is usually reported in terms of songs or stories associated with stars and constellations. Here we argue that the astronomical components extend further, and include a search for meaning in the sky, beyond simply mirroring the earth-bound understanding. In particular, we have found that traditional Aboriginal cultures include a deep understanding of the motion of objects in the sky, and that this knowledge was used for practical purposes such as constructing calendars. We also present evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, and paid careful attention to unexpected phenomena such as eclipses and meteorite impacts.

  13. Publications of the Space Physiology and Countermeasures Program, Cardiopulmonary Discipline: 1980-1990

    NASA Technical Reports Server (NTRS)

    Powers, Janet V.; Wallace-Robinson, Janice; Dickson, Katherine J.; Hess, Elizabeth

    1992-01-01

    A 10-year cumulative bibliography of publications resulting from research supported by the Cardiopulmonary Discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are Fluid Shifts, Cardiovascular Fitness, Cardiovascular Physiology, and Pulmonary Physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  14. Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture

    NASA Technical Reports Server (NTRS)

    Gloersen, Per (Inventor)

    2004-01-01

    An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.

  15. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    PubMed

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Review of Static Approaches to Surgical Correction of Presbyopia

    PubMed Central

    Zare Mehrjerdi, Mohammad Ali; Mohebbi, Masomeh; Zandian, Mehdi

    2017-01-01

    Presbyopia is the primary cause of reduction in the quality of life of people in their 40s, due to dependence on spectacles. Therefore, presbyopia correction has become an evolving and rapidly progressive field in refractive surgery. There are two primary options for presbyopia correction: the dynamic approach uses the residual accommodative capacity of the eye, and the static approach attempts to enhance the depth of focus of the optical system. The dynamic approach attempts to reverse suspected pathophysiologic changes. Dynamic approaches such as accommodative intraocular lenses (IOLs), scleral expansion techniques, refilling, and photodisruption of the crystalline lens have attracted less clinical interest due to inconsistent results and the complexity of the techniques. We have reviewed the most popular static techniques in presbyopia surgery, including multifocal IOLs, PresbyLASIK, and corneal inlays, but we should emphasize that these techniques are very different from the physiologic status of an untouched eye. A systematic PubMed search for the keywords “presbylasik”, “multifocal IOL”, and “presbyopic corneal inlay” revealed 634 articles; 124 were controlled clinical trials, 95 were published in the previous 10 years, and 78 were English with available full text. We reviewed the abstracts and rejected the unrelated articles; other references were included as needed. This narrative review compares different treatments according to available information on the optical basis of each treatment modality, including the clinical outcomes such as near, intermediate, and far visual acuity, spectacles independence, quality of vision, and dysphotopic phenomena. PMID:29090052

  17. Modeling the interaction between plant canopies and the planetary boundary layer using a new 1D multi-layer soil- vegetation-atmosphere transfer (SVAT) scheme combined with a non-local turbulence closure model

    NASA Astrophysics Data System (ADS)

    Yetzer, Kenneth H.

    A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.

  18. Annual Conference on Nuclear and Space Radiation Effects, 17th, Cornell University, Ithaca, N.Y., July 15-18, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Mcgarrity, J. M.

    1980-01-01

    The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.

  19. Modeling of Economy Considering Crisis

    NASA Astrophysics Data System (ADS)

    Petrov, Lev F.

    2009-09-01

    We discuss main modeling's problems of economy dynamic processes and the reason forecast's absence of economic crisis. We present a structure of complexity level of system and models and discuss expected results concerning crisis phenomena. We formulate the basic perspective directions of the mathematical modeling of economy, including possibility of the analysis of the pre crisis, crisis and post crisis phenomena in economic systems.

  20. A Neuro-Mechanical Model Explaining the Physiological Role of Fast and Slow Muscle Fibres at Stop and Start of Stepping of an Insect Leg

    PubMed Central

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too. PMID:24278108

  1. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar

    2017-01-01

    Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model.

    PubMed

    Biglino, Giovanni; Corsini, Chiara; Schievano, Silvia; Dubini, Gabriele; Giardini, Alessandro; Hsia, Tain-Yen; Pennati, Giancarlo; Taylor, Andrew M

    2014-05-01

    Reliability of computational models for cardiovascular investigations strongly depends on their validation against physical data. This study aims to experimentally validate a computational model of complex congenital heart disease (i.e., surgically palliated hypoplastic left heart syndrome with aortic coarctation) thus demonstrating that hemodynamic information can be reliably extrapolated from the model for clinically meaningful investigations. A patient-specific aortic arch model was tested in a mock circulatory system and the same flow conditions were re-created in silico, by setting an appropriate lumped parameter network (LPN) attached to the same three-dimensional (3D) aortic model (i.e., multi-scale approach). The model included a modified Blalock-Taussig shunt and coarctation of the aorta. Different flow regimes were tested as well as the impact of uncertainty in viscosity. Computational flow and pressure results were in good agreement with the experimental signals, both qualitatively, in terms of the shape of the waveforms, and quantitatively (mean aortic pressure 62.3 vs. 65.1 mmHg, 4.8% difference; mean aortic flow 28.0 vs. 28.4% inlet flow, 1.4% difference; coarctation pressure drop 30.0 vs. 33.5 mmHg, 10.4% difference), proving the reliability of the numerical approach. It was observed that substantial changes in fluid viscosity or using a turbulent model in the numerical simulations did not significantly affect flows and pressures of the investigated physiology. Results highlighted how the non-linear fluid dynamic phenomena occurring in vitro must be properly described to ensure satisfactory agreement. This study presents methodological considerations for using experimental data to preliminarily set up a computational model, and then simulate a complex congenital physiology using a multi-scale approach.

  3. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    PubMed

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-31

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  4. Thermal adaptation of decomposer communities in warming soils

    PubMed Central

    Bradford, Mark A.

    2013-01-01

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change. PMID:24339821

  5. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress.

    PubMed

    Wang, Youji; Li, Lisha; Hu, Menghong; Lu, Weiqun

    2015-05-01

    Anthropogenic CO₂ emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3)×two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nutritional and environmental effects on reproduction in small ruminants.

    PubMed

    Martin, G B; Rodger, J; Blache, D

    2004-01-01

    Animals live in environments that are both complex and continually changing, so they have to respond to short- and long-term variations in a wide range of factors, such as photoperiod, nutrition and sociosexual signals. Before they were domesticated, animals developed reproductive strategies that coped with these changes and often took advantage of them. The physiological processes that implement these strategies have been modified to some extent during several millennia of controlled breeding, but most persist. Thus, many genotypes still exhibit profound responses to external inputs, such as the induction of ovulation by sociosexual signals and the doubling of litter size by a change in nutrition. The complexity in these responses is now becoming clearer. For example, with sociosexual signals, we now need to consider the stimulatory effects of males on females, of females on males and of females on females. Similarly, the impact of nutrition has been extended beyond the control of puberty and the production of gametes to include phenomena such as 'fetal programming', with its potentially profound effects on the life-long performance of the animals. Fortunately, our capacity to research these phenomena has been greatly enhanced by technical improvements in hormone assays, molecular and cellular biology, and real-time ultrasound. This has brought us a better understanding of several of the environmental influences on reproduction, including: the cellular processes within ovarian follicles that mediate the effect of nutrition on ovulation rate; the neuroendocrine pathways through which nutritional inputs affect the brain centres that control appetite and reproduction; and the intracerebral pathways through which sociosexual signals (olfactory and non-olfactory) stimulate the reproductive axis. Importantly, we are now beginning to realise that, as well as considering interactions between environmental inputs and genotype, we need to take into account interactions between the environmental factors themselves, just as the animals do. We still have a long way to go for a complete understanding, but we are nevertheless in a position where we can begin to use this information to develop new management systems for our animals to improve their productivity.

  7. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties.

    PubMed

    Burkitt, A N

    2006-08-01

    The integrate-and-fire neuron model describes the state of a neuron in terms of its membrane potential, which is determined by the synaptic inputs and the injected current that the neuron receives. When the membrane potential reaches a threshold, an action potential (spike) is generated. This review considers the model in which the synaptic input varies periodically and is described by an inhomogeneous Poisson process, with both current and conductance synapses. The focus is on the mathematical methods that allow the output spike distribution to be analyzed, including first passage time methods and the Fokker-Planck equation. Recent interest in the response of neurons to periodic input has in part arisen from the study of stochastic resonance, which is the noise-induced enhancement of the signal-to-noise ratio. Networks of integrate-and-fire neurons behave in a wide variety of ways and have been used to model a variety of neural, physiological, and psychological phenomena. The properties of the integrate-and-fire neuron model with synaptic input described as a temporally homogeneous Poisson process are reviewed in an accompanying paper (Burkitt in Biol Cybern, 2006).

  8. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory.

    PubMed

    Schuff, M M; Gore, J P; Nauman, E A

    2013-05-01

    In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.

  9. Immune challenge retards seasonal reproductive regression in rodents: evidence for terminal investment.

    PubMed

    Weil, Zachary M; Martin, Lynn B; Workman, Joanna L; Nelson, Randy J

    2006-09-22

    Animals must balance investments in different physiological activities to allow them to maximize fitness in the environments they inhabit. These adjustments among reproduction, growth and survival are mandated because of the competing high costs of each process. Seasonally breeding rodents generally bias their investments towards reproduction when environmental conditions are benign, but shift these investments towards processes that promote survival, including immune activity, when environmental conditions deteriorate. Because survival probability of non-tropical small mammals is generally low in winter, under certain circumstances, these animals may not allocate resources to survival mechanisms in an effort to produce as many offspring as possible in the face of increased probability of death. Such 'terminal investments' have been described in passerines, but there are few examples of such phenomena in small mammals. Here, we show that male Siberian hamsters (Phodopus sungorus) challenged with lipopolysaccharide (a component of gram-negative bacteria that activates the immune system) induced a small, but significant, retardation of seasonal regression of the reproductive system relative to saline-injected hamsters. This delayed reproductive regression likely reflects a strategy to maintain reproductive function when survival prospects are compromised by infection.

  10. Systemic Hydration: Relating Science to Clinical Practice in Vocal Health

    PubMed Central

    Hartley, Naomi A.; Thibeault, Susan L.

    2014-01-01

    Objectives To examine the current state of the science regarding the role of systemic hydration in vocal function and health. Study Design Literature Review Methods Literature search spanning multiple disciplines, including speech-language pathology, nutrition and dietetics, medicine, sports and exercise science, physiology and biomechanics. Results The relationship between hydration and physical function is an area of common interest amongst multiple professions. Each discipline provides valuable insight into the connection between performance and water balance, as well as complimentary methods of investigation. Existing voice literature suggests a relationship between hydration and voice production, however the underlying mechanisms are not yet defined and a treatment effect for systemic hydration remains to be demonstrated. Literature from other disciplines sheds light on methodological shortcomings and in some cases offers an alternative explanation for observed phenomena. Conclusions A growing body of literature in the field of voice science is documenting a relationship between hydration and vocal function, however greater understanding is required to guide best practice in the maintenance of vocal health and management of voice disorders. Integration of knowledge and technical expertise from multiple disciplines facilitates analysis of existing literature and provides guidance as to future research. PMID:24880674

  11. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  12. Chronic disaster syndrome: Displacement, disaster capitalism, and the eviction of the poor from New Orleans

    PubMed Central

    ADAMS, VINCANNE; VAN HATTUM, TASLIM; ENGLISH, DIANA

    2009-01-01

    Many New Orleans residents who were displaced in 2005 by Hurricanes Katrina and Rita and the subsequent levee failures and floods are still displaced. Living with long-term stress related to loss of family, community, jobs, and social security as well as the continuous struggle for a decent life in unsettled life circumstances, they manifest what we are calling “chronic disaster syndrome.” The term refers not only to the physiological and psychological effects generated at the individual level by ongoing social disruption but also to the nexus of socioeconomic and political conditions that produce this situation as a long-term and intractable problem. Chronic disaster syndrome emerges from the convergence of three phenomena that create a nexus of displacement: long-term effects of personal trauma (including near loss of life and loss of family members, homes, jobs, community, financial security, and well-being); the social arrangements that enable the smooth functioning of what Naomi Klein calls “disaster capitalism,” in which “disaster” is prolonged as a way of life; and the permanent displacement of the most vulnerable populations from the social landscape as a perceived remedy that actually exacerbates the syndrome. PMID:20161644

  13. Chronic disaster syndrome: Displacement, disaster capitalism, and the eviction of the poor from New Orleans.

    PubMed

    Adams, Vincanne; VAN Hattum, Taslim; English, Diana

    2009-11-01

    Many New Orleans residents who were displaced in 2005 by Hurricanes Katrina and Rita and the subsequent levee failures and floods are still displaced. Living with long-term stress related to loss of family, community, jobs, and social security as well as the continuous struggle for a decent life in unsettled life circumstances, they manifest what we are calling "chronic disaster syndrome." The term refers not only to the physiological and psychological effects generated at the individual level by ongoing social disruption but also to the nexus of socioeconomic and political conditions that produce this situation as a long-term and intractable problem. Chronic disaster syndrome emerges from the convergence of three phenomena that create a nexus of displacement: long-term effects of personal trauma (including near loss of life and loss of family members, homes, jobs, community, financial security, and well-being); the social arrangements that enable the smooth functioning of what Naomi Klein calls "disaster capitalism," in which "disaster" is prolonged as a way of life; and the permanent displacement of the most vulnerable populations from the social landscape as a perceived remedy that actually exacerbates the syndrome.

  14. Rate-Related Left Bundle Branch Block and Cardiac Memory in a Patient with Bradycardia: Case Report and Literature Review.

    PubMed

    Seibolt, Luke; Maestas, Camila; Lazkani, Mohamad; Fatima, Umaima; Loli, Akil; Chesser, Michael

    2018-06-19

    Rate-related left bundle branch block (LBBB) is a well-studied phenomenon. Cardiac memory is another physiologic phenomenon in which T-wave abnormalities occur in the absence of ischemia. The association between these two phenomena has been described in several case reports. A literature review was performed through OVID and Pubmed, where at total of 93 cases of rate- related LBBB were identified. Cases were reviewed and data were collected on rates of appearance and disappearance as well as the presence or absence of cardiac memory. There is some overlap in the rate at which LBBB appear. Cardiac memory is associated with rate-related LBBB in several cases but its true prevalence is unknown. Cardiac memory is a phenomenon that is well described in the literature but is often under-recognized in clinical practice. As a consequence of overlooking this phenomenon and not including cardiac memory in the differential when T-wave abnormalities are observed, patients may be subjected to unnecessary invasive diagnostic testing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A mathematical function for the description of nutrient-response curve

    PubMed Central

    Ahmadi, Hamed

    2017-01-01

    Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271

  16. Report on the solar physics-plasma physics workshop

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  17. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  18. Physiologic measures of sexual function in women: a review.

    PubMed

    Woodard, Terri L; Diamond, Michael P

    2009-07-01

    To review and describe physiologic measures of assessing sexual function in women. Literature review. Studies that use instruments designed to measure female sexual function. Women participating in studies of female sexual function. Various instruments that measure physiologic features of female sexual function. Appraisal of the various instruments, including their advantages and disadvantages. Many unique physiologic methods of evaluating female sexual function have been developed during the past four decades. Each method has its benefits and limitations. Many physiologic methods exist, but most are not well-validated. In addition there has been an inability to correlate most physiologic measures with subjective measures of sexual arousal. Furthermore, given the complex nature of the sexual response in women, physiologic measures should be considered in context of other data, including the history, physical examination, and validated questionnaires. Nonetheless, the existence of appropriate physiologic measures is vital to our understanding of female sexual function and dysfunction.

  19. Phenomenology of hallucinations, illusions, and delusions as part of seizure semiology.

    PubMed

    Kasper, B S; Kasper, E M; Pauli, E; Stefan, H

    2010-05-01

    In partial epilepsy, a localized hypersynchronous neuronal discharge evolving into a partial seizure affecting a particular cortical region or cerebral subsystem can give rise to subjective symptoms, which are perceived by the affected person only, that is, ictal hallucinations, illusions, or delusions. When forming the beginning of a symptom sequence leading to impairment of consciousness and/or a classic generalized seizure, these phenomena are referred to as an epileptic aura, but they also occur in isolation. They often manifest in the fully awake state, as part of simple partial seizures, but they also can be associated to different degrees of disturbed consciousness. Initial ictal symptoms often are closely related to the physiological functions of the cortical circuit involved and, therefore, can provide localizing information. When brain regions related to sensory integration are involved, the seizure discharge can cause specific kinds of hallucinations, for example, visual, auditory, gustatory, olfactory, and cutaneous sensory sensations. In addition to these elementary sensory perceptions, quite complex hallucinations related to a partial seizure can arise, for example, perception of visual scenes or hearing music. By involving psychic and emotional spheres of human perception, many seizures also give rise to hallucinatory emotional states (e.g., fear or happiness) or even more complex hallucinations (e.g., visuospatial phenomena), illusions (e.g., déjà vu, out-of-body experience), or delusional beliefs (e.g., identity change) that often are not easily recognized as epileptic. Here we suggest a classification into elementary sensory, complex sensory, and complex integratory seizure symptoms. Epileptic hallucinations, illusions, and delusions shine interesting light on the physiology and functional anatomy of brain regions involved and their functions in the human being. This article, in which 10 cases are described, introduces the fascinating phenomenology of subjective seizure symptoms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE PAGES

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; ...

    2017-09-05

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  1. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  2. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  3. Physiology Applied to Everyday: The Practice of Professional Contextualization of Physiology Concepts as a Way of Facilitating Learning

    ERIC Educational Resources Information Center

    Borges, Sidnei; Mello-Carpes, Pâmela Billig

    2014-01-01

    The teaching of Physiology is indispensable in many biological and health disciplines. Physiology is one of the major components of the curriculum in a number of life science courses, including the study of life, cells, tissues, and organisms as well as their functions. A bigger challenge for physiology teachers is to make physiological concepts…

  4. [Tone psychology and music research as catalysts of experimental-scientific practice and methodology in the circle of Carl Stumpf].

    PubMed

    Klotz, Sebastian

    2008-09-01

    The study of acoustics, harmonics and of music has been providing scientific models since Greek Antiquity. Since the early modern ages, two separate cultures began to emerge out of the study of music: a technical acoustics and an aesthetically and philosophically inspired musical criticism. In the writings of Johann Friedrich Herbart (1811) a scientific approach to musical aesthetics and to music perception is taking shape that reinstalls the listening process as a highly complex and logical phenomenon. By opening music for a scientific psychological investigation, Herbart pioneered the physiologically and acoustically grounded seminal work by Hermann von Helmholtz On the sensations of tone (1863) which the author considered a prerequisite for musical aesthetics and music theory. Helmholtz in turn inspired the philosopher and psychologist Carl Stumpf to further investigate musical perception (beginning in 1883). To Stumpf, it provided a paradigm for experimental psychology as mental functions and phenomena could be studied in detail. These functions and phenomena are the actual objects of scientific study in Stumpf's inductive and descriptive psychology. Combining insights from statistics, ethnology, anthropology, psychoacoustics and the cultural history of mankind, Stumpf and his team developed a new blend of science which absorbs styles of reasoning, analytical procedures and academic convictions from natural history, the natural sciences and the humanities but at the same time identifies shortcomings of these approaches that fail to grasp the complexities of psychic functions. Despite their reliance on the quasi-objective phonograph and despite their commitment to objectivity, precision and measurement, mental phenomena relating to tonal perception and to music provided too complex a challenge to be easily articulated and shared by the scientific community after 1900. The essay illustrates these tensions against the background of a history of objectivity.

  5. A phenomenology of meditation-induced light experiences: traditional buddhist and neurobiological perspectives

    PubMed Central

    Lindahl, Jared R.; Kaplan, Christopher T.; Winget, Evan M.; Britton, Willoughby B.

    2014-01-01

    The scientific study of Buddhist meditation has proceeded without much attention to Buddhist literature that details the range of psychological and physiological changes thought to occur during meditation. This paper presents reports of various meditation-induced light experiences derived from American Buddhist practitioners. The reports of light experiences are classified into two main types: discrete lightforms and patterned or diffuse lights. Similar phenomena are well documented in traditional Buddhist texts but are virtually undocumented in scientific literature on meditation. Within Buddhist traditions, these phenomena are attributed a range of interpretations. However, because it is insufficient and problematic to rely solely upon the textual sources as a means of investigating the cause or significance of these phenomena, these qualitative reports are also considered in relation to scientific research on light-related experiences in the context of sensory deprivation, perceptual isolation, and clinical disorders of the visual system. The typologies derived from these studies also rely upon reports of experiences and closely match typologies derived from the qualitative study of contemporary practitioners and typologies found in Buddhist literary traditions. Taken together, these studies also provide evidence in support of the hypothesis that certain meditative practices – especially those that deliberately decrease social, kinesthetic, and sensory stimulation and emphasize focused attention – have perceptual and cognitive outcomes similar to sensory deprivation. Given that sensory deprivation increases neuroplasticity, meditation may also have an enhanced neuroplastic potential beyond ordinary experience-dependent changes. By providing and contextualizing these reports of meditation-induced light experiences, scientists, clinicians, and meditators gain a more informed view of the range of experiences that can be elicited by contemplative practices. PMID:24427148

  6. A human model of restricted upper esophageal sphincter opening and its pharyngeal and UES deglutitive pressure phenomena

    PubMed Central

    Jiao, Hongmei; Mei, Ling; Sharma, Tarun; Kern, Mark; Sanvanson, Patrick

    2016-01-01

    Oropharyngeal dysphagia due to upper esophageal sphincter (UES) dysfunction is commonly encountered in the clinical setting. Selective experimental perturbation of various components of the deglutitive apparatus can provide an opportunity to improve our understanding of the swallowing physiology and pathophysiology. The aim is to characterize the pharyngeal and UES deglutitive pressure phenomena in an experimentally induced restriction of UES opening in humans. We studied 14 volunteers without any dysphagic symptoms (7 men, 66 ± 11 yr) but with various supraesophageal reflux symptoms. To induce UES restriction, we used a handmade device that with adjustment could selectively apply 0, 20, 30, or 40 mmHg pressure perpendicularly to the cricoid cartilage. Deglutitive pharyngeal and UES pressure phenomena were determined during dry and 5- and 10-ml water swallows × 3 for each of the UES perturbations. External cricoid pressure against the UES resulted in a significant increase in hypopharyngeal intrabolus pressure and UES nadir deglutitive relaxation pressure for all tested swallowed volumes (P < 0.05). Application of external cricoid pressure increased the length of the UES high pressure zone from 2.5 ± 0.2 to 3.1 ± 0.2, 3.5 ± 0.1, and 3.7 ± 0.1 cm for 20, 30, and 40 mmHg cricoid pressure, respectively (P < 0.05). External cricoid pressure had no significant effect on pharyngeal peristalsis. On the other hand, irrespective of external cricoid pressure deglutitive velopharyngeal contractile integral progressively increased with increased swallowed volumes (P < 0.05). In conclusion, acute experimental restriction of UES opening by external cricoid pressure manifests the pressure characteristics of increased resistance to UES transsphincteric flow observed clinically without affecting the pharyngeal peristaltic contractile function. PMID:27198193

  7. Links between thermoregulation and aging in endotherms and ectotherms

    PubMed Central

    Flouris, Andreas D; Piantoni, Carla

    2014-01-01

    While the link between thermoregulation and aging is generally accepted, much further research, reflection, and debate is required to elucidate the physiological and molecular pathways that generate the observed thermal-induced changes in lifespan. Our aim in this review is to present, discuss, and scrutinize the thermoregulatory mechanisms that are implicated in the aging process in endotherms and ectotherms. Our analysis demonstrates that low body temperature benefits lifespan in both endothermic and ectothermic organisms. Research in endotherms has delved deeper into the physiological and molecular mechanisms linking body temperature and longevity. While research in ectotherms has been steadily increasing during the past decades, further mechanistic work is required in order to fully elucidate the underlying phenomena. What is abundantly clear is that both endotherms and ectotherms have a specific temperature zone at which they function optimally. This zone is defended through both physiological and behavioral means and plays a major role on organismal senescence. That low body temperature may be beneficial for lifespan is contrary to conventional medical theory where reduced body temperature is usually considered as a sign of underlying pathology. Regardless, this phenomenon has been targeted by scientists with the expectation that advancements may compress morbidity, as well as lower disease and mortality risk. The available evidence suggests that lowered body temperature may prolong life span, yet finding the key to temperature regulation remains the problem. While we are still far from a complete understanding of the mechanisms linking body temperature and longevity, we are getting closer. PMID:27226994

  8. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability.

    PubMed

    Pál, Balázs

    2018-05-15

    Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.

  9. Computational models for the study of heart-lung interactions in mammals.

    PubMed

    Ben-Tal, Alona

    2012-01-01

    The operation and regulation of the lungs and the heart are closely related. This is evident when examining the anatomy within the thorax cavity, in the brainstem and in the aortic and carotid arteries where chemoreceptors and baroreceptors, which provide feedback affecting the regulation of both organs, are concentrated. This is also evident in phenomena such as respiratory sinus arrhythmia where the heart rate increases during inspiration and decreases during expiration, in other types of synchronization between the heart and the lungs known as cardioventilatory coupling and in the association between heart failure and sleep apnea where breathing is interrupted periodically by periods of no-breathing. The full implication and physiological significance of the cardiorespiratory coupling under normal, pathological, or extreme physiological conditions are still unknown and are subject to ongoing investigation both experimentally and theoretically using mathematical models. This article reviews mathematical models that take heart-lung interactions into account. The main ideas behind low dimensional, phenomenological models for the study of the heart-lung synchronization and sleep apnea are described first. Higher dimensions, physiology-based models are described next. These models can vary widely in detail and scope and are characterized by the way the heart-lung interaction is taken into account: via gas exchange, via the central nervous system, via the mechanical interactions, and via time delays. The article emphasizes the need for the integration of the different sources of heart-lung coupling as well as the different mathematical approaches. Copyright © 2011 Wiley Periodicals, Inc.

  10. Streptococcus pyogenes Sortase Mutants Are Highly Susceptible to Killing by Host Factors Due to Aberrant Envelope Physiology

    PubMed Central

    Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.

    2015-01-01

    Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774

  11. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  12. Psychoneurometric Operationalization of Threat Sensitivity: Relations with Clinical Symptom and Physiological Response Criteria

    PubMed Central

    Yancey, James R.; Venables, Noah C.; Patrick, Christopher J.

    2015-01-01

    The NIMH RDoC initiative calls for the incorporation of neurobiological approaches and findings into conceptions of mental health problems through a focus on biobehavioral constructs investigated across multiple domains of measurement (units of analysis). Though the constructs in the RDoC system are characterized in ‘process terms’ (i.e., as functional concepts with brain and behavioral referents), these constructs can also be framed as dispositions (i.e., as dimensions of variation in biobehavioral functioning across individuals). Focusing on one key RDoC construct, acute threat or ‘fear’, the current paper illustrates a construct-oriented psychoneurometric strategy to operationalizing this construct in individual-difference terms—as threat sensitivity (THT+). Utilizing data from 454 adult participants, we demonstrate empirically that: 1) a scale measure of THT+ design to tap general fear/fearlessness predicts effectively to relevant clinical problems (i.e., fear disorder symptoms), 2) this scale measure shows reliable associations with physiological indices of acute reactivity to aversive visual stimuli, and 3) a cross-domain factor reflecting the intersection of scale and physiological indicators of THT+ predicts effectively to both clinical and neurophysiological criterion measures. Results illustrate how the psychoneurometric approach can be used to create a dimensional index of a biobehavioral trait construct, in this case THT+, which can serve as a bridge between phenomena in domains of psychopathology and neurobiology. Implications and future directions are discussed with reference to the RDoC initiative and existing report-based conceptions of psycholological traits. PMID:26877132

  13. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    PubMed

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  14. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  15. Assessment and comparison of student engagement in a variety of physiology courses.

    PubMed

    Hopper, Mari K

    2016-03-01

    Calls for reform in science education have promoted active learning as a means to improve student engagement (SENG). SENG is generally acknowledged to have a positive effect on student learning, satisfaction, and retention. A validated 14-question survey was used to assess SENG in a variety of upper- and lower-level physiology courses, including 100-level Anatomy and Physiology 1, 300-level Animal Physiology, 400-level Advanced Physiology, and 500-level Medical Physiology courses. The results indicated that SENG did not vary consistently by course level, format, or curriculum. The highest levels of SENG were found in the Advanced Physiology course, which included SENG as a primary objective of the course. Physiology student SENG scores were compared with National Survey of Student Engagement (NSSE) scores. The results demonstrated that physiology students enrolled in the Anatomy and Physiology 1 course reported lower levels of SENG than first-year students that completed the NSSE. Students enrolled in the Advanced Physiology course reported higher levels of SENG than fourth-year students that completed the NSSE. Assessment of SENG offers insights as to how engaged students are, identifies where efforts may best be applied to enhance SENG, and provides a baseline measure for future comparisons after targeted course modifications. Copyright © 2016 The American Physiological Society.

  16. Theories and models on the biological of cells in space

    NASA Technical Reports Server (NTRS)

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  17. The evolution of lifespan and age-dependent cancer risk.

    PubMed

    Rozhok, Andrii I; DeGregori, James

    2016-10-01

    The Armitage-Doll multi-stage model of carcinogenesis tremendously refocused cancer science by postulating that carcinogenesis is driven by a sequence of genetic changes in cells. Age-dependent cancer incidence thus has been explained in terms of the time necessary for oncogenic mutations to occur. While the multi-step nature of cancer evolution is well-supported by evidence, the mutation-centric theory is unable to explain a number of phenomena, such as the disproportion between cancer frequency and animal body size or the scaling of cancer incidence to animal lifespan. In this paper, we present a theoretical review of the current paradigm and discuss some fundamental evolutionary theory postulates that explain why cancer incidence is a function of lifespan and physiological, not chronological, aging.

  18. Modeling and simulation in biomedicine.

    PubMed Central

    Aarts, J.; Möller, D.; van Wijk van Brievingh, R.

    1991-01-01

    A group of researchers and educators in The Netherlands, Germany and Czechoslovakia have developed and adapted mathematical computer models of phenomena in the field of physiology and biomedicine for use in higher education. The models are graphical and highly interactive, and are all written in TurboPascal or the mathematical simulation language PSI. An educational shell has been developed to launch the models. The shell allows students to interact with the models and teachers to edit the models, to add new models and to monitor the achievements of the students. The models and the shell have been implemented on a MS-DOS personal computer. This paper describes the features of the modeling package and presents the modeling and simulation of the heart muscle as an example. PMID:1807745

  19. Cold Plasmas for Biofilm Control: Opportunities and Challenges.

    PubMed

    Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula

    2018-06-01

    Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.

  20. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  1. Dynamics of absence seizures

    NASA Astrophysics Data System (ADS)

    Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter

    A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.

  2. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  3. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  4. Risk in nuclear power plants due to natural hazard phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.C.

    1995-12-01

    For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less

  5. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qinjin; Wang, Moran; Mukherjee, Partha P

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth,more » and environmental systems.« less

  6. Direct numerical simulation of annular flows

    NASA Astrophysics Data System (ADS)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  7. Review of chemical-kinetic problems of future NASA missions. I - Earth entries

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1993-01-01

    A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed, including the nonequilibrium thermochemical relaxation phenomena occurring behind a shock wave surrounding the flying object, problems related to aerobraking maneuver, the radiation phenomena for shock velocities of up to 12 km/sec, and the determination of rate coefficients for ionization reactions and associated electron-impact ionization reactions. Results of experiments are presented in form of graphs and tables, giving data on the reaction rate coefficients for air, the ionization distances, thermodynamic properties behind a shock wave, radiative heat flux calculations, Damkoehler numbers for the ablation-product layer, together with conclusions.

  8. Modeling some two-dimensional relativistic phenomena using an educational interactive graphics software

    NASA Astrophysics Data System (ADS)

    Sastry, G. P.; Ravuri, Tushar R.

    1990-11-01

    This paper describes several relativistic phenomena in two spatial dimensions that can be modeled using the collision program of Spacetime Software. These include the familiar aberration, the Doppler effect, the headlight effect, and the invariance of the speed of light in vacuum, in addition to the rather unfamiliar effects like the dragging of light in a moving medium, reflection at moving mirrors, Wigner rotation of noncommuting boosts, and relativistic rotation of shrinking and expanding rods. All these phenomena are exhibited by tracings of composite computer printouts of the collision movie. It is concluded that an interactive educational graphics software with pleasing visuals can have considerable investigative power packed within it.

  9. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  10. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  11. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less

  12. Antagonistic Phenomena in Network Dynamics

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  13. Biofluid mechanics of special organs and the issue of system control. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California.

    PubMed

    Zamir, Mair; Moore, James E; Fujioka, Hideki; Gaver, Donald P

    2010-03-01

    In the field of fluid flow within the human body, focus has been placed on the transportation of blood in the systemic circulation since the discovery of that system; but, other fluids and fluid flow phenomena pervade the body. Some of the most fascinating fluid flow phenomena within the human body involve fluids other than blood and a service other than transport--the lymphatic and pulmonary systems are two striking examples. While transport is still involved in both cases, this is not the only service which they provide and blood is not the only fluid involved. In both systems, filtration, extraction, enrichment, and in general some "treatment" of the fluid itself is the primary function. The study of the systemic circulation has also been conventionally limited to treating the system as if it were an open-loop system governed by the laws of fluid mechanics alone, independent of physiological controls and regulations. This implies that system failures can be explained fully in terms of the laws of fluid mechanics, which of course is not the case. In this paper we examine the clinical implications of these issues and of the special biofluid mechanics issues involved in the lymphatic and pulmonary systems.

  14. Looking for bipolarity in antidepressant discontinuation manic states: Update and diagnostic considerations of the phenomenon.

    PubMed

    Abou Kassm, Sandra; Naja, Wadih

    2018-08-01

    Antidepressant withdrawal manic states are intriguing and under-recognized phenomena. The associated patho-physiological pathways are ill defined and the inclusion of the phenomena in the bipolar spectrum disorders is questionable. This study aims to update a review on antidepressant discontinuation manic states published in 2008 and to look for hints alluding to bipolar disorder in the affected published cases and in the literature. It also reviews the different hypotheses proposed to explain discontinuation mania. We searched Pubmed using the key words: 'antidepressant withdrawal' or 'antidepressant discontinuation' plus 'mania' or 'hypomania' from January 2008 until January 2018. Five new eligible reports were identified since the last review in 2008, involving the antidepressants Amitriptyline, Fluoxetine, Escitalopram and Mirtazapine. Hypotheses involve the implication of Catecholamines, Acetylcholine and Serotonin in the pathophysiology of this paradoxical phenomenon. Careful analysis of the total 29 cases revealed psychiatric histories in favor of a bipolar spectrum disorder in 12 individuals while five were already known to have bipolar disorder. This review is based on case reports with associated recall bias, and lack of in-depth description at times. Antidepressant discontinuation manic or hypomanic states do not occur randomly. An individual susceptibility to bipolar disorder must be considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Size-dependent diffusion promotes the emergence of spatiotemporal patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay

    2014-07-01

    Spatiotemporal patterns, indicating the spatiotemporal variability of individual abundance, are a pronounced scenario in ecological interactions. Most of the existing models for spatiotemporal patterns treat species as homogeneous groups of individuals with average characteristics by ignoring intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand such phenomena in systems organized as complex ecological networks.

  16. Evaluating shrub-associated spatial patterns of soil properties in a shrub-steppe ecosystem using multiple-variable geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorson, J.J.; Smith, J.L.; Bolton, H. Jr.

    1995-09-01

    Geostatistics are often calculated for a single variable at a time, even though many natural phenomena are functions of several variables. The objective of this work was to demonstrate a nonparametric approach for assessing the spatial characteristics of multiple-variable phenomena. Specifically, we analyzed the spatial characteristics of resource islands in the soil under big sagebrush (Artemisia tridentala Nutt.), a dominant shrub in the intermountain western USA. For our example, we defined resource islands as a function of six soil variables representing concentrations of soil resources, populations of microorganisms, and soil microbial physiological variables. By collectively evaluating the indicator transformations ofmore » these individual variables, we created a new data set, termed a multiple-variable indicator transform or MVIT. Alternate MVITs were obtained by varying the selection criteria. Each MVIT was analyzed with variography to characterize spatial continuity, and with indicator kriging to predict the combined probability of their occurrence at unsampled locations in the landscape. Simple graphical analysis and variography demonstrated spatial dependence for all individual soil variables. Maps derived from ordinary kriging of MVITs suggested that the combined probabilities for encountering zones of above-median resources were greatest near big sagebrush. 51 refs., 5 figs., 1 tab.« less

  17. Effects of direct current electric-field using ITO plate on breast cancer cell migration.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul

    2014-01-01

    Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

  18. The Existence of a Hypnotic State Revealed by Eye Movements

    PubMed Central

    Kallio, Sakari; Hyönä, Jukka; Revonsuo, Antti; Sikka, Pilleriin; Nummenmaa, Lauri

    2011-01-01

    Hypnosis has had a long and controversial history in psychology, psychiatry and neurology, but the basic nature of hypnotic phenomena still remains unclear. Different theoretical approaches disagree as to whether or not hypnosis may involve an altered mental state. So far, a hypnotic state has never been convincingly demonstrated, if the criteria for the state are that it involves some objectively measurable and replicable behavioural or physiological phenomena that cannot be faked or simulated by non-hypnotized control subjects. We present a detailed case study of a highly hypnotizable subject who reliably shows a range of changes in both automatic and volitional eye movements when given a hypnotic induction. These changes correspond well with the phenomenon referred to as the “trance stare” in the hypnosis literature. Our results show that this ‘trance stare’ is associated with large and objective changes in the optokinetic reflex, the pupillary reflex and programming a saccade to a single target. Control subjects could not imitate these changes voluntarily. For the majority of people, hypnotic induction brings about states resembling normal focused attention or mental imagery. Our data nevertheless highlight that in some cases hypnosis may involve a special state, which qualitatively differs from the normal state of consciousness. PMID:22039474

  19. Goethe and the Aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2008-05-01

    Johann Wolfgang von Goethe (1749-1832) was deeply interested in many aspects of natural science, including geology and meteorology. Thus, it is not surprising that his works include frequent references to natural phenomena.

  20. Friedrich Albert Lange on neo-Kantianism, socialist Darwinism, and a psychology without a soul.

    PubMed

    Teo, Thomas

    2002-01-01

    Friedrich Albert Lange was a German philosopher, political theorist, educator, and psychologist who outlined an objective psychology in the 1860s. This article shows how some of the most important worldviews of the nineteenth century (Kantianism, Marxism, and Darwinism) were combined creatively in his thought system. He was crucial in the development of neo-Kantianism and incorporated psycho-physiological research on sensation and perception in order to defend Kant's epistemological idealism. Based on a critique of phrenology and philosophical psychology of his time, Lange developed a program of a psychology without a soul. He suggested that only those phenomena that can be observed and controlled should be studied, that psychology should focus on actions and speech, and that for each psychological event the corresponding physical or physiological processes should be identified. Lange opposed introspection and subjective accounts and promoted experiments and statistics. He also promoted Darwinism for psychology while developing a socialist progressive-democratic reading of Darwin in his social theory. The implications of socialist Darwinism on Lange's conceptualization of race are discussed and his prominence in nineteenth century philosophy and psychology is summarized. Copyright 2002 Wiley Periodicals, Inc.

  1. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    PubMed

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  2. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  3. Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus.

    PubMed

    Jacob, Mathieu D; Audas, Timothy E; Uniacke, James; Trinkle-Mulcahy, Laura; Lee, Stephen

    2013-09-01

    The nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA). At the heart of this process is the de novo formation of a large subnucleolar structure, termed the detention center (DC). The DC is a spatially and dynamically distinct region, characterized by an 8-anilino-1-naphthalenesulfonate-positive hydrophobic signature. Its formation is accompanied by redistribution of nucleolar factors and arrest in ribosomal biogenesis. Silencing of regulatory IGS lncRNA prevents the creation of this structure and allows the nucleolus to retain its tripartite organization and transcriptional activity. Signal termination causes a decrease in IGS transcript levels and a return to the active nucleolar conformation. We propose that the induction of IGS lncRNA by environmental signals operates as a molecular switch that regulates the structure and function of the nucleolus.

  4. Plant hormones and ecophysiology of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.J.

    1995-07-01

    Over the past 30 years, there have been very substantial fluctuations in the interests of plant scientists in the involvement of plant growth regulators in the control of physiology, growth, and development of plants. In the years following the identification of the five major classes of growth regulators and identification of other groups of compounds of somewhat more restricted interest, an enormous number of papers reported the effects of hormones applied externally to a very wide range of plants. During this period, it became very fashionable to compare effects of hormones with the effects of the environment on developmental andmore » physiological phenomena and to suggest a regulatory role for the hormone(s) in the processes under consideration. Ross et al. (1983) have published a very comprehensive survey of the effects of growth regulators applied externally to conifers, and even 10 years later, it is difficult to improve on what they have done. Nevertheless, in the light of recent changes in our understanding of how growth regulators may work, it is necessary to reexamine this field and ask what we really know about the involvement of growth regulators in the ecophysiology of conifers.« less

  5. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  6. ['Specificity' in microbiology and immunochemistry between 1880 and 1930].

    PubMed

    Corbellini, Gilberto

    2010-01-01

    During the second half of the XIX Century, microbiological sciences acquired a set of conceptual, methodological and technological tools that radically transformed theoretical and empirical knowledge of the microorganisms, with particular regard to their biochemical properties and their etiopathological role in infectious diseases. During that period, theoretical and experimental researches in general microbiology and immunochemistry addressed the nature and empirical appearances of microbes, both pathogens and not, and the origins of chemical properties of immune sera. In other words, microbiologists tried operatively explaining the origins of the morphological, physiological, and pathogenetic differences between the microbial species. At the same time physiologists and biochemists investigated the chemical basis of the selective or specific interactions between microorganisms or their chemical components and humoral factors contained into the sera produced by the body in response to the contact with microbes. During the half a century, between 1880 and 1930, qualitative and quantitative experimental studies demonstrated that the specificity of microbiological phenomena depended on the biology of microbes and that the specificity of immune reactions hinged upon the biochemical properties of special molecules synthesized by some physiological system which can recognize and react against any foreign substance.

  7. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction.

  8. Neurological Manifestations Among US Government Personnel Reporting Directional Audible and Sensory Phenomena in Havana, Cuba.

    PubMed

    Swanson, Randel L; Hampton, Stephen; Green-McKenzie, Judith; Diaz-Arrastia, Ramon; Grady, M Sean; Verma, Ragini; Biester, Rosette; Duda, Diana; Wolf, Ronald L; Smith, Douglas H

    2018-03-20

    From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.

  9. The neurobiology of pleasure, reward processes, addiction and their health implications.

    PubMed

    Esch, Tobias; Stefano, George B

    2004-08-01

    Modern science begins to understand pleasure as a potential component of salutogenesis. Thereby, pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. Further, health implications related to pleasurable activities are analyzed. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, endorphin and endogenous morphinergic mechanisms may play a role. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways. Thus, the concrete outcome of pleasant experiences may be a question of dose. Moderate pleasurable experiences are able to enhance biological flexibility and health. Hence, pleasure can be a resistance resource or may serve salutogenesis. Natural rewards are mediated by sensory organ stimulation, thereby exhibiting a potential association with complementary medical approaches. Trust and belief can be part of a self-healing potential connected with rewarding stimuli. Further, the placebo response physiologically resembles pleasure phenomena, since both involve brain's reward circuitry stimulation and subjective feelings of well-being. Pleasurable activities can stimulate personal growth and may help to induce healthy behavioral changes, including stress management. However, more research is needed to better understand the nature, neurobiology and maybe dangerous aspects of pleasure. Also, a possible involvement of endogenous morphinergic signaling has to be studied further.

  10. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications.

    PubMed

    Yang, Hongli; Reynaud, Juan; Lockwood, Howard; Williams, Galen; Hardin, Christy; Reyes, Luke; Stowell, Cheri; Gardiner, Stuart K; Burgoyne, Claude F

    2017-07-01

    In a series of previous publications we have proposed a framework for conceptualizing the optic nerve head (ONH) as a biomechanical structure. That framework proposes important roles for intraocular pressure (IOP), IOP-related stress and strain, cerebrospinal fluid pressure (CSFp), systemic and ocular determinants of blood flow, inflammation, auto-immunity, genetics, and other non-IOP related risk factors in the physiology of ONH aging and the pathophysiology of glaucomatous damage to the ONH. The present report summarizes 20 years of technique development and study results pertinent to the characterization of ONH connective tissue deformation and remodeling in the unilateral monkey experimental glaucoma (EG) model. In it we propose that the defining pathophysiology of a glaucomatous optic neuropathy involves deformation, remodeling, and mechanical failure of the ONH connective tissues. We view this as an active process, driven by astrocyte, microglial, fibroblast and oligodendrocyte mechanobiology. These cells, and the connective tissue phenomena they propagate, have primary and secondary effects on retinal ganglion cell (RGC) axon, laminar beam and retrolaminar capillary homeostasis that may initially be "protective" but eventually lead to RGC axonal injury, repair and/or cell death. The primary goal of this report is to summarize our 3D histomorphometric and optical coherence tomography (OCT)-based evidence for the early onset and progression of ONH connective tissue deformation and remodeling in monkey EG. A second goal is to explain the importance of including ONH connective tissue processes in characterizing the phenotype of a glaucomatous optic neuropathy in all species. A third goal is to summarize our current efforts to move from ONH morphology to the cell biology of connective tissue remodeling and axonal insult early in the disease. A final goal is to facilitate the translation of our findings and ideas into neuroprotective interventions that target these ONH phenomena for therapeutic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Developing a nationwide K-12 outreach model: Physiology Understanding (PhUn) Week 10 years later.

    PubMed

    Stieben, Margaret; Halpin, Patricia A; Matyas, Marsha Lakes

    2017-09-01

    Since 2005, nearly 600 Physiology Understanding Week (PhUn Week) events have taken place across the U.S., involving American Physiological Society (APS) members in K-12 outreach. The program seeks to build student understanding of physiology and physiology careers, assist teachers in recognizing physiology in their standards-based curriculum, and involve more physiologists in K-12 outreach. Formative goals included program growth (sites, participants, and leaders), diversification of program models, and development of a community of practice of physiologists and trainees involved in outreach. Eleven years of member-provided data indicate that the formative goals are being met. Nearly 100,000 K-12 students have been reached during the last decade as an increasing pool of physiologists took part in a growing number of events, including a number of international events. The number and types of PhUn Week events have steadily increased as a community of practice has formed to support the program. Future program goals include targeting regional areas for PhUn Week participation, establishing research collaboratives to further explore program impacts, and providing on-demand training for physiologists. Copyright © 2017 the American Physiological Society.

  12. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  14. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  15. High Energy Phenomena on the Sun. [conference on solar activity effects and solar radiation

    NASA Technical Reports Server (NTRS)

    Ramaty, R. (Editor); Stone, R. G. (Editor)

    1973-01-01

    The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.

  16. Image Restoration by Spline Functions

    DTIC Science & Technology

    1976-08-31

    motion degradation, over- determined model. 71 Figure 4-7. Singular values for motion blur. 72 Figure 5-1. Models for film-grain noise and filtering. 85...Figure 5-2. Filtering of signal dependent noisy images. 86 Figure 5-3. Filtering of image lines degraded by film- grain noise . 87 Figure 5-4...phenomena. Fhese phenomena include such imperfect imaging cir- cumstances as defocus, motion blur, optical aberrations, and noise D1I r> . Phe pioneers

  17. Applications of Historical Analyses in Combat Modelling

    DTIC Science & Technology

    2011-12-01

    effectiveness, P Dexter, J Battlefield Technology 6, 33-39, (2003). 37. Long term behaviour of solutions of the Lotka- Volterra system under small...2643 database of historical battles. This includes an examination of the inclusion of a fractal model of spatial dispersion on casualty values [6] and...system is viewed as no more than “the sum of its parts” in which all phenomena can be explained in terms of other, more fundamental, phenomena

  18. A study of 3-dimensionally periodic carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Bleiweiss, Michael; Amirzadeh, Jafar; Datta, Timir; Arammash, Fouzi

    2012-02-01

    Electronic structures with intricate periodic 3-dimensional arrangements at the submicron scale were investigated. These may be fabricated using artificial porous opal substrates as the templates in which the targeted conducting medium is introduced. In the past these materials were reported to show interesting electronic behaviors. [Michael Bleiweiss, et al ``Localization and Related Phenomena in Multiply Connected Nanostructured,'' BAPS, Z30.011, Nanostructured Materials Session, March 2001, Seattle]. Several materials were studied in particular disordered carbon which has been reported to show quantum transport including fractional hall steps. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with literature data.

  19. Dawes Review 5: Australian Aboriginal Astronomy and Navigation

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2016-08-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical knowledge includes a deep understanding of the motion of objects in the sky, which was used for practical purposes such as constructing calendars and for navigation. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, recorded unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees. Putative explanations of celestial phenomena appear throughout the oral record, suggesting traditional Aboriginal Australians sought to understand the natural world around them, in the same way as modern scientists, but within their own cultural context. There is also a growing body of evidence for sophisticated navigational skills, including the use of astronomically based songlines. Songlines are effectively oral maps of the landscape, and are an efficient way of transmitting oral navigational skills in cultures that do not have a written language. The study of Aboriginal astronomy has had an impact extending beyond mere academic curiosity, facilitating cross-cultural understanding, demonstrating the intimate links between science and culture, and helping students to engage with science.

  20. Modeling the Delivery Physiology of Distributed Learning Systems.

    ERIC Educational Resources Information Center

    Paquette, Gilbert; Rosca, Ioan

    2003-01-01

    Discusses instructional delivery models and their physiology in distributed learning systems. Highlights include building delivery models; types of delivery models, including distributed classroom, self-training on the Web, online training, communities of practice, and performance support systems; and actors (users) involved, including experts,…

  1. SECO containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T.; Heinle, R.

    1997-06-01

    This containment data report for the SECO event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation, pressure, collapse phenomena, and motion. Surface array measurements are provided.

  2. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    PubMed Central

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909

  3. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  4. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  5. ISLAY containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T.; Heinle, R.

    1997-06-01

    This containment data report for the ISLAY event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation pressure and motion. Collapse phenomena are reported, including motion and radiation pressure. Measurements on the emplacement pipe are reported, including motion, pressure, temperature, and radiation.

  6. Career Opportunities in Physiology: Careers for Physiologists in Departments of Biological and Animal Sciences.

    ERIC Educational Resources Information Center

    Gregg, Christine M.

    1985-01-01

    Analyzes data from an American Physiological Society survey on 88 physiology programs not associated with medical schools. Included are enrollment data and data on faculty characteristics, areas of specialization, and doctorates awarded. Indicates that the majority of physiology PhD programs are located within departments of biological sciences.…

  7. Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.

  8. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    PubMed Central

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  9. Chaste: A test-driven approach to software development for biological modelling

    NASA Astrophysics Data System (ADS)

    Pitt-Francis, Joe; Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Fletcher, Alexander G.; Mirams, Gary R.; Murray, Philip; Osborne, James M.; Walter, Alex; Chapman, S. Jon; Garny, Alan; van Leeuwen, Ingeborg M. M.; Maini, Philip K.; Rodríguez, Blanca; Waters, Sarah L.; Whiteley, Jonathan P.; Byrne, Helen M.; Gavaghan, David J.

    2009-12-01

    Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summaryProgram title: Chaste Catalogue identifier: AEFD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL 2.1 No. of lines in distributed program, including test data, etc.: 5 407 321 No. of bytes in distributed program, including test data, etc.: 42 004 554 Distribution format: tar.gz Programming language: C++ Operating system: Unix Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:<90 Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac electrophysiology and intestinal crypt dynamics. Solution method: Coupled multi-physics with PDE, ODE and discrete mechanics simulation. Running time: The largest cardiac simulation described in the manuscript takes about 6 hours to run on a single 3 GHz core. See results section (Section 6) of the manuscript for discussion on parallel scaling.

  10. As the Earth Quakes... What Happens?

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1990-01-01

    Discussed are several phenomena associated with earthquakes. Included are seismic waves, plate movement, and earthquake measurement. Diagrams of different plate boundary types are included. An activity for teaching these events to elementary school children is provided. (CW)

  11. Commemorative Displays: Bridging the Gap Between Past and Present.

    ERIC Educational Resources Information Center

    Stock, John T.

    1984-01-01

    Suggests preparing displays which include both dynamic and static items to attract observers' attention and hold their interest. Includes instructions for making exhibits related to phenomena associated with Joseph Priestley and Michael Faraday. (DH)

  12. The emergence of Applied Physiology within the discipline of Physiology.

    PubMed

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when departments were changing their titles to reflect a stronger science orientation, many established laboratories and offered degree programs devoted to Applied Physiology. We concluded that Applied Physiology has been an important contributor to the discipline of physiology while becoming an integral component of APS. Copyright © 2016 the American Physiological Society.

  13. What develops during emotional development? A component process approach to identifying sources of psychopathology risk in adolescence.

    PubMed

    McLaughlin, Katie A; Garrad, Megan C; Somerville, Leah H

    2015-12-01

    Adolescence is a phase of the lifespan associated with widespread changes in emotional behavior thought to reflect both changing environments and stressors, and psychological and neurobiological development. However, emotions themselves are complex phenomena that are composed of multiple subprocesses. In this paper, we argue that examining emotional development from a process-level perspective facilitates important insights into the mechanisms that underlie adolescents' shifting emotions and intensified risk for psychopathology. Contrasting the developmental progressions for the antecedents to emotion, physiological reactivity to emotion, emotional regulation capacity, and motivation to experience particular affective states reveals complex trajectories that intersect in a unique way during adolescence. We consider the implications of these intersecting trajectories for negative outcomes such as psychopathology, as well as positive outcomes for adolescent social bonds.

  14. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  15. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.

    PubMed

    Meltzer, Herbert Y; Roth, Bryan L

    2013-12-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.

  16. Rheology of polyelectrolyte complex materials

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    Fluid polyelectrolyte complexes, sometimes known as complex coacervates, have rheological properties that are very sensitive to structure and salt concentration. Dynamic moduli of such viscoelastic materials very many orders of magnitude between solutions of no added salt to of order tenth molar salt, typical, for example of physiological saline. Indeed, salt plays a role in the rheology of complex coacervates analogous to that which temperature plays on polymer melts, leading to an empirical observation of what may be termed time-salt or frequency salt superposition. Block copolymers containing complexing ionic blocks also exhibit strong salt sensitivity of their rheological properties. Data representing these phenomena will be presented and discussed. Support from NIST, Department of Commerce, via the Center for Hierarchical Materials Design at Northwestern University and the University of Chicago is gratefully acknowledged.

  17. The trigeminocardiac reflex – a comparison with the diving reflex in humans

    PubMed Central

    Lemaitre, Frederic; Schaller, Bernhard

    2015-01-01

    The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761

  18. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research; Symposium, Washington, Oct. 19, 1991, Report

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor); Todd, Paul (Editor); Powers, Janet V. (Editor)

    1992-01-01

    The present volume addresses physical phenomena and effects associated with clinostat and centrifuge operations as well as their physiological effects. Particular attention is given to the simulation of the gravity conditions on the ground, the internal dynamics of slowly rotating biological systems, and qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. Also discussed are the development and use of centrifuges in gravitational biology, the use of centrifuges in plant gravitational biology and a comparison of ground-based and flight experiment results, the ability of clinostat to mimic the effect of microgravity on plant cells and organs, and the impact of altered gravity conditions on early EGF-induced signal transduction in human epidermal A431 cells.

  19. Lung protective ventilation strategies in paediatrics-A review.

    PubMed

    Jauncey-Cooke, Jacqui I; Bogossian, Fiona; East, Chris E

    2010-05-01

    Ventilator Associated Lung Injury (VALI) is an iatrogenic phenomena that significantly impacts on the morbidity and mortality of critically ill patients. The hazards associated with mechanical ventilation are becoming increasingly understood courtesy of a large body of research. Barotrauma, volutrauma and biotrauma all play a role in VALI. Concomitant to this growth in understanding is the development of strategies to reduce the deleterious impact of mechanical ventilation. The majority of the research is based upon adult populations but with careful extrapolation this review will focus on paediatrics. This review article describes the physiological basis of VALI and discusses the various lung protective strategies that clinicians can employ to minimise its incidence and optimise outcomes for paediatric patients. Copyright 2009 Australian College of Critical Care Nurses Ltd. All rights reserved.

  20. An option space for early neural evolution.

    PubMed

    Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter

    2015-12-19

    The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).

  1. Cell competition in mammals - novel homeostatic machinery for embryonic development and cancer prevention.

    PubMed

    Maruyama, Takeshi; Fujita, Yasuyuki

    2017-10-01

    In the multi-cellular community, cells with different properties often compete with each other for survival and space. This process is named cell competition and was originally discovered in Drosophila. Recent studies have revealed that comparable phenomena also occur in mammals under various physiological and pathological conditions. Within the epithelium, normal cells often recognize the presence of the neighboring transformed cells and actively eliminate them from the epithelium; a process termed EDAC (Epithelial Defense Against Cancer). Furthermore, physical force can play a crucial role in the intercellular recognition and elimination of loser cells during cell competition. Further studies are expected to reveal a variety of roles of cell competition in embryonic development and human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. HUMAN--A Comprehensive Physiological Model.

    ERIC Educational Resources Information Center

    Coleman, Thomas G.; Randall, James E.

    1983-01-01

    Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…

  3. Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579

    PubMed Central

    den Besten, Heidy M. W.; Mataragas, Marios; Moezelaar, Roy; Abee, Tjakko; Zwietering, Marcel H.

    2006-01-01

    The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. PMID:16957208

  4. From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.

    PubMed

    Sarkar, Subhadeep; Misra, Sudip

    2016-01-01

    Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.

  5. Psychoneurometric operationalization of threat sensitivity: Relations with clinical symptom and physiological response criteria.

    PubMed

    Yancey, James R; Venables, Noah C; Patrick, Christopher J

    2016-03-01

    The National Institute of Mental Health's Research Domain Criteria (RDoC) initiative calls for the incorporation of neurobiological approaches and findings into conceptions of mental health problems through a focus on biobehavioral constructs investigated across multiple domains of measurement (units of analysis). Although the constructs in the RDoC system are characterized in "process terms" (i.e., as functional concepts with brain and behavioral referents), these constructs can also be framed as dispositions (i.e., as dimensions of variation in biobehavioral functioning across individuals). Focusing on one key RDoC construct, acute threat or "fear," the current article illustrates a construct-oriented psychoneurometric strategy for operationalizing this construct in individual difference terms-as threat sensitivity (THT+). Utilizing data from 454 adult participants, we demonstrate empirically that (a) a scale measure of THT+ designed to tap general fear/fearlessness predicts effectively to relevant clinical problems (i.e., fear disorder symptoms), (b) this scale measure shows reliable associations with physiological indices of acute reactivity to aversive visual stimuli, and (c) a cross-domain factor reflecting the intersection of scale and physiological indicators of THT+ predicts effectively to both clinical and neurophysiological criterion measures. Results illustrate how the psychoneurometric approach can be used to create a dimensional index of a biobehavioral trait construct, in this case THT+, which can serve as a bridge between phenomena in domains of psychopathology and neurobiology. Implications and future directions are discussed with reference to the RDoC initiative and existing report-based conceptions of psychological traits. © 2016 Society for Psychophysiological Research.

  6. Mixed-power scaling of whole-plant respiration from seedlings to giant trees

    PubMed Central

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G.; Masyagina, Oxana V.; Hagihara, Akio; Hoque, A.T.M. Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A.; Abaimov, Anatoly P.; Awaya, Yoshio; Araki, Masatake G.; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-01

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457–461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth. PMID:20080600

  7. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    PubMed

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  8. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  9. Genetic similarity of the Hainan medaka populations collected from hyper- and hypo-osmotic environments in northern Vietnam

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hideki; Le, Quang Dung; Kinoshita, Masato; Takehana, Yusuke; Sakuma, Kei; Takeshima, Hirohiko; Kojima, Shigeaki; Naruse, Kiyoshi; Inoue, Koji

    2015-06-01

    Ricefishes of the genus Oryzias, including Japanese medaka ( O. latipes), are known as excellent model organisms for studies in various fields of science. Some species of the genus inhabit brackish water, and such species are recognized to be useful to investigate physiological phenomena in seawater. However, only a limited number of species have been recorded from brackish waters. In addition, there is no information about the genetic relationship among populations inhabiting sites with different salinities. Here we report the discovery of Oryzias fish in two locations near Haiphong, northern Vietnam, a brackish mangrove planting area and a freshwater pond. A phylogenetic analysis using mitochondrial 12S and 16S ribosomal RNA (rRNA) gene sequences indicated that the fish from the two localities are the same species, Hainan medaka, O. curvinotus. Population genetic analysis using the mitochondrial 12S and 16S rRNA gene sequences revealed a close genetic relationship between the two populations. These results suggest that O. curvinotus is adaptable to both hyperosmotic and hypoosmotic environments. Due to its osmotic adaptability and ease of rearing in the laboratory, this species is expected to become a model for marine environmental and toxicological studies, as well as for studies of osmotic adaptation mechanisms.

  10. Tryptophan 2,3-Dioxygenfase and Indoleamine 2,3-Dioxygenase 1 Make Separate, Tissue-Specific Contributions to Basal and Inflammation-Induced Kynurenine Pathway Metabolism in Mice

    PubMed Central

    Larkin, Paul B.; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Funakoshi, Hiroshi; Nakamura, Toshikazu; Schwarcz, Robert; Muchowski, Paul J.

    2018-01-01

    In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system. PMID:27392942

  11. Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Technical Reports Server (NTRS)

    Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia

    2015-01-01

    Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.

  12. Biologic relativity: Who is the observer and what is observed?

    PubMed

    Torday, John S; Miller, William B

    2016-05-01

    When quantum physics and biological phenomena are analogously explored, it emerges that biologic causation must also be understood independently of its overt appearance. This is similar to the manner in which Bohm characterized the explicate versus the implicate order as overlapping frames of ambiguity. Placed in this context, the variables affecting epigenetic inheritance can be properly assessed as a key mechanistic principle of evolution that significantly alters our understanding of homeostasis, pleiotropy, and heterochrony, and the purposes of sexual reproduction. Each of these become differing manifestations of a new biological relativity in which biologic space-time becomes its own frame. In such relativistic cellular contexts, it is proper to question exactly who has observer status, and who and what are being observed. Consideration within this frame reduces biology to cellular information sharing through cell-cell communication to resolve ambiguities at every scope and scale. In consequence, it becomes implicit that eukaryotic evolution derives from the unicellular state, remaining consistently adherent to it in a continuous evolutionary arc based upon elemental, non-stochastic physiologic first principles. Furthermore, the entire cell including its cytoskeletal apparatus and membranes that participate in the resolution of biological uncertainties must be considered as having equivalent primacy with genomes in evolutionary terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Noncanonical spike-related BOLD responses in focal epilepsy

    PubMed Central

    Lemieux, Louis; Laufs, Helmut; Carmichael, David; Paul, Joseph Suresh; Walker, Matthew C; Duncan, John S

    2008-01-01

    Till now, most studies of the Blood Oxygen Level-Dependent (BOLD) response to interictal epileptic discharges (IED) have assumed that its time course matches closely to that of brief physiological stimuli, commonly called the canonical event-related haemodynamic response function (canonical HRF). Analyses based on that assumption have produced significant response patterns that are generally concordant with prior electroclinical data. In this work, we used a more flexible model of the event-related response, a Fourier basis set, to investigate the presence of other responses in relation to individual IED in 30 experiments in patients with focal epilepsy. We found significant responses that had a noncanonical time course in 37% of cases, compared with 40% for the conventional, canonical HRF-based approach. In two cases, the Fourier analysis suggested activations where the conventional model did not. The noncanonical activations were almost always remote from the presumed generator of epileptiform activity. In the majority of cases with noncanonical responses, the noncanonical responses in single-voxel clusters were suggestive of artifacts. We did not find evidence for IED-related noncanonical HRFs arising from areas of pathology, suggesting that the BOLD response to IED is primarily canonical. Noncanonical responses may represent a number of phenomena, including artefacts and propagated epileptiform activity. Hum Brain Mapp 2008. © 2007 Wiley-Liss, Inc. PMID:17510926

  14. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  15. The universality of the von Bertalanffy growth curve. Comment on: ;Physics of metabolic organization; by Marko Jusup et al.

    NASA Astrophysics Data System (ADS)

    Maino, James L.; Kearney, Michael R.

    2017-03-01

    A key strength of the DEB approach, in contrast to other metabolic theories, is that its foundational principles are general to all of life. Other theories have attempted to explain patterns in metabolism in terms of taxon-specific processes, such as the geometry of vascular network supply constraints [1,2], or heat dissipation requirements of endotherms [3], but DEB theory presents constraints on metabolic processes that apply to a wide range of taxa, including bacteria, invertebrates, birds, or mammals [4]. The price of this generalisability is abstraction, but there is much to gain from a general and unifying metabolic theory. Abstracting individuals into simple energy processors would seem to overlook many other important aspects of their biology, such as their unique phylogeny, physiology, or ethology, but this strategy has facilitated great advances in one of the grand challenges in biology: making sense of interacting phenomena occurring across wide scales in space, time, and organisational complexity. The study of cells, individuals, communities and ecosystems have benefited from such a regime [5,6]. Similarly, the simple abstraction of partitioning individual organisms into compartments of reserve biomass and structural biomass allows one to account for an astounding variety of energetic transformations that occur between species and as an organism develops.

  16. Civilian Training in High-Altitude Flight Physiology

    DOT National Transportation Integrated Search

    1991-08-01

    A survey was conducted to determine if training in high-altitude physiology should : be required for civilian pilots; what the current status of such training was; and, : if required, what should be included in an ideal curriculum. The survey include...

  17. IDC Re-Engineering Phase 2 System Specification Document Version 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satpathi, Meara Allena; Burns, John F.; Harris, James M.

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Re-Engineering Phase 2 project. This System Specification Document (SSD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data but does include requirements for the dissemination of radionuclide datamore » and products.« less

  18. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes

    NASA Astrophysics Data System (ADS)

    Bershader, Daniel; Hanson, Ronald

    1986-09-01

    One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.

  19. Dissociation: adjustment or distress? Dissociative phenomena, absorption and quality of life among Israeli women who practice channeling compared to women with similar traumatic history.

    PubMed

    Stolovy, Tali; Lev-Wiesel, Rachel; Witztum, Eliezer

    2015-06-01

    This study aimed to explore the relationship between traumatic history, dissociative phenomena, absorption and quality of life among a population of channelers, in comparison with a population of non-channelers with similar traumatic history. The study sample included 150 women. The measures included Traumatic Experiences Scale, Dissociative Experience Scale, Absorption Scale, Brief Symptom Inventory and Quality of Life (QOL) Assessment. Channelers presented significantly higher levels of dissociation, absorption and psychological health compared to the other group. Dissociation and absorption were trauma-related only among the comparison group. Hence, dissociation has different qualities among different people, and spiritual practice contributes to QOL.

  20. What we talk about when we talk about access deficits

    PubMed Central

    Mirman, Daniel; Britt, Allison E.

    2014-01-01

    Semantic impairments have been divided into storage deficits, in which the semantic representations themselves are damaged, and access deficits, in which the representations are intact but access to them is impaired. The behavioural phenomena that have been associated with access deficits include sensitivity to cueing, sensitivity to presentation rate, performance inconsistency, negative serial position effects, sensitivity to number and strength of competitors, semantic blocking effects, disordered selection between strong and weak competitors, correlation between semantic deficits and executive function deficits and reduced word frequency effects. Four general accounts have been proposed for different subsets of these phenomena: abnormal refractoriness, too much activation, impaired competitive selection and deficits of semantic control. A combination of abnormal refractoriness and impaired competitive selection can account for most of the behavioural phenomena, but there remain several open questions. In particular, it remains unclear whether access deficits represent a single syndrome, a syndrome with multiple subtypes or a variable collection of phenomena, whether the underlying deficit is domain-general or domain-specific, whether it is owing to disorders of inhibition, activation or selection, and the nature of the connection (if any) between access phenomena in aphasia and in neurologically intact controls. Computational models offer a promising approach to answering these questions. PMID:24324232

  1. The role of family phenomena in children and adolescents with attention deficit hyperactivity disorder.

    PubMed

    Paidipati, Cynthia P; Deatrick, Janet A

    2015-02-01

    Previous research suggests that families are integral to the understanding of children and adolescents with attention deficit hyperactivity disorder (ADHD). The purpose of this article is to identify family phenomena related to children and adolescents with ADHD and highlight research findings that intersect family phenomena with the care and treatment of ADHD in youth. A literature review was conducted at the University of Pennsylvania in spring of 2014 using an online library system. The four major databases utilized are Cumulative Index to Nursing and Allied Health Literature (CINAHL), Ovid Medline, Scopus, and Psyc-INFO. A wide array of family-related concepts are identified in the literature and represent a multifaceted and dynamic range of family phenomena related to ADHD youth. Four major themes emerged in the literature, including family stress and strain, parenting practices and caregiver health, family relationships, and family processes related to ADHD management. Different cultural and ethnic groups are reflected in the studies, but the majority of participants are self-identified Caucasian. As a collective, the research findings suggest family-related phenomena are essential and relevant to the investigation of children and adolescents with ADHD and worthwhile to explore in future research endeavors, especially in diverse populations. © 2014 Wiley Periodicals, Inc.

  2. Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems.

    PubMed

    Sugai-Guérios, Maura Harumi; Balmant, Wellington; Furigo, Agenor; Krieger, Nadia; Mitchell, David Alexander

    2015-01-01

    Solid-state fermentation (SSF) with filamentous fungi is a promising technique for the production of a range of biotechnological products and has the potential to play an important role in future biorefineries. The performance of such processes is intimately linked with the mycelial mode of growth of these fungi: Not only is the production of extracellular enzymes related to morphological characteristics, but also the mycelium can affect bed properties and, consequently, the efficiency of heat and mass transfer within the bed. A mathematical model that describes the development of the fungal mycelium in SSF systems at the particle scale would be a useful tool for investigating these phenomena, but, as yet, a sufficiently complete model has not been proposed. This review presents the biological and mass transfer phenomena that should be included in such a model and then evaluates how these phenomena have been modeled previously in the SSF and related literature. We conclude that a discrete lattice-based model that uses differential equations to describe the mass balances of the components within the system would be most appropriate and that mathematical expressions for describing the individual phenomena are available in the literature. It remains for these phenomena to be integrated into a complete model describing the development of fungal mycelia in SSF systems.

  3. Mechanical impact of dynamic phenomena in Francis turbines at off design conditions

    NASA Astrophysics Data System (ADS)

    Duparchy, F.; Brammer, J.; Thibaud, M.; Favrel, A.; Lowys, P. Y.; Avellan, F.

    2017-04-01

    At partial load and overload conditions, Francis turbines are subjected to hydraulic instabilities that can potentially result in high dynamic solicitations of the turbine components and significantly reduce their lifetime. This study presents both experimental data and numerical simulations that were used as complementary approaches to study these dynamic solicitations. Measurements performed on a reduced scale physical model, including a special runner instrumented with on-board strain gauges and pressure sensors, were used to investigate the dynamic phenomena experienced by the runner. They were also taken as reference to validate the numerical simulation results. After validation, advantage was taken from the numerical simulations to highlight the mechanical response of the structure to the unsteady hydraulic phenomena, as well as their impact on the fatigue damage of the runner.

  4. Report for MaRIE Drivers Workshop on needs for energetic material's studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott

    Energetic materials (i.e. explosives, propellants, and pyrotechnics) have complex mesoscale features that influence their dynamic response. Direct measurement of the complex mechanical, thermal, and chemical response of energetic materials is critical for improving computational models and enabling predictive capabilities. Many of the physical phenomena of interest in energetic materials cover time and length scales spanning several orders of magnitude. Examples include chemical interactions in the reaction zone, the distribution and evolution of temperature fields, mesoscale deformation in heterogeneous systems, and phase transitions. This is particularly true for spontaneous phenomena, like thermal cook-off. The ability for MaRIE to capture multiple lengthmore » scales and stochastic phenomena can significantly advance our understanding of energetic materials and yield more realistic, predictive models.« less

  5. Transition-Metal Oxide (111) Bilayers

    DOE PAGES

    Okamoto, Satoshi; Xiao, Di

    2018-04-15

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. Here in this paper, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographicmore » axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.« less

  6. Computational aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1989-01-01

    Computational aerothermodynamics concerns the coupling of real gas effects with equations of motion to include thermochemical rate processes for chemical and energy exchange phenomena. These processes concern the creation and destruction of gas species by chemical reactions and the transfer of energy between the various species and between the various energy modes (e.g., translation, rotation, vibration, ionization, dissociation/recombination, etc.) of the species. To gain some insight into when such phenomena occur for current and future aerospace flight vehicles the author shows the flight regimes of some typical vehicles (e.g., Concord, aerospace plane, Space Shuttle, associated space transfer vehicles, Apollo entry vehicle, etc.) in terms of flight altitude and flight speed. Also indicated are regimes where chemical reactions such as dissociation and ionization are important and where nonequilibrium thermochemical phenomena are important.

  7. Data evaluation, analysis, and scientific study

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1991-01-01

    Extensive work was performed in data analysis and modeling of solar active phenomena. The work consisted in the study of UV data from the Ultraviolet Spectrometer and Polarimeter (UVSP) instrument on board the Solar Maximum Mission satellite. These data were studied in conjunction with X-rays from the Hard X-ray Imaging Spectrometer (HXIS) instrument, and with H-alpha and magnetographic data from ground-based observatories. The processes we studied are the active phenomena which result from the interaction of the solar magnetic fields with the plasma in the outer regions of the solar atmosphere. These processes include some very dynamic processes such as the prominence eruptions and the 'microflares'. Our research aimed at characterizing the following: the observed phenomena, the possible physical models, and the relevance to the chromospheric and coronal heating.

  8. Transition-Metal Oxide (111) Bilayers

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Xiao, Di

    2018-04-01

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.

  9. Electric currents in cosmic plasmas

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1977-01-01

    It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.

  10. Historic halo displays as weather indicator: Criteria and examples

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  11. TEACHING PHYSICS: The quantum understanding of pre-university physics students

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2000-01-01

    Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.

  12. Diffuse-Interface Methods in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  13. Solar-geophysical activity reports for STIP (study of travelling interplanetary phenomena) Interval 15, 12-21 February 1984 ground-level event and STIP Interval 16, 20 April-4 May 1984 Forbush decrease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.E.; Allen, J.H.

    1987-07-01

    Contents include: solar-geophysical activity reports for STIP Interval XV 12-21 February 1984 ground-level event and STIP interval XVI 20 April-4 May 1984 Forbush decrease; overview of solar-terrestrial physics phenomena for STIP interval XV (12-21 February 1984) and STIP interval XVI (20 April-4 May 1984) (solar optical reports, solar radio events, spacecraft observations, cosmic ray observations, ionosphere, geomagnetism).

  14. Imaging episodic memory: implications for cognitive theories and phenomena.

    PubMed

    Nyberg, L

    1999-01-01

    Functional neuroimaging studies are beginning to identify neuroanatomical correlates of various cognitive functions. This paper presents results relevant to several theories and phenomena of episodic memory, including component processes of episodic retrieval, encoding specificity, inhibition, item versus source memory, encoding-retrieval overlap, and the picture-superiority effect. Overall, by revealing specific activation patterns, the results provide support for existing theoretical views and they add some unique information which may be important to consider in future attempts to develop cognitive theories of episodic memory.

  15. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  16. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  17. Structure for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  18. Nature's optics and our understanding of light

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2015-01-01

    Optical phenomena visible to everyone have been central to the development of, and abundantly illustrate, important concepts in science and mathematics. The phenomena considered from this viewpoint are rainbows, sparkling reflections on water, mirages, green flashes, earthlight on the moon, glories, daylight, crystals and the squint moon. And the concepts involved include refraction, caustics (focal singularities of ray optics), wave interference, numerical experiments, mathematical asymptotics, dispersion, complex angular momentum (Regge poles), polarisation singularities, Hamilton's conical intersections of eigenvalues ('Dirac points'), geometric phases and visual illusions.

  19. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  20. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    PubMed

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

Top