Sample records for physiological role structure

  1. The Physiology and Biochemistry of Receptors.

    ERIC Educational Resources Information Center

    Spitzer, Judy A., Ed.

    1983-01-01

    The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…

  2. Functional metabolite assemblies—a review

    NASA Astrophysics Data System (ADS)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  3. Comparative physiology of a central hardwood old-growth forest canopy and forest gap

    Treesearch

    A. R. Gillespie; J. Waterman; K. Saylors

    1993-01-01

    Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...

  4. CNG and HCN channels: two peas, one pod.

    PubMed

    Craven, Kimberley B; Zagotta, William N

    2006-01-01

    Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.

  5. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    PubMed

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  6. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes

    PubMed Central

    Zifarelli, Giovanni

    2015-01-01

    Abstract The CLC protein family comprises both Cl− channels and H+-coupled anion transporters. The understanding of the critical role of CLC proteins in a number of physiological functions has greatly contributed to a revision of the classical paradigm that attributed to Cl− ions only a marginal role in human physiology. The endosomal ClC-5 and the lysosomal ClC-7 are the best characterized human CLC transporters. Their dysfunction causes Dent’s disease and osteopetrosis, respectively. It had been originally proposed that they would provide a Cl− shunt conductance allowing efficient acidification of intracellular compartments. However, this model seems to conflict with the transport properties of these proteins and with recent physiological evidence. Currently, there is no consensus on their specific physiological role. CLC proteins present also a number of peculiar biophysical properties, such as the dimeric architecture, the co-existence of intrinsically different thermodynamic modes of transport based on similar structural principles, and the gating mechanism recently emerging for the transporters, just to name a few. This review focuses on the biophysical properties and physiological roles of ClC-5 and ClC-7. PMID:26036722

  7. Synthetic lipids and their role in defining macromolecular assemblies.

    PubMed

    Parrill, Abby L

    2015-10-01

    Lipids have a variety of physiological roles, ranging from structural and biophysical contributions to membrane functions to signaling contributions in normal and abnormal physiology. This review highlights some of the contributions made by Robert Bittman to our understanding of lipid assemblies through the production of synthetic lipid analogs in the sterol, sphingolipid, and glycolipid classes. His contributions have included the development of a fluorescent cholesterol analog that shows strong functional analogies to cholesterol that has allowed live imaging of cholesterol distribution in living systems, to stereospecific synthetic approaches to both sphingolipid and glycolipid analogs crucial in defining the structure-activity relationships of lipid biological targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Proteorhodopsins: an array of physiological roles?

    PubMed

    Fuhrman, Jed A; Schwalbach, Michael S; Stingl, Ulrich

    2008-06-01

    Metagenomic analyses have revealed widespread and diverse retinal-binding rhodopsin proteins (named proteorhodopsins) among numerous marine bacteria and archaea, which has challenged the notion that solar energy can only enter marine ecosystems by chlorophyll-based photosynthesis. Most marine proteorhodopsins share structural and functional similarities with archaeal bacteriorhodopsins, which generate proton motive force via light-activated proton pumping, thereby ultimately powering ATP production. This suggests an energetic role for proteorhodopsins. However, results from a growing number of investigations do not readily fit this model, which indicates that proteorhodopsins could have a range of physiological functions.

  9. Protein disulfide isomerase a multifunctional protein with multiple physiological roles

    NASA Astrophysics Data System (ADS)

    Ali Khan, Hyder; Mutus, Bulent

    2014-08-01

    Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.

  10. Biophysical characterization of α-synuclein and its controversial structure

    PubMed Central

    Alderson, T Reid; Markley, John L

    2013-01-01

    α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein’s rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein’s structure and analysis of the native tetramer controversy. PMID:24634806

  11. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)

    PubMed Central

    Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi

    2003-01-01

    Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859

  12. Effect of BDNF val(66)met polymorphism on declarative memory and its neural substrate: a meta-analysis.

    PubMed

    Kambeitz, Joseph P; Bhattacharyya, Sagnik; Kambeitz-Ilankovic, Lana M; Valli, Isabel; Collier, David A; McGuire, Philip

    2012-10-01

    Brain derived neurotrophic factor (BDNF) is a critical component of the molecular mechanism of memory formation. Variation in the BDNF gene, particularly the rs6265 (val(66)met) single nucleotide polymorphism (SNP), has been linked to variability in human memory performance and to both the structure and physiological response of the hippocampus, which plays a central role in memory processing. However, these effects have not been consistently reported, which may reflect the modest size of the samples studied to date. Employing a meta-analytic approach, we examined the effect of the BDNF val(66)met polymorphism on human memory (5922 subjects) and hippocampal structure (2985 subjects) and physiology (362 subjects). Our results suggest that variations in the rs6265 SNP of the BDNF gene have a significant effect on memory performance, and on both the structure and physiology of the hippocampus, with carriers of the met allele being adversely affected. These results underscore the role of BDNF in moderating variability between individuals in human memory performance and in mediating some of the neurocognitive impairments underlying neuropsychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nitric oxide: a physiologic messenger.

    PubMed

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  14. A model for the solution structure of the rod arrestin tetramer.

    PubMed

    Hanson, Susan M; Dawson, Eric S; Francis, Derek J; Van Eps, Ned; Klug, Candice S; Hubbell, Wayne L; Meiler, Jens; Gurevich, Vsevolod V

    2008-06-01

    Visual rod arrestin has the ability to self-associate at physiological concentrations. We previously demonstrated that only monomeric arrestin can bind the receptor and that the arrestin tetramer in solution differs from that in the crystal. We employed the Rosetta docking software to generate molecular models of the physiologically relevant solution tetramer based on the monomeric arrestin crystal structure. The resulting models were filtered using the Rosetta energy function, experimental intersubunit distances measured with DEER spectroscopy, and intersubunit contact sites identified by mutagenesis and site-directed spin labeling. This resulted in a unique model for subsequent evaluation. The validity of the model is strongly supported by model-directed crosslinking and targeted mutagenesis that yields arrestin variants deficient in self-association. The structure of the solution tetramer explains its inability to bind rhodopsin and paves the way for experimental studies of the physiological role of rod arrestin self-association.

  15. Structure, and culture of the gut microbiome of the Mormon cricket Anabrus simplex

    USDA-ARS?s Scientific Manuscript database

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...

  16. A Role for Cytoplasmic Structural Proteins in the Transport of Water and Salts in the Intestine

    DTIC Science & Technology

    1981-12-08

    inic Structural Proteins in the Transport ot Water and Salts in the Intestine by Paula T. Beall., Ph.D. D)epartment of Physiol.ogy Baylor CotleP,(e of...Med(icine 1200 Moursund Houston, ’T’exas 77030 December 8, 1981 Reproduction in whole or in part is permitted for any purpose of the United States...Research N00014-81-K-0167 A Role for Cytoplasmic Structural Proteins in the .. :..... . .-. ..... TiTans~por’t of Wa• and Salts in ’tIeIntestine

  17. Functional diversity of potassium channel voltage-sensing domains.

    PubMed

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  18. Functional diversity of potassium channel voltage-sensing domains

    PubMed Central

    Islas, León D.

    2016-01-01

    Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852

  19. Psychrophiles

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo

    2013-05-01

    Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.

  20. Commonalities in the central nervous system's involvement with complementary medical therapies: limbic morphinergic processes.

    PubMed

    Esch, Tobias; Guarna, Massimo; Bianchi, Enrica; Zhu, Wei; Stefano, George B

    2004-06-01

    Currently, complementary and alternative medicine (CAM) are experiencing growing popularity, especially in former industrialized countries. However, most of the underlying physiological and molecular mechanisms as well as participating biological structures are still speculative. Specific and non-specific effects may play a role in CAM. Moreover, trust, belief, and expectation may be of importance, pointing towards common central nervous system (CNS) pathways involved in CAM. Four CAM approaches (acupuncture, meditation, music therapy, and massage therapy) were examined with regard to the CNS activity pattern involved. CNS commonalities between different approaches were investigated. Frontal/prefrontal and limbic brain structures play a role in CAM. Particularly, left-anterior regions of the brain and reward or motivation circuitry constituents are involved, indicating positive affect and emotion-related memory processing--accompanied by endocrinologic and autonomic functions--as crucial components of CAM effects. Thus, trust and belief in a therapist or positive therapy expectations seem to be important. However, besides common non-specific or subjective effects, specific (objective) physiological components also exist. Non-specific CNS commonalities are involved in various CAM therapies. Different therapeutic approaches physiologically overlap in the brain. However, molecular correspondents of the detected CNS analogies still have to be specified. In particular, fast acting autoregulatory signaling molecules presumably play a role. These may also be involved in the placebo response.

  1. Molecular Mechanisms at the Basis of Plasticity in the Developing Visual Cortex: Epigenetic Processes and Gene Programs

    PubMed Central

    Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso

    2013-01-01

    Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210

  2. Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function

    USDA-ARS?s Scientific Manuscript database

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...

  3. Glycomics: revealing the dynamic ecology and evolution of sugar molecules.

    PubMed

    Springer, Stevan A; Gagneux, Pascal

    2016-03-01

    Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    PubMed Central

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins. PMID:26664975

  5. The role of the bidirectional hydrogenase in cyanobacteria.

    PubMed

    Carrieri, Damian; Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching

    2011-09-01

    Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Gap junctions in cells of the immune system: structure, regulation and possible functional roles.

    PubMed

    Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F

    2000-04-01

    Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  7. The Avian Proghrelin System

    USDA-ARS?s Scientific Manuscript database

    To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...

  8. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  9. A Reconceptualization of Continuity Theory: Some Preliminary Thoughts.

    ERIC Educational Resources Information Center

    Covey, Herbert C.

    1981-01-01

    Describes continuity theory, as emphasizing the interaction between individual characteristics and the social structure. Presents three propositions concerning social role restrictivness and maintenance in older adults. Considers psychological, sociological, physiological, and educational influences on elder's social behavior. (JAC)

  10. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles.

    PubMed

    Singh, Sudhir Kumar; Pandey, Himanshu; Al-Bassam, Jawdat; Gheber, Larisa

    2018-05-01

    Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.

  11. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5.

    PubMed

    Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W

    2017-01-01

    The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.

  12. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5

    DOE PAGES

    Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...

    2017-07-12

    Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less

  13. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5

    PubMed Central

    Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.

    2017-01-01

    The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909

  14. Physiological roles of claudins in kidney tubule paracellular transport.

    PubMed

    Muto, Shigeaki

    2017-01-01

    The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.

  15. The Cajal school and the physiological role of astrocytes: a way of thinking

    PubMed Central

    Navarrete, Marta; Araque, Alfonso

    2014-01-01

    Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago –“Something about the physiological significance of neuroglia” (Ramón y Cajal, 1897) and “A contribution to the understanding of neuroglia in the human brain” (Ramón y Cajal, 1913)—focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte–neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal. PMID:24904302

  16. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    PubMed

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.

  17. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.

    PubMed

    Salaemae, Wanisa; Booker, Grant W; Polyak, Steven W

    2016-04-01

    Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.

  18. ENaC/DEG in Tumor Development and Progression

    PubMed Central

    Liu, Cui; Zhu, Li-Li; Xu, Si-Guang; Ji, Hong-Long; Li, Xiu-Min

    2016-01-01

    The epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, including the acid-sensing ion channels (ASICs), is characterized by a high degree of similarity in structure but highly diverse in physiological functions. These ion channels have been shown to be important in several physiological functions of normal epithelial cells, including salt homeostasis, fluid transportation and cell mobility. There is increasing evidence suggesting that ENaC/DEG channels are critically engaged in cancer cell biology, such as proliferation, migration, invasion and apoptosis, playing a role in tumor development and progression. In this review, we will discuss recent studies showing the role of ENaC and ASIC channels in epithelial cells and its relationship to the oncogenesis. PMID:27698929

  19. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    PubMed

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bmi-1: At the crossroads of physiological and pathological biology

    PubMed Central

    Bhattacharya, Resham; Mustafi, Soumyajit Banerjee; Street, Mark; Dey, Anindya; Dwivedi, Shailendra Kumar Dhar

    2015-01-01

    Bmi-1 is a member of the Polycomb Repressor Complex1 that mediates gene silencing by regulating chromatin structure and is indispensable for self-renewal of both normal and cancer stem cells. Despite three decades of research that have elucidated the transcriptional regulation, post-translational modifications and functions of Bmi-1 in regulating the DNA damage response, cellular bioenergetics, and pathologies, the entire potential of a protein with such varied function remains to be realized. This review attempts to synthesize the current knowledge on Bmi-1 with an emphasis on its role in both normal physiology and cancer. Additionally, since cancer stem cells are emerging as a new paradigm for therapy resistance, the role of Bmi-1 in this perspective is also highlighted. The wide spectrum of malignancies that implicate Bmi-1 as a signature for stemness and oncogenesis also make it a suitable candidate for therapy. Nonetheless new approaches are vitally needed to further characterize physiological roles of Bmi-1 with the long-term goal of using Bmi-1 as a prognostic marker and a therapeutic target. PMID:26448339

  1. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    PubMed

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  2. Uriniferous tubule: structural and functional organization.

    PubMed

    Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte

    2012-04-01

    The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.

  3. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays. © 2017 International Society on Thrombosis and Haemostasis.

  4. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    PubMed Central

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  5. Biochemical factors modulating female genital sexual arousal physiology.

    PubMed

    Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N

    2010-09-01

    Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.

  6. Discovery of potent and selective small-molecule PAR-2 agonists.

    PubMed

    Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger

    2008-09-25

    Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.

  7. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions

    PubMed Central

    Ambrogini, Patrizia; Betti, Michele; Galati, Claudia; Di Palma, Michael; Lattanzi, Davide; Savelli, David; Galli, Francesco; Cuppini, Riccardo; Minelli, Andrea

    2016-01-01

    Neuroplasticity is an “umbrella term” referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity. PMID:27983697

  8. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates?

    PubMed

    Wudick, Michael M; Michard, Erwan; Oliveira Nunes, Custódio; Feijó, José A

    2018-04-19

    Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.

  9. Endocrine system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  10. Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, J.D.; Kagawa, H.K.; Zaluzec, N.J.

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1more » mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.« less

  11. Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?

    DOE R&D Accomplishments Database

    Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.

    1997-07-01

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.

  12. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles

    PubMed Central

    De Zaeytijd, Jeroen; Van Damme, Els J. M.

    2017-01-01

    Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper. PMID:28353660

  13. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis.

    PubMed

    Shahin, Victor

    2017-08-01

    Apoptosis is a programmed cell death playing key roles in physiology and pathophysiology of multi cellular organisms. Its nuclear manifestation requires transmission of the death signals across the nuclear pore complexes (NPCs). In strategic sequential steps apoptotic factors disrupt NPCs structure, integrity and barrier ultimately leading to nuclear breakdown. The present review reflects on these steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes.

    PubMed

    Maher, Anthony D; Kuchel, Philip W

    2003-08-01

    Ca(2+)-dependent K(+) efflux from human erythrocytes was first described in the 1950s. Subsequent studies revealed that a K(+)-specific membrane protein (the Gárdos channel) was responsible for this phenomenon (the Gárdos effect). In recent years several types of Ca-activated K(+) channel have been identified and studied in a wide range of cells, with the erythrocyte Gárdos channel serving as both a model for a broader physiological perspective, and an intriguing component of erythrocyte function. The existence of this channel has raised a number of questions. For example, what is its role in the establishment and maintenance of ionic distribution across the red cell membrane? What role might it play in erythrocyte development? To what extent is it active in circulating erythrocytes? What are the cell-physiological implications of its dysfunction?This review summarises current knowledge of this membrane protein with respect to its function and structure, its physiological roles (some putative) and its contribution to various disease states, and it provides an introduction to adaptable NMR methods, which is our own area of technical expertise, for such ion transport analysis.

  15. Role of Vertical Larynx Movement and Cervical Lordosis in FO Control.

    ERIC Educational Resources Information Center

    Honda, Kiyoshi; Hirai, Hiroyuki; Masaki, Shinobu; Shimada, Yasuhiro

    1999-01-01

    Functional characteristics of the cervical structures of the larynx are investigated in search of physiological mechanisms of extralaryngeal FO control. Mean Response Time experiments were performed to record the positions of the articulators and the larynx during vowel production with different FO values. (Author/VWL)

  16. Single photon emission computed tomography (SPECT) in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promotedmore » as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.« less

  17. Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles.

    PubMed

    Navarrete, L Camilo; Barrera, Nelson P; Huidobro-Toro, J Pablo

    2014-10-01

    The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neural Correlates of Emotional Personality: A Structural and Functional Magnetic Resonance Imaging Study

    PubMed Central

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for emotional personality. Results are the first to show personality-related differences using eigenvector centrality mapping, and the first to show structural brain differences for a physiological measure associated with personality. PMID:24312166

  19. Dissipative structures and biological rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  20. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  1. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.

    PubMed

    Arrigo, André-Patrick

    2017-07-01

    Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

  2. Molecular structure of P2X receptors.

    PubMed

    Egan, Terrance M; Cox, Jane A; Voigt, Mark M

    2004-01-01

    P2X receptors are ligand-gated ion channels that transduce many of the physiological effects of extracellular ATP. There has been a dramatic increase in awareness of these receptors over the past 5 or so years, in great part due to their molecular cloning and characterization. The availability of cDNA clones for the various subunits has led to rapid progress in identifying their tissue-specific expression, resulting in new ideas concerning the functional roles these receptors might play in physiological and pathophysiological processes. In addition, molecular approaches have yielded much information regarding the structure and function of the receptor proteins themselves. In this review we seek to review recent findings concerning the molecular determinants of receptor-channel function, with particular focus on ligand binding and gating, ion selectivity, and subunit assembly.

  3. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    PubMed

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    PubMed Central

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  5. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    PubMed

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Devices for noninvasive transcranial electrostimulation of the brain endorphinergic system: application for improvement of human psycho-physiological status.

    PubMed

    Lebedev, Valery P; Malygin, A V; Kovalevski, A V; Rychkova, S V; Sisoev, V N; Kropotov, S P; Krupitski, E M; Gerasimova, L I; Glukhov, D V; Kozlowski, G P

    2002-03-01

    It is well known that deficit of endorphins plays an important role in disturbances of human psycho-physiological status. Previously, we revealed that brain endorphinergic structures have quasiresonance characteristics. On the basis of these data, a method of activation of the brain endorphinergic structures by means of noninvasive and rather selective transcranial electrostimulation (TES) as a kind of functional electrical stimulation (FES) was elaborated. New models of TES devices (TRANSAIR) were developed for indoor and outdoor usage. To increase the efficacy of TES, the frequency modulation according to normal distribution in the limits of the quasiresonance characteristics was put into operation. The blind and placebo-controlled (passive and active placebo) study was produced to estimate the TES effects on stress events and accompanied psycho-physiological and autonomic disturbances of different intensities on volunteers and patients in the following groups: everyday stress and fatigue; stress in regular military service and in field conditions; stress in the relatives of those lost in mass disaster; posttraumatic stress (thermal burns); and affective disorders in a postabstinence period. Some subjective verbal and nonverbal tests and objective tests (including heart rate variability) were used for estimation of the initial level of psycho-physiological status, which changes after TES sessions. It was demonstrated that fatigue, stress, and other accompanied psycho-physiological disturbances were significantly improved or abolished after 2-5 TES sessions. The TES effects were more pronounced in cases of heavier disturbances. In conclusion, activation of the brain endorphinergic structures by TES is an effective homeostatic method of FES that sufficiently improves quality of life.

  7. Loss of Parenting Self-Efficacy among Immigrant Parents

    ERIC Educational Resources Information Center

    Ali, Mehrunnisa Ahmad

    2008-01-01

    The early settlement experiences of immigrant parents of young children arriving in Canada make it difficult for them to meet their young children's physiological, social and emotional needs, or to help them navigate the structures of their new environment. They lose their sense of self-efficacy in their parenting role in the face of rapid…

  8. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  9. The multifaceted subunit interfaces of ionotropic glutamate receptors.

    PubMed

    Green, Tim; Nayeem, Naushaba

    2015-01-01

    The past fifteen years has seen a revolution in our understanding of ionotropic glutamate receptor (iGluR) structure, starting with the first view of the ligand binding domain (LBD) published in 1998, and in many ways culminating in the publication of the full-length structure of GluA2 in 2009. These reports have revealed not only the central role played by subunit interfaces in iGluR function, but also myriad binding sites within interfaces for endogenous and exogenous factors. Changes in the conformation of inter-subunit interfaces are central to transmission of ligand gating into pore opening (itself a rearrangement of interfaces), and subsequent closure through desensitization. With the exception of the agonist binding site, which is located entirely within individual subunits, almost all modulatory factors affecting iGluRs appear to bind to sites in subunit interfaces. This review seeks to summarize what we currently understand about the diverse roles interfaces play in iGluR function, and to highlight questions for future research. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  10. Acid-sensing ion channels in pain and disease

    PubMed Central

    Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.

    2015-01-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197

  11. Acid-sensing ion channels in pain and disease.

    PubMed

    Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J

    2013-07-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.

  12. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  13. Recent Advances in the Chemical Biology of Nitroxyl (HNO) Detection and Generation

    PubMed Central

    Miao, Zhengrui; King, S. Bruce

    2016-01-01

    Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951

  14. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  15. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  16. Diversity and functions of protein glycosylation in insects.

    PubMed

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Uncovering Novel Roles of Nonneuronal Cells in Body Weight Homeostasis and Obesity

    PubMed Central

    Argente, Jesús

    2013-01-01

    Glial cells, which constitute more than 50% of the mass of the central nervous system and greatly outnumber neurons, are at the vanguard of neuroendocrine research in metabolic control and obesity. Historically relegated to roles of structural support and protection, diverse functions have been gradually attributed to this heterogeneous class of cells with their protagonism in crescendo in all areas of neuroscience during the past decade. However, this dramatic increase in attention bestowed upon glial cells has also emphasized our vast lack of knowledge concerning many aspects of their physiological functions, let alone their participation in numerous pathologies. This minireview focuses on the recent advances in our understanding of how glial cells participate in the physiological regulation of appetite and systemic metabolism as well as their role in the pathophysiological response to poor nutrition and secondary complications associated with obesity. Moreover, we highlight some of the existing lagoons of knowledge in this increasingly important area of investigation. PMID:23798599

  18. Biological Hydropersulfides and Related Polysulfides: A New Concept and Perspective in Redox Biology.

    PubMed

    Fukuto, Jon M; Ignarro, Louis J; Nagy, Peter; Wink, David A; Kevil, Christopher G; Feelisch, Martin; Cortese-Krott, Miriam M; Bianco, Christopher L; Kumagai, Yoshito; Hobbs, Adrian J; Lin, Joseph; Ida, Tomoaki; Akaike, Takaaki

    2018-05-12

    The chemical biology of thiols (RSH, e.g., cysteine and cysteine containing proteins/peptides) has been a topic of extreme interest for many decades due to their reported roles in protein structure/folding, redox signaling, metal ligation, cellular protection and enzymology. While many of the studies on thiol/sulfur biochemistry have focused on thiols, relatively ignored have been hydropersulfides (RSSH) and higher order polysulfur species (RSS n H, RSS n R, n > 1). Recent and provocative work has alluded to the prevalence and likely physiological importance of RSSH and related RSS n H. RSSH of cysteine (Cys-SSH) has been found to be prevalent in mammalian systems along with Cys-SSH-containing proteins. The RSSH functionality has not been examined to the extent of other biologically relevant sulfur derivatives (e.g., sulfenic acids, disulfides, etc.), whose roles in cell signaling are strongly indicated. The recent finding of Cys-SSH biosynthesis and translational incorporation into proteins is an unequivocal indication of its fundamental importance and necessitates a more profound look into the physiology of RSSH. In this Review, we discuss the currently reported chemical biology of RSSH (and related species) as a prelude to discussing their possible physiological roles. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    PubMed

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Exploring the pH-Dependent Substrate Transport Mechanism of FocA Using Molecular Dynamics Simulation

    PubMed Central

    Lv, Xiaoying; Liu, Huihui; Ke, Meng; Gong, Haipeng

    2013-01-01

    FocA belongs to the formate-nitrate transporter family and plays an essential role in the export and uptake of formate in organisms. According to the available crystal structures, the N-terminal residues of FocA are structurally featureless at physiological conditions but at reduced pH form helices to harbor the cytoplasmic entrance of the substrate permeation pathway, which apparently explains the cessation of electrical signal observed in electrophysiological experiments. In this work, we found by structural analysis and molecular dynamics simulations that those N-terminal helices cannot effectively preclude the substrate permeation. Equilibrium simulations and thermodynamic calculations suggest that FocA is permeable to both formate and formic acid, the latter of which is transparent to electrophysiological studies as an electrically neutral species. Hence, the cease of electrical current at acidic pH may be caused by the change of the transported substrate from formate to formic acid. In addition, the mechanism of formate export at physiological pH is discussed. PMID:24359743

  1. Copper signaling in the brain and beyond.

    PubMed

    Ackerman, Cheri M; Chang, Christopher J

    2018-03-30

    Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.

  2. Human factors. [in space colony environments

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1977-01-01

    Life aboard space habitats is considered with reference to physiological factors and self-government. Physiological concerns include the loss of bone structural strength, the long-term effects of zero-gravity, the role of inert gases in breathing, and the danger of slow cosmic-ray particles. With reference to the administration of space habitats, it is suggested that initially Intelsat might serve as a model for supranational sponsorship. Later it is envisioned that space habitats will have some autonomy but will still be subject to earth control; habitats will not wage war on earth or on each other; and that the habitats will be protected from any adverse developments that might occur on earth.

  3. Role of LRRK2 in the regulation of dopamine receptor trafficking

    PubMed Central

    Sanna, Simona; Taymans, Jean Marc; Morari, Michele; Brugnoli, Alberto; Frassineti, Martina; Masala, Alessandra; Esposito, Sonia; Galioto, Manuela; Valle, Cristiana; Carri, Maria Teresa; Biosa, Alice; Greggio, Elisa; Crosio, Claudia

    2017-01-01

    Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson’s disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD. PMID:28582422

  4. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior

    PubMed Central

    Baslow, Morris H.

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525

  5. Cardiac Physiology of Aging: Extracellular Considerations.

    PubMed

    Horn, Margaux A

    2015-07-01

    Aging is a major risk factor for the development of cardiovascular disease, with the majority of affected patients being elderly. Progressive changes to myocardial structure and function occur with aging, often in concert with underlying pathologies. However, whether chronological aging results in a remodeled "aged substrate" has yet to be established. In addition to myocyte contractility, myocardial performance relies heavily on the cardiac extracellular matrix (ECM), the roles of which are as dynamic as they are significant; including providing structural integrity, assisting in force transmission throughout the cardiac cycle and acting as a signaling medium for communication between cells and the extracellular environment. In the healthy heart, ECM homeostasis must be maintained, and matrix deposition is in balance with degradation. Consequently, alterations to, or misregulation of the cardiac ECM has been shown to occur in both aging and in pathological remodeling with disease. Mounting evidence suggests that age-induced matrix remodeling may occur at the level of ECM control; including collagen synthesis, deposition, maturation, and degradation. Furthermore, experimental studies using aged animal models not only suggest that the aged heart may respond differently to insult than the young, but the identification of key players specific to remodeling with age may hold future therapeutic potential for the treatment of cardiac dysfunction in the elderly. This review will focus on the role of the cardiac interstitium in the physiology of the aging myocardium, with particular emphasis on the implications to age-related remodeling in disease. © 2015 American Physiological Society.

  6. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  7. Lessons learned at the intersection of immunology and neuroscience.

    PubMed

    Steinman, Lawrence

    2012-04-01

    Neurobiologists and immunologists study concepts often signified with identical terminology. Scientists in both fields study a structure known as the synapse, and each group analyzes a subject called memory. Is this a quirk of human language, or are there real similarities between these two physiological systems? Not only are the linguistic concepts expressed in the words "synapse" and "memory" shared between the fields, but the actual molecules of physiologic importance in one system play parallel roles in the other: complement, the major histocompatibility molecules, and even "neuro"-transmitters all have major impacts on health and on disease in both the brain and the immune system. Not only are the same molecules found in diverse roles in each system, but we have learned that there is real "hard-wired" crosstalk between nerves and lymphoid organs. This issue of the JCI highlights some of the lessons learned from experts who are working at this scintillating intersection between immunology and neuroscience.

  8. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  9. Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes.

    PubMed

    Bettler, Bernhard; Fakler, Bernd

    2017-08-01

    Ionotropic AMPA-type glutamate receptors and G-protein-coupled metabotropic GABA B receptors are key elements of neurotransmission whose cellular functions are determined by their protein constituents. Over the past couple of years unbiased proteomic approaches identified comprehensive sets of protein building blocks of these two types of neurotransmitter receptors in the brain (termed receptor proteomes). This provided the opportunity to match receptor proteomes with receptor physiology and to study the structural organization, regulation and function of native receptor complexes in an unprecedented manner. In this review we discuss the principles of receptor architecture and regulation emerging from the functional characterization of the proteomes of AMPA and GABA B receptors. We also highlight progress in unraveling the role of unexpected protein components for receptor physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  11. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized metabolites produced by Bacillus species are highly conserved, known compounds with important signaling roles in the physiology and development of this bacterium. Additionally, there is significant unique biosynthetic machinery distributed across the genus that might lead to new, unknown metabolites with diverse biological functions. Inspired by the findings of our genomic analysis, we speculate that the highly conserved alkylpyrones might have an important biological activity within this genus. We go on to validate this prediction by demonstrating that these natural products are developmental signals in Bacillus and act by inhibiting sporulation.

  12. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases.

    PubMed

    Lionetti, Vincenzo; Cervone, Felice; Bellincampi, Daniela

    2012-11-01

    The cell wall is a complex structure mainly composed by a cellulose-hemicellulose network embedded in a cohesive pectin matrix. Pectin is synthesized in a highly methyl esterified form and is de-esterified in muro by pectin methyl esterases (PMEs). The degree and pattern of methyl esterification affect the cell wall structure and properties with consequences on both the physiological processes of the plants and their resistance to pathogens. PME activity displays a crucial role in the outcome of the plant-pathogen interactions by making pectin more susceptible to the action of the enzymes produced by the pathogens. This review focuses on the impact of pectin methyl esterification in plant-pathogen interactions and on the dynamic role of its alteration during pathogenesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes

    Treesearch

    S.B. McLaughlin; R. Wimmer

    1999-01-01

    Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...

  14. Teaching the Extracellular Matrix and Introducing Online Databases within a Multidisciplinary Course with i-Cell-MATRIX: A Student-Centered Approach

    ERIC Educational Resources Information Center

    Sousa, Joao Carlos; Costa, Manuel Joao; Palha, Joana Almeida

    2010-01-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure.…

  15. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  16. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective

    PubMed Central

    Kimura, Tomoki; Kambe, Taiho

    2016-01-01

    Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009

  17. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Composition and structure of the pericellular environment. Physiological function and chemical composition of pericellular proteoglycan (an evolutionary view).

    PubMed

    Scott, J E

    1975-07-17

    Connective tissue cells exist in a meshwork of insoluble fibres, the interstices of which are filled with soluble, high molecular mass, anionic material of a predominantly carbohydrate nature. The interactions of fibres with the interfibrillar material are central to the discussion of connective tissue physiology. As with all soluble polymers, the interfibrillar polyanion tends to "swell' and the tangled mass of chains offers considerable resistance to penetration by the large insoluble fibres. The consequent pressure to "inflate' the fibrous network is important in giving elasticity to cartilage, transparency to cornea, etc. Branched structures (of proteoglycans) and straight-chain forms (of hyaluronate) are compared for their ability to fulfil these functions. Apart from their physical ("non-specific') roles proteoglycans and glycosaminoglycans are able to interact physicochemically with, for example, collagen in ways which show considerable specificity, and which presumably are important in the laying down of the fibrous network as well as in maintaining its mechanical integrity. It is proposed that the role played by radiation, particularly as mediated via the hydrated electron (eaq) was dominant in the pre- and post-biotic evolution of pericellular environments.

  20. Beyond the G-spot: clitourethrovaginal complex anatomy in female orgasm.

    PubMed

    Jannini, Emmanuele A; Buisson, Odile; Rubio-Casillas, Alberto

    2014-09-01

    The search for the legendary, highly erogenous vaginal region, the Gräfenberg spot (G-spot), has produced important data, substantially improving understanding of the complex anatomy and physiology of sexual responses in women. Modern imaging techniques have enabled visualization of dynamic interactions of female genitals during self-sexual stimulation or coitus. Although no single structure consistent with a distinct G-spot has been identified, the vagina is not a passive organ but a highly dynamic structure with an active role in sexual arousal and intercourse. The anatomical relationships and dynamic interactions between the clitoris, urethra, and anterior vaginal wall have led to the concept of a clitourethrovaginal (CUV) complex, defining a variable, multifaceted morphofunctional area that, when properly stimulated during penetration, could induce orgasmic responses. Knowledge of the anatomy and physiology of the CUV complex might help to avoid damage to its neural, muscular, and vascular components during urological and gynaecological surgical procedures.

  1. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  2. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  3. The endothelial glycocalyx

    PubMed Central

    Yang, Yimu; Schmidt, Eric P.

    2013-01-01

    Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386

  4. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    PubMed

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  5. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    PubMed

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  6. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  7. The role of physiology in the development of golf performance.

    PubMed

    Smith, Mark F

    2010-08-01

    The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.

  8. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extendedmore » conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.« less

  9. Chronic Pain and Chronic Stress: Two Sides of the Same Coin?

    PubMed

    Abdallah, Chadi G; Geha, Paul

    2017-02-01

    Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.

  10. The Role of Dopamine in Normal Rodent Motor Cortex: Physiological Effects and Structural Correlates

    DTIC Science & Technology

    1999-04-05

    things she does on a daily basis made the lab a great place to do research. Susan’s expertise in molecular techniques was evident from day one , and I...applied OA on the spontaneous activity (SA) of PTNs. the receptors that mediate these effects, and DA’s effects on glutamate induced excitation of PTNs...numerous neurons in the motor cortex and may have profound effects on motor cortex activity, through its influence on PTNs. iv The Role of Dopamine in

  11. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy

    PubMed Central

    Roy, Sohini; Bag, Arup K.; Singh, Rakesh K.; Talmadge, James E.; Batra, Surinder K.; Datta, Kaustubh

    2017-01-01

    Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications. PMID:29067024

  12. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture .

    PubMed

    Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E

    2013-11-05

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.

  13. Endocannabinoids and stress.

    PubMed

    Riebe, Caitlin J; Wotjak, Carsten T

    2011-07-01

    Endogenous cannabinoids play an important role in the physiology and behavioral expression of stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) axis, including the release of glucocorticoids, is the fundamental hormonal response to stress. Endocannabinoid (eCB) signaling serves to maintain HPA-axis homeostasis, by buffering basal activity as well as by mediating glucocorticoid fast feedback mechanisms. Following chronic stressor exposure, eCBs are also involved in physiological and behavioral habituation processes. Behavioral consequences of stress include fear and stress-induced anxiety as well as memory formation in the context of stress, involving contextual fear conditioning and inhibitory avoidance learning. Chronic stress can also lead to depression-like symptoms. Prominent in these behavioral stress responses is the interaction between eCBs and the HPA-axis. Future directions may differentiate among eCB signaling within various brain structures/neuronal subpopulations as well as between the distinct roles of the endogenous cannabinoid ligands. Investigation into the role of the eCB system in allostatic states and recovery processes may give insight into possible therapeutic manipulations of the system in treating chronic stress-related conditions in humans.

  14. Water sorption-desorption in conifer cuticles: The role of lignin.

    PubMed

    Reina, José J.; Domínguez, Eva; Heredia, Antonio

    2001-07-01

    Current information on the type and amount of biopolymers present in the epidermis of conifer species is still insufficient. This work presents the detailed morphology and chemical composition of Araucaria bidwillii cuticle after selective treatments to remove the different types of biopolymers. After removal of the waxes, cutin and polar hydrolyzable components, a lignin-like fraction, which makes up 25% of the initial cuticle weight, was identified by GC-MS and infrared spectroscopy. The isolated lignin is of G type, mainly formed by guaiacyl units. This composition indicates that the conifer cuticle investigated here has similar composition to other conifer-isolated cuticles. Water sorption and desorption by the isolated cuticle and the different cuticle fractions, including lignin, were studied. The analysis of the isotherms, following distinct physicochemical models, gave useful information on the structural and physiological role of the different biopolymers present in the cuticle. Lignin fraction showed both a high water sorption and capability of retaining it in comparision to other cuticle components. Hysteresis effect on water sorption-desorption cycle and water cluster formations has also been studied, and their physiological role discussed.

  15. Neuromedin U: physiology, pharmacology and therapeutic potential.

    PubMed

    Budhiraja, S; Chugh, A

    2009-04-01

    Neuromedin U (NmU), a multifunctional neuropeptide, belongs to a family of neuropeptides, the neuromedins. It is ubiquitously distributed with highest levels found in the gastrointestinal tract and pituitary. The conservation of structural elements of NmU across species, the widespread distribution of NmU and its receptors throughout the body point to a fundamental role in key physiological processes. Two G protein coupled receptors for NmU have been cloned NmU R1 and NmU R2. NmU R1 is expressed pre-dominantly in the periphery especially the gastrointestinal tract whereas NmU R2 is expressed pre-dominantly in the central nervous system. Current evidence suggests a role of NmU in pain, in regulation of feeding and energy homeostasis, stress, cancer, immune mediated inflammatory diseases like asthma, inflammatory diseases, maintaining the biological clock, in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract, and in the control of blood flow and blood pressure. With the development of drugs selectively acting on receptors and knockout animal models, exact pathophysiological roles of NmU will become clearer.

  16. Stretch-activated TRPV2 channels: Role in mediating cardiopathies.

    PubMed

    Aguettaz, Elizabeth; Bois, Patrick; Cognard, Christian; Sebille, Stéphane

    2017-11-01

    Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. Although this channel has been first characterized as a noxious heat sensor, its mechanosensor property recently gained importance in various physiological functions. TRPV2 has been described as a stretch-mediated channel and a regulator of calcium homeostasis in several cell types and has been shown to be involved in the stretch-dependent responses in cardiomyocytes. Hence, several studies in the last years support the idea that TRPV2 play a key role in the function and structure of the heart, being involved in the cardiac compensatory mechanisms in response to pathologic or exercise-induced stress. We present here an overview of the current literature and concepts of TRPV2 channels involvement (i) in the mechanical coupling mechanisms in heart and (ii) in the mechanisms that lead to cardiomyopathies. All these studies lead us to think that TRPV2 may also be an important cardiac drug target based on its major physiological roles in heart. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us about Eye Evolution.

    PubMed

    Imarazene, Boudjema; Andouche, Aude; Bassaglia, Yann; Lopez, Pascal-Jean; Bonnaud-Ponticelli, Laure

    2017-01-01

    In metazoans, there is a remarkable diversity of photosensitive structures; their shapes, physiology, optical properties, and development are different. To approach the evolution of photosensitive structures and visual function, cephalopods are particularly interesting organisms due to their most highly centralized nervous system and their camerular eyes which constitute a convergence with those of vertebrates. The eye morphogenesis in numerous metazoans is controlled mainly by a conserved Retinal Determination Gene Network (RDGN) including pax, six, eya , and dac playing also key developmental roles in non-retinal structures and tissues of vertebrates and Drosophila . Here we have identified and explored the role of Sof-dac, Sof-six1/2, Sof-eya in eye morphogenesis, and nervous structures controlling the visual function in Sepia officinalis . We compare that with the already shown expressions in eye development of Sof-otx and Sof-pax genes. Rhodopsin is the pigment responsible for light sensitivity in metazoan, which correlate to correlate visual function and eye development. We studied Sof-rhodopsin expression during retina differentiation. By in situ hybridization, we show that (1) all of the RDGN genes, including Sof-pax6 , are expressed in the eye area during the early developmental stages but they are not expressed in the retina, unlike Sof-otx , which could have a role in retina differentiation; (2) Sof-rhodopsin is expressed in the retina just before vision gets functional, from stage 23 to hatching. Our results evidence a role of Sof-six1/2, Sof-eya , and Sof-dac in eye development. However, the gene network involved in the retinal photoreceptor differentiation remains to be determined. Moreover, for the first time, Sof-rhodopsin expression is shown in the embryonic retina of cuttlefish suggesting the evolutionary conservation of the role of rhodopsin in visual phototransduction within metazoans. These findings are correlated with the physiological and behavioral observations suggesting that S. officinalis is able to react to light stimuli from stage 25 of organogenesis on, as soon as the first retinal pigments appear.

  18. Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us about Eye Evolution

    PubMed Central

    Imarazene, Boudjema; Andouche, Aude; Bassaglia, Yann; Lopez, Pascal-Jean; Bonnaud-Ponticelli, Laure

    2017-01-01

    In metazoans, there is a remarkable diversity of photosensitive structures; their shapes, physiology, optical properties, and development are different. To approach the evolution of photosensitive structures and visual function, cephalopods are particularly interesting organisms due to their most highly centralized nervous system and their camerular eyes which constitute a convergence with those of vertebrates. The eye morphogenesis in numerous metazoans is controlled mainly by a conserved Retinal Determination Gene Network (RDGN) including pax, six, eya, and dac playing also key developmental roles in non-retinal structures and tissues of vertebrates and Drosophila. Here we have identified and explored the role of Sof-dac, Sof-six1/2, Sof-eya in eye morphogenesis, and nervous structures controlling the visual function in Sepia officinalis. We compare that with the already shown expressions in eye development of Sof-otx and Sof-pax genes. Rhodopsin is the pigment responsible for light sensitivity in metazoan, which correlate to correlate visual function and eye development. We studied Sof-rhodopsin expression during retina differentiation. By in situ hybridization, we show that (1) all of the RDGN genes, including Sof-pax6, are expressed in the eye area during the early developmental stages but they are not expressed in the retina, unlike Sof-otx, which could have a role in retina differentiation; (2) Sof-rhodopsin is expressed in the retina just before vision gets functional, from stage 23 to hatching. Our results evidence a role of Sof-six1/2, Sof-eya, and Sof-dac in eye development. However, the gene network involved in the retinal photoreceptor differentiation remains to be determined. Moreover, for the first time, Sof-rhodopsin expression is shown in the embryonic retina of cuttlefish suggesting the evolutionary conservation of the role of rhodopsin in visual phototransduction within metazoans. These findings are correlated with the physiological and behavioral observations suggesting that S. officinalis is able to react to light stimuli from stage 25 of organogenesis on, as soon as the first retinal pigments appear. PMID:28883798

  19. [Morpha striata in the members of the genus Rana (Amphibia, Anura), the reasons of adaptability to environmental changes].

    PubMed

    Vershinin, V L

    2008-01-01

    Under investigation is a complex of inherited physiological properties of the morpha striata (a monogenous dominant mutation) in two species of the genus Rana. Insufficient effectiveness of the potassium-sodium pump responsible for the skin transport in amphibians had lead to formation of a number of compensative physiological mechanisms in this morpha. The yearlings of the morpha striata are characterized by highly dynamic hemopoetic system playing important role in individual adaptations to unstable environments. Such a high level of metabolism in the morpha striata promotes rising of adaptive potential of the nervous system due to decrease of the excitability threshold, but causes shortening the life span. Therefore, physiological differences correlated with polymorph structure of the close species can be of crucial importance in their adaptations under existence in the natural and artificial geochemical anomalies and in anthropogenically disturbed ecosystems.

  20. Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NF-κB) - a Friend, a Foe, or a Bystander - in the Neurodegenerative Cascade and Pathogenesis of Alzheimer's Disease.

    PubMed

    Marwarha, Gurdeep; Ghribi, Othman

    2017-01-01

    NF-κB is a ubiquitous transcription factor that was discovered three decades ago. Since its discovery, this protein complex has been implicated in numerous physiological and pathophysiological processes such as synaptic plasticity, learning and memory, inflammation, insulin resistance, and oxidative stress among other factors that are intricately involved and dysregulated in Alzheimer's disease (AD). We embarked on a methodical and an objective review of contemporary literature to integrate the indispensable physiological functions of NF-κB in neuronal phsyiology with the undesirable pathophysiological attributes of NF-κB in the etiopathogenesis of Alzheimer's disease. In our approach, we first introduced Alzheimer's disease and subsequently highlighted the multifaceted roles of NF-κB in the biological processes altered in the progression of Alzheimer's disease including synaptic transmission, synaptic plasticity, learning, and memory, neuronal survival and apoptosis, adult neurogenesis, regulation of neural processes and structural plasticity, inflammation, and Amyloid-β production and toxicity. Our comprehensive review highlights and dissects the physiological role of NF-κB from its pathological role in the brain and delineates both, its beneficial as well as deleterious, role in the etiopathogenesis of Alzheimer's disease. In light of our understanding of the duality of the role of NF-κB in the pathogenesis of Alzheimer's disease, further studies are warranted to dissect and understand the basis of the dichotomous effects of NF-κB, so that certain selective benevolent and benign attributes of NF-κB can be spared while targeting its deleterious attributes and facets that are integral in the pathogenesis of Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    PubMed

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  2. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  3. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.

    PubMed

    Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe

    2016-02-12

    Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Neuroimaging and cognitive changes during déjà vu.

    PubMed

    Kovacs, Norbert; Auer, Tibor; Balas, Istvan; Karadi, Kazmer; Zambo, Katalin; Schwarcz, Attila; Klivenyi, Peter; Jokeit, Hennric; Horvath, Krisztina; Nagy, Ferenc; Janszky, Jozsef

    2009-01-01

    The cause or the physiological role of déjà vu (DV) in healthy people is unknown. The pathophysiology of DV-type epileptic aura is also unresolved. Here we describe a 22-year-old woman treated with deep brain stimulation (DBS) of the left internal globus pallidus for hemidystonia. At certain stimulation settings, DBS elicited reproducible episodes of DV. Neuropsychological tests and single-photon-emission computed tomography (SPECT) were performed during DBS-evoked DV and during normal DBS stimulation without DV. SPECT during DBS-evoked DV revealed hyperperfusion of the right (contralateral to the electrode) hippocampus and other limbic structures. Neuropsychological examinations performed during several evoked DV episodes revealed disturbances in nonverbal memory. Our results confirm the role of mesiotemporal structures in the pathogenesis of DV. We hypothesize that individual neuroanatomy and disturbances in gamma oscillations or in the dopaminergic system played a role in DBS-elicited DV in our patient.

  5. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. NASA Space Biology Program. Eighth annual symposium's program and abstracts

    NASA Technical Reports Server (NTRS)

    Halstead, T. W. (Editor)

    1984-01-01

    The activities included five half days of presentations by space biology principal investigators, an evening of poster session presentations by research associates, and an afternoon session devoted to the Flight Experiments Program. Areas of discussion included the following: gravity receptor mechanisms; physiological effects of gravity, structural mass; fluid dynamics and metabolism; mechanisms of plant response; and the role of gravity in development.

  7. Focus on the emerging new fields of network physiology and network medicine

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  8. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  9. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    PubMed

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  10. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.

    PubMed

    Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L

    2016-08-01

    The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.

  11. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moczydlowski, Edward G.

    Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability wasmore » investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.« less

  13. Aquaporin structure-function relationships: water flow through plant living cells.

    PubMed

    Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye

    2008-04-01

    Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.

  14. Physiological Strain in French Vineyard Workers Wearing Protective Equipment to Conduct Re-Entry Tasks in Humid Conditions.

    PubMed

    Grimbuhler, Sonia; Viel, Jean-François

    2018-06-19

    The proper use of personal protective equipment (PPE) plays an important role in reducing exposure to pesticides in vineyard farming activities, including re-entry tasks. However, discomfort from clothing systems may increase the physiological burden on workers. We compared the physiological burdens of vineyard workers wearing three different types of PPE during canopy management in field humid conditions while accounting for occupational, climatic, and geographical environments. The study was conducted in the Bordeaux vineyards of southern France during June 2012. A total of 42 workers from seven vineyards consented to field observations. The following PPE garments were randomly allocated: HF Estufa polyamide (Brisa®), Tyvek® Classic Plus, and Tychem® C Standard. Participant sociodemographic characteristics were collected using a structured questionnaire. Skin temperature and heart rate were monitored continuously using portable devices. Multivariate multilevel linear regression models were performed to account for the hierarchical structure of data. No significant difference was found for mean skin temperature during work. Regardless of the cardiac strain parameter considered, the Tyvek® Classic Plus garment produced the poorest results (P ≤ 0.03). Under the very humid conditions encountered during the field study, the thinness and breathability of the Tyvek® Classic Plus garment resulted in undergarment humidity, imposing additional physiological burden on vineyard workers. These results confirm that the idea of using generic coveralls in any farming activity is unsuitable. Compromises should be created between physiological costs and protection, depending on the agricultural task performed, the crop grown, and the environmental conditions encountered.

  15. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  16. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  17. Structure-Function Relations in Physiology Education: Where's the Mechanism?

    ERIC Educational Resources Information Center

    Lira, Matthew E.; Gardner, Stephanie M.

    2017-01-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…

  18. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection.

    PubMed

    Bhattacharya, Amita; Sood, Priyanka; Citovsky, Vitaly

    2010-09-01

    Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.

  19. [Satellite glial cells in sensory ganglia: its role in pain].

    PubMed

    Costa, Filipa Alexandra Leite; Moreira Neto, Fani Lourença

    2015-01-01

    Satellite glial cells in sensory ganglia are a recent subject of research in the field of pain and a possible therapeutic target in the future. Therefore, the aim of this study was to summarize some of the important physiological and morphological characteristics of these cells and gather the most relevant scientific evidence about its possible role in the development of chronic pain. In the sensory ganglia, each neuronal body is surrounded by satellite glial cells forming distinct functional units. This close relationship enables bidirectional communication via a paracrine signaling between those two cell types. There is a growing body of evidence that glial satellite cells undergo structural and biochemical changes after nerve injury, which influence neuronal excitability and consequently the development and/or maintenance of pain in different animal models of chronic pain. Satellite glial cells are important in the establishment of physiological pain, in addition to being a potential target for the development of new pain treatments. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis.

    PubMed

    Ichimura, Atsuhiko; Hirasawa, Akira; Hara, Takafumi; Tsujimoto, Gozoh

    2009-09-01

    Free fatty acids (FFAs) have been demonstrated to act as ligands of several G-protein-coupled receptors (GPCRs) (FFAR1, FFAR2, FFAR3, GPR84, and GPR120). These fatty acid receptors are proposed to play critical roles in a variety of types of physiological homeostasis. FFAR1 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium-chain, but not long-chain, FFAs. In contrast, FFAR2 and FFAR3 are activated by short-chain FFAs. FFAR1 is expressed mainly in pancreatic beta-cells and mediates insulin secretion, whereas GPR120 is expressed abundantly in the intestine and promotes the secretion of glucagon-like peptide-1 (GLP-1). FFAR3 is expressed in enteroendocrine cells and regulates host energy balance through effects that are dependent upon the gut microbiota. In this review, we summarize the identification, structure, and pharmacology of these receptors and present an essential overview of the current understanding of their physiological roles.

  1. Lessons learned at the intersection of immunology and neuroscience

    PubMed Central

    Steinman, Lawrence

    2012-01-01

    Neurobiologists and immunologists study concepts often signified with identical terminology. Scientists in both fields study a structure known as the synapse, and each group analyzes a subject called memory. Is this a quirk of human language, or are there real similarities between these two physiological systems? Not only are the linguistic concepts expressed in the words “synapse” and “memory” shared between the fields, but the actual molecules of physiologic importance in one system play parallel roles in the other: complement, the major histocompatibility molecules, and even “neuro”-transmitters all have major impacts on health and on disease in both the brain and the immune system. Not only are the same molecules found in diverse roles in each system, but we have learned that there is real “hard-wired” crosstalk between nerves and lymphoid organs. This issue of the JCI highlights some of the lessons learned from experts who are working at this scintillating intersection between immunology and neuroscience. PMID:22466655

  2. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [A role of the autonomic nervous system in cerebro-cardiac disorders].

    PubMed

    Basantsova, N Yu; Tibekina, L M; Shishkin, A N

    The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.

  4. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise

    PubMed Central

    Minett, Geoffrey M.; Duffield, Rob

    2013-01-01

    Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise. PMID:24550837

  5. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods

    PubMed Central

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A. M.; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system. Therefore, the enzyme plays both unique and universal roles in insects. The unique role of iaaNATs in physiological regulation urges the targeting of this system for integrated pest management (IPM). We indeed showed a successful example of chemical compound screening with reconstituted enzyme and further attempts seem promising. PMID:25918505

  6. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods.

    PubMed

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A M; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system. Therefore, the enzyme plays both unique and universal roles in insects. The unique role of iaaNATs in physiological regulation urges the targeting of this system for integrated pest management (IPM). We indeed showed a successful example of chemical compound screening with reconstituted enzyme and further attempts seem promising.

  7. Immunosuppressants: tools to investigate the physiological role of cytokines.

    PubMed

    Quesniaux, V F

    1993-11-01

    The cyclic peptide Cyclosporine A (CsA) is best known as the immunosuppressive drug which has revolutionized organ transplantation. It selectively suppresses T cell activation by blocking the transcription of cytokine genes such as IL-2 at the level of transcription factor modulation. The structurally unrelated immunosuppressant FK 506 acts on the same pathway and blocks cytokine gene expression. In contrast, rapamycin, a structural analogue of FK 506, interferes with the immune response at a different level, by blocking the response induced by cytokines such as IL-2. Although these drugs have been most studied for their immunosuppressive activities, it is clear that their effects on cytokine pathways extend far beyond the sole IL-2-mediated responses involved in the immune response. For instance, CsA and FK 506 inhibit the transcription of IL-3, IL-4, IFN gamma, TNF alpha or GM-CSF by activated T cells, and rapamycin has been shown to block the response to various growth factors such as IL-3, IL-4 or IL-6. Here, we recap what is known about the effects of CsA, FK 506 and rapamycin on hematopoiesis in vitro and in vivo and extrapolate on what these drugs can teach us about the physiological role of cytokines for hematopoiesis.

  8. A modern view of phenylalanine ammonia lyase.

    PubMed

    MacDonald, M Jason; D'Cunha, Godwin B

    2007-06-01

    Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.

  9. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    NASA Astrophysics Data System (ADS)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  10. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    PubMed

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  11. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    PubMed

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. Copyright © 2016 the American Physiological Society.

  12. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

    PubMed Central

    Samuels, E. R; Szabadi, E

    2008-01-01

    The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system. PMID:19506724

  13. Crystal Structure of Bfr A from Mycobacterium tuberculosis: Incorporation of Selenomethionine Results in Cleavage and Demetallation of Haem

    PubMed Central

    Gupta, Vibha; Gupta, Rakesh K.; Khare, Garima; Salunke, Dinakar M.; Tyagi, Anil K.

    2009-01-01

    Emergence of tuberculosis as a global health threat has necessitated an urgent search for new antitubercular drugs entailing determination of 3-dimensional structures of a large number of mycobacterial proteins for structure-based drug design. The essential requirement of ferritins/bacterioferritins (proteins involved in iron storage and homeostasis) for the survival of several prokaryotic pathogens makes these proteins very attractive targets for structure determination and inhibitor design. Bacterioferritins (Bfrs) differ from ferritins in that they have additional noncovalently bound haem groups. The physiological role of haem in Bfrs is not very clear but studies indicate that the haem group is involved in mediating release of iron from Bfr by facilitating reduction of the iron core. To further enhance our understanding, we have determined the crystal structure of the selenomethionyl analog of bacterioferritin A (SeMet-BfrA) from Mycobacterium tuberculosis (Mtb). Unexpectedly, electron density observed in the crystals of SeMet-BfrA analogous to haem location in bacterioferritins, shows a demetallated and degraded product of haem. This unanticipated observation is a consequence of the altered spatial electronic environment around the axial ligands of haem (in lieu of Met52 modification to SeMet52). Furthermore, the structure of Mtb SeMet-BfrA displays a possible lost protein interaction with haem propionates due to formation of a salt bridge between Arg53-Glu57, which appears to be unique to Mtb BfrA, resulting in slight modulation of haem binding pocket in this organism. The crystal structure of Mtb SeMet-BfrA provides novel leads to physiological function of haem in Bfrs. If validated as a drug target, it may also serve as a scaffold for designing specific inhibitors. In addition, this study provides evidence against the general belief that a selenium derivative of a protein represents its true physiological native structure. PMID:19946376

  14. Modeling activated states of GPCRs: the rhodopsin template.

    PubMed

    Niv, Masha Y; Skrabanek, Lucy; Filizola, Marta; Weinstein, Harel

    2006-01-01

    Activation of G Protein-Coupled Receptors (GPCRs) is an allosteric mechanism triggered by ligand binding and resulting in conformational changes transduced by the transmembrane domain. Models of the activated forms of GPCRs have become increasingly necessary for the development of a clear understanding of signal propagation into the cell. Experimental evidence points to a multiplicity of conformations related to the activation of the receptor, rendered important physiologically by the suggestion that different conformations may be responsible for coupling to different signaling pathways. In contrast to the inactive state of rhodopsin (RHO) for which several high quality X-ray structures are available, the structure-related information for the active states of rhodopsin and all other GPCRs is indirect. We have collected and stored such information in a repository we maintain for activation-specific structural data available for rhodopsin-like GPCRs, http://www.physiology.med.cornell.edu/GPCRactivation/gpcrindex.html . Using these data as structural constraints, we have applied Simulated Annealing Molecular Dynamics to construct a number of different active state models of RHO starting from the known inactive structure. The common features of the models indicate that TM3 and TM5 play an important role in activation, in addition to the well-established rearrangement of TM6. Some of the structural changes observed in these models occur in regions that were not involved in the constraints, and have not been previously tested experimentally; they emerge as interesting candidates for further experimental exploration of the conformational space of activated GPCRs. We show that none of the normal modes calculated from the inactive structure has a dominant contribution along the path of conformational rearrangement from inactive to the active forms of RHO in the models. This result may differentiate rhodopsin from other GPCRs, and the reasons for this difference are discussed in the context of the structural properties and the physiological function of the protein.

  15. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction.

    PubMed

    Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S

    2013-01-01

    Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.

  16. Metabotropic glutamate receptors in auditory processing

    PubMed Central

    Lu, Yong

    2014-01-01

    As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898

  17. The emerging physiological roles of the SLC14A family of urea transporters

    PubMed Central

    Stewart, Gavin

    2011-01-01

    In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes – urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters. PMID:21449978

  18. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.

    PubMed

    Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane

    2014-03-01

    Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.

  19. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines in all organisms including plants affect a myriad of growth and developmental processes. Therefore, there is continued interest in understanding their (here polyamines) biosynthesis and functional roles in regulating plant metabolism, physiology and development. The role of polyamine...

  20. Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology

    PubMed Central

    Gokhin, David S.; Fowler, Velia M.

    2011-01-01

    Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology. PMID:22013379

  1. NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo

    PubMed Central

    Smagghe, Benoit J.; Trent, James T.; Hargrove, Mark S.

    2008-01-01

    Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding. PMID:18446211

  2. Delivery of Functionality in Complex Food Systems: Physically Inspired Approaches from Nanoscale to Microscale, Wageningen 18–21 October 2009

    PubMed Central

    Ubbink, Job; Duchateau, Guus

    2010-01-01

    The Wageningen Delivery of Functionality symposium covered all aspects involved with food structural design to arrive at high-quality foods which meet demanding customer expectations and regulatory requirements. The symposium integrated aspects from the structural organization of foods at molecular and supramolecular scales to dedicated techniques required to describe and visualize such structures, the gastro-intestinal events and how to model these in a laboratory setting, and finally the impact those food structures and ingredients have on the consumer’s physiology and on the human perception. As an interdisciplinary platform, bringing together more than 160 researchers from academia and industry, the symposium meanwhile fulfills an important role in the food science community. PMID:21125000

  3. The role of NDR1 in pathogen perception and plant defense signaling.

    PubMed

    Knepper, Caleb; Savory, Elizabeth A; Day, Brad

    2011-08-01

    The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress. 

  4. The digestive system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series and is the first of two articles on the digestive system, explores the structure and function of the digestive system. It is important that nurses understand how the digestive system works and its role in maintaining health. The article describes the gross structure of the gastrointestinal tract along with relevant physiology. It also outlines several disorders of the gastrointestinal tract and their treatment and nursing management. The second article will explain the liver, pancreas and gall bladder and their digestive functions, and provides a brief overview of the disorders of chronic liver disease, pancreatitis and gallstones.

  5. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  6. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  7. Molecular and functional properties of P2X receptors--recent progress and persisting challenges.

    PubMed

    Kaczmarek-Hájek, Karina; Lörinczi, Eva; Hausmann, Ralf; Nicke, Annette

    2012-09-01

    ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.

  8. Thick Filament Protein Network, Functions, and Disease Association.

    PubMed

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  9. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  10. The physiological determinants of drug-induced lysosomal stress resistance

    PubMed Central

    Woldemichael, Tehetina; Rosania, Gus R.

    2017-01-01

    Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253

  11. Function and dysfunction of CNG channels: insights from channelopathies and mouse models.

    PubMed

    Biel, Martin; Michalakis, Stylianos

    2007-06-01

    Channels directly gated by cyclic nucleotides (CNG channels) are important cellular switches that mediate influx of Na+ and Ca2+ in response to increases in the intracellular concentration of cAMP and cGMP. In photoreceptors and olfactory receptor neurons, these channels serve as final targets for cGMP and cAMP signaling pathways that are initiated by the absorption of photons and the binding of odorants, respectively. CNG channels have been also found in other types of neurons and in non-excitable cells. However, in most of these cells, the physiological role of CNG channels has yet to be determined. CNG channels have a complex heteromeric structure. The properties of individual subunits that assemble in specific stoichiometries to the native channels have been extensively investigated in heterologous expression systems. Recently, mutations in human CNG channel genes leading to inherited diseases (so-called channelopathies) have been functionally characterized. Moreover, mouse knockout models were generated to define the role of CNG channel proteins in vivo. In this review, we will summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from genetic studies in mice and humans.

  12. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  13. Present and future of membrane protein structure determination by electron crystallography.

    PubMed

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Present and future of membrane protein structure determination by electron crystallography

    PubMed Central

    Ubarretxena-Belandia, Iban; Stokes, David L.

    2011-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This review describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. PMID:21115172

  15. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    NASA Technical Reports Server (NTRS)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  16. Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Coppola, Daniela; Giordano, Daniela; Milazzo, Lisa; Howes, Barry D; Ascenzi, Paolo; di Prisco, Guido; Smulevich, Giulietta; Poole, Robert K; Verde, Cinzia

    2018-02-28

    Despite the large number of globins recently discovered in bacteria, our knowledge of their physiological functions is restricted to only a few examples. In the microbial world, globins appear to perform multiple roles in addition to the reversible binding of oxygen; all these functions are attributable to the heme pocket that dominates functional properties. Resistance to nitrosative stress and involvement in oxygen chemistry seem to be the most prevalent functions for bacterial globins, although the number of globins for which functional roles have been studied via mutation and genetic complementation is very limited. The acquisition of structural information has considerably outpaced the physiological and molecular characterisation of these proteins. The genome of the Antarctic cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) contains genes encoding three distinct single-chain 2/2 globins, supporting the hypothesis of their crucial involvement in a number of functions, including protection against oxidative and nitrosative stress in the cold and O 2 -rich environment. In the genome of PhTAC125, the genes encoding 2/2 globins are constitutively transcribed, thus suggesting that these globins are not functionally redundant in their physiological function in PhTAC125. In the present study, the physiological role of one of the 2/2 globins, Ph-2/2HbO-2217, was investigated by integrating in vivo and in vitro results. This role includes the involvement in the detoxification of reactive nitrogen and O 2 species including NO by developing two in vivo and in vitro models to highlight the protective role of Ph-2/2HbO-2217 against reactive nitrogen species. The PSHAa2217 gene was cloned and over-expressed in the flavohemoglobin-deficient mutant of Escherichia coli and the growth properties and O 2 uptake in the presence of NO of the mutant carrying the PSHAa2217 gene were analysed. The ferric form of Ph-2/2HbO-2217 is able to catalyse peroxynitrite isomerisation in vitro, indicating its potential role in the scavenging of reactive nitrogen species. Here we present in vitro evidence for the detoxification of NO by Ph-2/2HbO-2217. Copyright © 2017. Published by Elsevier Inc.

  17. Detection of a novel, integrative aging process suggests complex physiological integration.

    PubMed

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Bergeron, Patrick; Poirier, Roxane; Dusseault-Bélanger, Francis; Fülöp, Tamàs; Leroux, Maxime; Legault, Véronique; Metter, E Jeffrey; Fried, Linda P; Ferrucci, Luigi

    2015-01-01

    Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis "integrated albunemia." Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty--but not chronic disease--even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

  18. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    USGS Publications Warehouse

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  19. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    PubMed

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  20. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less

  1. Neuropeptide physiology in helminths.

    PubMed

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points to neuropeptidergic signaling as a very promising field from which to harvest future drug targets.

  2. Seminal Plasma Proteins as Androgen Receptor Coregulators Promote Prostate Cancer Growth

    DTIC Science & Technology

    2014-10-01

    structural proteins in human semen containing a high concentration of Zn2+, and their physiological functions have been well characterized...Specifically, semenogelins, upon binding to Zn2+, play an important role in gel-like formation of the semen [1]. After ejaculation, these proteins are degraded...determined whether SgI regulated the expression of PSA, an androgen- inducible AR target and also known to proteolyze SgI in semen [1,2], in prostate

  3. Small-molecule WNK inhibition regulates cardiovascular and renal function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Ken; Park, Hyi-Man; Rigel, Dean F.

    The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.

  4. The Changing Role of Money as a Motivator.

    DTIC Science & Technology

    1982-04-23

    61). Abraham Maslow advanced the theory that man is motivated by a hierachy of needs . Maslow classified human needs into a pyramidal structure as...theory, man strives to fill these needs in their order of hierachy , with the basic phsiological needs being satis- fied first. The physiological and safety... needs are most closely asso- ciated with the desire for money. vowever, as a person moves up through the hierachy , the ability of money to satisfy

  5. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.

  6. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    PubMed Central

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  7. In situ longitudinal pre-stretch in the human femoropopliteal artery.

    PubMed

    Kamenskiy, Alexey; Seas, Andreas; Bowen, Grant; Deegan, Paul; Desyatova, Anastasia; Bohlim, Nick; Poulson, William; MacTaggart, Jason

    2016-03-01

    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in the n=148 human femoropopliteal arteries in the context of subject demographics and risk factors, and structural and physiologic characteristics of the artery. Our results demonstrate that LPS reduces with age due to degradation and fragmentation of intramural elastin. LPS may serve as an energy reserve for adaptive remodeling, and reduction of LPS can be accelerated in tobacco users. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Heart rate complexity in sinoaortic-denervated mice.

    PubMed

    Silva, Luiz Eduardo V; Rodrigues, Fernanda Luciano; de Oliveira, Mauro; Salgado, Hélio Cesar; Fazan, Rubens

    2015-02-01

    What is the central question of this study? New measurements for cardiovascular complexity, such as detrended fluctuation analysis (DFA) and multiscale entropy (MSE), have been shown to predict cardiovascular outcomes. Given that cardiovascular diseases are accompanied by autonomic imbalance and decreased baroreflex sensitivity, the central question is: do baroreceptors contribute to cardiovascular complexity? What is the main finding and its importance? Sinoaortic denervation altered both DFA scaling exponents and MSE, indicating that both short- and long-term mechanisms of complexity are altered in sinoaortic denervated mice, resulting in a loss of physiological complexity. These results suggest that the baroreflex is a key element in the complex structures involved in heart rate variability regulation. Recently, heart rate (HR) oscillations have been recognized as complex behaviours derived from non-linear processes. Physiological complexity theory is based on the idea that healthy systems present high complexity, i.e. non-linear, fractal variability at multiple scales, with long-range correlations. The loss of complexity in heart rate variability (HRV) has been shown to predict adverse cardiovascular outcomes. Based on the idea that most cardiovascular diseases are accompanied by autonomic imbalance and a decrease in baroreflex sensitivity, we hypothesize that the baroreflex plays an important role in complex cardiovascular behaviour. Mice that had been subjected to sinoaortic denervation (SAD) were implanted with catheters in the femoral artery and jugular vein 5 days prior to the experiment. After recording the baseline arterial pressure (AP), pulse interval time series were generated from the intervals between consecutive values of diastolic pressure. The complexity of the HRV was determined using detrended fluctuation analysis and multiscale entropy. The detrended fluctuation analysis α1 scaling exponent (a short-term index) was remarkably decreased in the SAD mice (0.79 ± 0.06 versus 1.13 ± 0.04 for the control mice), whereas SAD slightly increased the α2 scaling exponent (a long-term index; 1.12 ± 0.03 versus 1.04 ± 0.02 for control mice). In the SAD mice, the total multiscale entropy was decreased (13.2 ± 1.3) compared with the control mice (18.9 ± 1.4). In conclusion, fractal and regularity structures of HRV are altered in SAD mice, affecting both short- and long-term mechanisms of complexity, suggesting that the baroreceptors play a considerable role in the complex structure of HRV. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  9. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  10. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus.

    PubMed

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes.

    PubMed

    Loewen, T N; Carriere, B; Reist, J D; Halden, N M; Anderson, W G

    2016-12-01

    Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.

    PubMed

    Jentsch, Thomas J; Pusch, Michael

    2018-07-01

    CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl - channels, whereas ClC-3 through ClC-7 are 2Cl - /H + -exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl - channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.

  13. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    PubMed

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-09-06

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone treatment described here is appropriate for examining hormonal effects on worker physiology.

  14. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  15. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  16. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  17. Crystal Structure of Saccharomyces cerevisiae ECM4, a Xi-Class Glutathione Transferase that Reacts with Glutathionyl-(hydro)quinones

    PubMed Central

    Schwartz, Mathieu; Didierjean, Claude; Hecker, Arnaud; Girardet, Jean-Michel; Morel-Rouhier, Mélanie; Gelhaye, Eric; Favier, Frédérique

    2016-01-01

    Glutathionyl-hydroquinone reductases (GHRs) belong to the recently characterized Xi-class of glutathione transferases (GSTXs) according to unique structural properties and are present in all but animal kingdoms. The GHR ScECM4 from the yeast Saccharomyces cerevisiae has been studied since 1997 when it was found to be potentially involved in cell-wall biosynthesis. Up to now and in spite of biological studies made on this enzyme, its physiological role remains challenging. The work here reports its crystallographic study. In addition to exhibiting the general GSTX structural features, ScECM4 shows extensions including a huge loop which contributes to the quaternary assembly. These structural extensions are probably specific to Saccharomycetaceae. Soaking of ScECM4 crystals with GS-menadione results in a structure where glutathione forms a mixed disulfide bond with the cysteine 46. Solution studies confirm that ScECM4 has reductase activity for GS-menadione in presence of glutathione. Moreover, the high resolution structures allowed us to propose new roles of conserved residues of the active site to assist the cysteine 46 during the catalytic act. PMID:27736955

  18. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  19. Ovarian expression of cellular Ki-ras p21 varies with physiological status.

    PubMed Central

    Palejwala, S; Goldsmith, L T

    1992-01-01

    To elucidate the potential role of the ras protooncogene proteins in a specific tissue, the present study determined the levels of individual c-ras-encoded p21 proteins in the rat ovary during various stages of physiological function. p21 protein was extracted from ovaries taken from immature normal female rats, mature nonpregnant animals in the metestrus stage of the estrus cycle, rats at various stages of pregnancy, and actively lactating animals. Levels of individual p21s were evaluated by immunoblot analysis with specific antibodies to the p21 proteins encoded by the Kirsten, Harvey, and neuroblastoma c-ras protooncogenes, c-Ki-ras, c-Ha-ras, and N-ras. Results showed that c-Ki-ras p21 is at its lowest level in the immature ovary and increases with development of the corpora lutea to its highest levels at day 16 of pregnancy, after which levels decline and then rise again during lactation. This pattern, which mimics that of circulating progesterone levels, suggests that ovarian c-Ki-ras p21 levels are regulated and that c-Ki-ras p21 plays a role in the differentiated function of the rat ovary, likely the luteal compartment. In contrast, levels of c-N-ras p21 did not appear to vary with changes in the physiological function of the ovary but appeared to be constitutive. A preferential role for the c-Ki-ras p21 may be due to the documented unique differences in the structure of the carboxyl terminus of this particular c-ras p21. Images PMID:1570348

  20. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    PubMed

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  1. The crystal structure of augmenter of liver regeneration: A mammalian FAD-dependent sulfhydryl oxidase

    PubMed Central

    Wu, Chia-Kuei; Dailey, Tamara A.; Dailey, Harry A.; Wang, Bi-Cheng; Rose, John P.

    2003-01-01

    The crystal structure of recombinant rat augmenter of liver regeneration (ALRp) has been determined to 1.8 Å. The protein is a homodimer, stabilized by extensive noncovalent interactions and a network of hydrogen bonds, and possesses a noncovalently bound FAD in a motif previously found only in the related protein ERV2p. ALRp functions in vitro as a disulfide oxidase using dithiothreitol as reductant. Reduction of the flavin by DTT occurs under aerobic conditions resulting in a spectrum characteristic of a neutral semiquinone. This semiquinone is stable and is only fully reduced by addition of dithionite. Mutation of either of two cysteine residues that are located adjacent to the FAD results in inactivation of the oxidase activity. A comparison of ALRp with ERV2p is made that reveals a number of significant structural differences, which are related to the in vivo functions of these two proteins. Possible physiological roles of ALR are examined and a hypothesis that it may serve multiple roles is proposed. PMID:12717032

  2. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  3. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease. PMID:23085373

  4. Aging in the Brain: New Roles of Epigenetics in Cognitive Decline.

    PubMed

    Barter, Jolie D; Foster, Thomas C

    2018-06-01

    Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.

  5. Metabotropic glutamatergic receptors and their ligands in drug addiction.

    PubMed

    Pomierny-Chamioło, Lucyna; Rup, Kinga; Pomierny, Bartosz; Niedzielska, Ewa; Kalivas, Peter W; Filip, Małgorzata

    2014-06-01

    Glutamatergic excitatory transmission is implicated in physiological and pathological conditions like learning, memory, neuronal plasticity and emotions, while glutamatergic abnormalities are reported in numerous neurological and psychiatric disorders, including neurodegenerative diseases, epilepsy, stroke, traumatic brain injury, depression, anxiety, schizophrenia and pain. Also, several lines of evidence have accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors. Among the proteins regulating glutamatergic transmission, the metabotropic glutamate receptors (mGluR) are being developed as pharmacological targets for treating many neuropsychiatric disorders, including drug addiction. In this review we describe the molecular structure of mGluRs and their distribution, physiology and pharmacology in the central nervous system, as well as their use as targets in preclinical studies of drug addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.

    PubMed

    Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang

    2013-11-01

    The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.

  7. Molecular Cloning, Bioinformatics Analysis and Expression of Insulin-Like Growth Factor 2 from Tianzhu White Yak, Bos grunniens

    PubMed Central

    Zhang, Quanwei; Gong, Jishang; Wang, Xueying; Wu, Xiaohu; Li, Yalan; Ma, Youji; Zhang, Yong; Zhao, Xingxu

    2014-01-01

    The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak. PMID:24394317

  8. Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle

    Treesearch

    David A. Galvez; M.T. Tyree

    2009-01-01

    Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic...

  9. Role of Klotho in Osteoporosis and Renal Osteodystrophy

    DTIC Science & Technology

    2014-10-01

    about the complex physiology of bone development and maintenance including the endocrine regulation of mineral homeostasis that is absolutely...percentage of bone. This should enhance the effects we have already seen in other lines and enable us to delve further into physiology of the phenotype...Klotho and FGFRs [11,12]. To dissect the role of parathyroid gland resident Klotho in physiology and in pathophysiological states such as CKD, we

  10. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily.

    PubMed

    Parsiegla, Goetz; Noguere, Christophe; Santell, Lydia; Lazarus, Robert A; Bourne, Yves

    2012-12-21

    Recombinant human DNase I (Pulmozyme, dornase alfa) is used for the treatment of cystic fibrosis where it improves lung function and reduces the number of exacerbations. The physiological mechanism of action is thought to involve the reduction of the viscoelasticity of cystic fibrosis sputum by hydrolyzing high concentrations of DNA into low-molecular mass fragments. Here we describe the 1.95 Å resolution crystal structure of recombinant human DNase I (rhDNase I) in complex with magnesium and phosphate ions, both bound in the active site. Complementary mutagenesis data of rhDNase I coupled to a comprehensive structural analysis of the DNase I-like superfamily argue for the key catalytic role of Asn7, which is invariant among mammalian DNase I enzymes and members of this superfamily, through stabilization of the magnesium ion coordination sphere. Overall, our combined structural and mutagenesis data suggest the occurrence of a magnesium-assisted pentavalent phosphate transition state in human DNase I during catalysis, where Asp168 may play a key role as a general catalytic base.

  11. Lipid Rafts in Mast Cell Biology

    PubMed Central

    Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance

    2011-01-01

    Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812

  12. Deliberate acquisition of competence in physiological breech birth: A grounded theory study.

    PubMed

    Walker, Shawn; Scamell, Mandie; Parker, Pam

    2018-06-01

    Research suggests that the skill and experience of the attendant significantly affect the outcomes of vaginal breech births, yet practitioner experience levels are minimal within many contemporary maternity care systems. Due to minimal experience and cultural resistance, few practitioners offer vaginal breech birth, and many practice guidelines and training programmes recommend delivery techniques requiring supine maternal position. Fewer practitioners have skills to support physiological breech birth, involving active maternal movement and choice of birthing position, including upright postures such as kneeling, standing, squatting, or on a birth stool. How professionals learn complex skills contrary to those taught in their local practice settings is unclear. How do professionals develop competence and expertise in physiological breech birth? Nine midwives and five obstetricians with experience facilitating upright physiological breech births participated in semi-structured interviews. Data were analysed iteratively using constructivist grounded theory methods to develop an empirical theory of physiological breech skill acquisition. Among the participants in this research, the deliberate acquisition of competence in physiological breech birth included stages of affinity with physiological birth, critical awareness, intention, identity and responsibility. Expert practitioners operating across local and national boundaries guided less experienced practitioners. The results depict a specialist learning model which could be formalised in sympathetic training programmes, and evaluated. It may also be relevant to developing competence in other specialist/expert roles and innovative practices. Deliberate development of local communities of practice may support professionals to acquire elusive breech skills in a sustainable way. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  13. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology.

    PubMed

    Wolff, Jonas O; van der Meijden, Arie; Herberstein, Marie E

    2017-07-26

    Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures. © 2017 The Author(s).

  14. Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction

    PubMed Central

    Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S.

    2012-01-01

    Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction. PMID:23482509

  15. Identification of a type II cystatin in Fragaria chiloensis: A proteinase inhibitor differentially regulated during achene development and in response to biotic stress-related stimuli.

    PubMed

    Aceituno-Valenzuela, Uri; Covarrubias, María Paz; Aguayo, María Francisca; Valenzuela-Riffo, Felipe; Espinoza, Analía; Gaete-Eastman, Carlos; Herrera, Raúl; Handford, Michael; Norambuena, Lorena

    2018-05-19

    The equilibrium between protein synthesis and degradation is key to maintaining efficiency in different physiological processes. The proteinase inhibitor cystatin regulates protease activities in different developmental and physiological contexts. Here we describe for the first time the identification and the biological function of the cysteine protease inhibitor cystatin of Fragaria chiloensis, FchCYS1. Based on primary sequence and 3D-structural homology modelling, FchCYS1 is a type II phytocystatin with high identity to other cystatins of the Fragaria genus. Both the papain-like and the legumain-like protease inhibitory domains are indeed functional, based on in vitro assays performed with Escherichia coli protein extracts containing recombinant FchCYS1. FchCYS1 is differentially-expressed in achenes of F. chiloensis fruits, with highest expression as the fruit reaches the ripened stage, suggesting a role in preventing degradation of storage proteins that will nourish the embryo during seed germination. Furthermore, FchCYS1 responds transcriptionally to the application of salicylic acid and to mechanical injury, strongly suggesting that FchCYS1 could be involved in the response against pathogen attack. Overall these results point to a role for FchCYS1 in diverse physiological processes in F. chiloensis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Fear or disgust? The role of emotions in spider phobia and blood-injection-injury phobia.

    PubMed

    Çavuşoğlu, Merve; Dirik, Gülay

    2011-01-01

    According to the literature, it is assumed that fear and anxiety are basic emotions in anxiety disorders. Many recent studies report that disgust, as well as fear, has an important role in the etiology and maintenance of anxiety disorders. Evaluation of the role of disgust in anxiety disorders has led the theoretical and empirical literature in a new direction, beyond the traditional emphasis on fear. Most of this basic research has focused on specific phobias, such as blood-injection-injury phobia and spider phobia. Findings obtained from evaluation of physiological and cognitive processes, and subjective and behavioral experiences clearly show that in addition to fear, emotional reactions to phobic stimuli also include disgust; however, empirical studies show that disgust and fear have different relative impacts on specific phobias. To illustrate, individuals experience disgust as the basic emotion in blood-injection-injury phobia, whereas both fear and disgust are experienced in spider phobia. Nevertheless, it is concluded that fear has a more fundamental role in the latter. Yet, research indicates that basic emotions different from those identified from neural structures or physiological responses, such as heart rate, can be identified if facial expressions and cognitive appraisals are taken into account. In the present review the role of fear and disgust in blood-injection-injury phobia vs. spider phobia are discussed, based on the relationship between the phobias and disgust sensitivity, disgust as part of phobic responses, and disgust-motivated avoidance behavior.

  17. Replication timing and nuclear structure.

    PubMed

    Fu, Haiqing; Baris, Adrian; Aladjem, Mirit I

    2018-06-01

    DNA replication proceeds along spatially and temporally coordinated patterns within the nucleus, thus protecting the genome during the synthesis of new genetic material. While we have been able to visualize replication patterns on DNA fibers for 50 years, recent developments and discoveries have provided a greater insight into how DNA replication is controlled. In this review, we highlight many of these discoveries. Of great interest are the physiological role of the replication timing program, cis and trans-acting factors that modulate replication timing and the effects of chromatin structure on the replication timing program. We also discuss future directions in the study of replication timing. Published by Elsevier Ltd.

  18. 2012 Gordon Research Conference, Mitochondria and Chloroplasts, July 29 - Aug 3 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkan, Alice

    2012-08-03

    The 2012 Gordon Research Conference on Mitochondria and Chloroplasts will assemble an international group of scientists investigating fundamental properties of these organelles, and their integration into broader physiological processes. The conference will emphasize the many commonalities between mitochondria and chloroplasts: their evolution from bacterial endosymbionts, their genomes and gene expression systems, their energy transducing membranes whose proteins derive from both nuclear and organellar genes, the challenge of maintaining organelle integrity in the presence of the reactive oxygen species that are generated during energy transduction, their incorporation into organismal signaling pathways, and more. The conference will bring together investigators working inmore » animal, plant, fungal and protozoan systems who specialize in cell biology, genetics, biochemistry, physiology, proteomics, genomics, and structural biology. As such, this conference will provide a unique forum that engenders cross-disciplinary discussions concerning the biogenesis, dynamics, and regulation of these key cellular structures. By fostering interactions among mammalian, fungal and plant organellar biologists, this conference also provides a conduit for the transmission of mechanistic insights obtained in model organisms to applications in medicine and agriculture. The 2012 conference will highlight areas that are moving rapidly and emerging themes. These include new insights into the ultrastructure and organization of the energy transducing membranes, the coupling of organellar gene expression with the assembly of photosynthetic and respiratory complexes, the regulatory networks that couple organelle biogenesis with developmental and physiological signals, the signaling events through which organellar physiology influences nuclear gene expression, and the roles of organelles in disease and development.« less

  19. Role of the teneurins, teneurin C-terminal associated peptides (TCAP) in reproduction: clinical perspectives.

    PubMed

    Lovejoy, David A; Pavlović, Téa

    2015-11-01

    In humans, the teneurin gene family consists of four highly conserved paralogous genes that are the result of early vertebrate gene duplications arising from a gene introduced into multicellular organisms from a bacterial ancestor. In vertebrates and humans, the teneurins have become integrated into a number of critical physiological systems including several aspects of reproductive physiology. Structurally complex, these genes possess a sequence in their terminal exon that encodes for a bioactive peptide sequence termed the 'teneurin C-terminal associated peptide' (TCAP). The teneurin/TCAP protein forms an intercellular adhesive unit with its receptor, latrophilin, an Adhesion family G-protein coupled receptor. It is present in numerous cell types and has been implicated in gamete migration and gonadal morphology. Moreover, TCAP is highly effective at reducing the corticotropin-releasing factor (CRF) stress response. As a result, TCAP may also play a role in regulating the stress-associated inhibition of reproduction. In addition, the teneurins and TCAP have been implicated in tumorigenesis associated with reproductive tissues. Therefore, the teneurin/TCAP system may offer clinicians a novel biomarker system upon which to diagnose some reproductive pathologies.

  20. Multiple roles of phosphoinositide-specific phospholipase C isozymes.

    PubMed

    Suh, Pann-Ghill; Park, Jae-Il; Manzoli, Lucia; Cocco, Lucio; Peak, Joanna C; Katan, Matilda; Fukami, Kiyoko; Kataoka, Tohru; Yun, Sanguk; Ryu, Sung Ho

    2008-06-30

    Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

  1. Mammalian lipoxygenases and their biological relevance.

    PubMed

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-04-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    PubMed Central

    Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454

  3. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.

    PubMed

    Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy

    2017-08-01

    Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.

  4. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    PubMed Central

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  5. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  6. Three-dimensional Structure of Saccharomyces Invertase

    PubMed Central

    Sainz-Polo, M. Angela; Ramírez-Escudero, Mercedes; Lafraya, Alvaro; González, Beatriz; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2013-01-01

    Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition. PMID:23430743

  7. Summary of a symposium on natriuretic and digitalis-like factors.

    PubMed

    Buckalew, V M; Gonick, H C

    1998-01-01

    An international symposium on natriuretic and digitalis-like factors was convened for the first time since 1992. Topics discussed included structures and biosynthesis of endogenous digitalis-like factors (EDLF), biologic activities, physiology function and role of EDLF in hypertension, and novel natriuretic factors. Progress was reported in determining the exact structure of an isomer of ouabain isolated from bovine hypothalamus. Evidence was presented supporting the existence of a second mammalian EDLF that resembles steroids found in toads (bufodienolides). Support for endogenous synthesis of mammalian EDLF was also presented. Mammalian EDLF were reported to have effects which are different from those possessed by digitalis like steroids derived from plants. New evidence was presented implicating EDLF in various forms of hypertension in humans and animal models. Finally, several unique natriuretic factors that do not inhibit Na, K ATPase and that appear to play a role in mammalian volume regulation were discussed.

  8. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective.

    PubMed

    Gutiérrez, Luis M; Villanueva, José

    2018-01-01

    Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more "native" configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.

  9. Understanding Protein Synthesis: A Role-Play Approach in Large Undergraduate Human Anatomy and Physiology Classes

    ERIC Educational Resources Information Center

    Sturges, Diana; Maurer, Trent W.; Cole, Oladipo

    2009-01-01

    This study investigated the effectiveness of role play in a large undergraduate science class. The targeted population consisted of 298 students enrolled in 2 sections of an undergraduate Human Anatomy and Physiology course taught by the same instructor. The section engaged in the role-play activity served as the study group, whereas the section…

  10. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins.

    PubMed

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-12-22

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.

  11. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  12. The neurophysiology of the esophagus.

    PubMed

    Woodland, Philip; Sifrim, Daniel; Krarup, Anne Lund; Brock, Christina; Frøkjaer, Jens Brøndum; Lottrup, Christian; Drewes, Asbjørn Mohr; Swanstrom, Lee L; Farmer, Adam D

    2013-10-01

    This paper reports on the neurophysiology of the esophagus, including on the uneven distribution of innervation in the esophagus, reflected by the increased sensitivity and perception of gastroesophageal reflux disease (GERD) events in the proximal rather than distal esophagus; the role of the enteric nervous system (ENS) in swallowing; the role of the physiological stress-responsive systems, including the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in mediating esophageal pain; the advances in understanding pain mechanisms and brain structure provided by technological imaging advances; investigations into the efficacy of the descending-pain control system, including diffuse noxious inhibitory control (DNIC); the role of abnormal nervous signaling in afferent pathways in the pathogenesis of Barrett's esophagus (BE); and the contribution of the esophageal mucosa to reflux symptoms. © 2013 New York Academy of Sciences.

  13. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    NASA Astrophysics Data System (ADS)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  14. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective.

    PubMed

    Pahnke, Aric; Conant, Genna; Huyer, Locke Davenport; Zhao, Yimu; Feric, Nicole; Radisic, Milica

    2016-05-06

    Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction.

    PubMed

    Geng, J; Zhao, Q; Zhang, T; Xiao, B

    2017-01-01

    Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Molecular Characterization of Zebrafish Oatp1d1 (Slco1d1), a Novel Organic Anion-transporting Polypeptide*

    PubMed Central

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-01-01

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1. PMID:24126916

  17. Alternative modes of client binding enable functional plasticity of Hsp70

    NASA Astrophysics Data System (ADS)

    Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.

    2016-11-01

    The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.

  18. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles.

    PubMed

    Janciauskiene, S

    2001-03-26

    Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.

  19. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    NASA Astrophysics Data System (ADS)

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein - namely the ferritin - in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products.

  20. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    PubMed Central

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein – namely the ferritin – in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products. PMID:28067263

  1. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  2. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  4. MicroRNA Regulation of Lipid Metabolism

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2012-01-01

    MicroRNA are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis. PMID:22607769

  5. Physiology modulates social flexibility and collective behaviour in equids and other large ungulates.

    PubMed

    Gersick, Andrew S; Rubenstein, Daniel I

    2017-08-19

    Though morphologically very similar, equids across the extant species occupy ecological niches that are surprisingly non-overlapping. Occupancy of these distinct niches appears related to subtle physiological and behavioural adaptations which, in turn, correspond to significant differences in the social behaviours and emergent social systems characterizing the different species. Although instances of intraspecific behavioural variation in equids demonstrate that the same body plan can support a range of social structures, each of these morphologically similar species generally shows robust fidelity to its evolved social system. The pattern suggests a subtle relationship between physiological phenotypes and behavioural flexibility. While environmental conditions can vary widely within relatively short temporal or spatial scales, physiological changes and changes to the behaviours that regulate physiological processes, are constrained to longer cycles of adaptation. Physiology is then the limiting variable in the interaction between ecological variation and behavioural and socio-structural flexibility. Behavioural and socio-structural flexibility, in turn, will generate important feedbacks that will govern physiological function, thus creating a coupled web of interactions that can lead to changes in individual and collective behaviour. Longitudinal studies of equid and other large-bodied ungulate populations under environmental stress, such as those discussed here, may offer the best opportunities for researchers to examine, in real time, the interplay between individual behavioural plasticity, socio-structural flexibility, and the physiological and genetic changes that together produce adaptive change.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  6. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature.

    PubMed

    Kumar, Vibhor; Butcher, Sarah J; Öörni, Katariina; Engelhardt, Peter; Heikkonen, Jukka; Kaski, Kimmo; Ala-Korpela, Mika; Kovanen, Petri T

    2011-05-09

    Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37 °C). To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6 °C and 37 °C resulted in reconstructions at ~16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6 °C than at 37 °C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6 °C, but not at 37 °C. At 37 °C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6 °C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.

  7. Immunomodulation: A definitive role of microRNA-142.

    PubMed

    Sharma, Salil

    2017-12-01

    Majority of microRNAs are evolutionarily conserved in vertebrates. This is suggestive of their similar roles in regulation of gene networks. In addition to their conserved mature sequences and regulatory roles, a few microRNAs show very cell or tissue specific expression. These microRNAs are highly enriched in some cell types or organs. One such microRNA is microRNA-142 (miR-142). The classical stem-loop structure of miR142 encodes for two species of mature microRNAs; miR142-5p and miR142-3p. MiR-142 is abundant in cells of hematopoietic origin, and therefore, aptly plays a role in lineage differentiation of hematopoietic cells. Interestingly, over the years, miR-142 has gained considerable attention for its quintessential role in regulating immune response. This mini-review discusses the important functional roles of miR-142 in inflammatory and immune response in different physiological and disease setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas.

    PubMed

    Hegyi, Péter; Rakonczay, Zoltán

    2011-11-15

    Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.

  9. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2017-01-01

    The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) and their receptors, the PAC1 -and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT) and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP)(12:12 h light dark-cycles (LD)) and skeleton photo periods (SPP) at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO) (PAC1 and VPAC2) had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality.

  10. Structural characterizations of human periostin dimerization and cysteinylation.

    PubMed

    Liu, Jianmei; Zhang, Junying; Xu, Fei; Lin, Zhaohan; Li, Zhiqiang; Liu, Heli

    2018-05-12

    Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1 I- IV ) and its Cys60Ala mutant. In combination with multi-angle light scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  12. Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP1) from Haloferax volcanii

    PubMed Central

    Ye, Kaiqin; Liao, Shanhui; Zhang, Wen; Fan, Kai; Zhang, Xuecheng; Zhang, Jiahai; Xu, Chao; Tu, Xiaoming

    2013-01-01

    Eukaryotic ubiquitin and ubiquitin-like systems play crucial roles in various cellular biological processes. In this work, we determined the solution structure of SAMP1 from Haloferax volcanii by NMR spectroscopy. Under low ionic conditions, SAMP1 presented two distinct conformations, one folded β-grasp and the other disordered. Interestingly, SAMP1 underwent a conformational conversion from disorder to order with ion concentration increasing, indicating that the ordered conformation is the functional form of SAMP1 under the physiological condition of H. volcanii. Furthermore, SAMP1 could interact with proteasome-activating nucleotidase B, supposing a potential role of SAMP1 in the protein degradation pathway mediated by proteasome. PMID:23818097

  13. [G spot--myths and reality].

    PubMed

    Pastor, Zlatko

    2010-05-01

    The purpose of this review is to give an overview of anatomical and physiological assumptions of female sexual response. To notify on new models of female sexual behavior. To clarify and discuss some of the hypothesis concerning the theory of forms, nature and possibilities of female sexual response in particular relating to the area known as the G spot. Systematic review. GONA, Private Sexological Centre, Prague. Current literature review. Female sexual responses are very variable in their display. The female sexual response is modified by anatomical and physiological capabilities of each individual. Emotional and psychogenic factors have an important role. Interpretation of by science unsubstantiated hypothesis or marginal facts in sexual life as standard facts may lead to female sexual dysfunctions and relationship issues. Existence of a specific anatomical structure known as the G spot has not been proven by any relevant scientific studies.

  14. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  15. Structural alterations by five disease-causing mutations in the low-pH conformation of human dihydrolipoamide dehydrogenase (hLADH) analyzed by molecular dynamics - Implications in functional loss and modulation of reactive oxygen species generation by pathogenic hLADH forms.

    PubMed

    Ambrus, Attila; Mizsei, Reka; Adam-Vizi, Vera

    2015-07-01

    Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5-6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before.

  16. Sugar for the brain: the role of glucose in physiological and pathological brain function

    PubMed Central

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas

    2013-01-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694

  17. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  18. Respiratory Sinus Arrhythmia, Effortful Control, and Parenting as Predictors of Children’s Sympathy Across Early Childhood

    PubMed Central

    Taylor, Zoe E.; Eisenberg, Nancy; Spinrad, Tracy L.

    2015-01-01

    The goal of this study was to examine physiological and environmental predictors of children’s sympathy (an emotional response consisting of feelings of concern or sorrow for others who are distressed or in need) and whether temperamental effortful control mediated these relations. Specifically, in a study of 192 children (23% Hispanic; 54% male), respiratory sinus arrhythmia (RSA), a measure thought to reflect physiological regulation, and observed authoritative parenting (both at 42 months) were examined as predictors of children’s effortful control (at 54 months) and, in turn, children’s sympathy (at 72 and 84 months). Measures of both baseline RSA and RSA suppression were examined. In a structural equation model, observed parenting was positively related to children’s subsequent sympathy through its positive relation to effortful control. Furthermore, the indirect path from baseline RSA to higher sympathy through effortful control was marginally significant. Authoritative parenting and baseline RSA uniquely predicted individual differences in children’s effortful control. Findings highlight the potential role of both authoritative parenting and physiological regulation in the development of children’s sympathy. PMID:25329555

  19. Respiratory sinus arrhythmia, effortful control, and parenting as predictors of children's sympathy across early childhood.

    PubMed

    Taylor, Zoe E; Eisenberg, Nancy; Spinrad, Tracy L

    2015-01-01

    The goal of this study was to examine physiological and environmental predictors of children's sympathy (an emotional response consisting of feelings of concern or sorrow for others who are distressed or in need) and whether temperamental effortful control mediated these relations. Specifically, in a study of 192 children (23% Hispanic; 54% male), respiratory sinus arrhythmia (RSA), a measure thought to reflect physiological regulation, and observed authoritative parenting (both at 42 months) were examined as predictors of children's effortful control (at 54 months) and, in turn, children's sympathy (at 72 and 84 months). Measures of both baseline RSA and RSA suppression were examined. In a structural equation model, observed parenting was positively related to children's subsequent sympathy through its positive relation to effortful control. Furthermore, the indirect path from baseline RSA to higher sympathy through effortful control was marginally significant. Authoritative parenting and baseline RSA uniquely predicted individual differences in children's effortful control. Findings highlight the potential role of both authoritative parenting and physiological regulation in the development of children's sympathy.

  20. Scytonemin Plays a Potential Role in Stabilizing the Exopolysaccharidic Matrix in Terrestrial Cyanobacteria.

    PubMed

    Gao, Xiang

    2017-02-01

    Cyanobacteria are photosynthetic oxygen-evolving prokaryotes that are distributed in diverse habitats. They synthesize the ultraviolet (UV)-screening pigments, scytonemin (SCY) and mycosporine-like amino acids (MAAs), located in the exopolysaccharide (EPS) matrix. Multiple roles for both pigments have gradually been recognized, such as sunscreen ability, antioxidant activity, and heat dissipation from absorbed UV radiation. In this study, a filamentous terrestrial cyanobacterium Nostoc flagelliforme was used to evaluate the potential stabilizing role of SCY on the EPS matrix. SCY (∼3.7 %) was partially removed from N. flagelliforme filaments by rinsing with 100 % acetone for 5 s. The physiological damage to cells resulting from this treatment, in terms of photosystem II activity parameter Fv/Fm, was repaired after culturing the sample for 40 h. The physiologically recovered sample was further desiccated by natural or rapid drying and then allowed to recovery for 24 h. Compared with the normal sample, a relatively slower Fv/Fm recovery was observed in the SCY-partially removed sample, suggesting that the decreased SCY concentration in the EPS matrix caused cells to suffer further damage upon desiccation. In addition, the SCY-partially removed sample could allow the release of MAAs (∼25 %) from the EPS matrix, while the normal sample did not. Therefore, damage caused by drying of the former resulted from at least the reduction of structural stability of the EPS matrix as well as the loss of partial antioxidant compounds. Considering that an approximately 4 % loss of SCY led to this significant effect, the structurally stabilizing potential of SCY on the EPS matrix is crucial for terrestrial cyanobacteria survival in complex environments.

  1. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus).

    PubMed

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng; Lin, Qiang

    2016-10-15

    Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. © 2016. Published by The Company of Biologists Ltd.

  2. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.

    PubMed

    Hood, James M; Benstead, Jonathan P; Cross, Wyatt F; Huryn, Alexander D; Johnson, Philip W; Gíslason, Gísli M; Junker, James R; Nelson, Daniel; Ólafsson, Jón S; Tran, Chau

    2018-03-01

    Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well-studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem-level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single-species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole-stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass-specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N 2 fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem-level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in-stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming. © 2017 John Wiley & Sons Ltd.

  3. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus)

    PubMed Central

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng

    2016-01-01

    ABSTRACT Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. PMID:27628034

  4. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia

    PubMed Central

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189

  5. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    ERIC Educational Resources Information Center

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be associated with…

  6. ROLE OF ANTHROPOGENIC AND ENVIRONMENTAL VARIABLE ON THE PHYSIOLOGICAL AND ECOLOGICAL RESPONSES OF OYSTERS IN SOUTHWEST FLORIDA ESTUARIES

    EPA Science Inventory

    The role of freshwater alterations and seasonal changes on the ecological and physiological responses of oysters were investigated in the Caloosahatchee River, Estero Bay and Faka-Union estuaries in SW Florida. Condition index, oyster density, and disease incidence of Perkinsus m...

  7. Stress-related exhaustion disorder--clinical manifestation of burnout? A review of assessment methods, sleep impairments, cognitive disturbances, and neuro-biological and physiological changes in clinical burnout.

    PubMed

    Grossi, Giorgio; Perski, Aleksander; Osika, Walter; Savic, Ivanka

    2015-12-01

    The aim of this paper was to provide an overview of the literature on clinically significant burnout, focusing on its assessment, associations with sleep disturbances, cognitive impairments, as well as neurobiological and physiological correlates. Fifty-nine English language articles and six book chapters were included. The results indicate that exhaustion disorder (ED), as described in the Swedish version of the International Classification of Diseases, seems to be the most valid clinical equivalent of burnout. The data supports the notion that sleep impairments are causative and maintaining factors for this condition. Patients with clinical burnout/ED suffer from cognitive impairments in the areas of memory and executive functioning. The studies on neuro-biological mechanisms have reported functional uncoupling of networks relating the limbic system to the pre-frontal cortex, and decreased volumes of structures within the basal ganglia. Although there is a growing body of literature on the physiological correlates of clinical burnout/ED, there is to date no biomarker for this condition. More studies on the role of sleep disturbances, cognitive impairments, and neurobiological and physiological correlates in clinical burnout/ED are warranted. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  8. The Adaptive Brain: Glenn Hatton and the Supraoptic Nucleus

    PubMed Central

    Leng, G.; Moos, F. C.; Armstrong, W. E.

    2017-01-01

    In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn’s view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands. PMID:20298459

  9. Ventromedial Hypothalamus and the Generation of Aggression

    PubMed Central

    Hashikawa, Yoshiko; Hashikawa, Koichi; Falkner, Annegret L.; Lin, Dayu

    2017-01-01

    Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action. PMID:29375329

  10. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  11. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.

    PubMed

    Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran

    2018-04-12

    Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.

  12. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    PubMed

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  13. LncRNA Structural Characteristics in Epigenetic Regulation

    PubMed Central

    Wang, Chenguang; Wang, Lianzong; Ding, Yu; Lu, Xiaoyan; Zhang, Guosi; Yang, Jiaxin; Zheng, Hewei; Wang, Hong; Jiang, Yongshuai; Xu, Liangde

    2017-01-01

    The rapid development of new generation sequencing technology has deepened the understanding of genomes and functional products. RNA-sequencing studies in mammals show that approximately 85% of the DNA sequences have RNA products, for which the length greater than 200 nucleotides (nt) is called long non-coding RNAs (lncRNA). LncRNAs now have been shown to play important epigenetic regulatory roles in key molecular processes, such as gene expression, genetic imprinting, histone modification, chromatin dynamics, and other activities by forming specific structures and interacting with all kinds of molecules. This paper mainly discusses the correlation between the structure and function of lncRNAs with the recent progress in epigenetic regulation, which is important to the understanding of the mechanism of lncRNAs in physiological and pathological processes. PMID:29292750

  14. A personal historic perspective on the role of chloride in skeletal and cardiac muscle.

    PubMed

    Hutter, Otto F

    2017-03-01

    During the early decades of the last century, skeletal muscle was held to be impermeable to chloride ions. This theory, based on shaky grounds, was famously falsified by Boyle and Conway in 1941. Two decades later and onwards, the larger part of the resting conductance of skeletal muscle was found to be due to chloride ions, sensitive to the chemical environment, and to be time-and-voltage dependent. So, much of the groundwork for the physiological role of chloride ions in skeletal muscle was laid before the game-changing discovery of chloride channels. The early history of the role of chloride in cardiac muscle, and work on the relative permeability to foreign anions of different muscles are also here covered from a personal perspective. © 2017 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. The unusual amino acid l-ergothioneine is a physiologic cytoprotectant

    PubMed Central

    Paul, BD; Snyder, SH

    2010-01-01

    Ergothioneine (ET) is an unusual sulfur-containing derivative of the amino acid, histidine, which is derived exclusively through the diet. Although ET was isolated a century ago, its physiologic function has not been clearly established. Recently, a highly specific transporter for ET (ETT) was identified in mammalian tissues, which explains abundant tissue levels of ET and implies a physiologic role. Using RNA interference, we depleted cells of its transporter. Cells lacking ETT are more susceptible to oxidative stress, resulting in increased mitochondrial DNA damage, protein oxidation and lipid peroxidation. ETT is concentrated in mitochondria, suggesting a specific role in protecting mitochondrial components such as DNA from oxidative damage associated with mitochondrial generation of superoxide. In combating cytotoxic effects of pyrogallol, a known superoxide generator, ET is as potent as glutathione. Because of its dietary origin and the toxicity associated with its depletion, ET may represent a new vitamin whose physiologic roles include antioxidant cytoprotection. PMID:19911007

  16. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds.

    PubMed

    Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel

    2018-03-01

    Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  17. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    PubMed

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  18. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shanshan; Li, Han; Gao, Feng

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryomore » development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.« less

  19. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  20. The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations.

    PubMed

    Mortazavi, Martin M; Griessenauer, Christoph J; Adeeb, Nimer; Deep, Aman; Bavarsad Shahripour, Reza; Shahripour, Reza Bavarsad; Loukas, Marios; Tubbs, Richard Isaiah; Tubbs, R Shane

    2014-02-01

    The role of the choroid plexus in cerebrospinal fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the choroid plexus in addition to its function and embryology. The literature was searched for articles and textbooks for data related to the history, anatomy, physiology, histology, embryology, potential functions, and surgical implications of the choroid plexus. All were gathered and summarized comprehensively. We summarize the literature regarding the choroid plexus and its surgical implications.

  1. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds.

    PubMed

    Li, Lingjun; Li, Qianqian; Ding, Shengqiang; Xin, Pengyang; Zhang, Yuqin; Huang, Shenlong; Zhang, Guisheng

    2017-08-14

    Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N₃ was designed and synthesized for the first time. With ADP-ribosyl-N₃ as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties.

  2. Active site CP-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins.

    PubMed

    Kamariah, Neelagandan; Eisenhaber, Birgit; Eisenhaber, Frank; Grüber, Gerhard

    2018-04-01

    Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (C P ) located in a conserved sequence Pxxx(T/S)xxC P motif known as C P -loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the C P -loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the C P -loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the C P -loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the C P -loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the C P -loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted C P -loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the C P -loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. SWEETs, transporters for intracellular and intercellular sugar translocation.

    PubMed

    Eom, Joon-Seob; Chen, Li-Qing; Sosso, Davide; Julius, Benjamin T; Lin, I W; Qu, Xiao-Qing; Braun, David M; Frommer, Wolf B

    2015-06-01

    Three families of transporters have been identified as key players in intercellular transport of sugars: MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters). MSTs and SUTs fall into the major facilitator superfamily; SWEETs constitute a structurally different class of transporters with only seven transmembrane spanning domains. The predicted topology of SWEETs is supported by crystal structures of bacterial homologs (SemiSWEETs). On average, angiosperm genomes contain ∼20 paralogs, most of which serve distinct physiological roles. In Arabidopsis, AtSWEET8 and 13 feed the pollen; SWEET11 and 12 provide sucrose to the SUTs for phloem loading; AtSWEET11, 12 and 15 have distinct roles in seed filling; AtSWEET16 and 17 are vacuolar hexose transporters; and SWEET9 is essential for nectar secretion. The remaining family members await characterization, and could play roles in the gametophyte as well as other important roles in sugar transport in the plant. In rice and cassava, and possibly other systems, sucrose transporting SWEETs play central roles in pathogen resistance. Notably, the human genome also contains a glucose transporting isoform. Further analysis promises new insights into mechanism and regulation of assimilate allocation and a new potential for increasing crop yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Periostin: a novel prognostic and therapeutic target for genitourinary cancer?

    PubMed

    Nuzzo, Pier Vitale; Buzzatti, Giulia; Ricci, Francesco; Rubagotti, Alessandra; Argellati, Francesca; Zinoli, Linda; Boccardo, Francesco

    2014-10-01

    Many of the cellular abnormalities present in solid tumors are structural in nature and involve the proteins of the extracellular matrix (ECM). Periostin is a protein produced and secreted by the fibroblasts as a component of the ECM where it is involved in regulating intercellular adhesion. The expression of periostin has an important physiological role during embryogenesis and growth, namely at the level of bone, dental, and cardiac tissues. Many studies indicate that periostin plays an important role for tumor progression in various types of cancer, such as colon, lung, head and neck, breast, ovarian, and prostate. To the best of our knowledge, a limited number of studies have investigated periostin expression in urogenital cancer, such as prostate, bladder, penile, and renal cancer, and no studies were performed in testis cancer. In this review article, we summarize the most recent knowledge of periostin, its genetic and protein structure, and the role of the different isoforms identified and sequenced so far. In particular, we focus our attention on the role of this protein in genitourinary tumors, trying to emphasize the role not only as a possible prognostic marker, but also as a possible target for the development of future anticancer therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Role of growth differentiation factor 11 in development, physiology and disease

    PubMed Central

    Zhang, Yonghui; Wei, Yong; Liu, Dan; Liu, Feng; Li, Xiaoshan; Pan, Lianhong; Pang, Yi; Chen, Dilong

    2017-01-01

    Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease. PMID:29113418

  6. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

  7. Decompression to altitude: assumptions, experimental evidence, and future directions.

    PubMed

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  8. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones

    PubMed Central

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H.; Kleiner, Ralph E.; Du, Xiu Quan; Leissring, Malcolm A.; Tang, Wei-Jen; Charron, Maureen J.; Seeliger, Markus A.; Saghatelian, Alan; Liu, David R.

    2014-01-01

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes1, 2, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene3, 4, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide−/− mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction5, 6. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE’s physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation. PMID:24847884

  9. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring

    PubMed Central

    Xue, Meilang; Jackson, Christopher J.

    2015-01-01

    Significance: When a cutaneous injury occurs, the wound heals via a dynamic series of physiological events, including coagulation, granulation tissue formation, re-epithelialization, and extracellular matrix (ECM) remodeling. The final stage can take many months, yet the new ECM forms a scar that never achieves the flexibility or strength of the original tissue. In certain circumstances, the normal scar is replaced by pathological fibrotic tissue, which results in hypertrophic or keloid scars. These scars cause significant morbidity through physical dysfunction and psychological stress. Recent Advances and Critical Issues: The cutaneous ECM comprises a complex assortment of proteins that was traditionally thought to simply provide structural integrity and scaffolding characteristics. However, recent findings show that the ECM has multiple functions, including, storage and delivery of growth factors and cytokines, tissue repair and various physiological functions. Abnormal ECM reconstruction during wound healing contributes to the formation of hypertrophic and keloid scars. Whereas adult wounds heal with scarring, the developing foetus has the ability to heal wounds in a scarless fashion by regenerating skin and restoring the normal ECM architecture, strength, and function. Recent studies show that the lack of inflammation in fetal wounds contributes to this perfect healing. Future Directions: Better understanding of the exact roles of ECM components in scarring will allow us to produce therapeutic agents to prevent hypertrophic and keloid scars. This review will focus on the components of the ECM and their role in both physiological and pathological (hypertrophic and keloid) cutaneous scar formation. PMID:25785236

  10. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d6.

    PubMed

    Reid, Korey M; Sunanda, Punnepalli; Raghothama, S; Krishnan, V V

    2017-11-01

    Intrinsically disordered proteins (IDP) lack a well-defined 3D-structure under physiological conditions, yet, the inherent disorder represented by an ensemble of conformation plays a critical role in many cellular and regulatory processes. Nucleoporins, or Nups, are the proteins found in the nuclear pore complex (NPC). The central pore of the NPC is occupied by Nups, which have phenylalanine-glycine domain repeats and are intrinsically disordered, and therefore are termed FG-Nups. These FG-domain repeats exhibit differing cohesiveness character and differ from least (FG) to most (GLFG) cohesive. The designed FG-Nup is a 25 AA model peptide containing a noncohesive FG-motif flanked by two cohesive GLFG-motifs (WT peptide). Complete NMR-based ensemble characterization of this peptide along with a control peptide with an F>A substitution (MU peptide) are discussed. Ensemble characterization of the NMR-determined models suggests that both the peptides do not have consistent secondary structures and continue to be disordered. Nonetheless, the role of cohesive elements mediated by the GLFG motifs is evident in the WT ensemble of structures that are more compact than the MU peptide. The approach presented here allows an alternate way to investigate the specific roles of distinct amino acid motifs that translate into the long-range organization of the ensemble of structures and in general on the nature of IDPs. © 2017 Wiley Periodicals, Inc.

  11. Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer.

    PubMed

    Chen, Xi; Qiu, Heng; Wang, Chao; Yuan, Yu; Tickner, Jennifer; Xu, Jiake; Zou, Jun

    2017-02-01

    Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed. Copyright © 2016. Published by Elsevier Ltd.

  12. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    PubMed Central

    Moses, Tessa; Papadopoulou, Kalliope K.

    2014-01-01

    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics. PMID:25286183

  13. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection.

    PubMed

    Chiricozzi, Elena; Loberto, Nicoletta; Schiumarini, Domitilla; Samarani, Maura; Mancini, Giulia; Tamanini, Anna; Lippi, Giuseppe; Dechecchi, Maria Cristina; Bassi, Rosaria; Giussani, Paola; Aureli, Massimo

    2018-03-01

    Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response. ©2018 Society for Leukocyte Biology.

  14. Social roles and physical health: the case of female disadvantage in poor countries.

    PubMed

    Santow, G

    1995-01-01

    Women's culturally and socially determined roles greatly impair their health and that of their children through a complex web of physiological and behavioural interrelationships and synergies that pervade every aspect of their lives. Women's roles also affect their use of health services since modern health care has been absorbed so successfully into traditional structures that families tend to allocate it, like food, according to characteristics such as sex and age. Change may be occurring through the agency of female education and a redefinition of familial relationships, both of which operate to improve women's position, and hence their health. Health services could perhaps accelerate the process by revising their view of women as the natural guardians of their family's health, and by drawing other family members, and particularly husbands, into their orbit.

  15. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    PubMed

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  16. Sugar for the brain: the role of glucose in physiological and pathological brain function.

    PubMed

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas

    2013-10-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of carnosine supplementation to an all-plant protein diet for rainbow trout(Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Fish meal may contain “unknown growth factors” that have yet to be identified for their physiological role. Carnosine is a histidine-ß-alanine dipeptide found in muscle and nervous system tissue which has been demonstrated to have biological activity, but its physiological role is not well defined. ...

  18. Physiological Regulation of Stress in Referred Adolescents: The Role of the Parent-Adolescent Relationship

    ERIC Educational Resources Information Center

    Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.

    2009-01-01

    Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…

  19. Tissue Physiology and Pathology of Aromatase

    PubMed Central

    Stocco, Carlos

    2011-01-01

    Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547

  20. [Diet and civilization diseases--carbohydrate aspects].

    PubMed

    Haslbeck, M

    1990-01-01

    Carbohydrates are a major component of our food, they are important as body energy stores and they play an important role in cellular structures. In the present paper a classification of food carbohydrates, of dietary fibers and sweeteners is presented and the major physiological effects are discussed. Furthermore, the significance of carbohydrates for the etiology and the treatment of nutrition related diseases which are closely related to the development of arteriosclerosis is outlined. Carbohydrates are beside fat the major determinants of the daily caloric intake. This illustrates their impact on the development of obesity with its predominant role as a risk factor for the development of cardiovascular disease. Furthermore, the role of sugar consumption in the relation to dental caries is stressed. Also the central role of carbohydrate consumption for the treatment of diabetes mellitus is described. Problems of the diabetes diet, the role of the dietary fiber in the treatment of different diseases and the necessity of sweetness in nutrition are discussed in greater detail.

  1. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling.

    PubMed

    Qiu, Yue; Ogawa, Haruo; Miyagi, Masaru; Misono, Kunio S

    2004-02-13

    The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.

  2. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins

    PubMed Central

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-01-01

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1–11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons. PMID:22190005

  3. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae.

    PubMed

    Toma, Milan; Bloodworth, Charles H; Pierce, Eric L; Einstein, Daniel R; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2017-03-01

    The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.

  4. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae

    PubMed Central

    Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Einstein, Daniel R.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.

    2016-01-01

    The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations. PMID:27624659

  5. The role of food in the functional gastrointestinal disorders: introduction to a manuscript series.

    PubMed

    Chey, William D

    2013-05-01

    Functional gastrointestinal disorders (FGIDs) are characterized by the presence of chronic or recurrent symptoms that are felt to originate from the gastrointestinal (GI) tract, which cannot be attributed to an identifiable structural or biochemical cause. Food is associated with symptom onset or exacerbation in a significant proportion of FGID patients. Despite this, the role of food in the pathogenesis of the FGIDs has remained poorly understood. For this reason, diet has largely played an adjunctive rather than a primary role in the management of FGID patients. In recent years, there has been a rapid expansion in our understanding of the role of food in GI function and sensation and how food relates to GI symptoms in FGID patients. In a series of evidence-based manuscripts produced by the Rome Foundation Working Group on the role of food in FGIDs, comprehensive reviews of the physiological changes associated with nutrient intake, and the respective roles of carbohydrates, fiber, protein, and fats are provided. The series concludes with a manuscript that provides guidance on proper clinical trial design when considering the role of food in FGIDs.

  6. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  7. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Saccharomyces cerevisiae proteinase A excretion and wine making.

    PubMed

    Song, Lulu; Chen, Yefu; Du, Yongjing; Wang, Xibin; Guo, Xuewu; Dong, Jian; Xiao, Dongguang

    2017-11-09

    Proteinase A (PrA), the major protease in Saccharomyces cerevisiae, plays an essential role in zymogen activation, sporulation, and other physiological processes in vivo. The extracellular secretion of PrA often occurs during alcoholic fermentation, especially in the later stages when the yeast cells are under stress conditions, and affects the quality and safety of fermented products. Thus, the mechanism underlying PrA excretion must be explored to improve the quality and safety of fermented products. This paper briefly introduces the structure and physiological function of PrA. Two transport routes of PrA, namely, the Golgi-to-vacuole pathway and the constitutive Golgi-to-plasma membrane pathway, are also discussed. Moreover, the research history and developments on the mechanism of extracellular PrA secretion are described. In addition, it is briefly discussed that calcium homeostasis plays an important role in the secretory pathway of proteins, implying that the regulation of PrA delivery to the plasma membrane requires the involvement of calcium ion. Finally, this review focuses on the effects of PrA excretion on wine making (including Chinese rice wine, grape wine, and beer brewage) and presents strategies to control PrA excretion.

  9. Clinical potential of phycocyanobilin for induction of T regulatory cells in the management of inflammatory disorders.

    PubMed

    McCarty, Mark F

    2011-12-01

    Exposure of human mononuclear cells to phycocyanin in vitro is reported to promote generation of Treg cells. Induction of heme oxygenase-1 (HO-1) in lymphocytes has a similar effect, and it is not likely to be accidental that a key product of HO-1 activity, biliverdin, is homologous to the structure of phycocyanin's chromophore phycocyanobilin (PhyCB). Moreover, Treg induction is observed in mice injected with bilirubin, biliverdin's chief metabolite. These considerations suggest that bilirubin, generated within lymphocytes by HO-1 activation, may play a physiological role in the promotion of Treg immunomodulation. This effect of bilirubin is likely to be independent of NADPH oxidase inhibition, since the NAPDH oxidase activity of macrophages is necessary for Treg induction, possibly because it contributes to HO-1 induction in lymphocytes. In light of numerous reports that oral phycocyanin is beneficial in various rodent models of autoimmune disorders, it is reasonable to suspect that PhyCB-enriched spirulina extracts may have clinical potential for boosting Treg activity in human autoimmune or allergic syndromes, mimicking the physiological role of HO-1 induction in this regard. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  11. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhancedmore » expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.« less

  12. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin.

    PubMed

    Orlowski, Slawomir; Nowak, Wieslaw

    2007-07-01

    Cytoglobin (Cyg)--a new member of the vertebrate heme globin family--is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.

  13. Partial biochemical characterization of a metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites.

    PubMed

    de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa

    2010-05-01

    Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.

  14. Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.

    PubMed

    Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl

    2018-03-02

    Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.

  15. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  16. The mechanical response of talin

    NASA Astrophysics Data System (ADS)

    Yao, Mingxi; Goult, Benjamin T.; Klapholz, Benjamin; Hu, Xian; Toseland, Christopher P.; Guo, Yingjian; Cong, Peiwen; Sheetz, Michael P.; Yan, Jie

    2016-07-01

    Talin, a force-bearing cytoplasmic adapter essential for integrin-mediated cell adhesion, links the actin cytoskeleton to integrin-based cell-extracellular matrix adhesions at the plasma membrane. Its C-terminal rod domain, which contains 13 helical bundles, plays important roles in mechanosensing during cell adhesion and spreading. However, how the structural stability and transition kinetics of the 13 helical bundles of talin are utilized in the diverse talin-dependent mechanosensing processes remains poorly understood. Here we report the force-dependent unfolding and refolding kinetics of all talin rod domains. Using experimentally determined kinetics parameters, we determined the dynamics of force fluctuation during stretching of talin under physiologically relevant pulling speeds and experimentally measured extension fluctuation trajectories. Our results reveal that force-dependent stochastic unfolding and refolding of talin rod domains make talin a very effective force buffer that sets a physiological force range of only a few pNs in the talin-mediated force transmission pathway.

  17. [The role of endocannabinoid system in physiological and pathological processes in the eye].

    PubMed

    Nadolska, Krystyna; Goś, Roman

    2008-01-01

    Plant of Cannabis sativa/ marihuana except for its psychotropic effects possesses a range of pharmacological properties, that has been utilized for medical purposes over a period of millenia. Investigations concerning biochemical mechanism of action of the main and most active pharmacological compound of Cannabis sativa, cannabinoid 9-THC, contributed to the discovery of cannabinoid receptors both in the central nervous system (CNS) and peripheral tissues, that mediated actions of this substance. The discovery made possible identification of a new, endogenous signaling system reffered to as the endocannabinoid system. Besides cannabinoid receptors CB1 and CB2, the system includes it's endogenic ligands (endocannabinoids) and compounds that participate in their biosynthesis and inactivation. Structure and functioning of the endocannabinoid system is conservative in all vertebrates. It's activation with plant, synthetic and endogenous cannabinoids has an influence on multiple physiological and pathological processes within the eye.

  18. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms

    PubMed Central

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2015-01-01

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  19. Mechanisms of CaMKII Activation in the Heart.

    PubMed

    Erickson, Jeffrey R

    2014-01-01

    Calcium/calmodulin (Ca(2+)/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca(2+) cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.

  20. Comprehensive and Quantitative Proteomic Analysis of Metamorphosis-Related Proteins in the Veined Rapa Whelk, Rapana venosa.

    PubMed

    Song, Hao; Wang, Hai-Yan; Zhang, Tao

    2016-06-15

    Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study.

  1. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    PubMed

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  2. Biological role of bacterial inclusion bodies: a model for amyloid aggregation.

    PubMed

    García-Fruitós, Elena; Sabate, Raimon; de Groot, Natalia S; Villaverde, Antonio; Ventura, Salvador

    2011-07-01

    Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background. © 2011 The Authors Journal compilation © 2011 FEBS.

  3. [The historical background of the pineal gland: I. From a spiritual valve to the seat of the soul].

    PubMed

    López-Muñoz, Francisco; Marín, Fernando; Alamo, Cecilio

    Throughout history, the special anatomical location of the pineal gland in the central nervous system has given rise to a number of physiological hypotheses regarding the functional role of this organ. In classical ancient times, the pineal body (conarium) was considered to be a sort of valve-like sphincter that regulated the flow of the spiritus animalis at the ventricular level. But it was not until the 17th century that the pineal gland finally reached its highest levels of physiological significance, when Rene Descartes considered it to be the anatomical structure that housed the seat of the soul. The Cartesian hypotheses regarding the pineal gland did not arouse much interest in the scientific community of the time, and attention to this organ dwindled from then until the 20th century, when its neuroendocrinological nature was finally confirmed.

  4. The UV-B Photoreceptor UVR8: From Structure to Physiology

    PubMed Central

    Jenkins, Gareth I.

    2014-01-01

    Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes. PMID:24481075

  5. Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding

    PubMed Central

    Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier

    2016-01-01

    Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857

  6. History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation.

    PubMed

    El-Falougy, H; Benuska, J

    2006-01-01

    The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term "hippocampal formation" is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref. 33).

  7. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    NASA Technical Reports Server (NTRS)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  8. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    NASA Astrophysics Data System (ADS)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  9. Nanoparticle conversion to biofilms: in vitro demonstration using serum-derived mineralo-organic nanoparticles.

    PubMed

    Wong, Tsui-Yin; Peng, Hsin-Hsin; Wu, Cheng-Yeu; Martel, Jan; Ojcius, David M; Hsu, Fu-Yung; Young, John D

    2015-01-01

    Mineralo-organic nanoparticles (NPs) detected in biological fluids have been described as precursors of physiological and pathological calcifications in the body. Our main objective was to examine the early stages of mineral NP formation in body fluids. A nanomaterial approach based on atomic force microscopy, dynamic light scattering, electron microscopy and spectroscopy was used. The mineral particles, which contain the serum proteins albumin and fetuin-A, initially precipitate in the form of round amorphous NPs that gradually grow in size, aggregate and coalesce to form crystalline mineral films similar to the structures observed in calcified human arteries. Our study reveals the early stages of particle formation and provides a platform to analyze the role(s) of mineralo-organic NPs in human tissues.

  10. High fat diet blunts the effects of leptin on ventilation and on carotid body activity.

    PubMed

    Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V

    2017-12-22

    Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca 2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  11. Panel 2: Anatomy (Eustachian Tube, Middle Ear, and Mastoid-Anatomy, Physiology, Pathophysiology, and Pathogenesis).

    PubMed

    Alper, Cuneyt M; Luntz, Michal; Takahashi, Haruo; Ghadiali, Samir N; Swarts, J Douglas; Teixeira, Miriam S; Csákányi, Zsuzsanna; Yehudai, Noam; Kania, Romain; Poe, Dennis S

    2017-04-01

    Objective In this report, we review the recent literature (ie, past 4 years) to identify advances in our understanding of the middle ear-mastoid-eustachian tube system. We use this review to determine whether the short-term goals elaborated in the last report were achieved, and we propose updated goals to guide future otitis media research. Data Sources PubMed, Web of Science, Medline. Review Methods The panel topic was subdivided, and each contributor performed a literature search within the given time frame. The keywords searched included middle ear, eustachian tube, and mastoid for their intersection with anatomy, physiology, pathophysiology, and pathology. Preliminary reports from each panel member were consolidated and discussed when the panel met on June 11, 2015. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 13 of the 20 short-term goals proposed in 2011. Significant advances were made in the characterization of middle ear gas exchange pathways, modeling eustachian tube function, and preliminary testing of treatments for eustachian tube dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess middle ear/eustachian tube structure and physiology with respect to their role in otitis media pathogenesis. The new data derived from these structure/function experiments should be integrated into computational models that can then be used to develop specific hypotheses concerning otitis media pathogenesis and persistence. Finally, rigorous studies on medical or surgical treatments for eustachian tube dysfunction should be undertaken.

  12. Musical emotions: predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements.

    PubMed

    Coutinho, Eduardo; Cangelosi, Angelo

    2011-08-01

    We sustain that the structure of affect elicited by music is largely dependent on dynamic temporal patterns in low-level music structural parameters. In support of this claim, we have previously provided evidence that spatiotemporal dynamics in psychoacoustic features resonate with two psychological dimensions of affect underlying judgments of subjective feelings: arousal and valence. In this article we extend our previous investigations in two aspects. First, we focus on the emotions experienced rather than perceived while listening to music. Second, we evaluate the extent to which peripheral feedback in music can account for the predicted emotional responses, that is, the role of physiological arousal in determining the intensity and valence of musical emotions. Akin to our previous findings, we will show that a significant part of the listeners' reported emotions can be predicted from a set of six psychoacoustic features--loudness, pitch level, pitch contour, tempo, texture, and sharpness. Furthermore, the accuracy of those predictions is improved with the inclusion of physiological cues--skin conductance and heart rate. The interdisciplinary work presented here provides a new methodology to the field of music and emotion research based on the combination of computational and experimental work, which aid the analysis of the emotional responses to music, while offering a platform for the abstract representation of those complex relationships. Future developments may aid specific areas, such as, psychology and music therapy, by providing coherent descriptions of the emotional effects of specific music stimuli. 2011 APA, all rights reserved

  13. Psychophysiological Responses to Salsa Dance

    PubMed Central

    Emerenziani, Gian Pietro; Meucci, Marco; Saavedra, Francisco; Gallotta, Maria Chiara; Baldari, Carlo

    2015-01-01

    Speculation exists whether dance provides physiological stimuli adequate to promote health and fitness benefits. Unfortunately, research to date has not addressed the affective and exertional responses to dance. These responses are of interest as positive affective and exertional responses experienced during physical activity may play an important role in predicting adherence. The present study aims to examine the psychophysiological responses of different Salsa dance styles. Ten pairs of dancers performed two different structured lessons of Salsa dance, including Typical Salsa and Rueda de Casino lessons, and a non-structured Salsa dance at a night club. Physiological responses (i.e., percent of heart rate reserve; %HRR) were continuously assessed and perceived exertion and affective valence were rated every 15 min throughout the trials. %HRR responses differed between the Salsa dance styles (%HRR from 41.3 to 51.9%), and participants were dancing at intensities near their ventilatory threshold. Specifically, Typical Salsa lesson elicited lower %HRR responses than Rueda de Casino lesson (p < 0.05), but similar %HRR responses to Salsa dance at a night club condition (p > 0.05). Surprisingly, exertional (from 8 to 11) and affective (from +3 to +5) responses were unaffected by Salsa dance styles (p > 0.05). These data support that different Salsa dance styles provide physiological stimuli adequate to promote health and fitness benefits, and perhaps more importantly, produce pleasurable experiences, which in turn might lead to an increase in adherence to Salsa dancing which likely provides exercise-like health benefits. PMID:25860568

  14. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  15. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  16. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  17. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

    PubMed Central

    Daffé, Mamadou; Crick, Dean C.; Jackson, Mary

    2014-01-01

    This chapter summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity and biogenesis of a variety of non-covalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this chapter include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, non-carotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides. PMID:25485178

  18. Databases for Microbiologists

    DOE PAGES

    Zhulin, Igor B.

    2015-05-26

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. Finally, the purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists.

  19. Databases for Microbiologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhulin, Igor B.

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. Finally, the purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists.

  20. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  1. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    PubMed

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Databases for Microbiologists

    PubMed Central

    2015-01-01

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. The purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists. PMID:26013493

  3. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti.

    PubMed

    de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado

    2018-05-30

    High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.

  4. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  5. Role of plasma kallikrein in diabetes and metabolism.

    PubMed

    Feener, E P; Zhou, Q; Fickweiler, W

    2013-09-01

    Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.

  6. Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines

    PubMed Central

    Stawarski, Michal; Stefaniuk, Marzena; Wlodarczyk, Jakub

    2014-01-01

    Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy. PMID:25071472

  7. Role of motor unit structure in defining function

    NASA Technical Reports Server (NTRS)

    Monti, R. J.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.

  8. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB.

    PubMed

    Velázquez Escobar, Francisco; Buhrke, David; Fernandez Lopez, Maria; Shenkutie, Sintayehu Manaye; von Horsten, Silke; Essen, Lars-Oliver; Hughes, Jon; Hildebrandt, Peter

    2017-05-01

    The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics. © 2017 Federation of European Biochemical Societies.

  9. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor.

    PubMed

    Rhaman, Md Mhahabubur; Powell, Douglas R; Hossain, Md Alamgir

    2017-11-30

    Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.

  10. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  11. Hormones and the hippocampus.

    PubMed

    Lathe, R

    2001-05-01

    Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure. Evidence is presented that its role in memory may be ancillary to physiological regulation. Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress. Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes. This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception'). Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function. It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli. Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (e.g. long-term potentiation) could facilitate throughput inhibition. This may have implications for the role of the hippocampus and long-term potentiation in memory.

  12. Rice Physiology

    Treesearch

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  13. Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame.

    PubMed

    Deforges, Jules; de Breyne, Sylvain; Ameur, Melissa; Ulryck, Nathalie; Chamond, Nathalie; Saaidi, Afaf; Ponty, Yann; Ohlmann, Theophile; Sargueil, Bruno

    2017-07-07

    In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Elastin Degradation by Cathepsin V Requires Two Exosites*

    PubMed Central

    Du, Xin; Chen, Nelson L. H.; Wong, Andre; Craik, Charles S.; Brömme, Dieter

    2013-01-01

    Cathepsin V is a highly effective elastase and has been implicated in physiological and pathological extracellular matrix degradation. However, its mechanism of action remains elusive. Whereas human cathepsin V exhibits a potent elastolytic activity, the structurally homologous cathepsin L, which shares a 78% amino acid sequence, has only a minimal proteolytic activity toward insoluble elastin. This suggests that there are distinct structural domains that play an important role in elastinolysis. In this study, a total of 11 chimeras of cathepsins V and L were generated to identify elastin-binding domains in cathepsin V. Evaluation of these chimeras revealed two exosites contributing to the elastolytic activity of cathepsin V that are distant from the active cleft of the protease and are located in surface loop regions. Replacement of exosite 1 or 2 with analogous residues from cathepsin L led to a 75 and 43% loss in the elastolytic activity, respectively. Replacement of both exosites yielded a non-elastase variant similar to that of cathepsin L. Identification of these exosites may contribute to the design of inhibitors that will only affect the elastolytic activity of cysteine cathepsins without interfering with other physiological protease functions. PMID:24121514

  15. Imaging the ovary.

    PubMed

    Feng, Yi; Tamadon, Amin; Hsueh, Aaron J W

    2018-05-01

    During each reproductive cycle, the ovary exhibits tissue remodelling and cyclic vasculature changes associated with hormonally regulated folliculogenesis, follicle rupture, luteal formation and regression. However, the relationships among different types of follicles and corpora lutea are unclear, and the role of ovarian vasculature in folliculogenesis and luteal dynamics has not been extensively investigated. Understanding of ovarian physiology and pathophysiology relies upon elucidation of ovarian morphology and architecture. This paper summarizes the literature on traditional approaches to the imaging of ovarian structures and discusses recent advances in ovarian imaging. Traditional in-vivo ultrasound, together with histological and electron microscopic approaches provide detailed views of the ovary at organ, tissue and molecular levels. However, in-vivo imaging is limited to antral and larger follicles whereas histological imaging is mainly two-dimensional in nature. Also discussed are emerging approaches in the use of near-infrared fluorophores to image follicles in live animals to detect preantral follicles as well as visualizing ovarian structures using CLARITY in fixed whole ovaries to elucidate three-dimensional interrelationships among follicles, corpora lutea and ovarian vasculature. Advances in ovarian imaging techniques provide new understanding of ovarian physiology and allow for the development of better tools to diagnose ovarian pathophysiology. Copyright © 2018 Reproductive Healthcare Ltd. All rights reserved.

  16. Students' Motivation toward Laboratory Work in Physiology Teaching

    ERIC Educational Resources Information Center

    Dohn, Niels Bonderup; Fago, Angela; Overgaard, Johannes; Madsen, Peter Teglberg; Malte, Hans

    2016-01-01

    The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves…

  17. A structure-function analysis of ion transport in crustacean gills and excretory organs.

    PubMed

    Freire, Carolina A; Onken, Horst; McNamara, John C

    2008-11-01

    Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.

  18. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu; Kawas, Neal P., E-mail: nealkawas@ucla.edu; Lutz, Andre, E-mail: andre.lutz@hotmail.de

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structuremore » varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.« less

  19. Primary structure of an adipokinetic neuropeptide from the rhinoceros beetle, Oryctes rhinoceros L (Coleoptera: Dynastidae).

    PubMed

    Ajay Kumar, A P; Gokuldas, M

    2011-07-01

    Neuropeptides play an important role in cellular communication in vertebrates. This is also true for insects in which many physiological, developmental and behavioral processes are affected by neuropeptides produced in neurosecretory cells of the retrocerebral complex. Small neuropeptides of the adipokinetic hormone/red pigment concentrating hormone family (AKH/RPCH) are one of the important groups of peptides that regulate physiological homeostasis. The present investigation was carried out to elucidate the primary structure of adipokinetic neuropeptides in the rhinoceros beetle, O. rhinoceros. In the present investigation, an adipokinetic neuropeptide from the coconut pest, Oryctes rhinoceros was isolated from corpora cardiaca by HPLC; the chromatographic fractions were tested for adipokinetic activity in the plant bug, Iphita limbata in vivo. Two UV absorbance peaks were found to be significantly active in elevating haemolymph lipid levels. MALDI-MS analysis of the extract indicated that the molecular mass, 1003.70 Da is similar to the already known AKH from another beetle, Melolontha melolontha. MALDI-MS/MS analysis confirmed that its primary structure is exactly similar to the structure reported for the Melme-AKH (pE-L-N-Y-S-P-D-W-NH2). The findings suggest that the distribution of AKH peptides has shown that there exists a taxonomic order or family specificity. This data can be used as additional information to aid in the construction of phylogenetic trees by means of computer programme and protein parsimony algorithms.

  20. The G-factor as a tool to learn more about bone structure and function.

    PubMed

    Zerath, E

    1999-07-01

    In normal life on earth, the locomotor system is exposed to two types of stimulation: gravity (passive stimulation) and motion (active stimulation). Both permanently combine, and the interactions between locomotion and gravity induce an overall recruitment which is repeated daily and maintains the bone tissue structure within the range of constraints to which it is adapted. This range is one of the basic hypotheses underlying the mechanical concepts of bone structure control, and it has been considered as logical to assume that weightlessness of spaceflight should produce bone loss since astronauts are outside of the terrestrial gravitational field of forces, no longer relying on muscular work to change positions or move. But, thirty years after the first changes in phospho-calcium metabolism were observed in astronauts after spaceflight, current knowledge does not provide a full understanding of this pathogeny, and prove the G-factor is now considered as an essential component of the experimental tools available to study bone physiology. The study of the physiology of bone tissue usually consists in the investigation of its two fundamental roles, i.e. reservoir of inorganic elements (calcium, phosphorus, magnesium) and mechanical support for soft tissues. Together with the combined action of muscles, tendons, and ligaments, this support permits motion and locomotion. These two functions rely on a sophisticated bone tissue architecture, and on the adaptability of this structure, with modeling and remodeling processes, themselves associated with the coupled activity of specialized bone cell populations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Allison M; Standaert, Robert F; Jubb, Aaron M

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HIImore » phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.« less

  2. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica.

    PubMed

    Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia

    2017-01-05

    Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.

  3. Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development.

    PubMed

    Wang, Xiaoyu; Zhao, Xiaokang; Wang, Hao; Huang, Xue; Duan, Xiangke; Gu, Yinzhong; Lambert, Nzungize; Zhang, Ke; Kou, Zhenhao; Xie, Jianping

    2018-06-11

    Bacterial toxin-antitoxin (TA) systems are emerging important regulators of multiple cellular physiological events and candidates for novel antibiotic targets. To explore the role of Mycobacterium tuberculosis function, unknown toxin gene Rv2872 was heterologously expressed in Mycobacterium smegmatis (MS_Rv2872). Upon induction, MS_Rv2872 phenotype differed significantly from the control, such as increased vancomycin resistance, retarded growth, cell wall, and biofilm structure. This phenotype change might result from the RNase activity of Rv2872 as purified Rv2872 toxin protein can cleave the products of several key genes involved in abovementioned phenotypes. In summary, toxin Rv2872 was firstly reported to be a endonuclease involved in antibiotic stress responses, cell wall structure, and biofilm development.

  4. [Physiology and cybernetics: the history of mutual penetration of ideas, modern state and perspectives. To a 60-th anniversary of a writing the book "Cybernetics"by N. Wiener].

    PubMed

    Fedorov, V I

    2007-01-01

    Description of the history of cybernetics origin and physiology influence on it is given. Role of Russian and foreign physiologists in becoming and development of cybernetics and contribution of cybernetic theorists (N. Wiener and A.A. Lyapunov) to physiology are shown. Becoming and a modern state of various sections of cybernetic physiology and perspective of connection of cybernetics with integrative physiology are considered.

  5. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.

  6. Analysis of RNA structure using small-angle X-ray scattering

    PubMed Central

    Cantara, William A.; Olson, Erik D.; Musier-Forsyth, Karin

    2016-01-01

    In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building. PMID:27777026

  7. MBBS Student Perceptions about Physiology Subject Teaching and Objective Structured Practical Examination Based Formative Assessment for Improving Competencies

    ERIC Educational Resources Information Center

    Lakshmipathy, K.

    2015-01-01

    The objectives of the present study were to 1) assess student attitudes to physiology, 2) evaluate student opinions about the influence of an objective structured practical examination (OSPE) on competence, and 3) assess the validity and reliability of an indigenously designed feedback questionnaire. A structured questionnaire containing 16 item…

  8. Hydrostatic pressure suppresses fibrotic changes via Akt/GSK-3 signaling in human cardiac fibroblasts.

    PubMed

    Tanaka, Ryo; Umemura, Masanari; Narikawa, Masatoshi; Fujita, Takayuki; Yokoyama, Utako; Ishigami, Tomoaki; Kimura, Kazuo; Tamura, Kouichi; Ishikawa, Yoshihiro

    2018-05-01

    Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure-loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK-3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine-6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three-dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK-3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Manipulating neural activity in physiologically classified neurons: triumphs and challenges

    PubMed Central

    Gore, Felicity; Schwartz, Edmund C.; Salzman, C. Daniel

    2015-01-01

    Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour. PMID:26240431

  10. Space flight and bone formation.

    PubMed

    Doty, St B

    2004-12-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  11. Space flight and bone formation

    NASA Technical Reports Server (NTRS)

    Doty, St B.

    2004-01-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  12. Computational Methods in Drug Discovery

    PubMed Central

    Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens

    2014-01-01

    Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236

  13. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  14. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  15. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases

    PubMed Central

    Kim, Min-Hyun; Kim, Hyeyoung

    2017-01-01

    Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases. PMID:28498331

  16. Daily Physical Activity and Hot Flashes in the Study of Women's Health Across the Nation FLASHES Study

    PubMed Central

    Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca

    2014-01-01

    Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454

  17. Genetic monogamy despite social promiscuity in the pot-bellied seahorse (Hippocampus abdominalis).

    PubMed

    Wilson, A B; Martin-Smith, K M

    2007-06-01

    Sexual selection theory predicts a positive correlation between relative parental investment and mate choice. In syngnathid fishes (seahorses and pipefish), males brood offspring in specialized brooding structures. While female-female mating competition has been demonstrated in some pipefishes, all seahorses (genus Hippocampus) studied to date have been found to have conventional sex roles with greater male-male competition for access to mates despite possessing the most complex brood structures in the family. Although multiple mating is common in pipefish, seahorses are again exceptional, exhibiting strict genetic monogamy. Both demographic and behavioural explanations have been offered to explain the lack of multiple mating in seahorse species, but these hypotheses have not yet been explicitly addressed. We investigated mating systems and brood parentage of the pot-bellied seahorse, Hippocampus abdominalis, a temperate-water species that is socially promiscuous with conventional sex roles in laboratory populations. We observed promiscuous courtship behaviour and sex-role reversal in high density, female-biased field populations of H. abdominalis. We hypothesize that sex roles are plastic in H. abdominalis, depending on local population density and sex ratio. Despite promiscuous courtship behaviour, all assayed male seahorses were genetically monogamous in both laboratory and wild populations. Physiological limitations associated with embryo incubation may explain the absence of multiple mating in seahorses and may have played an important role in the development of the unique reproductive behaviour typical in these species.

  18. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  19. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    PubMed

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. How mechanisms explain interfield cooperation: biological-chemical study of plant growth hormones in Utrecht and Pasadena, 1930-1938.

    PubMed

    Schürch, Caterina

    2017-09-01

    This article examines to what extent a particular case of cross-disciplinary research in the 1930s was structured by mechanistic reasoning. For this purpose, it identifies the interfield theories that allowed biologists and chemists to use each other's techniques and findings, and that provided the basis for the experiments performed to identify plant growth hormones and to learn more about their role in the mechanism of plant growth. In 1930, chemists and biologists in Utrecht and Pasadena began to cooperatively study plant growth. I will argue that these researchers decided to join forces because they believed to rely on each other's findings and methods to solve their research problems adequately. In the course of the cooperation, organic chemists arrived at isolating plant growth hormones by using a test method developed in plant physiology. This achievement, in turn, facilitated biologists' investigation of the mechanism of plant growth. Researchers eventually believed to have the means to study the relation between a substance's molecular structure and its physiological activity. The way they conceptualized the problem of identifying hormones and unraveling the mechanism of plant growth, as well as their actual research actions are compatible with the new mechanists' account of mechanism research. The study illustrates that focusing on researchers' mechanistic reasoning can contribute considerably to explaining the structure of cross-disciplinary research projects.

  1. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium.more » The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO-RS082, BEL) prevented the low pH induced Golgi disassembly. • Rab1, 2, 30, 33 and 41 suppress low pH induced Golgi disassembly.« less

  3. SHP2 sails from physiology to pathology.

    PubMed

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation

    PubMed Central

    Mackos, Amy R.; Maltz, Ross; Bailey, Michael T.

    2016-01-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. PMID:27760302

  5. Towards a mechanistic and physiological understanding of a ferredoxin disulfide reductase from the domains Archaea and Bacteria.

    PubMed

    Prakash, Divya; Walters, Karim A; Martinie, Ryan J; McCarver, Addison C; Kumar, Adepu K; Lessner, Daniel J; Krebs, Carsten; Golbeck, John H; Ferry, James G

    2018-05-02

    Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster.  UV-Vis, EPR and Mӧssbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active-site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR advancing the physiological understanding of FDRs role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show FDR homologs are widespread in diverse microbes from the domain Bacteria. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation.

    PubMed

    Mackos, Amy R; Maltz, Ross; Bailey, Michael T

    2017-02-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transport of amino acids in the kidney.

    PubMed

    Makrides, Victoria; Camargo, Simone M R; Verrey, François

    2014-01-01

    Amino acids are the building blocks of proteins and key intermediates in the synthesis of biologically important molecules, as well as energy sources, neurotransmitters, regulators of cellular metabolism, etc. The efficient recovery of amino acids from the primary filtrate is a well-conserved key role of the kidney proximal tubule. Additionally, renal metabolism participates in the whole body disposition of amino acids. Therefore, a wide array of axially heterogeneously expressed transporters is localized on both epithelial membranes. For transepithelial transport, luminal uptake, which is carried out mainly by active symporters, is coupled with a mostly passive basolateral efflux. Many transporters require partner proteins for appropriate localization, or to modulate transporter activity, and/or increase substrate supply. Interacting proteins include cell surface antigens (CD98), endoplasmic reticulum proteins (GTRAP3-18 or 41), or enzymes (ACE2 and aminopeptidase N). In the past two decades, the molecular identification of transporters has led to significant advances in our understanding of amino acid transport and aminoacidurias arising from defects in renal transport. Furthermore, the three-dimensional crystal structures of bacterial homologues have been used to yield new insights on the structure and function of mammalian transporters. Additionally, transgenic animal models have contributed to our understanding of the role of amino acid transporters in the kidney and other organs and/or at critical developmental stages. Progress in elucidation of the renal contribution to systemic amino acid homeostasis requires further integration of kinetic, regulatory, and expression data of amino acid transporters into our understanding of physiological regulatory networks controlling metabolism. © 2014 American Physiological Society.

  8. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  9. Ferritins and iron storage in plants.

    PubMed

    Briat, Jean-François; Duc, Céline; Ravet, Karl; Gaymard, Frédéric

    2010-08-01

    Iron is essential for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in the plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differ. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. In this review, our knowledge of the specific features of plant ferritins is presented, at the level of their (i) structure/function relationships, (ii) cellular localization, and (iii) synthesis regulation during development and in response to various environmental cues. A special emphasis is given to their function in plant physiology, in particular concerning their respective roles in iron storage and in protection against oxidative stress. Indeed, the use of reverse genetics in Arabidopsis recently enabled to produce various knock-out ferritin mutants, revealing strong links between these proteins and protection against oxidative stress. In contrast, their putative iron storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron. Copyright 2009 Elsevier B.V. All rights reserved.

  10. A multi-signal fluorescent probe for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells† †Electronic supplementary information (ESI) available: Experimental details for chemical synthesis of all compounds, chemical structure characterization, supplementary spectra of probe, and fluorescence imaging methods and data. See DOI: 10.1039/c7sc00423k Click here for additional data file.

    PubMed Central

    He, Longwei; Yang, Xueling; Xu, Kaixin; Kong, Xiuqi

    2017-01-01

    Biothiols, which have a close network of generation and metabolic pathways among them, are essential reactive sulfur species (RSS) in the cells and play vital roles in human physiology. However, biothiols possess highly similar chemical structures and properties, resulting in it being an enormous challenge to simultaneously discriminate them from each other. Herein, we develop a unique fluorescent probe (HMN) for not only simultaneously distinguishing Cys/Hcy, GSH, and H2S from each other, but also sequentially sensing Cys/Hcy/GSH and H2S using a multi-channel fluorescence mode for the first time. When responding to the respective biothiols, the robust probe exhibits multiple sets of fluorescence signals at three distinct emission bands (blue-green-red). The new probe can also sense H2S at different concentration levels with changes of fluorescence at the blue and red emission bands. In addition, the novel probe HMN is able to discriminate and sequentially sense biothiols in biological environments via three-color fluorescence imaging. We expect that the development of the robust probe HMN will provide a powerful strategy to design fluorescent probes for the discrimination and sequential detection of biothiols, and offer a promising tool for exploring the interrelated roles of biothiols in various physiological and pathological conditions. PMID:28989659

  11. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  12. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins.

    PubMed

    Couvineau, Alain; Laburthe, Marc

    2012-05-01

    The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Challenges in NMR-based structural genomics

    NASA Astrophysics Data System (ADS)

    Sue, Shih-Che; Chang, Chi-Fon; Huang, Yao-Te; Chou, Ching-Yu; Huang, Tai-huang

    2005-05-01

    Understanding the functions of the vast number of proteins encoded in many genomes that have been completely sequenced recently is the main challenge for biologists in the post-genomics era. Since the function of a protein is determined by its exact three-dimensional structure it is paramount to determine the 3D structures of all proteins. This need has driven structural biologists to undertake the structural genomics project aimed at determining the structures of all known proteins. Several centers for structural genomics studies have been established throughout the world. Nuclear magnetic resonance (NMR) spectroscopy has played a major role in determining protein structures in atomic details and in a physiologically relevant solution state. Since the number of new genes being discovered daily far exceeds the number of structures determined by both NMR and X-ray crystallography, a high-throughput method for speeding up the process of protein structure determination is essential for the success of the structural genomics effort. In this article we will describe NMR methods currently being employed for protein structure determination. We will also describe methods under development which may drastically increase the throughput, as well as point out areas where opportunities exist for biophysicists to make significant contribution in this important field.

  14. Drug Sensitivity in Older Adults: The Role of Physiologic and Pharmacokinetic Factors.

    ERIC Educational Resources Information Center

    Cherry, Katie E.; Morton, Mark R.

    1989-01-01

    Notes that age-related changes in physiology and pharmacokinetics (how drugs are used in the body) lead to increased drug sensitivity and potentially harmful drug effects. Addresses heightened sensitivity to drug effects seen in older adults. Presents three examples of physiologic decline and discusses some broad considerations for geriatric…

  15. From Tusko to Titin: the role for comparative physiology in an era of molecular discovery.

    PubMed

    Lindstedt, S L; Nishikawa, K C

    2015-06-15

    As we approach the centenary of the term "comparative physiology," we reexamine its role in modern biology. Finding inspiration in Krogh's classic 1929 paper, we first look back to some timeless contributions to the field. The obvious and fascinating variation among animals is much more evident than is their shared physiological unity, which transcends both body size and specific adaptations. The "unity in diversity" reveals general patterns and principles of physiology that are invisible when examining only one species. Next, we examine selected contemporary contributions to comparative physiology, which provides the context in which reductionist experiments are best interpreted. We discuss the sometimes surprising insights provided by two comparative "athletes" (pronghorn and rattlesnakes), which demonstrate 1) animals are not isolated molecular mechanisms but highly integrated physiological machines, a single "rate-limiting" step may be exceptional; and 2) extremes in nature are rarely the result of novel mechanisms, but rather employ existing solutions in novel ways. Furthermore, rattlesnake tailshaker muscle effectively abolished the conventional view of incompatibility of simultaneous sustained anaerobic glycolysis and oxidative ATP production. We end this review by looking forward, much as Krogh did, to suggest that a comparative approach may best lend insights in unraveling how skeletal muscle stores and recovers mechanical energy when operating cyclically. We discuss and speculate on the role of the largest known protein, titin (the third muscle filament), as a dynamic spring capable of storing and recovering elastic recoil potential energy in skeletal muscle. Copyright © 2015 the American Physiological Society.

  16. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  17. Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: critical role of peripheral drug actions.

    PubMed

    Lenoir, Magalie; Tang, Jeremy S; Woods, Amina S; Kiyatkin, Eugene A

    2013-06-12

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotine(PM), 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotine(PM) injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization.

  18. Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage.

    PubMed

    Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E Sander; Kleinberg, Samantha

    2016-01-01

    High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology.

  19. Free fatty acid receptors and their role in regulation of energy metabolism.

    PubMed

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  20. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance.

    PubMed

    Yadav, Vikas; Hemansi; Kim, Nayun; Tuteja, Narendra; Yadav, Puja

    2017-01-01

    G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  1. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System.

    PubMed

    Mittal, Rahul; Chan, Brandon; Grati, M'hamed; Mittal, Jeenu; Patel, Kunal; Debs, Luca H; Patel, Amit P; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong

    2016-08-01

    The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein

    PubMed Central

    Orth, Martin F.; Cazes, Alex; Butt, Elke; Grunewald, Thomas G. P.

    2015-01-01

    The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities. PMID:25622104

  3. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  4. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.

    PubMed

    Bargiello, Thaddeus A; Oh, Seunghoon; Tang, Qingxiu; Bargiello, Nicholas K; Dowd, Terry L; Kwon, Taekyung

    2018-01-01

    Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (V m or V i-o ). These transjunctional voltage dependent processes have been termed V j - or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Roles of STATs signaling in cardiovascular diseases.

    PubMed

    Kishore, Raj; Verma, Suresh K

    2012-04-01

    In cardiac and many other systems, chronic stress activates avfamily of structurally and functionally conserved receptors and their downstream signaling molecules that entail tyrosine, serine or threonine phosphorylation to transfer the messages to the genetic machinery. However, the activation of the Janus kinases (JAKs) and their downstream signal transducer and activator of transcription (STATs) proteins is both characteristic of and unique to cytokine and growth factor signaling which plays a central role in heart physiology. Dysregulation of JAK-STAT signaling is associated with various cardiovascular diseases. The molecular signaling and specificity of the JAK-STAT pathway are modulated at many levels by distinct regulatory proteins. Here, we review recent studies on the regulation of the STAT signaling pathway that will enhance our ability to design rational therapeutic strategies for stress-induced heart failure.

  6. [Biological and nutritional role of taurine and its derivatives on cellular and organic physiology].

    PubMed

    Cañas, P E; Valenzuela, A

    1991-06-01

    Several aspects about the biological role of taurine and its derivatives has been described in this work, especially in relation to humans. Some aspects related to the structure and function of the molecule in respect to its capacity as an osmoregulator and as an antioxidant are also analyzed. Moreover, the distribution changes on the biosynthesis phenomenon in some development stages as well as changes at the transport level, especially in some tissues where the concentration is increased several times with respect to plasmatic concentrations, are discussed. Some evidences exist as to the possibilities that taurine may be considered as a conditionally essential nutrient, particularly in some cases where it has been demonstrated that taurine and its derivatives have certain clinical and nutritional implications.

  7. POMC Neurons: From Birth to Death

    PubMed Central

    Toda, Chitoku; Santoro, Anna; Kim, Jung Dae

    2017-01-01

    The hypothalamus is an evolutionarily conserved brain structure that regulates an organism’s basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation. PMID:28192062

  8. Modeling and Deorphanization of Orphan GPCRs.

    PubMed

    Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie

    2018-01-01

    Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

  9. Brain aromatase: roles in reproduction and neuroprotection.

    PubMed

    Roselli, Charles F

    2007-01-01

    It is well established that aromatization constitutes an essential part of testosterone's signaling pathway in brain and that estrogen metabolites, often together with testosterone, organize and activate masculine neural circuits. This paper summarizes the current understanding regarding the distribution, regulation and function of brain aromatase in mammals. Data from our laboratory are presented that highlight the important function of aromatase in the regulation of androgen feedback sensitivity in non-human primates and the possible role that aromatase plays in determining the brain structure and sexual partner preferences of rams. In addition, new data is presented indicating that the capacity for aromatization in cortical astrocytes is associated with cell survival and may be important for neuroprotection. It is anticipated that a better appreciation of the physiological and pathophysiological functions of aromatase will lead to important clinical insights.

  10. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice

    PubMed Central

    Georg, Birgitte; Fahrenkrug, Jan

    2017-01-01

    The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) and their receptors, the PAC1 –and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT) and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP)(12:12 h light dark-cycles (LD)) and skeleton photo periods (SPP) at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO) (PAC1 and VPAC2) had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality. PMID:29155851

  11. Bile duct epithelial tight junctions and barrier function

    PubMed Central

    Rao, R.K.; Samak, G.

    2013-01-01

    Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411

  12. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase

    PubMed Central

    Shinzawa-Itoh, Kyoko; Aoyama, Hiroshi; Muramoto, Kazumasa; Terada, Hirohito; Kurauchi, Tsuyoshi; Tadehara, Yoshiki; Yamasaki, Akiko; Sugimura, Takashi; Kurono, Sadamu; Tsujimoto, Kazuo; Mizushima, Tsunehiro; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2007-01-01

    All 13 lipids, including two cardiolipins, one phosphatidylcholine, three phosphatidylethanolamines, four phosphatidylglycerols and three triglycerides, were identified in a crystalline bovine heart cytochrome c oxidase (CcO) preparation. The chain lengths and unsaturated bond positions of the fatty acid moieties determined by mass spectrometry suggest that each lipid head group identifies its specific binding site within CcOs. The X-ray structure demonstrates that the flexibility of the fatty acid tails facilitates their effective space-filling functions and that the four phospholipids stabilize the CcO dimer. Binding of dicyclohexylcarbodiimide to the O2 transfer pathway of CcO causes two palmitate tails of phosphatidylglycerols to block the pathway, suggesting that the palmitates control the O2 transfer process.The phosphatidylglycerol with vaccenate (cis-Δ11-octadecenoate) was found in CcOs of bovine and Paracoccus denitrificans, the ancestor of mitochondrion, indicating that the vaccenate is conserved in bovine CcO in spite of the abundance of oleate (cis-Δ9-octadecenoate). The X-ray structure indicates that the protein moiety selects cis-vaccenate near the O2 transfer pathway against trans-vaccenate. These results suggest that vaccenate plays a critical role in the O2 transfer mechanism. PMID:17332748

  13. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla.

    PubMed

    Pannabecker, Thomas L

    2013-04-01

    Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)

  14. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla

    PubMed Central

    2013-01-01

    Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.1 PMID:23364530

  15. At the crossroads of physiology and ecology: food supply and the timing of avian reproduction.

    PubMed

    Davies, Scott; Deviche, Pierre

    2014-06-01

    This article is part of a Special Issue “Energy Balance”. The decision of when to breed is crucial to the reproductive success and fitness of seasonally breeding birds. The availability of food for adults prior to breeding has long been thought to play a critical role in timing the initiation of seasonal reproductive events, in particular laying. However, unequivocal evidence for such a role remains limited and the physiological mechanisms by which an increase in food availability results in seasonal activation of the reproductive system are largely speculative. This lack of mechanistic information partly reflects a lack of integration of ecological and physiological approaches to study seasonal reproduction. Indeed, most work pertaining to the role of food availability for adults on the timing of avian reproduction has been ecological and has focused almost exclusively on female traits associated with reproductive timing (e.g., lay date and clutch size). By contrast, most work on the physiological bases of the relationship between food availability and the timing of reproduction has investigated male traits associated with reproductive development (e.g., reproductive hormones and gonadal development). To advance our understanding of these topics, we review the role of proximate factors including food availability, social factors, and ambient temperature in the control of breeding decisions, and discuss the role of three potential candidates (leptin, glucocorticoids, and GnIH-neuropeptide Y) that may mediate the effects of food availability on these decisions. We emphasize that future progress in this area is heavily contingent upon the use of physiology-based approaches and their integration into current ecological frameworks. Published by Elsevier Inc.

  16. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB.

    PubMed

    Steinert, Robert E; Feinle-Bisset, Christine; Asarian, Lori; Horowitz, Michael; Beglinger, Christoph; Geary, Nori

    2017-01-01

    The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials. Copyright © 2017 the American Physiological Society.

  17. The Need for, and the Role of the Toxicological Chemist in the Design of Safer Chemicals.

    PubMed

    DeVito, Stephen C

    2018-02-01

    During the past several decades, there has been an ever increasing emphasis for designers of new commercial (nonpharmaceutical) chemicals to include considerations of the potential impacts a planned chemical may have on human health and the environment as part of the design of the chemical, and to design chemicals such that they possess the desired use efficacy while minimizing threats to human health and the environment. Achievement of this goal would be facilitated by the availability of individuals specifically and formally trained to design such chemicals. Medicinal chemists are specifically trained to design and develop safe and clinically efficacious pharmaceutical substances. No such formally trained science hybrid exists for the design of safer commercial (nonpharmaceutical) chemicals. This article describes the need for and role of the "toxicological chemist," an individual who is formally trained in synthetic organic chemistry, biochemistry, physiology, toxicology, environmental science, and in the relationships between structure and commercial use efficacy, structure and toxicity, structure and environmental fate and effects, and global hazard, and trained to integrate this knowledge to design safer commercially efficacious chemicals. Using examples, this article illustrates the role of the toxicological chemist in designing commercially efficacious, safer chemical candidates. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by a US Government employee and is in the public domain in the US.

  18. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signalingmore » that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.« less

  19. Imaging for lung physiology: What do we wish we could measure?

    PubMed Central

    Buxton, Richard B.

    2012-01-01

    The role of imaging as a tool for investigating lung physiology is growing at an accelerating pace. Looking forward, we wished to identify unresolved issues in lung physiology that might realistically be addressed by imaging methods in development or imaging approaches that could be considered. The role of imaging is framed in terms of the importance of good spatial and temporal resolution and the types of questions that could be addressed as these technical capabilities improve. Recognizing that physiology is fundamentally a quantitative science, a recurring emphasis is on the need for imaging methods that provide reliable measurements of specific physiological parameters. The topics included necessarily reflect our perspective on what are interesting questions and are not meant to be a comprehensive review. Nevertheless, we hope that this essay will be a spur to physiologists to think about how imaging could usefully be applied in their research and to physical scientists developing new imaging methods to attack challenging questions imaging could potentially answer. PMID:22582217

  20. Environmental controls on denitrifying communities and denitrification rates--Insights from molecular methods

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Myrold, David D.; Firestone, Mary; Voytek, Mary

    2006-01-01

    The advent of molecular techniques has improved our understanding of the microbial communities responsible for denitrification and is beginning to address their role in controlling denitrification processes. There is a large diversity of bacteria, archaea, and fungi capable of denitrification, and their community composition is structured by long-term environmental drivers. The range of temperature and moisture conditions, substrate availability, competition, and disturbances have long-lasting legacies on denitrifier community structure. These communities may differ in physiology, environmental tolerances to pH and O2, growth rate, and enzyme kinetics. Although factors such as O2, pH, C availability, and NO3− pools affect instantaneous rates, these drivers act through the biotic community. This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denitrifier community structure and function.

  1. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor

    PubMed Central

    2017-01-01

    Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate–covalent interactions with phosphates and π–π stackings with nucleobases and TMP through coordinate–covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay. PMID:29214233

  2. Structural insights into the unique inhibitory mechanism of the silkworm protease inhibitor serpin18

    PubMed Central

    Guo, Peng-Chao; Dong, Zhaoming; Zhao, Ping; Zhang, Yan; He, Huawei; Tan, Xiang; Zhang, Weiwei; Xia, Qingyou

    2015-01-01

    Serpins generally serve as inhibitors that utilize a mobile reactive center loop (RCL) as bait to trap protease targets. Here, we present the crystal structure of serpin18 from Bombyx mori at 1.65 Å resolution, which has a very short and stable RCL. Activity analysis showed that the inhibitory target of serpin18 is a cysteine protease rather than a serine protease. Notably, this inhibitiory reaction results from the formation of an intermediate complex, which then follows for the digestion of protease and inhibitor into small fragments. This activity differs from previously reported modes of inhibition for serpins. Our findings have thus provided novel structural insights into the unique inhibitory mechanism of serpin18. Furthermore, one physiological target of serpin18, fibroinase, was identified, which enables us to better define the potential role for serpin18 in regulating fibroinase activity during B. mori development. PMID:26148664

  3. Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse

    NASA Astrophysics Data System (ADS)

    Volpert, Marianna; Mangum, Jonathan E.; Jamsai, Duangporn; D'Sylva, Rebecca; O'Bryan, Moira K.; McIntyre, Peter

    2014-02-01

    While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.

  4. Albumin in chronic liver disease: structure, functions and therapeutic implications.

    PubMed

    Spinella, Rosaria; Sawhney, Rohit; Jalan, Rajiv

    2016-01-01

    Human serum albumin is a critical plasma protein produced by the liver with a number of accepted clinical indications in chronic liver disease including management of circulatory and renal dysfunction in patients with ascites. Advanced cirrhosis is characterised by reduced albumin concentration as well as impaired albumin function as a result of specific structural changes and oxidative damage. Traditionally, the biologic and therapeutic role of albumin in liver disease was attributed to its oncotic effects but it is now understood that albumin has a wide range of other important physiologic functions such as immunomodulation, endothelial stabilisation, antioxidant effects and binding multiple drugs, toxins and other molecules. This review discusses the multifunctional properties of albumin and, in particular, the biologic and clinical implications of structural and functional changes of albumin that are associated with cirrhosis. Based on these insights, we explore the current and potential future therapeutic uses of albumin in liver disease.

  5. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  6. The micro and macro of nutrients across biological scales.

    PubMed

    Warne, Robin W

    2014-11-01

    During the past decade, we have gained new insights into the profound effects that essential micronutrients and macronutrients have on biological processes ranging from cellular function, to whole-organism performance, to dynamics in ecological communities, as well as to the structure and function of ecosystems. For example, disparities between intake and organismal requirements for specific nutrients are known to strongly affect animal physiological performance and impose trade-offs in the allocations of resources. However, recent findings have demonstrated that life-history allocation trade-offs and even microevolutionary dynamics may often be a result of molecular-level constraints on nutrient and metabolic processing, in which limiting reactants are routed among competing biochemical pathways. In addition, recent work has shown that complex ecological interactions between organismal physiological states such as exposure to environmental stressors and infectious pathogens can alter organismal requirements for, and, processing of, nutrients, and even alter subsequent nutrient cycling in ecosystems. Furthermore, new research is showing that such interactions, coupled with evolutionary and biogeographical constraints on the biosynthesis and availability of essential nutrients and micronutrients play an important, but still under-studied role in the structuring and functioning of ecosystems. The purpose of this introduction to the symposium "The Micro and Macro of Nutrient Effects in Animal Physiology and Ecology" is to briefly review and highlight recent research that has dramatically advanced our understanding of how nutrients in their varied forms profoundly affect and shape ecological and evolutionary processes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Cancer as robust intrinsic state shaped by evolution: a key issues review

    NASA Astrophysics Data System (ADS)

    Yuan, Ruoshi; Zhu, Xiaomei; Wang, Gaowei; Li, Site; Ao, Ping

    2017-04-01

    Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players—genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large ‘omics’ data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular-cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.

  8. Customizing semen preservation protocols for individual dogs and individual species: sperm preservation beyond the state of the art.

    PubMed

    Farstad, W

    2012-12-01

    Sperm quality can be variable in morphometric and physiological attributes between males of different species, between males within species subtypes reared under different environmental conditions, between ejaculates of the same male or even between sperm populations within an ejaculate. Clinical semen evaluation is based on evaluation of whole ejaculates, which is not a chemically or physiologically well-defined entity, rather a collection of heterogeneous subpopulations giving different measurements and possessing different fertilizing potential. Identification of subpopulations with different motility patterns is important as well as characterizing the subtle structural changes underlying the motility differences observed. The ability to identify populations of sperm responding rapidly or failing to progress through the capacitation process may have clinical applications. Studies of lipid-phase fluidity of sperm membranes, mathematical modelling of membrane ion transport, role of modifying components and detergent-resistant microdomains are of particular interest. When customizing extenders to ejaculates from cryosensitive males or species, a thorough knowledge of species sperm membrane physiology and an assessment of the individual ejaculate's sperm populations are necessary. Structural differences have been found in sperm membranes between fox species with different cryosurvival potential of their spermatozoa. Supplementation of lipids and detergents in cryoextenders may influence membrane fluidity of the surviving spermatozoa in a species-dependent manner and influence capacitation. Immobilization of sperm prior to cryopreservation with subsequent slow release of sperm in the female genital tract may be a way to prolong the fertile life of sperm. In canids with a long oocyte maturation time, delayed capacitation may be beneficial. © 2012 Blackwell Verlag GmbH.

  9. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention.

    PubMed

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-03-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment.

  10. The Integrative Role of the Sigh in Psychology, Physiology, Pathology, and Neurobiology

    PubMed Central

    Ramirez, Jan-Marino

    2015-01-01

    “Sighs, tears, grief, distress” expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological. PMID:24746045

  11. Molecular and Biotechnological Aspects of Microbial Proteases†

    PubMed Central

    Rao, Mala B.; Tanksale, Aparna M.; Ghatge, Mohini S.; Deshpande, Vasanti V.

    1998-01-01

    Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology. PMID:9729602

  12. The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology

    ERIC Educational Resources Information Center

    Akkaraju, Shylaja

    2016-01-01

    To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…

  13. Case Study Analysis and the Remediation of Misconceptions about Respiratory Physiology

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    Most students enter the physiology classroom with one or more fundamental misconceptions about respiratory physiology. This study examined the prevalence of four respiratory misconceptions and determined the role of case analysis in the remediation of one of them. A case study was used to help students learn about oxygen transport in the blood and…

  14. Bridging the Gap between Physiology and Behavior: Evidence from the sSoTS Model of Human Visual Attention

    ERIC Educational Resources Information Center

    Mavritsaki, Eirini; Heinke, Dietmar; Allen, Harriet; Deco, Gustavo; Humphreys, Glyn W.

    2011-01-01

    We present the case for a role of biologically plausible neural network modeling in bridging the gap between physiology and behavior. We argue that spiking-level networks can allow "vertical" translation between physiological properties of neural systems and emergent "whole-system" performance--enabling psychological results to be simulated from…

  15. Physiological functioning of the ear and masking

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physiological functions of the ear and the role masking plays in speech communication are examined. Topics under investigation include sound analysis of the ear, the aural reflex, and various types of noise masking.

  16. Molecular Analysis of Atypical Family 18 Chitinase from Fujian Oyster Crassostrea angulata and Its Physiological Role in the Digestive System.

    PubMed

    Yang, Bingye; Zhang, Mingming; Li, Lingling; Pu, Fei; You, Weiwei; Ke, Caihuan

    2015-01-01

    Chitinolytic enzymes have an important physiological significance in immune and digestive systems in plants and animals, but chitinase has not been identified as having a role in the digestive system in molluscan. In our study, a novel chitinase homologue, named Ca-Chit, has been cloned and characterized as the oyster Crassostrea angulate. The 3998bp full-length cDNA of Ca-Chit consisted of 23bp 5-UTR, 3288 ORF and 688bp 3-UTR. The deduced amino acids sequence shares homologue with the chitinase of family 18. The molecular weight of the protein was predicted to be 119.389 kDa, with a pI of 6.74. The Ca-Chit protein was a modular enzyme composed of a glycosyl hydrolase family 18 domain, threonine-rich region profile and a putative membrane anchor domain. Gene expression profiles monitored by quantitative RT-PCR in different adult tissues showed that the mRNA of Ca-Chit expressed markedly higher visceral mass than any other tissues. The results of the whole mount in-situ hybridization displayed that Ca-Chit starts to express the visceral mass of D-veliger larvae and then the digestive gland forms a crystalline structure during larval development. Furthermore, the adult oysters challenged by starvation indicated that the Ca-Chit expression would be regulated by feed. All the observations made suggest that Ca-Chit plays an important role in the digestive system of the oyster, Crassostrea angulate.

  17. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    PubMed

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Molecular Analysis of Atypical Family 18 Chitinase from Fujian Oyster Crassostrea angulata and Its Physiological Role in the Digestive System

    PubMed Central

    Yang, Bingye; Zhang, Mingming; Li, Lingling; Pu, Fei; You, Weiwei; Ke, Caihuan

    2015-01-01

    Chitinolytic enzymes have an important physiological significance in immune and digestive systems in plants and animals, but chitinase has not been identified as having a role in the digestive system in molluscan. In our study, a novel chitinase homologue, named Ca-Chit, has been cloned and characterized as the oyster Crassostrea angulate. The 3998bp full-length cDNA of Ca-Chit consisted of 23bp 5-UTR, 3288 ORF and 688bp 3-UTR. The deduced amino acids sequence shares homologue with the chitinase of family 18. The molecular weight of the protein was predicted to be 119.389 kDa, with a pI of 6.74. The Ca-Chit protein was a modular enzyme composed of a glycosyl hydrolase family 18 domain, threonine-rich region profile and a putative membrane anchor domain. Gene expression profiles monitored by quantitative RT-PCR in different adult tissues showed that the mRNA of Ca-Chit expressed markedly higher visceral mass than any other tissues. The results of the whole mount in-situ hybridization displayed that Ca-Chit starts to express the visceral mass of D-veliger larvae and then the digestive gland forms a crystalline structure during larval development. Furthermore, the adult oysters challenged by starvation indicated that the Ca-Chit expression would be regulated by feed. All the observations made suggest that Ca-Chit plays an important role in the digestive system of the oyster, Crassostrea angulate. PMID:26046992

  19. Role of leptin in female reproduction.

    PubMed

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor

    2015-01-01

    Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

  20. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress.

    PubMed

    McKlveen, J M; Myers, B; Herman, J P

    2015-06-01

    Responding to real or potential threats in the environment requires the coordination of autonomic, neuroendocrine and behavioural processes to promote adaptation and survival. These diverging systems necessitate input from the limbic forebrain to integrate and modulate functional output in accordance with contextual demand. In the present review, we discuss the potential role of the medial prefrontal cortex (mPFC) as a coordinator of behavioural and physiological stress responses across multiple temporal and contextual domains. Furthermore, we highlight converging evidence from rodent and human research indicating the necessity of the mPFC for modulating physiological energetic systems to mobilise or limit energetic resources as needed to ultimately promote behavioural adaptation in the face of stress. We review the literature indicating that glucocorticoids act as one of the primary messengers in the reallocation of energetic resources having profound effects locally within the mPFC, as well as shaping how the mPFC acts within a network of brain structures to modulate responses to stress. Finally, we discuss how both rodent and human studies point toward a critical role of the mPFC in the coordination of anticipatory responses to stress and why this distinction is an important one to make in stress neurobiology. © 2015 British Society for Neuroendocrinology.

  1. An inside look at the sensory biology of triatomines.

    PubMed

    Barrozo, Romina B; Reisenman, Carolina E; Guerenstein, Pablo; Lazzari, Claudio R; Lorenzo, Marcelo G

    Although kissing bugs (Triatominae: Reduviidae) are perhaps best known as vectors of Chagas disease, they are important experimental models in studies of insect sensory physiology, pioneered by the seminal studies of Wigglesworth and Gillet more than eighty years ago. Since then, many investigations have revealed that the thermal, hygric, visual and olfactory senses play critical roles in the orientation of these blood-sucking insects towards hosts. Here we review the current knowledge about the role of these sensory systems, focussing on relevant stimuli, sensory structures, receptor physiology and the molecular players involved in the complex and cryptic behavioural repertoire of these nocturnal insects. Odours are particularly relevant, as they are involved in host search and are used for sexual, aggregation and alarm communication. Tastants are critical for a proper recognition of hosts, food and conspecifics. Heat and relative humidity mediate orientation towards hosts and are also important for the selection of resting places. Vision, which mediates negative phototaxis and flight dispersion, is also critical for modulating shelter use and mediating escape responses. The molecular bases underlying the detection of sensory stimuli started to be uncovered by means of functional genetics due to both the recent publication of the genome sequence of Rhodnius prolixus and the availability of modern genome editing techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. From grasp to language: embodied concepts and the challenge of abstraction.

    PubMed

    Arbib, Michael A

    2008-01-01

    The discovery of mirror neurons in the macaque monkey and the discovery of a homologous "mirror system for grasping" in Broca's area in the human brain has revived the gestural origins theory of the evolution of the human capability for language, enriching it with the suggestion that mirror neurons provide the neurological core for this evolution. However, this notion of "mirror neuron support for the transition from grasp to language" has been worked out in very different ways in the Mirror System Hypothesis model [Arbib, M.A., 2005a. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences 28, 105-167; Rizzolatti, G., Arbib, M.A., 1998. Language within our grasp. Trends in Neuroscience 21(5), 188-194] and the Embodied Concept model [Gallese, V., Lakoff, G., 2005. The brain's concepts: the role of the sensory-motor system in reason and language. Cognitive Neuropsychology 22, 455-479]. The present paper provides a critique of the latter to enrich analysis of the former, developing the role of schema theory [Arbib, M.A., 1981. Perceptual structures and distributed motor control. In: Brooks, V.B. (Ed.), Handbook of Physiology--The Nervous System II. Motor Control. American Physiological Society, pp. 1449-1480].

  3. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity

    PubMed Central

    Sollberger, Marc; Seeley, William W.; Rankin, Katherine P.; Ascher, Elizabeth A.; Rosen, Howard J.; Miller, Bruce L.; Levenson, Robert W.

    2013-01-01

    Self-conscious emotions such as embarrassment arise when one’s actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD. PMID:22345371

  4. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity.

    PubMed

    Sturm, Virginia E; Sollberger, Marc; Seeley, William W; Rankin, Katherine P; Ascher, Elizabeth A; Rosen, Howard J; Miller, Bruce L; Levenson, Robert W

    2013-04-01

    Self-conscious emotions such as embarrassment arise when one's actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD.

  5. The Divergence, Actions, Roles, and Relatives of Sodium-Coupled Bicarbonate Transporters

    PubMed Central

    Boron, Walter F.

    2013-01-01

    The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1–3), five Na+-coupled HCO3− transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3− across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1–3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature. PMID:23589833

  6. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  7. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  8. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  9. Airway smooth muscle contraction - perspectives on past, present and future.

    PubMed

    Mitchell, H W

    2009-10-01

    Past and contemporary views of airway smooth muscle (ASM) have led to a high level of understanding of the control and intracellular regulation of force or shortening of ASM and of its possible role in airway disease. As well as the multitude of cellular mechanisms that regulate ASM contraction, a number of structural and mechanical factors, which are only present at the airway and lung level, provide overriding control over ASM. With new knowledge about the cellular physiology and biology of ASM, there is increasing need to understand how ASM contraction is regulated and expressed at these airway and system levels.

  10. [COMPARATIVE CHARACTERISTICS OF uNOS-POSITIVE STRUCTURES IN THE CNS OF SOME SPECIES OF CRUSTACEANS].

    PubMed

    Chertok, V M; Kotsyuba, E P

    2015-01-01

    We conducted a comparative study of NO-ergic system in the CNS of 10 species of crustaceans subclass Malacostraca, belonging to orders Stomatopoda and Decapoda, with a common habitat in Ussuri Bay (Sea of Japan). Both similar characteristics and differences in content and distribution of universal NO-synthase (uNOS) were revealed in homologous parts of the brain and ventral nerve cord of the investigated species of crustaceans. We discuss the involvement of nitric oxide in the regulation of physiological functions of decapod crustaceans and its role in the processes of adaptation to the environmental conditions.

  11. [Signaling Systems of Rhizobia (Rhizobiaceae) and Leguminous Plants (Fabaceae) upon the Formation of a Legume-Rhizobium Symbiosis (Review)].

    PubMed

    Glyan'ko, A K

    2015-01-01

    Data from the literature and our own data on the participation and interrelation of bacterial signaling Nod-factors and components of the calcium, NADPH-oxidase, and NO-synthase signaling systems of a plant at the preinfection and infectious stages of the formation of a legume-rhizobium symbiosis are summarized in this review. The physiological role of Nod-factors, reactive oxygen species (ROS), calcium (Ca2+), NADPH-oxidase, nitric oxide (NO), and their cross influence on the processes determining the formation of symbiotic structures on the roots of the host plant is discussed.

  12. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  13. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    PubMed

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  14. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves

    PubMed Central

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G.

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197

  15. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information

    PubMed Central

    Zhou, Gao; Zhou, Wenyu; Schüssler-Fiorenza Rose, Sophia Miryam; Perelman, Dalia; Colbert, Elizabeth; Runge, Ryan; Rego, Shannon; Sonecha, Ria; Datta, Somalee; McLaughlin, Tracey; Snyder, Michael P.

    2017-01-01

    A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography. PMID:28081144

  16. Computer support for physiological cell modelling using an ontology on cell physiology.

    PubMed

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  17. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II

    DOE PAGES

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; ...

    2016-01-14

    Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415more » of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.« less

  18. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    PubMed Central

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-01-01

    Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375

  19. Syndecan-4 Signaling Is Required for Exercise-Induced Cardiac Hypertrophy

    PubMed Central

    Xie, Jun; He, Guixin; Chen, Qinhua; Sun, Jiayin; Dai, Qin; Lu, Jianrong; Li, Guannan; Wu, Han; Li, Ran; Chen, Jianzhou; Xu, Wei; Xu, Biao

    2016-01-01

    Cardiac hypertrophy can be broadly classified as either physiological or pathological. Physiological stimuli such as exercise cause adaptive cardiac hypertrophy and normal heart function. Pathological stimuli including hypertension and aortic valvular stenosis cause maladaptive cardiac remodeling and ultimately heart failure. Syndecan-4 (synd4) is a transmembrane proteoglycan identified as being involved in cardiac adaptation after injury, but whether it takes part in physiological cardiac hypertrophy is unclear. We observed upregulation of synd4 in exercise-induced hypertrophic myocardium. To evaluate the role of synd4 in the physiological form of cardiac hypertrophy, mice lacking synd4 (synd4–/–) were exercised by swimming for 4 wks. Ultrasonic cardiogram (UCG) and histological analysis revealed that swimming induced the hypertrophic phenotype but was blunted in synd4–/– compared with wild-type (WT) mice. The swimming-induced activation of Akt, a key molecule in physiological hypertrophy was also more decreased than in WT controls. In cultured cardiomyocytes, synd4 overexpression could induce cell enlargement, protein synthesis and distinct physiological molecular alternation. Akt activation also was observed in synd4-overexpressed cardiomyocytes. Furthermore, inhibition of protein kinase C (PKC) prevented the synd4-induced hypertrophic phenotype and Akt phosphorylation. This study identified an essential role of synd4 in mediation of physiological cardiac hypertrophy. PMID:26835698

  20. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  1. Sensorimotor coordination and the structure of space.

    PubMed

    McCollum, Gin

    2003-01-01

    Embedded in neural and behavioral organization is a structure of sensorimotor space. Both this embedded spatial structure and the structure of physical space inform sensorimotor control. This paper reviews studies in which the gravitational vertical and horizontal are crucial. The mathematical expressions of spatial geometry in these studies indicate methods for investigating sensorimotor control in freefall. In freefall, the spatial structure introduced by gravitation - the distinction between vertical and horizontal - does not exist. However, an astronaut arriving in space carries the physiologically-embedded distinction between horizontal and vertical learned on earth. The physiological organization based on this distinction collapses when the strong otolith activity and other gravitational cues for sensorimotor behavior become unavailable. The mathematical methods in this review are applicable in understanding the changes in physiological organization as an astronaut adapts to sensorimotor control in freefall. Many mathematical languages are available for characterizing the logical structures in physiological organization. Here, group theory is used to characterize basic structure of physical and physiological spaces. Dynamics and topology allow the grouping of trajectory ranges according to the outcomes or attractors. The mathematics of ordered structures express complex orderings, such as in multiphase movements in which different parts of the body are moving in different phase sequences. Conditional dynamics, which combines dynamics with the mathematics of ordered structures, accommodates the parsing of movement sequences into trajectories and transitions. Studies reviewed include those of the sit-to-stand movement and early locomotion, because of the salience of gravitation in those behaviors. Sensorimotor transitions and the conditions leading to them are characterized in conditional dynamic control structures that do not require thinking of an organism as an input-output device. Conditions leading to sensorimotor transitions on earth assume the presence of a gravitational vertical which is lacking in space. Thus, conditions used on earth for sensorimotor transitions may become ambiguous in space. A platform study in which sensorimotor transition conditions are ambiguous and are related to motion sickness is reviewed.

  2. Developmental change in the function of movement systems: transition of the pectoral fins between respiratory and locomotor roles in zebrafish.

    PubMed

    Hale, Melina E

    2014-07-01

    An animal may experience strikingly different functional demands on its body's systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

  3. THE ROLE OF THE PINEAL GLAND AND OF ENVIRONMENTAL LIGHTING IN THE REGULATION OF THE ENDOCRINE AND REPRODUCTIVE SYSTEMS OF RODENTS.

    DTIC Science & Technology

    PHOTOPERIODISM, REPRODUCTION(PHYSIOLOGY)), (*ENDOCRINE GLANDS , REPRODUCTION(PHYSIOLOGY)), RODENTS, REPRODUCTIVE SYSTEM, EYE, EXCISION, TESTES, OVARIES, ADRENAL GLANDS , THYROID GLAND , IODINE, THIOUREA, RATS, HAMSTERS

  4. Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor.

    PubMed

    Bonavita, Alessandro; Carratore, Vitale; Ciardiello, Maria Antonietta; Giovane, Alfonso; Servillo, Luigi; D'Avino, Rossana

    2016-07-27

    Pectin methylesterase is a pectin modifying enzyme that plays a key role in plant physiology. It is also an important quality-related enzyme in plant-based food products. The pectin methylesterase inhibitor (PMEI) from kiwifruit inhibits this enzyme activity and is widely used as an efficient tool for research purposes and also recommended in the context of fruit and vegetable processing. Using several methodologies of protein biochemistry, including circular dichroism and fluorescence spectroscopy, chemical modifications, direct protein-sequencing, enzyme activity, and bioinformatics analysis of the crystal structure, this study demonstrates that conformational changes occur in kiwi PMEI by the pH rising over 6.0 bringing about structure loosening, exposure, and cleavage of a natively buried disulfide bond, unfolding and aggregation, ultimately determining the loss of ability of kiwi PMEI to bind and inhibit PME. pH-induced structural changes are prevented when PMEI is already engaged in complex or is in a solution of high ionic strength.

  5. Modulating fat digestion through food structure design.

    PubMed

    Guo, Qing; Ye, Aiqian; Bellissimo, Nick; Singh, Harjinder; Rousseau, Dérick

    2017-10-01

    Dietary fats and oils are an important component of our diet and a significant contributor to total energy and intake of lipophilic nutrients and bioactives. We discuss their fate in a wide variety of engineered, processed and naturally-occurring foods as they pass through the gastrointestinal tract and the implicit role of the food matrix within which they reside. Important factors that control fat and oil digestion include: 1) Their physical state (liquid or solid); 2) Dispersion of oil as emulsion droplets and control of the interfacial structure of emulsified oils; 3) The structure and rheology of the food matrix surrounding dispersed oil droplets; and 4) Alteration of emulsified oil droplet size and concentration. Using examples based on model foods such as emulsion gels and everyday foods such as almonds and cheese, we demonstrate that food structure design may be used as a tool to modulate fat and oil digestion potentially resulting in a number of targeted physiological outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Looking at the Disordered Proteins through the Computational Microscope.

    PubMed

    Das, Payel; Matysiak, Silvina; Mittal, Jeetain

    2018-05-23

    Intrinsically disordered proteins (IDPs) have attracted wide interest over the past decade due to their surprising prevalence in the proteome and versatile roles in cell physiology and pathology. A large selection of IDPs has been identified as potential targets for therapeutic intervention. Characterizing the structure-function relationship of disordered proteins is therefore an essential but daunting task, as these proteins can adapt transient structure, necessitating a new paradigm for connecting structural disorder to function. Molecular simulation has emerged as a natural complement to experiments for atomic-level characterizations and mechanistic investigations of this intriguing class of proteins. The diverse range of length and time scales involved in IDP function requires performing simulations at multiple levels of resolution. In this Outlook, we focus on summarizing available simulation methods, along with a few interesting example applications. We also provide an outlook on how these simulation methods can be further improved in order to provide a more accurate description of IDP structure, binding, and assembly.

  7. Structure of the Deactive State of Mammalian Respiratory Complex I.

    PubMed

    Blaza, James N; Vinothkumar, Kutti R; Hirst, Judy

    2018-02-06

    Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  9. Elucidating the Role of Site-Specific Nitration of α-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis.

    PubMed

    Burai, Ritwik; Ait-Bouziad, Nadine; Chiki, Anass; Lashuel, Hilal A

    2015-04-22

    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneuronal inclusions consisting of aggregated and post-translationally modified α-synuclein (α-syn). Despite advances in the chemical synthesis of α-syn and other proteins, the generation of site-specifically nitrated synthetic proteins has not been reported. Consequently, it has not been possible to determine the roles of nitration at specific residues in regulating the physiological and pathogenic properties of α-syn. Here we report, for the first time, the site-specific incorporation of 3-nitrotyrosine at different regions of α-syn using native chemical ligation combined with a novel desulfurization strategy. This strategy enabled us to investigate the role of nitration at single or multiple tyrosine residues in regulating α-syn structure, membrane binding, oligomerization, and fibrils formation. We demonstrate that different site-specifically nitrated α-syn species exhibit distinct structural and aggregation properties and exhibit reduced affinity to negatively charged vesicle membranes. We provide evidence that intermolecular interactions between the N- and C-terminal regions of α-syn play critical roles in mediating nitration-induced α-syn oligomerization. For example, when Y39 is not available for nitration (Y39F and Y39/125F), the extent of cross-linking is limited mostly to dimer formation, whereas mutants in which Y39 along with one or multiple C-terminal tyrosines (Y125F, Y133F, Y136F and Y133/136F) can still undergo nitration readily to form higher-order oligomers. Our semisynthetic strategy for generating site-specifically nitrated proteins opens up new possibilities for investigating the role of nitration in regulating protein structure and function in health and disease.

  10. High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.

    PubMed

    Gillies, Allison R; Chapman, Mark A; Bushong, Eric A; Deerinck, Thomas J; Ellisman, Mark H; Lieber, Richard L

    2017-02-15

    Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. © 2016 Rehabilitation Institute of Chicago. The Journal of Physiology © 2016 The Physiological Society.

  11. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    PubMed

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  12. Cracking the ANP32 whips: Important functions, unequal requirement, and hints at disease implications

    PubMed Central

    Reilly, Patrick T; Yu, Yun; Hamiche, Ali; Wang, Lishun

    2014-01-01

    The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities. PMID:25156960

  13. Mechanics of human voice production and control

    PubMed Central

    Zhang, Zhaoyan

    2016-01-01

    As the primary means of communication, voice plays an important role in daily life. Voice also conveys personal information such as social status, personal traits, and the emotional state of the speaker. Mechanically, voice production involves complex fluid-structure interaction within the glottis and its control by laryngeal muscle activation. An important goal of voice research is to establish a causal theory linking voice physiology and biomechanics to how speakers use and control voice to communicate meaning and personal information. Establishing such a causal theory has important implications for clinical voice management, voice training, and many speech technology applications. This paper provides a review of voice physiology and biomechanics, the physics of vocal fold vibration and sound production, and laryngeal muscular control of the fundamental frequency of voice, vocal intensity, and voice quality. Current efforts to develop mechanical and computational models of voice production are also critically reviewed. Finally, issues and future challenges in developing a causal theory of voice production and perception are discussed. PMID:27794319

  14. Mechanics of human voice production and control.

    PubMed

    Zhang, Zhaoyan

    2016-10-01

    As the primary means of communication, voice plays an important role in daily life. Voice also conveys personal information such as social status, personal traits, and the emotional state of the speaker. Mechanically, voice production involves complex fluid-structure interaction within the glottis and its control by laryngeal muscle activation. An important goal of voice research is to establish a causal theory linking voice physiology and biomechanics to how speakers use and control voice to communicate meaning and personal information. Establishing such a causal theory has important implications for clinical voice management, voice training, and many speech technology applications. This paper provides a review of voice physiology and biomechanics, the physics of vocal fold vibration and sound production, and laryngeal muscular control of the fundamental frequency of voice, vocal intensity, and voice quality. Current efforts to develop mechanical and computational models of voice production are also critically reviewed. Finally, issues and future challenges in developing a causal theory of voice production and perception are discussed.

  15. Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival and Stationary Phase Recovery in Myxococcus xanthus

    PubMed Central

    Hu, Wei; Wang, Jing; McHardy, Ian; Lux, Renate; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2013-01-01

    Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid. PMID:22538652

  16. Advances Towards The Discovery of GPR55 Ligands.

    PubMed

    Morales, Paula; Jagerovic, Nadine

    2016-01-01

    The G-protein-coupled receptor 55 (GPR55) was identified in 1999. It was proposed as a novel member of the endocannabinoid system due to the fact that some endogenous, plant-derived and synthetic cannabinoid ligands act on GPR55. However, the complexity of the cellular downstream signaling pathways related to GPR55 activation delayed the discovery of selective GPR55 ligands. It was only a few years ago that the high throughput screening of libraries of pharmaceutical companies and governmental organizations allowed to identify selective GPR55 agonists and antagonists. Since then, several GPR55 modulator scaffolds have been reported. The relevance of GPR55 has been explored in diverse physiological and pathological processes revealing its role in inflammation, neuropathic pain, bone physiology, diabetes and cancer. Considering GPR55 as a new promising therapeutic target, there is a clear need for new selective and potent GPR55 modulators. This review will address a current structural update of GPR55 ligands.

  17. Ethnic differences in pain and pain management

    PubMed Central

    Campbell, Claudia M; Edwards, Robert R

    2012-01-01

    SUMMARY Considerable evidence demonstrates substantial ethnic disparities in the prevalence, treatment, progression and outcomes of pain-related conditions. Elucidating the mechanisms underlying these group differences is of crucial importance in reducing and eliminating disparities in the pain experience. Over recent years, accumulating evidence has identified a variety of processes, from neurophysiological factors to structural elements of the healthcare system, that may contribute to shaping individual differences in pain. For example, the experience of pain differentially activates stress-related physiological responses across various ethnic groups, members of different ethnic groups appear to use differing coping strategies in managing pain complaints, providers’ treatment decisions vary as a function of patient ethnicity and pharmacies in predominantly minority neighborhoods are far less likely to stock potent analgesics. These diverse factors, and others may all play a role in facilitating elevated levels of pain-related suffering among individuals from ethnic minority backgrounds. Here, we present a brief, nonexhaustive review of the recent literature and potential physiological and sociocultural mechanisms underlying these ethnic group disparities in pain outcomes. PMID:23687518

  18. Update on melatonin receptors: IUPHAR Review 20.

    PubMed

    Jockers, Ralf; Delagrange, Philippe; Dubocovich, Margarita L; Markus, Regina P; Renault, Nicolas; Tosini, Gianluca; Cecon, Erika; Zlotos, Darius P

    2016-09-01

    Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed. © 2016 The British Pharmacological Society.

  19. Epigenetics of reproductive infertility.

    PubMed

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  20. [Progress on salt resistance in autopolyploid plants].

    PubMed

    Zhu, Hong Ju; Liu, Wen Ge

    2018-04-20

    Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.

  1. Use of Wikiversity and Role Play to Increase Student Engagement during Student-Led Physiology Seminars

    ERIC Educational Resources Information Center

    Singh, Satendra

    2013-01-01

    The Undergraduate Medical Program (Bachelor of Medicine and Bachelor of Surgery) at University College of Medical Sciences (Delhi, India) is a 4.5-yr, intense academic program where physiology is taught in the first year. To make the learning experience enriching, the Department of Physiology organizes four student seminars (two seminars/semester)…

  2. Structure-function relations in physiology education: Where's the mechanism?

    PubMed

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  3. Role of sugars under abiotic stress.

    PubMed

    Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul

    2016-12-01

    Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Biology 23. Unit One -- The Cell: Structure and Physiology.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  5. A Trial of the Objective Structured Practical Examination in Physiology at Melaka Manipal Medical College, India

    ERIC Educational Resources Information Center

    Abraham, Reem Rachel; Raghavendra, Rao; Surekha, Kamath; Asha, Kamath

    2009-01-01

    A single examination does not fulfill all the functions of assessment. The present study was undertaken to determine the reliability and student satisfaction regarding the objective structured practical examination (OSPE) as a method of assessment of laboratory exercises in physiology before implementing it in the forthcoming university…

  6. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning

    PubMed Central

    Keifer, Orion P.; Hurt, Robert C.; Ressler, Kerry J.

    2015-01-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. PMID:26328883

  7. Structure-Activity Relationships of Peptides Incorporating a Bioactive Reverse-Turn Heterocycle at the Melanocortin Receptors: Identification of a 5,800-fold Mouse Melanocortin-3 Receptor (mMC3R) Selective Antagonist/Partial Agonist versus the Mouse Melanocortin-4 Receptor (mMC4R)

    PubMed Central

    Singh, Anamika; Dirain, Marvin; Witek, Rachel; Rocca, James R.; Edison, Arthur S; Haskell-Luevano, Carrie

    2013-01-01

    The melanocortin-3 (MC3) and melanocortin-4 (MC4) receptors regulate energy homeostasis, food intake, and associated physiological conditions. The MC4R has been studied extensively. Less is known about specific physiological roles of the MC3R. A major obstacle to this lack of knowledge is attributed to a limited number of identified MC3R selective ligands. We previously reported a spatial scanning approach of a 10-membered thioether-heterocycle ring incorporated into a chimeric peptide template that identified a lead nM MC4R ligand. Based upon those results, 17 compounds were designed and synthesized that focused upon modification in the pharmacophore domain. Notable results include the identification of a 0.13 nM potent 5800-fold mMC3R selective antagonist/slight partial agonist versus a 760 nM mMC4R full agonist (ligand 11). Biophysical experiments (2D 1H NMR and computer assisted molecular modeling) of this ligand resulted in the identification of an inverse γ-turn secondary structure in the ligand pharmacophore domain. PMID:23432160

  8. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues.

    PubMed

    Chung, J Sook; Zmora, N; Katayama, H; Tsutsui, N

    2010-05-01

    The removal of the eyestalk (s) induces molting and reproduction promoted the presence of regulatory substances in the eyestalk (ES), particularly medulla terminalis X-organ and the sinus gland (MTXO-SG). The PCR-based cloning strategies have allowed for isolating a great number of cDNAs sequences of crustacean hyperglycemic hormone (CHH) neuropeptides family from the eyestalk and non-eyestalk tissues, e.g., pericardial organs and fore- and hindguts. However, the translated corresponding neuropeptides in these tissues, their circulating concentrations, the mode of actions, and specific physiological functions have not been well described. The profiles of CHH neuropeptides present in the MTXO-SG may differ among decapod crustacean species, but they can be largely divided into two sub-groups on the basis of structural homology: (1) CHH and (2) molt-inhibiting hormone (MIH)/mandibular organ-inhibiting hormone (MOIH)/vitellogenesis/gonad-inhibiting hormone (V/GIH). CHH typically elevating the level of circulating glucose from animals under stressful conditions (hyper- and hypothermia, hypoxia, and low salinity) has multiple target tissues and functions such as ecdysteroidogenesis, osmoregulation, and vitellogenesis. Recently, MIH, known for exclusively suppressing ecdysteroidogenesis in Y-organs, is also reported to have an additional role in vitellogenesis of adult female crustacean species, suggesting that some CHH neuropeptides may acquire an extra regulatory role in reproduction at adult stage. This paper reviews the regulatory roles of CHH and MIH at the levels of specific functions, temporal and spatial expression, titers, their binding sites on the target tissues, and second messengers from two crab species: the blue crab, Callinectes sapidus, and the European green crab, Carcinus maenas. It further discusses the diverse regulatory roles of these neuropeptides and the functional plasticity of these neuropeptides in regard to life stage and species-specific physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Hypnosis for hot flashes among postmenopausal women study: A study protocol of an ongoing randomized clinical trial

    PubMed Central

    2011-01-01

    Background Hot flashes are a highly prevalent problem associated with menopause and breast cancer treatments. The recent findings from the Women's Health Initiative have important implications for the significance of a non-hormonal, mind-body intervention for hot flashes in breast cancer survivors. Women who take hormone therapy long-term may have a 1.2 to 2.0 fold increased risk of developing breast cancer. In addition, it is now known that hormone therapy with estrogen and progestin is associated with increased risk of cardiovascular disease and stroke. Currently there are limited options to hormone replacement therapy as non-hormonal pharmacological agents are associated with only modest activity and many adverse side effects. Because of this there is a need for more alternative, non-hormonal therapies. Hypnosis is a mind-body intervention that has been shown to reduce self-reported hot flashes by up to 68% among breast cancer survivors, however, the use of hypnosis for hot flashes among post-menopausal women has not been adequately explored and the efficacy of hypnosis in reducing physiologically measured hot flashes has not yet been determined. Methods/design A sample of 180 post-menopausal women will be randomly assigned to either a 5-session Hypnosis Intervention or 5-session structured-attention control with 12 week follow-up. The present study will compare hypnosis to a structured-attention control in reducing hot flashes (perceived and physiologically monitored) in post-menopausal women in a randomized clinical trial. Outcomes will be hot flashes (self-report daily diaries; physiological monitoring; Hot Flash Related Daily Interference Scale), anxiety (State-Trait Anxiety Inventory; Hospital Anxiety and Depression Scale (HADS); anxiety visual analog scale (VAS rating); depression (Center for Epidemiologic Studies Depression Scale), sexual functioning (Sexual Activity Questionnaire), sleep quality (Pittsburgh Sleep Quality Index) and cortisol. Discussion This study will be the first full scale test of hypnosis for hot flashes; one of the first studies to examine both perceived impact and physiologically measured impact of a mind-body intervention for hot flashes using state-of-the-art 24 hour ambulatory physiological monitoring; the first study to examine the effect of hypnosis for hot flashes on cortisol; and the first investigation of the role of cognitive expectancies in treatment of hot flashes in comparison to a Structured-Attention Control. Trial Registration This clinical trial has been registered with ClinicalTrials.gov, a service of the U.S. National Institutes of Health, ClinicalTrials.gov Identifier: NCT01293695. PMID:21989181

  10. The role of the apelinergic and vasopressinergic systems in the regulation of the cardiovascular system and the pathogenesis of cardiovascular disease.

    PubMed

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka

    2014-01-01

    Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.

  11. Aspartate 102 in the Heme Domain of Soluble Guanylyl Cyclase Has a Key Role in NO Activation

    PubMed Central

    Baskaran, Padmamalini; Heckler, Erin J.; van den Akker, Focco; Beuve, Annie

    2012-01-01

    Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron–His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue D102 with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies aspartate 102 (D102) as having a key role in NO activation following breakage of the iron–His bond. PMID:21491881

  12. Roles of tRNA in cell wall biosynthesis

    PubMed Central

    Dare, Kiley; Ibba, Michael

    2013-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes they impart on the bacterium differ greatly. PMID:22262511

  13. Effects of Physiologic Testosterone Replacement on Quality of Life, Self-Esteem, and Mood in Women with Primary Ovarian Insufficiency

    PubMed Central

    Guerrieri, Gioia M.; Martinez, Pedro E.; Klug, Summer P.; Haq, Nazli A.; Vanderhoof, Vien H.; Koziol, Deloris E.; Popat, Vaishali B.; Kalantaridou, Sophia N.; Calis, Karim A.; Rubinow, David R.; Schmidt, Peter J.; Nelson, Lawrence M.

    2014-01-01

    Objective Low androgen levels occur in women with primary ovarian insufficiency(POI) and could contribute to mood and behavioral symptoms in this condition. We examined the effects of physiologic testosterone (T) replacement therapy added to standard estrogen/progestin replacement therapy (EPT) on quality of life, self-esteem, and mood in women with POI. Methods 128 women with 46XX spontaneous POI participated in a 12 month randomized, placebo-controlled, parallel-design investigation of the efficacy of T augmentation of EPT. Quality of life, self-esteem, and mood symptoms were evaluated with standardized rating scales and a structured clinical interview. Differences in outcome measures between the T and placebo treatments were analyzed by Wilcoxon rank-sum tests. Results No differences were found in baseline characteristics including serum hormone levels(P >0.05). Baseline mean(SD) CES-D scores were 10.7(8.6)(T) and 9.2(7.8)(placebo) (P = 0.35). After 12 months of treatment, measures of quality of life, self-esteem, and the presence of mood symptoms did not differ between treatment groups. Serum T levels achieved physiologic levels in the T group and were significantly higher compared to placebo (P < 0.001). Baseline T levels were not associated with either adverse or beneficial clinical effects. Conclusions The 150 microgram T patch achieves physiologic hormone levels in women with POI. Our findings suggest that augmentation of standard EPT with physiologic testosterone replacement in young women with POI neither aggravates nor improves baseline reports of quality of life, or self-esteem and had minimal effect on mood. Other mechanisms might play a role in the altered mood that accompanies this disorder. PMID:24473536

  14. ALCOHOL AND THE PREFRONTAL CORTEX

    PubMed Central

    Abernathy, Kenneth; Chandler, L. Judson; Woodward, John J.

    2013-01-01

    The prefrontal cortex occupies the anterior portion of the frontal lobes and is thought to be one of the most complex anatomical and functional structures of the mammalian brain. Its major role is to integrate and interpret inputs from cortical and sub-cortical structures and use this information to develop purposeful responses that reflect both present and future circumstances. This includes both action-oriented sequences involved in obtaining rewards and inhibition of behaviors that pose undue risk or harm to the individual. Given the central role in initiating and regulating these often complex cognitive and behavioral responses, it is no surprise that alcohol has profound effects on the function of the prefrontal cortex. In this chapter, we review the basic anatomy and physiology of the prefrontal cortex and discuss what is known about the actions of alcohol on the function of this brain region. This includes a review of both the human and animal literature including information on the electrophysiological and behavioral effects that follow acute and chronic exposure to alcohol. The chapter concludes with a discussion of unanswered questions and areas needing further investigation. PMID:20813246

  15. Biomechanical cell regulatory networks as complex adaptive systems in relation to cancer.

    PubMed

    Feller, Liviu; Khammissa, Razia Abdool Gafaar; Lemmer, Johan

    2017-01-01

    Physiological structure and function of cells are maintained by ongoing complex dynamic adaptive processes in the intracellular molecular pathways controlling the overall profile of gene expression, and by genes in cellular gene regulatory circuits. Cytogenetic mutations and non-genetic factors such as chronic inflammation or repetitive trauma, intrinsic mechanical stresses within extracellular matrix may induce redirection of gene regulatory circuits with abnormal reactivation of embryonic developmental programmes which can now drive cell transformation and cancer initiation, and later cancer progression and metastasis. Some of the non-genetic factors that may also favour cancerization are dysregulation in epithelial-mesenchymal interactions, in cell-to-cell communication, in extracellular matrix turnover, in extracellular matrix-to-cell interactions and in mechanotransduction pathways. Persistent increase in extracellular matrix stiffness, for whatever reason, has been shown to play an important role in cell transformation, and later in cancer cell invasion. In this article we review certain cell regulatory networks driving carcinogenesis, focussing on the role of mechanical stresses modulating structure and function of cells and their extracellular matrices.

  16. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.

    PubMed

    Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin

    2018-03-07

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  17. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    PubMed Central

    Biel, Martin

    2018-01-01

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895

  18. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  19. Protein S-nitrosylation: specificity and identification strategies in plants

    NASA Astrophysics Data System (ADS)

    Lamotte, Olivier; Bertoldo, Jean; Besson-Bard, Angélique; Rosnoblet, Claire; Aimé, Sébastien; Hichami, Siham; Terenzi, Hernan; Wendehenne, David

    2014-12-01

    The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the Biotin Switch Technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identified. Functional studies focused on specific proteins provided preliminary comprehensive views of how this PTM impacts the structure and function of proteins and, more generally, of how NO might regulate biological plant processes. The aim of this review is to detail the basic principle of protein S-nitrosylation, to provide information on the biochemical and structural features of the S-nitrosylation sites and to describe the proteomic strategies adopted to investigate this PTM in plants. Limits of the current approaches and tomorrow's challenges are also discussed.

  20. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications.

    PubMed

    Snider, Natasha T; Walker, Vyvyca J; Hollenberg, Paul F

    2010-03-01

    Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.

Top