Sample records for physiologically based mathematical

  1. Bridging different perspectives of the physiological and mathematical disciplines.

    PubMed

    Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut; Kappel, Franz; Schneditz, Daniel; Kenner, Thomas; Goswami, Nandu

    2012-12-01

    The goal of this report is to discuss educational approaches for bridging the different perspectives of the physiological and mathematical disciplines. These approaches can enhance the learning experience for physiology, medical, and mathematics students and simultaneously act to stimulate mathematical/physiological/clinical interdisciplinary research. While physiology education incorporates mathematics, via equations and formulas, it does not typically provide a foundation for interdisciplinary research linking mathematics and physiology. Here, we provide insights and ideas derived from interdisciplinary seminars involving mathematicians and physiologists that have been conducted over the last decade. The approaches described here can be used as templates for giving physiology and medical students insights into how sophisticated tools from mathematics can be applied and how the disciplines of mathematics and physiology can be integrated in research, thereby fostering a foundation for interdisciplinary collaboration. These templates are equally applicable to linking mathematical methods with other life and health sciences in the educational process.

  2. An integrative approach to space-flight physiology using systems analysis and mathematical simulation

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; White, R. J.; Rummel, J. A.

    1980-01-01

    An approach was developed to aid in the integration of many of the biomedical findings of space flight, using systems analysis. The mathematical tools used in accomplishing this task include an automated data base, a biostatistical and data analysis system, and a wide variety of mathematical simulation models of physiological systems. A keystone of this effort was the evaluation of physiological hypotheses using the simulation models and the prediction of the consequences of these hypotheses on many physiological quantities, some of which were not amenable to direct measurement. This approach led to improvements in the model, refinements of the hypotheses, a tentative integrated hypothesis for adaptation to weightlessness, and specific recommendations for new flight experiments.

  3. Development of mathematical models of environmental physiology

    NASA Technical Reports Server (NTRS)

    Stolwijk, J. A. J.; Mitchell, J. W.; Nadel, E. R.

    1971-01-01

    Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation.

  4. A Collaborative Approach to Incorporating Statistics in the Physiology Classroom

    ERIC Educational Resources Information Center

    Potterfield, April; Majerus, Mary

    2008-01-01

    Both the National Science Education Standards (NSES) and the National Council of Teachers of Mathematics (NCTM) recommend appropriately incorporating mathematics into other disciplines (NRC 1996; NRC 2003; NCTM 2000). With this in mind, an interdisciplinary, inquiry-based project was undertaken to incorporate mathematical analysis of data into a…

  5. pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, Jose Luis

    2005-12-01

    Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.

  6. Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability

    EPA Science Inventory

    Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...

  7. A physiologically based pharmacokinetic model of vitamin D

    EPA Science Inventory

    Despite the plethora of studies discussing the benefits of vitamin D on physiological functioning, few mathematical models of vitamin D predict the response of the body on low-concentration supplementation of vitamin D under sunlight-restricted conditions. This study developed a ...

  8. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy.

    PubMed

    Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg

    2017-11-01

    In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.

  9. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  10. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    PubMed

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  11. Smart Sensors and Virtual Physiology Human Approach as a Basis of Personalized Therapies in Diabetes Mellitus

    PubMed Central

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646

  12. Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology

    PubMed Central

    2013-01-01

    Background In this paper, we use: i) formalised anatomical knowledge of connectivity between body structures and ii) a formal theory of physiological transport between fluid compartments in order to define and make explicit the routes followed by proteins to a site of interaction. The underlying processes are the objects of mathematical models of physiology and, therefore, the motivation for the approach can be understood as using knowledge representation and reasoning methods to propose concrete candidate routes corresponding to correlations between variables in mathematical models of physiology. In so doing, the approach projects physiology models onto a representation of the anatomical and physiological reality which underpins them. Results The paper presents a method based on knowledge representation and reasoning for eliciting physiological communication routes. In doing so, the paper presents the core knowledge representation and algorithms using it in the application of the method. These are illustrated through the description of a prototype implementation and the treatment of a simple endocrine scenario whereby a candidate route of communication between ANP and its receptors on the external membrane of smooth muscle cells in renal arterioles is elicited. The potential of further development of the approach is illustrated through the informal discussion of a more complex scenario. Conclusions The work presented in this paper supports research in intercellular communication by enabling knowledge‐based inference on physiologically‐related biomedical data and models. PMID:23590598

  13. [Importance of stimulation of the areas involved in the mathematical processing: effects on neurodevelopment].

    PubMed

    Arch-Tirado, Emilio; Lino-González, Ana Luisa; Alfaro-Rodríguez, Alfonso

    2013-01-01

    This paper aims to discuss and analyze the role of mathematics in neurodevelopment, for which discusses the historical, ontogenetic and physiological bases involved. The methodology of this paper is a deductive analysis, describing the use of mathematics in ancient cultures to the specialization of brain regions. Sensory perceptions are useful for the acquisition and development of cortical functions thus sensory stimulations is essential for the maturation of specialized neurologic functions.

  14. From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses

    PubMed Central

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-01-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses. We outline possible steps toward translating this computational approach to the bedside, to supplement today's evidence-based medicine with a quantitatively founded model-based medicine that integrates mechanistic knowledge with patient-specific information. PMID:17997590

  15. Mathematical modeling of human brain physiological data

    NASA Astrophysics Data System (ADS)

    Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.

    2013-12-01

    Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.

  16. Sensorimotor coordination and the structure of space.

    PubMed

    McCollum, Gin

    2003-01-01

    Embedded in neural and behavioral organization is a structure of sensorimotor space. Both this embedded spatial structure and the structure of physical space inform sensorimotor control. This paper reviews studies in which the gravitational vertical and horizontal are crucial. The mathematical expressions of spatial geometry in these studies indicate methods for investigating sensorimotor control in freefall. In freefall, the spatial structure introduced by gravitation - the distinction between vertical and horizontal - does not exist. However, an astronaut arriving in space carries the physiologically-embedded distinction between horizontal and vertical learned on earth. The physiological organization based on this distinction collapses when the strong otolith activity and other gravitational cues for sensorimotor behavior become unavailable. The mathematical methods in this review are applicable in understanding the changes in physiological organization as an astronaut adapts to sensorimotor control in freefall. Many mathematical languages are available for characterizing the logical structures in physiological organization. Here, group theory is used to characterize basic structure of physical and physiological spaces. Dynamics and topology allow the grouping of trajectory ranges according to the outcomes or attractors. The mathematics of ordered structures express complex orderings, such as in multiphase movements in which different parts of the body are moving in different phase sequences. Conditional dynamics, which combines dynamics with the mathematics of ordered structures, accommodates the parsing of movement sequences into trajectories and transitions. Studies reviewed include those of the sit-to-stand movement and early locomotion, because of the salience of gravitation in those behaviors. Sensorimotor transitions and the conditions leading to them are characterized in conditional dynamic control structures that do not require thinking of an organism as an input-output device. Conditions leading to sensorimotor transitions on earth assume the presence of a gravitational vertical which is lacking in space. Thus, conditions used on earth for sensorimotor transitions may become ambiguous in space. A platform study in which sensorimotor transition conditions are ambiguous and are related to motion sickness is reviewed.

  17. Terrestrial implications of mathematical modeling developed for space biomedical research

    NASA Technical Reports Server (NTRS)

    Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.

  18. Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement.

    PubMed

    Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D

    1992-09-01

    Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Mathematical literacy in Plant Physiology undergraduates: results of interventions aimed at improving students' performance

    NASA Astrophysics Data System (ADS)

    Vila, Francisca; Sanz, Amparo

    2013-09-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant Physiology course. We have performed individual analyses of results obtained during the period 2000-2011, for questions in the examinations requiring and not requiring mathematical skills. Additionally, we present the outcome of two interventions introduced with the aim of helping students improve their prospects for success in the course. Our results confirm previous research showing students' deficiencies in mathematical skills. However, the scores obtained for mathematical questions in the examinations are good predictors of the final grades attained in Plant Physiology, as there are strong correlations at the individual level between results for questions requiring and not requiring mathematical skills. The introduction of a laboratory session devoted to strengthening the application of students' previously acquired mathematical knowledge did not change significantly the results obtained for mathematical questions. Since mathematical abilities of students entering university have declined in recent years, this intervention may have helped to maintain students' performance to a level comparable to that of previous years. The outcome of self-assessment online tests indicates that although Mathematics anxiety is lower than during examinations, the poor results obtained for questions requiring mathematical skills are, at least in part, due to a lack of self-efficacy.

  20. Mathematical Modeling of Renal Hemodynamics in Physiology and Pathophysiology

    PubMed Central

    Sgouralis, Ioannis; Layton, Anita T.

    2015-01-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. PMID:25765886

  1. Physiological pharmacokinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, D.B.

    1987-10-01

    Risk assessment often defines the approach and the degree of regulation, decisions in risk assessment often have major regulatory impacts. Chemicals that have economic value or that were byproducts of the chemical industry are common subjects of such decisions. Regrettably, decisions related to risk assessment, science, or regulatory matters will frequently be made with incomplete information and on the basis of intuitive reasoning. Statistical fits to experimental data have been used to estimate risks in humans from experimental data in animals. These treatments have not taken into account the obvious differences in physiology, biochemistry, and size between aniamals and humans.more » In this article the use of mathematical models based on continuous relationships, rather than quantal events, are discussed. The mathematical models can be used to adjust the dose in the quantal response model, but the emphasis will be on how these mathematical models are conceived and what implications their use holds for risk assessment. Experiments with humans that produce toxic effects cannot be done. Data for human toxicity will always be lacking.« less

  2. Profile of mathematics anxiety of 7th graders

    NASA Astrophysics Data System (ADS)

    Udil, Patrisius Afrisno; Kusmayadi, Tri Atmojo; Riyadi

    2017-08-01

    Mathematics anxiety is one of the important factors affect students mathematics achievement. This present research investigates profile of students' mathematics anxiety. This research focuses on analysis and description of students' mathematics anxiety level generally and its dominant domain and aspect. Qualitative research with case study strategy was used in this research. Subject in this research involved 15 students of 7th grade chosen with purposive sampling. Data in this research were students' mathematics anxiety scale result, interview record, and observation result during both mathematics learning activity and test. They were asked to complete mathematics anxiety scale before interviewed and observed. The results show that generally students' mathematics anxiety was identified in the moderate level. In addition, students' mathematics anxiety during mathematics test was identified in the high level, but it was in the moderate level during mathematics learning process. Based on the anxiety domain, students have a high mathematics anxiety on cognitive domain, while it was in the moderate level for psychological and physiological domains. On the other hand, it was identified in low level for psychological domain during mathematics learning process. Therefore, it can be concluded that students have serious and high anxiety regarding mathematics on the cognitive domain and mathematics test aspect.

  3. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.

    PubMed

    Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco

    2015-01-01

    The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.

  4. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method.

    PubMed

    Polidori, David; Rowley, Clarence

    2014-07-22

    The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.

  5. Predictions of cardiovascular responses during STS reentry using mathematical models

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Srinivasan, R.

    1985-01-01

    The physiological adaptation to weightless exposure includes cardiovascular deconditioning arising in part from a loss of total circulating blood volume and resulting in a reduction of orthostatic tolerance. The crew of the Shuttle orbiter are less tolerant to acceleration forces in the head-to-foot direction during the reentry phase of the flight at a time they must function at a high level of performance. The factors that contribute to orthostatic intolerance during and following reentry and to predict the likelihood of impaired crew performance are evaluated. A computer simulation approach employing a mathematical model of the cardiovascular system is employed. It is shown that depending on the severity of blood volume loss, the reentry acceleration stress may be detrimental to physiologic function and may place the physiologic status of the crew near the borderline of some type of impairment. They are in agreement with conclusions from early ground-based experiments and from observations of early Shuttle flights.

  6. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    PubMed

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  8. COGNITRON THEORY,

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , THEORY), NERVE CELLS, SIMULATION, SENSE ORGANS, SENSES(PHYSIOLOGY), CONDITIONED RESPONSE, MATRICES(MATHEMATICS), MAPPING (TRANSFORMATIONS), MATHEMATICAL MODELS, FEEDBACK, BIONICS

  9. Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA).

    PubMed

    Potter, Adam W; Blanchard, Laurie A; Friedl, Karl E; Cadarette, Bruce S; Hoyt, Reed W

    2017-02-01

    Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (T c ) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios. Published by Elsevier Ltd.

  10. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  11. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    EPA Science Inventory

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  12. Instruction in Pharmacokinetics: A Computer-Assisted Demonstration System

    ERIC Educational Resources Information Center

    Kahn, Norman; Bigger, J. Thomas

    1974-01-01

    The emerging discipline of clinical pharmacology is generating an ever increasing data base on the physiological disposition of a large number of drugs in man. Presents a system which would render this information readily understandable to students, regardless of their mathematical facility. (Author/PG)

  13. A Simulator-Assisted Workshop for Teaching Chemostat Cultivation in Academic Classes on Microbial Physiology.

    PubMed

    Hakkaart, Xavier D V; Pronk, Jack T; van Maris, Antonius J A

    2017-01-01

    Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.

  14. Assessment of heart rate variability based on mobile device for planning physical activity

    NASA Astrophysics Data System (ADS)

    Svirin, I. S.; Epishina, E. V.; Voronin, V. V.; Semenishchev, E. A.; Solodova, E. N.; Nabilskaya, N. V.

    2015-05-01

    In this paper we present a method for the functional analysis of human heart based on electrocardiography (ECG) signals. The approach using the apparatus of analytical and differential geometry and correlation and regression analysis. ECG contains information on the current condition of the cardiovascular system as well as on the pathological changes in the heart. Mathematical processing of the heart rate variability allows to obtain a great set of mathematical and statistical characteristics. These characteristics of the heart rate are used when solving research problems to study physiological changes that determine functional changes of an individual. The proposed method implemented for up-to-date mobile Android and iOS based devices.

  15. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    PubMed

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  16. A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology

    PubMed Central

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-01-01

    Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892

  17. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method

    PubMed Central

    2014-01-01

    Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018

  18. Integrative approaches for modeling regulation and function of the respiratory system.

    PubMed

    Ben-Tal, Alona; Tawhai, Merryn H

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. Copyright © 2013 Wiley Periodicals, Inc.

  19. Applicability of mathematical modeling to problems of environmental physiology

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.

  20. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment.

    PubMed

    Zhao, Jingbo; McMahon, Barry; Fox, Mark; Gregersen, Hans

    2018-06-10

    Esophageal diseases are highly prevalent and carry significant socioeconomic burden. Despite the apparently simple function of the esophagus, we still struggle to better understand its physiology and pathophysiology. The assessment of large data sets and application of multiscale mathematical organ models have gained attention as part of the Physiome Project. This has long been recognized in cardiology but has only recently gained attention for the gastrointestinal(GI) tract. The term "esophagiome" implies a holistic assessment of esophageal function, from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. These anatomical, mechanical, and physiological models underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease. Functional models incorporate anatomical details with sensory-motor responses, especially related to biomechanical functions such as bolus transport. Our review builds on previous reviews and focuses on assessment of detailed anatomical and geometric data using advanced imaging technology for evaluation of gastro-esophageal reflux disease (GERD), and on esophageal mechanophysiology assessed using technologies that distend the esophagus. Integration of mechanics- and physiology-based analysis is a useful characteristic of the esophagiome. Experimental data on pressures and geometric characteristics are useful for the validation of mathematical and computer models of the esophagus that may provide predictions of novel endoscopic, surgical, and pharmaceutical treatment options. © 2018 New York Academy of Sciences.

  1. Enhancing Self-Efficacy of Elementary School Students to Learn Mathematics

    ERIC Educational Resources Information Center

    Katz, Sara

    2015-01-01

    Mathematics is a key to all scientific subjects. Learning mathematics requires cognitive and meta-cognitive effort. Many students suffer from mathematics anxiety that very often leads to physiological symptoms. Self-efficacy is defined as people's beliefs about their capabilities to produce designated levels of performance that affect their lives.…

  2. Plant architecture, growth and radiative transfer for terrestrial and space environments

    NASA Technical Reports Server (NTRS)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  3. Physarum solver: A biologically inspired method of road-network navigation

    NASA Astrophysics Data System (ADS)

    Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki

    2006-04-01

    We have proposed a mathematical model for the adaptive dynamics of the transport network in an amoeba-like organism, the true slime mold Physarum polycephalum. The model is based on physiological observations of this species, but can also be used for path-finding in the complicated networks of mazes and road maps. In this paper, we describe the physiological basis and the formulation of the model, as well as the results of simulations of some complicated networks. The path-finding method used by Physarum is a good example of cellular computation.

  4. ESTABLISHING CHANGES IN METABOLISM OF CARBON TETRACHLORIDE IN THE PRESENCE OF TRICHLOROETHYLENE IN THE RAT THROUGH THE USE OF PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING

    EPA Science Inventory

    Toxicological interactions of chemicals can affect metabolism, often decreasing overall associated metabolic rates; and changes in metabolism can be evaluated through the use of mathematical models. Trichloroethylene (TCE) and carbon tetrachloride (CCl4) are common co...

  5. A physiologically based mathematical model of dermal absorption in man.

    PubMed

    Auton, T R; Westhead, D R; Woollen, B H; Scott, R C; Wilks, M F

    1994-01-01

    A sound understanding of the mechanisms determining percutaneous absorption is necessary for toxicological risk assessment of chemicals contacting the skin. As part of a programme investigating these mechanisms we have developed a physiologically based mathematical model. The structure of the model parallels the multi-layer structure of the skin, with separate surface, stratum corneum and viable tissue layers. It simulates the effects of partitioning and diffusive transport between the sub-layers, and metabolism in the viable epidermis. In addition the model describes removal processes on the surface of the skin, including the effects of washing and desquamation, and rubbing off onto clothing. This model is applied to data on the penetration of the herbicide fluazifop-butyl through human skin in vivo and in vitro. Part of this dataset is used to estimate unknown model parameter values and the remainder is used to provide a partial validation of the model. Only a small fraction of the applied dose was absorbed through the skin; most of it was removed by washing or onto clothing. The model provides a quantitative description of these loss processes on the skin surface.

  6. Mathematical modeling and experimental testing of three bioreactor configurations based on windkessel models

    PubMed Central

    Ruel, Jean; Lachance, Geneviève

    2010-01-01

    This paper presents an experimental study of three bioreactor configurations. The bioreactor is intended to be used for the development of tissue-engineered heart valve substitutes. Therefore it must be able to reproduce physiological flow and pressure waveforms accurately. A detailed analysis of three bioreactor arrangements is presented using mathematical models based on the windkessel (WK) approach. First, a review of the many applications of this approach in medical studies enhances its fundamental nature and its usefulness. Then the models are developed with reference to the actual components of the bioreactor. This study emphasizes different conflicting issues arising in the design process of a bioreactor for biomedical purposes, where an optimization process is essential to reach a compromise satisfying all conditions. Two important aspects are the need for a simple system providing ease of use and long-term sterility, opposed to the need for an advanced (thus more complex) architecture capable of a more accurate reproduction of the physiological environment. Three classic WK architectures are analyzed, and experimental results enhance the advantages and limitations of each one. PMID:21977286

  7. Mathematical Literacy in Plant Physiology Undergraduates: Results of Interventions Aimed at Improving Students' Performance

    ERIC Educational Resources Information Center

    Vila, Francisca; Sanz, Amparo

    2013-01-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant…

  8. Computational models for the study of heart-lung interactions in mammals.

    PubMed

    Ben-Tal, Alona

    2012-01-01

    The operation and regulation of the lungs and the heart are closely related. This is evident when examining the anatomy within the thorax cavity, in the brainstem and in the aortic and carotid arteries where chemoreceptors and baroreceptors, which provide feedback affecting the regulation of both organs, are concentrated. This is also evident in phenomena such as respiratory sinus arrhythmia where the heart rate increases during inspiration and decreases during expiration, in other types of synchronization between the heart and the lungs known as cardioventilatory coupling and in the association between heart failure and sleep apnea where breathing is interrupted periodically by periods of no-breathing. The full implication and physiological significance of the cardiorespiratory coupling under normal, pathological, or extreme physiological conditions are still unknown and are subject to ongoing investigation both experimentally and theoretically using mathematical models. This article reviews mathematical models that take heart-lung interactions into account. The main ideas behind low dimensional, phenomenological models for the study of the heart-lung synchronization and sleep apnea are described first. Higher dimensions, physiology-based models are described next. These models can vary widely in detail and scope and are characterized by the way the heart-lung interaction is taken into account: via gas exchange, via the central nervous system, via the mechanical interactions, and via time delays. The article emphasizes the need for the integration of the different sources of heart-lung coupling as well as the different mathematical approaches. Copyright © 2011 Wiley Periodicals, Inc.

  9. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    PubMed

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  10. Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.

    ERIC Educational Resources Information Center

    Aide, Michael; Terry, Danny

    1996-01-01

    Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…

  11. A new standard model for milk yield in dairy cows based on udder physiology at the milking-session level.

    PubMed

    Gasqui, Patrick; Trommenschlager, Jean-Marie

    2017-08-21

    Milk production in dairy cow udders is a complex and dynamic physiological process that has resisted explanatory modelling thus far. The current standard model, Wood's model, is empirical in nature, represents yield in daily terms, and was published in 1967. Here, we have developed a dynamic and integrated explanatory model that describes milk yield at the scale of the milking session. Our approach allowed us to formally represent and mathematically relate biological features of known relevance while accounting for stochasticity and conditional elements in the form of explicit hypotheses, which could then be tested and validated using real-life data. Using an explanatory mathematical and biological model to explore a physiological process and pinpoint potential problems (i.e., "problem finding"), it is possible to filter out unimportant variables that can be ignored, retaining only those essential to generating the most realistic model possible. Such modelling efforts are multidisciplinary by necessity. It is also helpful downstream because model results can be compared with observed data, via parameter estimation using maximum likelihood and statistical testing using model residuals. The process in its entirety yields a coherent, robust, and thus repeatable, model.

  12. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  13. Physiologically-Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long Acting Nanoformulations for HIV

    PubMed Central

    Rajoli, Rajith KR; Back, David J; Rannard, Steve; Meyers, Caren Freel; Flexner, Charles; Owen, Andrew; Siccardi, Marco

    2014-01-01

    Background and Objectives Antiretrovirals (ARVs) are currently used for the treatment and prevention of HIV infection. Poor adherence and low tolerability of some existing oral formulations can hinder their efficacy. Long-acting (LA) injectable nanoformulations could help address these complications by simplifying ARV administration. The aim of this study is to inform the optimisation of intramuscular LA formulations for eight ARVs through physiologically-based pharmacokinetic (PBPK) modelling. Methods A whole-body PBPK model was constructed using mathematical descriptions of molecular, physiological and anatomical processes defining pharmacokinetics. These models were validated against available clinical data and subsequently used to predict the pharmacokinetics of injectable LA formulations Results The predictions suggest that monthly intramuscular injections are possible for dolutegravir, efavirenz, emtricitabine, raltegravir, rilpivirine and tenofovir provided that technological challenges to control release rate can be addressed. Conclusions These data may help inform the target product profiles for LA ARV reformulation strategies. PMID:25523214

  14. A mathematical model of physiological processes and its application to the study of aging

    NASA Technical Reports Server (NTRS)

    Hibbs, A. R.; Walford, R. L.

    1989-01-01

    The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.

  15. A physiologically based model for tramadol pharmacokinetics in horses.

    PubMed

    Abbiati, Roberto Andrea; Cagnardi, Petra; Ravasio, Giuliano; Villa, Roberto; Manca, Davide

    2017-09-21

    This work proposes an application of a minimal complexity physiologically based pharmacokinetic model to predict tramadol concentration vs time profiles in horses. Tramadol is an opioid analgesic also used for veterinary treatments. Researchers and medical doctors can profit from the application of mathematical models as supporting tools to optimize the pharmacological treatment of animal species. The proposed model is based on physiology but adopts the minimal compartmental architecture necessary to describe the experimental data. The model features a system of ordinary differential equations, where most of the model parameters are either assigned or individualized for a given horse, using literature data and correlations. Conversely, residual parameters, whose value is unknown, are regressed exploiting experimental data. The model proved capable of simulating pharmacokinetic profiles with accuracy. In addition, it provides further insights on un-observable tramadol data, as for instance tramadol concentration in the liver or hepatic metabolism and renal excretion extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mathematical model for rhythmic protoplasmic movement in the true slime mold.

    PubMed

    Kobayashi, Ryo; Tero, Atsushi; Nakagaki, Toshiyuki

    2006-08-01

    The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays "smart" behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.

  17. Mathematical modeling of kidney transport.

    PubMed

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  18. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  19. Ontology of physics for biology: representing physical dependencies as a basis for biological processes.

    PubMed

    Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H

    2013-12-02

    In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.

  20. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  1. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    PubMed

    Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  2. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  3. Agent based simulations in disease modeling Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Pennisi, Marzio

    2016-07-01

    Fibrosis represents a process where an excessive tissue formation in an organ follows the failure of a physiological reparative or reactive process. Mathematical and computational techniques may be used to improve the understanding of the mechanisms that lead to the disease and to test potential new treatments that may directly or indirectly have positive effects against fibrosis [1]. In this scenario, Ben Amar and Bianca [2] give us a broad picture of the existing mathematical and computational tools that have been used to model fibrotic processes at the molecular, cellular, and tissue levels. Among such techniques, agent based models (ABM) can give a valuable contribution in the understanding and better management of fibrotic diseases.

  4. The Analog (Computer) As a Physiology Adjunct.

    ERIC Educational Resources Information Center

    Stewart, Peter A.

    1979-01-01

    Defines and discusses the analog computer and its use in a physiology laboratory. Includes two examples: (1) The Respiratory Control Function and (2) CO-Two Control in the Respiratory System. Presents diagrams and mathematical models. (MA)

  5. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.

    PubMed

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  6. The Effects of a Mathematical Approach to Teaching Two Topics in High School Biology on Student Achievement and Attitudes.

    ERIC Educational Resources Information Center

    Wixson, Eldwin Atwell, Jr.

    Mathematical approaches to teaching cell structure and physiology and the probability aspects of genetics were used in each of two types of biology courses: one using the Biological Sciences Curriculum Study (BSCS) Yellow version and the other using Otto and Towle's "Modern Biology." Tests of lateral and vertical mathematics transfer, biology…

  7. Toward a mathematical formalism of performance, task difficulty, and activation

    NASA Technical Reports Server (NTRS)

    Samaras, George M.

    1988-01-01

    The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance.

  8. [Study on the 3D mathematical mode of the muscle groups applied to human mandible by a linear programming method].

    PubMed

    Wang, Dongmei; Yu, Liniu; Zhou, Xianlian; Wang, Chengtao

    2004-02-01

    Four types of 3D mathematical mode of the muscle groups applied to the human mandible have been developed. One is based on electromyography (EMG) and the others are based on linear programming with different objective function. Each model contains 26 muscle forces and two joint forces, allowing simulation of static bite forces and concomitant joint reaction forces for various bite point locations and mandibular positions. In this paper, the method of image processing to measure the position and direction of muscle forces according to 3D CAD model was built with CT data. Matlab optimization toolbox is applied to solve the three modes based on linear programming. Results show that the model with an objective function requiring a minimum sum of the tensions in the muscles is reasonable and agrees very well with the normal physiology activity.

  9. Advanced Physiological Estimation of Cognitive Status (APECS)

    DTIC Science & Technology

    2009-09-15

    REPORT Advanced Physiological Estimation of Cognitive Status (APECS) Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: EEG...fitness and transmit data to command and control systems. Some of the signals that the physiological sensors measure are readily interpreted, such as...electroencephalogram (EEG) and other signals requires a complex series of mathematical transformations or algorithms. Overall, research on algorithms

  10. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  11. Control of thermal balance by a liquid circulating garment based on a mathematical representation of the human thermoregulatory system. Ph.D. Thesis - California Univ., Berkeley

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1976-01-01

    Test data and a mathematical model of the human thermoregulatory system were used to investigate control of thermal balance by means of a liquid circulating garment (LCG). The test data were derived from five series of experiments in which environmental and metabolic conditions were varied parametrically as a function of several independent variables, including LCG flowrate, LCG inlet temperature, net environmental heat exchange, surrounding gas ventilation rate, ambient pressure, metabolic rate, and subjective/obligatory cooling control. The resultant data were used to relate skin temperature to LCG water temperature and flowrate, to assess a thermal comfort band, to demonstrate the relationship between metabolic rate and LCG heat dissipation, and so forth. The usefulness of the mathematical model as a tool for data interpretation and for generation of trends and relationships among the various physiological parameters was also investigated and verified.

  12. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  13. Ontology of physics for biology: representing physical dependencies as a basis for biological processes

    PubMed Central

    2013-01-01

    Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137

  14. Mathematical Modeling Approaches in Plant Metabolomics.

    PubMed

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  15. The effects of anxious responding on mental arithmetic and lexical decision task performance.

    PubMed

    Hopko, Derek R; McNeil, Daniel W; Lejuez, C W; Ashcraft, Mark H; Eifert, Georg H; Riel, Jim

    2003-01-01

    Anxiety-related responding and skill deficits historically are associated with performance-based problems such as mathematics anxiety, yet the relative contribution of these variables to substandard performance remains poorly understood. Utilizing a 7% carbon dioxide (CO2) gas to induce anxiety, the present study examined the impact of anxious responding on two performance tasks, mental arithmetic and lexical decision. Independent variables included math anxiety group, gender, and gas condition. Dependent variables included task performance and physiological and self-report indices of anxiety. A total of 64 university undergraduate students participated. Physiological and verbal-report measures of anxiety supported the utility of 7% carbon dioxide-enriched air as an anxiety-inducing stimulus. Behavioral disruption on performance tasks, however, did not differ as a function of carbon dioxide inhalation. Performance did differ as a function of math anxiety. High math anxious individuals generally exhibited higher error rates on mathematical tasks, particularly on tasks designed to measure advanced math skill and those requiring working memory resources. These findings are discussed with reference to processing efficiency theory, discordance among anxiety response systems, and the intricacies associated with skill measurement.

  16. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  17. A day of immersive physiology experiments increases knowledge and excitement towards physiology and scientific careers in Native American students.

    PubMed

    Becker, Bryan K; Schiller, Alicia M; Zucker, Irving H; Eager, Eric A; Bronner, Liliana P; Godfrey, Maurice

    2017-03-01

    Underserved minority groups are disproportionately absent from the pursuit of careers in science, technology, engineering, and mathematics (STEM) fields. One such underserved population, Native Americans, are particularly underrepresented in STEM fields. Although recent advocacy and outreach designed toward increasing minority involvement in health care-related occupations have been mostly successful, little is known about the efficacy of outreach programs in increasing minority enthusiasm toward careers in traditional scientific professions. Furthermore, very little is known about outreach among Native American schools toward increasing involvement in STEM. We collaborated with tribal middle and high schools in South Dakota and Nebraska through a National Institutes of Health Science Education Partnership Award to hold a day-long physiology, activity-based event to increase both understanding of physiology and enthusiasm to scientific careers. We recruited volunteer biomedical scientists and trainees from the University of Nebraska Medical Center, Nebraska Wesleyan University, and University of South Dakota. To evaluate the effectiveness of the day of activities, 224 of the ~275-300 participating students completed both a pre- and postevent evaluation assessment. We observed increases in both students self-perceived knowledge of physiology and enthusiasm toward scientific career opportunities after the day of outreach activities. We conclude that activity-based learning opportunities in underserved populations are effective in increasing both knowledge of science and interest in scientific careers. Copyright © 2017 the American Physiological Society.

  18. Prosthetic Avian Vocal Organ Controlled by a Freely Behaving Bird Based on a Low Dimensional Model of the Biomechanical Periphery

    PubMed Central

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555

  19. A physiologically based kinetic model for bacterial sulfide oxidation.

    PubMed

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    PubMed

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  1. Mathematics Anxiety: What Have We Learned in 60 Years?

    PubMed

    Dowker, Ann; Sarkar, Amar; Looi, Chung Yen

    2016-01-01

    The construct of mathematics anxiety has been an important topic of study at least since the concept of "number anxiety" was introduced by Dreger and Aiken (1957), and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age, and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned.

  2. Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance

    ERIC Educational Resources Information Center

    Clarke, David C.; Skiba, Philip F.

    2013-01-01

    A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of…

  3. Mathematical modeling of electrical activity of uterine muscle cells.

    PubMed

    Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine

    2009-06-01

    The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.

  4. What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure.

    PubMed

    Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei

    2015-12-01

    Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    PubMed

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of the (neuro-) hormonal signals at play within the HPG axis and detect complex, possibly hidden rhythms, in experimental time series. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Mathematical anatomy: muscles according to Stensen].

    PubMed

    Andrault, Raphaële

    2010-01-01

    In his Elementorum Myologiae Specimen, Steno geometrizes "the new fabric of muscles" and their movement of contraction, so as to refute the main contemporary hypothesis about the functioning of the muscles. This physiological refutation relies on an abstract representation of the muscular fibre as a parallelepiped of flesh transversally linked to the tendons. Those two features have been comprehensively studied. But the method used by Steno, as well as the way he has chosen to present his physiological results, have so far been neglected. Yet, Steno's work follows a true synthetic order, which he conceives as a tool to separate uncertain anatomical "elements" from the certain ones. We will show that the true understanding of this "more geometrico" order is the only way to avoid frequent misconceptions of the scientific aim pursued by Steno, which is neither to give a mathematical explanation of the functioning of the muscles, nor to reduce the muscles to some mathematical shapes.

  7. Mathematics Anxiety: What Have We Learned in 60 Years?

    PubMed Central

    Dowker, Ann; Sarkar, Amar; Looi, Chung Yen

    2016-01-01

    The construct of mathematics anxiety has been an important topic of study at least since the concept of “number anxiety” was introduced by Dreger and Aiken (1957), and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age, and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned. PMID:27199789

  8. Mathematical Skills in Undergraduate Students. A Ten-Year Survey of a Plant Physiology Course

    ERIC Educational Resources Information Center

    Llamas, A.; Vila, F.; Sanz, A.

    2012-01-01

    In the health and life sciences and many other scientific disciplines, problem solving depends on mathematical skills. However, significant deficiencies are commonly found in this regard in undergraduate students. In an attempt to understand the underlying causes, and to improve students' performances, this article describes a ten-year survey…

  9. Understanding immunology via engineering design: the role of mathematical prototyping.

    PubMed

    Klinke, David J; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  10. Cognitive Enhancement or Cognitive Cost: Trait-Specific Outcomes of Brain Stimulation in the Case of Mathematics Anxiety

    PubMed Central

    Sarkar, Amar; Dowker, Ann

    2014-01-01

    The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect—impaired executive control in a flanker task—a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. PMID:25505313

  11. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety.

    PubMed

    Sarkar, Amar; Dowker, Ann; Cohen Kadosh, Roi

    2014-12-10

    The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect-impaired executive control in a flanker task-a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. Copyright © 2014 Sarkar et al.

  12. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    PubMed Central

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  13. The COPD Knowledge Base: enabling data analysis and computational simulation in translational COPD research.

    PubMed

    Cano, Isaac; Tényi, Ákos; Schueller, Christine; Wolff, Martin; Huertas Migueláñez, M Mercedes; Gomez-Cabrero, David; Antczak, Philipp; Roca, Josep; Cascante, Marta; Falciani, Francesco; Maier, Dieter

    2014-11-28

    Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. The COPDKB has now been extended to integrate over 40 public data sources on functional interaction (e.g. signal transduction, transcriptional regulation, protein-protein interaction, gene-disease association). In addition we integrated COPD-specific expression and co-morbidity networks connecting over 6 000 genes/proteins with physiological parameters and disease states. Three mathematical models describing different aspects of systemic effects of COPD were connected to clinical and experimental data. We have completely redesigned the technical architecture of the user interface and now provide html and web browser-based access and form-based searches. A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment enables multi-scale integrated simulation of individual computational models while integration with a Clinical Decision Support System allows delivery into clinical practice. The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.

  14. Biomechanics-based in silico medicine: the manifesto of a new science.

    PubMed

    Viceconti, Marco

    2015-01-21

    In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mathematical approach to recover EEG brain signals with artifacts by means of Gram-Schmidt transform

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Koronovskiy, A. A.; Hramov, A. E.

    2017-04-01

    A novel method for removing oculomotor artifacts on electroencephalographical signals is proposed and based on the orthogonal Gram-Schmidt transform using electrooculography data. The method has shown high efficiency removal of artifacts caused by spontaneous movements of the eyeballs (about 95-97% correct remote oculomotor artifacts). This method may be recommended for multi-channel electroencephalography data processing in an automatic on-line in a variety of psycho-physiological experiments.

  16. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    DTIC Science & Technology

    2009-12-01

    INHALATION TOXICOLOGY RESEARCH 2.1.1 Development of a Fatigue Model & Blood Oxygen-based Parameter Corre- lates Liu et al. (2002) introduced a muscle ...and Stuhmiller, J.H. “Generalization of a ‘phenomenological’ muscle fatigue model.” Technical report J0287-10-382 (in preparation). Product 3. Sih...physiologic response to exercise and a model of muscle fatigue which have been developed and validated separately are integrated. Integration occurs through

  17. A mathematical function for the description of nutrient-response curve

    PubMed Central

    Ahmadi, Hamed

    2017-01-01

    Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271

  18. Mathematical modeling of fluid-electrolyte alterations during weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1984-01-01

    Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.

  19. Mathematical modeling of energy metabolism and hemodynamics of WHO grade II gliomas using in vivo MR data.

    PubMed

    Guillevin, Rémy; Menuel, Carole; Vallée, Jean-Noël; Françoise, Jean-Pierre; Capelle, Laurent; Habas, Christophe; De Marco, Giovanni; Chiras, Jacques; Costalat, Robert

    2011-01-01

    Therapeutic management of low-grade gliomas (LGG) is a challenge because they have undergone anaplastic transformation with variable delay. Today, only progressive volume growth on successive MRI allows an in vivo monitoring of this evolution. On the other hand, multinuclear spectroscopy and perfusion available during MRI may also provide assessment of metabolic changes underlying morphological modifications. To overcome this drawback, we developed a mathematical model of the metabolism and the hemodynamic of gliomas, based on a physiological model previously published, and including the MR parameters. This allows us to suggest that some specific profiles of metabolic and hemodynamic changes would be good indicators of potential anaplastic transformation. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. A Riparian Vegetation Ecophysiological Response Model

    Treesearch

    Jeffrey P. Leighton; Roland J. Risser

    1989-01-01

    A mathematical model is described that relates mature riparian vegetation ecophysiological response to changes in stream level. This model was developed to estimate the physiological response of riparian vegetation to reductions in streamflow. Field data from two sites on the North Fork of the Kings River were used in the model development. The physiological response...

  1. Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model.

    PubMed

    Rozier, Kelvin; Bondarenko, Vladimir E

    2017-05-01

    The β 1 - and β 2 -adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β 1 -adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β 2 -adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β 1 - and β 2 -adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions. Simulations describe the dynamics of major signaling molecules in different subcellular compartments; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca 2+ handling proteins; modifications of action potential shape and duration; and [Ca 2+ ] i and [Na + ] i dynamics upon stimulation of β 1 - and β 2 -adrenergic receptors (β 1 - and β 2 -ARs). The model reveals physiological conditions when β 2 -ARs do not produce significant physiological effects and when their effects can be measured experimentally. Simulations demonstrated that stimulation of β 2 -ARs with isoproterenol caused a marked increase in the magnitude of the L-type Ca 2+ current, [Ca 2+ ] i transient, and phosphorylation of phospholamban only upon additional application of pertussis toxin or inhibition of phosphodiesterases of type 3 and 4. The model also made testable predictions of the changes in magnitudes of [Ca 2+ ] i and [Na + ] i fluxes, the rate of decay of [Na + ] i concentration upon both combined and separate stimulation of β 1 - and β 2 -ARs, and the contribution of phosphorylation of PKA targets to the changes in the action potential and [Ca 2+ ] i transient. Copyright © 2017 the American Physiological Society.

  2. Physiomodel - an integrative physiology in Modelica.

    PubMed

    Matejak, Marek; Kofranek, Jiri

    2015-08-01

    Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.

  3. Mathematical modeling of urea transport in the kidney.

    PubMed

    Layton, Anita T

    2014-01-01

    Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.

  4. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    PubMed Central

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  5. Contributing Factors to Student Success in Anatomy and Physiology: Lower outside Workload and Better Preparation

    ERIC Educational Resources Information Center

    Harris, David E.; Hannum, Lynn; Gupta, Sat

    2004-01-01

    A study of students of a traditional two-semester Anatomy and Physiology class was made to determine factors that contributed to success in the coursework. The test established a co-relation between the amount of study in mathematics and science done previously in school and final grades in the subject.

  6. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  7. Effects of septum and pericardium on heart-lung interactions in a cardiopulmonary simulation model.

    PubMed

    Karamolegkos, Nikolaos; Albanese, Antonio; Chbat, Nicolas W

    2017-07-01

    Mechanical heart-lung interactions are often overlooked in clinical settings. However, their impact on cardiac function can be quite significant. Mechanistic physiology-based models can provide invaluable insights into such cardiorespiratory interactions, which occur not only under external mechanical ventilatory support but in normal physiology as well. In this work, we focus on the cardiac component of a previously developed mathematical model of the human cardiopulmonary system, aiming to improve the model's response to the intrathoracic pressure variations that are associated with the respiratory cycle. Interventricular septum and pericardial membrane are integrated into the existing model. Their effect on the overall cardiac response is explained by means of comparison against simulation results from the original model as well as experimental data from literature.

  8. Physiological time-series analysis: what does regularity quantify?

    NASA Technical Reports Server (NTRS)

    Pincus, S. M.; Goldberger, A. L.

    1994-01-01

    Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and complexity that appears to have potential application to a wide variety of physiological and clinical time-series data. The focus here is to provide a better understanding of ApEn to facilitate its proper utilization, application, and interpretation. After giving the formal mathematical description of ApEn, we provide a multistep description of the algorithm as applied to two contrasting clinical heart rate data sets. We discuss algorithm implementation and interpretation and introduce a general mathematical hypothesis of the dynamics of a wide class of diseases, indicating the utility of ApEn to test this hypothesis. We indicate the relationship of ApEn to variability measures, the Fourier spectrum, and algorithms motivated by study of chaotic dynamics. We discuss further mathematical properties of ApEn, including the choice of input parameters, statistical issues, and modeling considerations, and we conclude with a section on caveats to ensure correct ApEn utilization.

  9. Nitric oxide bioavailability in the microcirculation: insights from mathematical models.

    PubMed

    Tsoukias, Nikolaos M

    2008-11-01

    Over the last 30 years nitric oxide (NO) has emerged as a key signaling molecule involved in a number of physiological functions, including in the regulation of microcirculatory tone. Despite significant scientific contributions, fundamental questions about NO's role in the microcirculation remain unanswered. Mathematical modeling can assist in investigations of microcirculatory NO physiology and address experimental limitations in quantifying vascular NO concentrations. The number of mathematical models investigating the fate of NO in the vasculature has increased over the last few years, and new models are continuously emerging, incorporating an increasing level of complexity and detail. Models investigate mechanisms that affect NO availability in health and disease. They examine the significance of NO release from nonendothelial sources, the effect of transient release, and the complex interaction of NO with other substances, such as heme-containing proteins and reactive oxygen species. Models are utilized to test and generate hypotheses for the mechanisms that regulate NO-dependent signaling in the microcirculation.

  10. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  11. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  12. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups.

    PubMed

    An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter

    2016-09-01

    Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

  13. Cardiac mechanics: Physiological, clinical, and mathematical considerations

    NASA Technical Reports Server (NTRS)

    Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.

    1974-01-01

    Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.

  14. Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing.

    PubMed

    McCafferty, Sean J; Schwiegerling, Jim T

    2015-04-01

    Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.

  15. Simulating physiological interactions in a hybrid system of mathematical models.

    PubMed

    Kretschmer, Jörn; Haunsberger, Thomas; Drost, Erick; Koch, Edmund; Möller, Knut

    2014-12-01

    Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less than 0.1 %. Therefore, the proposed model is usable in combinations where cardiovascular simulation does not have to be detailed. Computing costs have been decreased dramatically by a factor 186 compared to a model combination employing the 19-compartment model.

  16. Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    NASA Technical Reports Server (NTRS)

    Verigo, V. V.

    1979-01-01

    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.

  17. Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  18. Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  19. Development of a computational model of glucose toxicity in the progression of diabetes mellitus.

    PubMed

    Perez-Rivera, Danilo T; Torres-Torres, Veronica L; Torres-Colon, Abraham E; Cruz-Aponte, Maytee

    2016-10-01

    Diabetes mellitus is a disease characterized by a range of metabolic complications involving an individual's blood glucose levels, and its main regulator, insulin. These complications can vary largely from person to person depending on their current biophysical state. Biomedical research day-by-day makes strides to impact the lives of patients of a variety of diseases, including diabetes. One large stride that is being made is the generation of techniques to assist physicians to ``personalize medicine''. From available physiological data, biological understanding of the system, and dimensional analysis, a differential equation-based mathematical model was built in a sequential matter, to be able to elucidate clearly how each parameter correlates to the patient's current physiological state. We developed a simple mathematical model that accurately simulates the dynamics between glucose, insulin, and pancreatic $\\beta$-cells throughout disease progression with constraints to maintain biological relevance. The current framework is clearly capable of tracking the patient's current progress through the disease, dependent on factors such as latent insulin resistance or an attrite $\\beta$-cell population. Further interests would be to develop tools that allow the direct and feasible testing of how effective a given plan of treatment would be at returning the patient to a desirable biophysical state.

  20. Effect of high altitude exposure on the hemodynamics of the bidirectional Glenn physiology: modeling incremented pulmonary vascular resistance and heart rate.

    PubMed

    Vallecilla, Carolina; Khiabani, Reza H; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2014-06-03

    The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. For this purpose, a mathematical approach based on a lumped parameter model was developed to model the BDG circulation. Catheterization data from 39 BDG patients at stabilized oxygen conditions was used to determine baseline flows and pressures for the model. The effect of high altitude exposure was modeled by increasing the pulmonary vascular resistance (PVR) and heart rate (HR) in increments up to 80% and 40%, respectively. The resulting differences in vascular flows, pressures and ventricular function parameters were analyzed. By simultaneously increasing PVR and HR, significant changes (p <0.05) were observed in cardiac index (11% increase at an 80% PVR and 40% HR increase) and pulmonary flow (26% decrease at an 80% PVR and 40% HR increase). Significant increase in mean systemic pressure (9%) was observed at 80% PVR (40% HR) increase. The results show that the poor ventricular function fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  2. The physiological determinants of drug-induced lysosomal stress resistance

    PubMed Central

    Woldemichael, Tehetina; Rosania, Gus R.

    2017-01-01

    Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253

  3. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  4. Automated diagnosis of autism: in search of a mathematical marker.

    PubMed

    Bhat, Shreya; Acharya, U Rajendra; Adeli, Hojjat; Bairy, G Muralidhar; Adeli, Amir

    2014-01-01

    Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-the-art review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEG-based diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder.

  5. Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Furukawa, S.; Vannordstrand, P. C.

    1975-01-01

    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems.

  6. A systems approach to the physiology of weightlessness

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.

    1991-01-01

    A general systems approach to conducting and analyzing research on the human adaptation to weightlessness is presented. The research is aimed at clarifying the role that each of the major components of the human system plays following the transition to and from space. The approach utilizes a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. Certain aspects of the problem of fluid and electrolyte shifts in weightlessnes are considered, and an integrated hypothesis based on numerical simulation studies and experimental data is presented.

  7. A theory of drug tolerance and dependence II: the mathematical model.

    PubMed

    Peper, Abraham

    2004-08-21

    The preceding paper presented a model of drug tolerance and dependence. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behaviour to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The present paper discusses the mathematical model in terms of its design. The model is a nonlinear, learning feedback system, fully satisfying control theoretical principles. It accepts any form of the stimulus-the drug intake-and describes how the physiological processes involved affect the distribution of the drug through the body and the stability of the regulation loop. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes.

  8. A comparative study of students' performance in preclinical physiology assessed by multiple choice and short essay questions.

    PubMed

    Oyebola, D D; Adewoye, O E; Iyaniwura, J O; Alada, A R; Fasanmade, A A; Raji, Y

    2000-01-01

    This study was designed to compare the performance of medical students in physiology when assessed by multiple choice questions (MCQs) and short essay questions (SEQs). The study also examined the influence of factors such as age, sex, O/level grades and JAMB scores on performance in the MCQs and SEQs. A structured questionnaire was administered to 264 medical students' four months before the Part I MBBS examination. Apart from personal data of each student, the questionnaire sought information on the JAMB scores and GCE O' Level grades of each student in English Language, Biology, Chemistry, Physics and Mathematics. The physiology syllabus was divided into five parts and the students were administered separate examinations (tests) on each part. Each test consisted of MCQs and SEQs. The performance in MCQs and SEQs were compared. Also, the effects of JAMB scores and GCE O/level grades on the performance in both the MCQs and SEQs were assessed. The results showed that the students performed better in all MCQ tests than in the SEQs. JAMB scores and O' level English Language grade had no significant effect on students' performance in MCQs and SEQs. However O' level grades in Biology, Chemistry, Physics and Mathematics had significant effects on performance in MCQs and SEQs. Inadequate knowledge of physiology and inability to present information in a logical sequence are believed to be major factors contributing to the poorer performance in the SEQs compared with MCQs. In view of the finding of significant association between performance in MCQs and SEQs and GCE O/level grades in science subjects and mathematics, it was recommended that both JAMB results and the GCE results in the four O/level subjects above may be considered when selecting candidates for admission into the medical schools.

  9. Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration.

    PubMed

    Agur, Zvia; Elishmereni, Moran; Kheifetz, Yuri

    2014-01-01

    Despite its great promise, personalized oncology still faces many hurdles, and it is increasingly clear that targeted drugs and molecular biomarkers alone yield only modest clinical benefit. One reason is the complex relationships between biomarkers and the patient's response to drugs, obscuring the true weight of the biomarkers in the overall patient's response. This complexity can be disentangled by computational models that integrate the effects of personal biomarkers into a simulator of drug-patient dynamic interactions, for predicting the clinical outcomes. Several computational tools have been developed for personalized oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-estimated tools for predicting survival, etc. We describe representative statistical and mathematical tools, and discuss their merits, shortcomings and preliminary clinical validation attesting to their potential. Yet, the individualization power of mathematical models alone, or statistical models alone, is limited. More accurate and versatile personalization tools can be constructed by a new application of the statistical/mathematical nonlinear mixed effects modeling (NLMEM) approach, which until recently has been used only in drug development. Using these advanced tools, clinical data from patient populations can be integrated with mechanistic models of disease and physiology, for generating personal mathematical models. Upon a more substantial validation in the clinic, this approach will hopefully be applied in personalized clinical trials, P-trials, hence aiding the establishment of personalized medicine within the main stream of clinical oncology. © 2014 Wiley Periodicals, Inc.

  10. Mathematical models of ABE fermentation: review and analysis.

    PubMed

    Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S

    2013-12-01

    Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.

  11. Chronobiology of epilepsy: diagnostic and therapeutic implications of chrono-epileptology.

    PubMed

    Loddenkemper, Tobias; Lockley, Steven W; Kaleyias, Joseph; Kothare, Sanjeev V

    2011-04-01

    The combination of chronobiology and epilepsy offers novel diagnostic and therapeutic management options. Knowledge of the interactions between circadian periodicity, entrainment, sleep patterns, and epilepsy may provide additional diagnostic options beyond sleep deprivation and extended release medication formulations. It may also provide novel insights into the physiologic, biochemical, and genetic regulation processes of epilepsy and the circadian clock, rendering new treatment options. Temporal fluctuations of seizure susceptibility based on sleep homeostasis and circadian phase in selected epilepsies may provide predictability based on mathematical models. Chrono-epileptology offers opportunities for individualized patient-oriented treatment paradigms based on chrono-pharmacology, differential medication dosing, chrono-drug delivery systems, and utilization of "zeitgebers" such as chronobiotics or light-therapy and desynchronization strategies among others.

  12. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio

    2008-10-27

    Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.

  13. Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief

    PubMed Central

    Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H.; Nuerk, Hans-Christoph

    2016-01-01

    Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors “Mathematical Test Anxiety” (MTA) and “Numerical Anxiety” (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established. PMID:26924996

  14. Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief.

    PubMed

    Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H; Nuerk, Hans-Christoph

    2016-01-01

    Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors "Mathematical Test Anxiety" (MTA) and "Numerical Anxiety" (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established.

  15. A graphical simulation software for instruction in cardiovascular mechanics physiology.

    PubMed

    Wildhaber, Reto A; Verrey, François; Wenger, Roland H

    2011-01-25

    Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  16. A mathematical approach to HIV infection dynamics

    NASA Astrophysics Data System (ADS)

    Ida, A.; Oharu, S.; Oharu, Y.

    2007-07-01

    In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation-solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.

  17. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  18. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    PubMed

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  19. Experimental Researches on the Durability Indicators and the Physiological Comfort of Fabrics using the Principal Component Analysis (PCA) Method

    NASA Astrophysics Data System (ADS)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.

    2017-06-01

    The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.

  20. Spatial-dependence recurrence sample entropy

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  1. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  2. Dynamical analysis of uterine cell electrical activity model.

    PubMed

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  3. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  4. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  5. A simulation study on the constancy of cardiac energy metabolites during workload transition.

    PubMed

    Saito, Ryuta; Takeuchi, Ayako; Himeno, Yukiko; Inagaki, Nobuya; Matsuoka, Satoshi

    2016-12-01

    The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant during physiological cardiac workload transition. How this is accomplished is not yet clarified, though Ca 2+ has been suggested to be one of the possible mechanisms. We constructed a detailed mathematical model of cardiac mitochondria based on experimental data and studied whether known Ca 2+ -dependent regulation mechanisms play roles in the metabolite constancy. Model simulations revealed that the Ca 2+ -dependent regulation mechanisms have important roles under the in vitro condition of isolated mitochondria where malate and glutamate were mitochondrial substrates, while they have only a minor role and the composition of substrates has marked influence on the metabolite constancy during workload transition under the simulated in vivo condition where many substrates exist. These results help us understand the regulation mechanisms of cardiac energy metabolism during physiological cardiac workload transition. The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant over a wide range of cardiac workload, though the mechanisms are not yet clarified. One possible regulator of mitochondrial metabolism is Ca 2+ , because it activates several mitochondrial enzymes and transporters. Here we constructed a mathematical model of cardiac mitochondria, including oxidative phosphorylation, substrate metabolism and ion/substrate transporters, based on experimental data, and studied whether the Ca 2+ -dependent activation mechanisms play roles in metabolite constancy. Under the in vitro condition of isolated mitochondria, where malate and glutamate were used as mitochondrial substrates, the model well reproduced the Ca 2+ and inorganic phosphate (P i ) dependences of oxygen consumption, NADH level and mitochondrial membrane potential. The Ca 2+ -dependent activations of the aspartate/glutamate carrier and the F 1 F o -ATPase, and the P i -dependent activation of Complex III were key factors in reproducing the experimental data. When the mitochondrial model was implemented in a simple cardiac cell model, simulation of workload transition revealed that cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyt ) within the physiological range markedly increased NADH level. However, the addition of pyruvate or citrate attenuated the Ca 2+ dependence of NADH during the workload transition. Under the simulated in vivo condition where malate, glutamate, pyruvate, citrate and 2-oxoglutarate were used as mitochondrial substrates, the energy metabolites were more stable during the workload transition and NADH level was almost insensitive to [Ca 2+ ] cyt . It was revealed that mitochondrial substrates have a significant influence on metabolite constancy during cardiac workload transition, and Ca 2+ has only a minor role under physiological conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop

    PubMed Central

    Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-01-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121

  7. Artifact removal from EEG data with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  8. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    PubMed

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  9. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  10. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  11. Development and validation of a physiology-based model for the prediction of pharmacokinetics/toxicokinetics in rabbits

    PubMed Central

    Hermes, Helen E.; Teutonico, Donato; Preuss, Thomas G.; Schneckener, Sebastian

    2018-01-01

    The environmental fates of pharmaceuticals and the effects of crop protection products on non-target species are subjects that are undergoing intense review. Since measuring the concentrations and effects of xenobiotics on all affected species under all conceivable scenarios is not feasible, standard laboratory animals such as rabbits are tested, and the observed adverse effects are translated to focal species for environmental risk assessments. In that respect, mathematical modelling is becoming increasingly important for evaluating the consequences of pesticides in untested scenarios. In particular, physiologically based pharmacokinetic/toxicokinetic (PBPK/TK) modelling is a well-established methodology used to predict tissue concentrations based on the absorption, distribution, metabolism and excretion of drugs and toxicants. In the present work, a rabbit PBPK/TK model is developed and evaluated with data available from the literature. The model predictions include scenarios of both intravenous (i.v.) and oral (p.o.) administration of small and large compounds. The presented rabbit PBPK/TK model predicts the pharmacokinetics (Cmax, AUC) of the tested compounds with an average 1.7-fold error. This result indicates a good predictive capacity of the model, which enables its use for risk assessment modelling and simulations. PMID:29561908

  12. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  13. When frequencies never synchronize: the golden mean and the resting EEG.

    PubMed

    Pletzer, Belinda; Kerschbaum, Hubert; Klimesch, Wolfgang

    2010-06-04

    The classical frequency bands of the EEG can be described as a geometric series with a ratio (between neighbouring frequencies) of 1.618, which is the golden mean. Here we show that a synchronization of the excitatory phases of two oscillations with frequencies f1 and f2 is impossible (in a mathematical sense) when their ratio equals the golden mean, because their excitatory phases never meet. Thus, in a mathematical sense, the golden mean provides a totally uncoupled ('desynchronized') processing state which most likely reflects a 'resting' brain, which is not involved in selective information processing. However, excitatory phases of the f1- and f2-oscillations occasionally come close enough to coincide in a physiological sense. These coincidences are more frequent, the higher the frequencies f1 and f2. We demonstrate that the pattern of excitatory phase meetings provided by the golden mean as the 'most irrational' number is least frequent and most irregular. Thus, in a physiological sense, the golden mean provides (i) the highest physiologically possible desynchronized state in the resting brain, (ii) the possibility for spontaneous and most irregular (!) coupling and uncoupling between rhythms and (iii) the opportunity for a transition from resting state to activity. These characteristics have already been discussed to lay the ground for a healthy interplay between various physiological processes (Buchmann, 2002). Copyright 2010 Elsevier B.V. All rights reserved.

  14. Validation of an integrative mathematical model of dehydration and rehydration in virtual humans.

    PubMed

    Pruett, W Andrew; Clemmer, John S; Hester, Robert L

    2016-11-01

    Water homeostasis is one of the body's most critical tasks. Physical challenges to the body, including exercise and surgery, almost always coordinate with some change in water handling reflecting the changing needs of the body. Vasopressin is the most important hormone that contributes to short-term water homeostasis. By manipulating vascular tone and regulating water reabsorption in the collecting duct of the kidneys, vasopressin can mediate the retention or loss of fluids quickly. In this study, we validated HumMod, an integrative mathematical model of human physiology, against six different challenges to water homeostasis with special attention to the secretion of vasopressin and maintenance of electrolyte balance. The studies chosen were performed in normal men and women, and represent a broad spectrum of perturbations. HumMod successfully replicated the experimental results, remaining within 1 standard deviation of the experimental means in 138 of 161 measurements. Only three measurements lay outside of the second standard deviation. Observations were made on serum osmolarity, serum vasopressin concentration, serum sodium concentration, urine osmolarity, serum protein concentration, hematocrit, and cumulative water intake following dehydration. This validation suggests that HumMod can be used to understand water homeostasis under a variety of conditions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography

    PubMed Central

    Zamunér, Antonio R.; Catai, Aparecida M.; Martins, Luiz E. B.; Sakabe, Daniel I.; Silva, Ester Da

    2013-01-01

    Background The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. Objectives To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output () using two mathematical models and to compare the results to those of the visual method. Method Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between and oxygen uptake (); 2) the linear-linear model, based on fitting the curves to the set of data (Lin-Lin ); 3) a bi-segmental linear regression of Hinkley' s algorithm applied to HR (HMM-HR), (HMM- ), and sEMG data (HMM-RMS). Results There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-Lin , HMM-HR, HMM-CO2, and HMM-RMS. Conclusion The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of , HR responses, and sEMG. PMID:24346296

  16. Reduced modeling of signal transduction – a modular approach

    PubMed Central

    Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494

  17. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography.

    PubMed

    Zamunér, Antonio R; Catai, Aparecida M; Martins, Luiz E B; Sakabe, Daniel I; Da Silva, Ester

    2013-01-01

    The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output (VCO2) using two mathematical models and to compare the results to those of the visual method. Ten sedentary middle-aged men (53.9 ± 3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between VCO2 and oxygen uptake (VO2); 2) the linear-linear model, based on fitting the curves to the set of VCO2 data (Lin-LinVCO2); 3) a bi-segmental linear regression of Hinkley's algorithm applied to HR (HMM-HR), VCO2 (HMM-VCO2), and sEMG data (HMM-RMS). There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinVCO2, HMM-HR, HMM-VCO2, and HMM-RMS. The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of VCO2, HR responses, and sEMG.

  18. DAISY: a new software tool to test global identifiability of biological and physiological systems

    PubMed Central

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D’Angiò, Leontina

    2009-01-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/. PMID:17707944

  19. Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory.

    PubMed

    Marn, Nina; Kooijman, S A L M; Jusup, Marko; Legović, Tarzan; Klanjšček, Tin

    2017-05-01

    Loggerhead turtle is an endangered sea turtle species with a migratory lifestyle and worldwide distribution, experiencing markedly different habitats throughout its lifetime. Environmental conditions, especially food availability and temperature, constrain the acquisition and the use of available energy, thus affecting physiological processes such as growth, maturation, and reproduction. These physiological processes at the population level determine survival, fecundity, and ultimately the population growth rate-a key indicator of the success of conservation efforts. As a first step towards the comprehensive understanding of how environment shapes the physiology and the life cycle of a loggerhead turtle, we constructed a full life cycle model based on the principles of energy acquisition and utilization embedded in the Dynamic Energy Budget (DEB) theory. We adapted the standard DEB model using data from published and unpublished sources to obtain parameter estimates and model predictions that could be compared with data. The outcome was a successful mathematical description of ontogeny and life history traits of the loggerhead turtle. Some deviations between the model and the data existed (such as an earlier age at sexual maturity and faster growth of the post-hatchlings), yet probable causes for these deviations were found informative and discussed in great detail. Physiological traits such as the capacity to withstand starvation, trade-offs between reproduction and growth, and changes in the energy budget throughout the ontogeny were inferred from the model. The results offer new insights into physiology and ecology of loggerhead turtle with the potential to lead to novel approaches in conservation of this endangered species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Parallel particle filters for online identification of mechanistic mathematical models of physiology from monitoring data: performance and real-time scalability in simulation scenarios.

    PubMed

    Zenker, Sven

    2010-08-01

    Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested. A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario. SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories. Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.

  1. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  2. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.

    PubMed

    Smith, Robert W; van Rosmalen, Rik P; Martins Dos Santos, Vitor A P; Fleck, Christian

    2018-06-19

    Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example, constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the mathematical complexity, while providing a reasonably good description of the system in steady state. However, without a large number of constraints, many different flux sets can describe the optimal model and we obtain no information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within the cell, finer quality data and more detailed models need to be constructed. In this paper we present a computational framework, DMPy, that uses a network scheme as input to automatically search for kinetic rates and produce a mathematical model that describes temporal changes of metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80% of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model by grouping reactions together based on fluxes alters the resulting system dynamics. The presented pipeline automates the modelling process for large metabolic networks. From this, users can simulate their pathway of interest and obtain a better understanding of how altering conditions influences cellular dynamics. By testing the effects of different parameterisations we are also able to provide suggestions to help construct more accurate models of complete metabolic systems in the future.

  3. Dynamic cardiac PET imaging: extraction of time-activity curves using ICA and a generalized Gaussian distribution model.

    PubMed

    Mabrouk, Rostom; Dubeau, François; Bentabet, Layachi

    2013-01-01

    Kinetic modeling of metabolic and physiologic cardiac processes in small animals requires an input function (IF) and a tissue time-activity curves (TACs). In this paper, we present a mathematical method based on independent component analysis (ICA) to extract the IF and the myocardium's TACs directly from dynamic positron emission tomography (PET) images. The method assumes a super-Gaussian distribution model for the blood activity, and a sub-Gaussian distribution model for the tissue activity. Our appreach was applied on 22 PET measurement sets of small animals, which were obtained from the three most frequently used cardiac radiotracers, namely: desoxy-fluoro-glucose ((18)F-FDG), [(13)N]-ammonia, and [(11)C]-acetate. Our study was extended to PET human measurements obtained with the Rubidium-82 ((82) Rb) radiotracer. The resolved mathematical IF values compare favorably to those derived from curves extracted from regions of interest (ROI), suggesting that the procedure presents a reliable alternative to serial blood sampling for small-animal cardiac PET studies.

  4. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings

    PubMed Central

    2012-01-01

    Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965

  5. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

    PubMed

    Otaki, Joji M

    2012-03-13

    To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.

  6. Homeostatic reinforcement learning for integrating reward collection and physiological stability.

    PubMed

    Keramati, Mehdi; Gutkin, Boris

    2014-12-02

    Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system.

  7. Modeling the Physiology of Circadian Timekeeping

    DTIC Science & Technology

    2011-08-31

    received faculty positions (Weihua Geng and Cecilia Diniz -Behn) and a third (Richard Yamada) received a prestigious American Mathematical Society...Published Paper: Fleshner M, Booth V, Forger DB, Diniz Behn CG Multiple Signals from the suprachiasmatic nucleus are required for circadian regulation

  8. Numbers, Neurons and Tides, Oh My!

    ERIC Educational Resources Information Center

    Ortiz, Mary Theresa

    2006-01-01

    Mathematical applications to biology are presented in Anatomy & Physiology, General and Marine Biology. Body measurements and anatomical terminology are integrated, and problems involving neuron conduction speed, red blood cells, hemoglobin and glomerular filtration presented. General Biology applications include trans-membrane potential and…

  9. Pharmacometric Models for Characterizing the Pharmacokinetics of Orally Inhaled Drugs.

    PubMed

    Borghardt, Jens Markus; Weber, Benjamin; Staab, Alexander; Kloft, Charlotte

    2015-07-01

    During the last decades, the importance of modeling and simulation in clinical drug development, with the goal to qualitatively and quantitatively assess and understand mechanisms of pharmacokinetic processes, has strongly increased. However, this increase could not equally be observed for orally inhaled drugs. The objectives of this review are to understand the reasons for this gap and to demonstrate the opportunities that mathematical modeling of pharmacokinetics of orally inhaled drugs offers. To achieve these objectives, this review (i) discusses pulmonary physiological processes and their impact on the pharmacokinetics after drug inhalation, (ii) provides a comprehensive overview of published pharmacokinetic models, (iii) categorizes these models into physiologically based pharmacokinetic (PBPK) and (clinical data-derived) empirical models, (iv) explores both their (mechanistic) plausibility, and (v) addresses critical aspects of different pharmacometric approaches pertinent for drug inhalation. In summary, pulmonary deposition, dissolution, and absorption are highly complex processes and may represent the major challenge for modeling and simulation of PK after oral drug inhalation. Challenges in relating systemic pharmacokinetics with pulmonary efficacy may be another factor contributing to the limited number of existing pharmacokinetic models for orally inhaled drugs. Investigations comprising in vitro experiments, clinical studies, and more sophisticated mathematical approaches are considered to be necessary for elucidating these highly complex pulmonary processes. With this additional knowledge, the PBPK approach might gain additional attractiveness. Currently, (semi-)mechanistic modeling offers an alternative to generate and investigate hypotheses and to more mechanistically understand the pulmonary and systemic pharmacokinetics after oral drug inhalation including the impact of pulmonary diseases.

  10. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on themore » development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses.« less

  11. Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study

    NASA Astrophysics Data System (ADS)

    Averner, Maurice M.; Moore, Berrien; Bartholomew, Irene; Wharton, Robert

    Concepts of biologically-based regenerative life support systems anticipate the use of photosynthetic organisms for air revitalization. However, mismatches in the rates of production and uptake of oxygen or carbon dioxide between the crew and the plants will lead to an accumulation or depletion of these gases beyond tolerable limits. One method for correcting these atmospheric changes is to use physicochemical devices. This would conflict with the constraint of minimal size and weight imposed upon the successful development of a competitive bioregenerative system. An alternate control strategy is based upon reducing the gas exchange mismatch by manipulation of those environmental parameters known to affect plant or algae gas exchange ratios. We have initiated a research program using a dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere. Our goal is to develop control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels. A mathematical model simulating the atmospheric behavior in these systems has been developed and an experimental gas-closed system has been constructed. These will be described and preliminary results will be presented.

  12. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  13. A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice.

    PubMed

    Whitcomb, David C; Ermentrout, G Bard

    2004-08-01

    To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of >140 mM after CFTR activation. A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a sodium-2-bicarbonate cotransporter (NBC) and sodium-potassium pump (NaK pump) on a chloride-impermeable basolateral membrane, CFTR on the luminal membrane with 0.2 to 1 bicarbonate to chloride permeability ratio. Chloride-bicarbonate antiporters (Cl/HCO3 AP) were added or subtracted from the basolateral (APb) and luminal (APl) membranes. The model was integrated over time using XPPAUT. This model predicts robust, NaK pump-dependent bicarbonate secretion with opening of the CFTR, generates and maintains pancreatic fluid secretion with bicarbonate concentrations >140 mM, and returns to basal levels with CFTR closure. Limiting CFTR permeability to bicarbonate, as seen in some CFTR mutations, markedly inhibited pancreatic bicarbonate and fluid secretion. A simple CFTR-dependent duct cell model can explain active, high-volume, high-concentration bicarbonate secretion in pancreatic juice that reproduces the experimental findings. This model may also provide insight into why CFTR mutations that predominantly affect bicarbonate permeability predispose to pancreatic dysfunction in humans.

  14. Biological Bases of Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  15. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    PubMed Central

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565

  16. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    PubMed

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.

  17. Modeling energy expenditure in children and adolescents using quantile regression

    USDA-ARS?s Scientific Manuscript database

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obes...

  18. Comprehensive mathematical model of oxidative phosphorylation valid for physiological and pathological conditions.

    PubMed

    Heiske, Margit; Letellier, Thierry; Klipp, Edda

    2017-09-01

    We developed a mathematical model of oxidative phosphorylation (OXPHOS) that allows for a precise description of mitochondrial function with respect to the respiratory flux and the ATP production. The model reproduced flux-force relationships under various experimental conditions (state 3 and 4, uncoupling, and shortage of respiratory substrate) as well as time courses, exhibiting correct P/O ratios. The model was able to reproduce experimental threshold curves for perturbations of the respiratory chain complexes, the F 1 F 0 -ATP synthase, the ADP/ATP carrier, the phosphate/OH carrier, and the proton leak. Thus, the model is well suited to study complex interactions within the OXPHOS system, especially with respect to physiological adaptations or pathological modifications, influencing substrate and product affinities or maximal catalytic rates. Moreover, it could be a useful tool to study the role of OXPHOS and its capacity to compensate or enhance physiopathologies of the mitochondrial and cellular energy metabolism. © 2017 Federation of European Biochemical Societies.

  19. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.

  20. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.

    2011-01-01

    Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328

  1. Mathematical modeling of physiological systems: an essential tool for discovery.

    PubMed

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from the individual level up to the level of evolutionary processes.

  3. Models of neuromodulation for computational psychiatry.

    PubMed

    Iglesias, Sandra; Tomiello, Sara; Schneebeli, Maya; Stephan, Klaas E

    2017-05-01

    Psychiatry faces fundamental challenges: based on a syndrome-based nosology, it presently lacks clinical tests to infer on disease processes that cause symptoms of individual patients and must resort to trial-and-error treatment strategies. These challenges have fueled the recent emergence of a novel field-computational psychiatry-that strives for mathematical models of disease processes at physiological and computational (information processing) levels. This review is motivated by one particular goal of computational psychiatry: the development of 'computational assays' that can be applied to behavioral or neuroimaging data from individual patients and support differential diagnosis and guiding patient-specific treatment. Because the majority of available pharmacotherapeutic approaches in psychiatry target neuromodulatory transmitters, models that infer (patho)physiological and (patho)computational actions of different neuromodulatory transmitters are of central interest for computational psychiatry. This article reviews the (many) outstanding questions on the computational roles of neuromodulators (dopamine, acetylcholine, serotonin, and noradrenaline), outlines available evidence, and discusses promises and pitfalls in translating these findings to clinical applications. WIREs Cogn Sci 2017, 8:e1420. doi: 10.1002/wcs.1420 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  4. A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions

    NASA Astrophysics Data System (ADS)

    Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan

    2009-04-01

    Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.

  5. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations.

    PubMed

    Kay, Katherine; Shah, Dhaval K; Rohan, Lisa; Bies, Robert

    2018-05-01

    A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l -1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l -1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  6. A Systems Approach to the Physiology of Weightlessness

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.

    1991-01-01

    A systems approach to the unraveling of the complex response pattern of the human subjected to weightlessness is presented. The major goal of this research is to obtain an understanding of the role that each of the major components of the human system plays following the transition to and from space. The cornerstone of this approach is the utilization of a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. An integrated hypothesis for the human physiological response to weightlessness is developed.

  7. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  8. Neuronal periodicity detection as a basis for the perception of consonance: a mathematical model of tonal fusion.

    PubMed

    Ebeling, Martin

    2008-10-01

    A mathematical model is presented here to explain the sensation of consonance and dissonance on the basis of neuronal coding and the properties of a neuronal periodicity detection mechanism. This mathematical model makes use of physiological data from a neuronal model of periodicity analysis in the midbrain, whose operation can be described mathematically by autocorrelation functions with regard to time windows. Musical intervals produce regular firing patterns in the auditory nerve that depend on the vibration ratio of the two tones. The mathematical model makes it possible to define a measure for the degree of these regularities for each vibration ratio. It turns out that this measure value is in line with the degree of tonal fusion as described by Stumpf [Tonpsychologie (Psychology of Tones) (Knuf, Hilversum), reprinted 1965]. This finding makes it probable that tonal fusion is a consequence of certain properties of the neuronal periodicity detection mechanism. Together with strong roughness resulting from interval tones with fundamentals close together or close to the octave, this neuronal mechanism may be regarded as the basis of consonance and dissonance.

  9. Connecting Undergraduate Plant Cell Biology Students with the Scientists about Whom They Learn: A Bibliography.

    ERIC Educational Resources Information Center

    Wayne, Randy; Staves, Mark P.

    1998-01-01

    Details the teaching of an undergraduate plant-cell biology class in the manner proposed by Jean Baptiste Carnoy when he established the first institute of cellular biology. Integrates mathematics, astronomy, physics, chemistry, anatomy, physiology, and ecology. Contains 226 references. (DDR)

  10. A SIMPLE MODEL FOR THE UPTAKE, TRANSLOCATION, AND ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS

    EPA Science Inventory

    A simple mathematical model is being developed to describe the uptake, translocation, and accumulation of perchlorate in tobacco plants. The model defines a plant as a set of compartments, consisting of mass balance differential equations and plant-specific physiological paramet...

  11. Nutrition Action Pack.

    ERIC Educational Resources Information Center

    Sockut, Joanne; Stumpe, Stephanie

    One of five McDonald's Action Packs, these instructional materials integrate elementary school-level nutrition education into other disciplines--biology, sociology, physiology, mathematics, and art. Contents include four units consisting of twelve activities. Unit 1, Why You Need Food, is a self-examination of what is needed for growth, health,…

  12. Process models as tools in forestry research and management

    Treesearch

    Kurt Johnsen; Lisa Samuelson; Robert Teskey; Steve McNulty; Tom Fox

    2001-01-01

    Forest process models are mathematical representations of biological systems that incorporate our understanding of physiological and ecological mechanisms into predictive algorithms. These models were originally designed and used for research purposes, but are being developed for use in practical forest management. Process models designed for research...

  13. The 1986 advances in bioengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, S.A.; King, A.I.

    1986-01-01

    This book presents the papers given at a conference on biomedicine. Topics considered at the conference included a mathematical method for obtaining three-dimensional information from standard two-dimensional radiographs, the human lumbar spine, scoliosis and instrumentation, vehicle crashworthiness, lung mechanics, physiological fluid mechanics, microgravity, cardiovascular mechanics, and soft tissue.

  14. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    PubMed

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  15. Mathematical modeling of acute and chronic cardiovascular changes during Extended Duration Orbiter (EDO) flights

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini; Charles, John B.

    1991-01-01

    The purpose of NASA's Extended Duration Orbiter program is a gradual extension of the capabilities of the Space Shuttle Orbiter beyond its current 7-10 day limit on mission duration, as warranted by deepening understanding of the long-term physiological effects of weightlessness. Attention is being given to the cardiovascular problem of orthostatic tolerance loss due to its adverse effects on crew performance and health during reentry and initial readaptation to earth gravity. An account is given of the results of the application of proven mathematical models of circulatory and cardiovascular systems under microgravity conditions.

  16. [Heat transfer analysis of liquid cooling garment used for extravehicular activity].

    PubMed

    Qiu, Y F; Yuan, X G; Mei, Z G; Jia, S G; Ouyang, H; Ren, Z S

    2001-10-01

    Brief description was given about the construction and function of the LCG (liquid cooling garment) used for EVA (extravehicular activity). The heat convection was analyzed between ventilating gas and LCG, the heat and mass transfer process was analyzed too, then a heat and mass transfer mathematical model of LCG was developed. Thermal physiological experimental study with human body wearing LVCG (liquid cooling and ventilation garment) used for EVA was carried out to verify this mathematical model. This study provided a basis for the design of liquid-cooling and ventilation system for the space suit.

  17. Homeostatic reinforcement learning for integrating reward collection and physiological stability

    PubMed Central

    Keramati, Mehdi; Gutkin, Boris

    2014-01-01

    Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system. DOI: http://dx.doi.org/10.7554/eLife.04811.001 PMID:25457346

  18. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    PubMed

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  19. Measurements, modeling, control and simulation - as applied to the human left ventricle for purposeful physiological monitoring.

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.

    1971-01-01

    Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.

  20. A review of human physiological and performance changes associated with desynchronosis of biological rhythms

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Deroshia, C. W.; Markley, C. L.; Holley, D. C.

    1984-01-01

    This review discusses the effects, in the aerospace environment, of alterations in approximately 24-h periodicities (circadian rhythms) upon physiological and psychological functions and possible therapies for desynchronosis induced by such alterations. The consequences of circadian rhythm alteration resulting from shift work, transmeridian flight, or altered day lengths are known as desynchronosis, dysrhythmia, dyschrony, jet lag, or jet syndrome. Considerable attention is focused on the ability to operate jet aircraft and manned space vehicles. The importance of environmental cues, such as light-dark cycles, which influence physiological and psychological rhythms is discussed. A section on mathematical models is presented to enable selection and verification of appropriate preventive and corrective measures and to better understand the problem of dysrhythmia.

  1. Scattering and Diffraction of Elastodynamic Waves in a Concentric Cylindrical Phantom for MR Elastography

    PubMed Central

    Schwartz, Benjamin L.; Yin, Ziying; Yaşar, Temel K.; Liu, Yifei; Khan, Altaf A.; Ye, Allen Q.; Royston, Thomas J.; Magin, Richard L.

    2016-01-01

    Aim The focus of this paper is to report on the design and construction of a multiply connected phantom for use in magnetic resonance elasography (MRE)–an imaging technique that allows for the non-invasive visualization of the displacement field throughout an object from externally driven harmonic motion–as well as its inverse modeling with a closed-form analytic solution which is derived herein from first principles. Methods Mathematically, the phantom is described as two infinite concentric circular cylinders with unequal complex shear moduli, harmonically vibrated at the exterior surface in a direction along their common axis. Each concentric cylinder is made of a hydrocolloid with its own specific solute concentration. They are assembled in a multi-step process for which custom scaffolding was designed and built. A customized spin-echo based MR elastography sequence with a sinusoidal motion-sensitizing gradient was used for data acquisition on a 9.4 T Agilent small-animal MR scanner. Complex moduli obtained from the inverse model are used to solve the forward problem with a finite element method. Results Both complex shear moduli show a significant frequency dependence (p < 0.001) in keeping with previous work. Conclusion The novel multiply connected phantom and mathematical model are validated as a viable tool for MRE studies. Significance On a small enough scale much of physiology can be mathematically modeled with basic geometric shapes, e.g. a cylinder representing a blood vessel. This work demonstrates the possibility of elegant mathematical analysis of phantoms specifically designed and carefully constructed for biomedical MRE studies. PMID:26886963

  2. How students learn to coordinate knowledge of physical and mathematical models in cellular physiology

    NASA Astrophysics Data System (ADS)

    Lira, Matthew

    This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students shift from recognizing one influence to recognizing both the chemical and the electrical gradients as responsible for a cell's membrane potential reaching dynamic equilibrium. Together, the studies illustrate that to coordinate knowledge, students need opportunities to reflect upon relations between representations of mathematical and physical models as well as distinguish between physical quantities such as molarities for ions and transmembrane voltages.

  3. Predicting the risk of sudden cardiac death.

    PubMed

    Lerma, Claudia; Glass, Leon

    2016-05-01

    Sudden cardiac death (SCD) is the result of a change of cardiac activity from normal (typically sinus) rhythm to a rhythm that does not pump adequate blood to the brain. The most common rhythms leading to SCD are ventricular tachycardia (VT) or ventricular fibrillation (VF). These result from an accelerated ventricular pacemaker or ventricular reentrant waves. Despite significant efforts to develop accurate predictors for the risk of SCD, current methods for risk stratification still need to be improved. In this article we briefly review current approaches to risk stratification. Then we discuss the mathematical basis for dynamical transitions (called bifurcations) that may lead to VT and VF. One mechanism for transition to VT or VF involves a perturbation by a premature ventricular complex (PVC) during sinus rhythm. We describe the main mechanisms of PVCs (reentry, independent pacemakers and abnormal depolarizations). An emerging approach to risk stratification for SCD involves the development of individualized dynamical models of a patient based on measured anatomy and physiology. Careful analysis and modelling of dynamics of ventricular arrhythmia on an individual basis will be essential in order to improve risk stratification for SCD and to lay a foundation for personalized (precision) medicine in cardiology. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  5. Igniting Creativity and Planning for Your Gifted Students.

    ERIC Educational Resources Information Center

    Russell, Don W., Ed.

    The collection of instructional plans is designed to offer samples of strategies and ideas to teachers involved with gifted students. Approximately 30 plans are presented for the following areas (sample subtopics in science (atomic fusion), social studies (mores and folkways), mathematics (spatial relations), health and physiology, philosophy, and…

  6. Decreasing Math Anxiety in College Students

    ERIC Educational Resources Information Center

    Perry, Andrew B.

    2004-01-01

    This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…

  7. A Novel Approach to Physiology Education for Biomedical Engineering Students

    ERIC Educational Resources Information Center

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  8. Fostering Improved Anatomy and Physiology Instructor Pedagogy

    ERIC Educational Resources Information Center

    Mattheis, Allison; Jensen, Murray

    2014-01-01

    Despite widespread calls for reform in undergraduate science, technology, engineering, and mathematics education, effecting lasting change in instructor practice is challenging to achieve. This article describes the results of a 2-yr research study that involved efforts to develop the pedagogical expertise of a group of anatomy and physiology…

  9. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.

    PubMed

    Hoehenwarter, Wolfgang; Chen, Yanmei; Recuenco-Munoz, Luis; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.

  10. Mathematical model to estimate risk of calcium-containing renal stones

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Feiveson, A. H.; Whitson, P. A.

    1999-01-01

    BACKGROUND/AIMS: Astronauts exposed to microgravity during the course of spaceflight undergo physiologic changes that alter the urinary environment so as to increase the risk of renal stone formation. This study was undertaken to identify a simple method with which to evaluate the potential risk of renal stone development during spaceflight. METHOD: We used a large database of urinary risk factors obtained from 323 astronauts before and after spaceflight to generate a mathematical model with which to predict the urinary supersaturation of calcium stone forming salts. RESULT: This model, which involves the fewest possible analytical variables (urinary calcium, citrate, oxalate, phosphorus, and total volume), reliably and accurately predicted the urinary supersaturation of the calcium stone forming salts when compared to results obtained from a group of 6 astronauts who collected urine during flight. CONCLUSIONS: The use of this model will simplify both routine medical monitoring during spaceflight as well as the evaluation of countermeasures designed to minimize renal stone development. This model also can be used for Earth-based applications in which access to analytical resources is limited.

  11. Effect of action potential duration on Tpeak-Tend interval, T-wave area and T-wave amplitude as indices of dispersion of repolarization: Theoretical and simulation study in the rabbit heart.

    PubMed

    Arteyeva, Natalia V; Azarov, Jan E

    The aim of the study was to differentiate the effect of dispersion of repolarization (DOR) and action potential duration (APD) on T-wave parameters being considered as indices of DOR, namely, Tpeak-Tend interval, T-wave amplitude and T-wave area. T-wave was simulated in a wide physiological range of DOR and APD using a realistic rabbit model based on experimental data. A simplified mathematical formulation of T-wave formation was conducted. Both the simulations and the mathematical formulation showed that Tpeak-Tend interval and T-wave area are linearly proportional to DOR irrespectively of APD range, while T-wave amplitude is non-linearly proportional to DOR and inversely proportional to the minimal repolarization time, or minimal APD value. Tpeak-Tend interval and T-wave area are the most accurate DOR indices independent of APD. T-wave amplitude can be considered as an index of DOR when the level of APD is taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Web-Based Instruction in Physics Courses

    NASA Astrophysics Data System (ADS)

    Wijekumar, V.

    1998-05-01

    The World Wide Web will be utilized to deliver instructional materials in physics courses in two cases. In one case, a set of physics courses will be entirely taught using WWW for high school science and mathematics teachers in the physics certification program. In the other case, the WWW will be used to enhance the linkage between the laboratory courses in medical physics, human physiology and clinical nursing courses for nursing students. This project links three departments in two colleges to enhance a project known as Integrated Computer System across the Health Science Curriculum. Partial support for this work was provided by the National Science Foundation's Division od Undergraduate Education through grant DUE # 9650793.

  13. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    PubMed

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  14. Reconstruction method for data protection in telemedicine systems

    NASA Astrophysics Data System (ADS)

    Buldakova, T. I.; Suyatinov, S. I.

    2015-03-01

    In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.

  15. Understanding synergy.

    PubMed

    Geary, Nori

    2013-02-01

    Analysis of the interactive effects of combinations of hormones or other manipulations with qualitatively similar individual effects is an important topic in basic and clinical endocrinology as well as other branches of basic and clinical research related to integrative physiology. Functional, as opposed to mechanistic, analyses of interactions rely on the concept of synergy, which can be defined qualitatively as a cooperative action or quantitatively as a supra-additive effect according to some metric for the addition of different dose-effect curves. Unfortunately, dose-effect curve addition is far from straightforward; rather, it requires the development of an axiomatic mathematical theory. I review the mathematical soundness, face validity, and utility of the most frequently used approaches to supra-additive synergy. These criteria highlight serious problems in the two most common synergy approaches, response additivity and Loewe additivity, which is the basis of the isobole and related response surface approaches. I conclude that there is no adequate, generally applicable, supra-additive synergy metric appropriate for endocrinology or any other field of basic and clinical integrative physiology. I recommend that these metrics be abandoned in favor of the simpler definition of synergy as a cooperative, i.e., nonantagonistic, effect. This simple definition avoids mathematical difficulties, is easily applicable, meets regulatory requirements for combination therapy development, and suffices to advance phenomenological basic research to mechanistic studies of interactions and clinical combination therapy research.

  16. Non-Euclidean stress-free configuration of arteries accounting for curl of axial strips sectioned from vessels.

    PubMed

    Takamizawa, Keiichi; Nakayama, Yasuhide

    2013-11-01

    It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.

  17. Annual cycle of Scots pine photosynthesis

    NASA Astrophysics Data System (ADS)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  18. Electrical Wave Propagation in a Minimally Realistic Fiber Architecture Model of the Left Ventricle

    NASA Astrophysics Data System (ADS)

    Song, Xianfeng; Setayeshgar, Sima

    2006-03-01

    Experimental results indicate a nested, layered geometry for the fiber surfaces of the left ventricle, where fiber directions are approximately aligned in each surface and gradually rotate through the thickness of the ventricle. Numerical and analytical results have highlighted the importance of this rotating anisotropy and its possible destabilizing role on the dynamics of scroll waves in excitable media with application to the heart. Based on the work of Peskin[1] and Peskin and McQueen[2], we present a minimally realistic model of the left ventricle that adequately captures the geometry and anisotropic properties of the heart as a conducting medium while being easily parallelizable, and computationally more tractable than fully realistic anatomical models. Complementary to fully realistic and anatomically-based computational approaches, studies using such a minimal model with the addition of successively realistic features, such as excitation-contraction coupling, should provide unique insight into the basic mechanisms of formation and obliteration of electrical wave instabilities. We describe our construction, implementation and validation of this model. [1] C. S. Peskin, Communications on Pure and Applied Mathematics 42, 79 (1989). [2] C. S. Peskin and D. M. McQueen, in Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, 309(1996)

  19. Physical and mathematical cochlear models

    NASA Astrophysics Data System (ADS)

    Lim, Kian-Meng

    2000-10-01

    The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity, and non-linear effects such as compression of response with stimulus level, two-tone suppression and the generation of harmonic and distortion products.

  20. Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics

    NASA Astrophysics Data System (ADS)

    Widakdo, W. A.

    2017-09-01

    Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.

  1. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  2. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    NASA Astrophysics Data System (ADS)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  3. Identification of Small Molecule Activators of Cryptochrome

    PubMed Central

    Hirota, Tsuyoshi; Lee, Jae Wook; St. John, Peter C.; Sawa, Mariko; Iwaisako, Keiko; Noguchi, Takako; Pongsawakul, Pagkapol Y.; Sonntag, Tim; Welsh, David K.; Brenner, David A.; Doyle, Francis J.; Schultz, Peter G.; Kay, Steve A.

    2013-01-01

    Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compound have been identified that selectively target core clock proteins. From an unbiased cell-based circadian screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001- mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes. PMID:22798407

  4. Optimal weight based on energy imbalance and utility maximization

    NASA Astrophysics Data System (ADS)

    Sun, Ruoyan

    2016-01-01

    This paper investigates the optimal weight for both male and female using energy imbalance and utility maximization. Based on the difference of energy intake and expenditure, we develop a state equation that reveals the weight gain from this energy gap. We ​construct an objective function considering food consumption, eating habits and survival rate to measure utility. Through applying mathematical tools from optimal control methods and qualitative theory of differential equations, we obtain some results. For both male and female, the optimal weight is larger than the physiologically optimal weight calculated by the Body Mass Index (BMI). We also study the corresponding trajectories to steady state weight respectively. Depending on the value of a few parameters, the steady state can either be a saddle point with a monotonic trajectory or a focus with dampened oscillations.

  5. Understanding protein evolution: from protein physics to Darwinian selection.

    PubMed

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  6. A whole-body mathematical model for intracranial pressure dynamics.

    PubMed

    Lakin, William D; Stevens, Scott A; Tranmer, Bruce I; Penar, Paul L

    2003-04-01

    Most attempts to study intracranial pressure using lumped-parameter models have adopted the classical "Kellie-Monro Doctrine," which considers the intracranial space to be a closed system that is confined within the nearly-rigid skull, conserves mass, and has equal inflow and outflow. The present work revokes this Doctrine and develops a mathematical model for the dynamics of intracranial pressures, volumes, and flows that embeds the intracranial system in extensive whole-body physiology. The new model consistently introduces compartments representing the tissues and vasculature of the extradural portions of the body, including both the thoracic region and the lower extremities. In addition to vascular connections, a spinal-subarachnoid cerebrospinal fluid (CSF) compartment bridges intracranial and extracranial physiology allowing explict buffering of intracranial pressure fluctuations by the spinal theca. The model contains cerebrovascular autoregulation, regulation of systemic vascular pressures by the sympathetic nervous system, regulation of CSF production in the choroid plexus, a lymphatic system, colloid osmotic pressure effects, and realistic descriptions of cardiac output. To validate the model in situations involving normal physiology, the model's response to a realistic pulsatile cardiac output is examined. A well-known experimentally-derived intracranial pressure-volume relationship is recovered by using the model to simulate CSF infusion tests, and the effect on cerebral blood flow of a change in body position is also examined. Cardiac arrest and hemorrhagic shock are simulated to demonstrate the predictive capabilities of the model in pathological conditions.

  7. What is the purpose of emission computed tomography in nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.

    1977-01-01

    ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function.

  8. Enhancing elementary-school mathematics teachers' efficacy beliefs: a qualitative action research

    NASA Astrophysics Data System (ADS)

    Katz, Sara; Stupel, Moshe

    2016-04-01

    Individuals and societies that can use mathematics effectively in this period of rapid changes will have a voice on increasing the opportunities and potentials which can shape their future. This has brought affective characteristics, such as self-efficacy, that affect mathematics achievement into focus of the research. Teacher efficacy refers to the extent to which a teacher feels capable to help students learn, influence students' performance and commitment, and thus plays a crucial role in developing the student in all aspects. In this study, we used two sources of efficacy beliefs, mastery experiences and physiological and emotional states, in an interesting and challenging seven month workshop, as tools to foster teacher efficacy for six elementary-school teachers who were frustrated and wanted to leave their job. Our aim was to study the nature of these teachers' efficacy in order to change it. In this qualitative action research, we used open interviews, non-participant observations and field notes. Results show that these teachers became efficacious, their students' achievements and motivation were enhanced, and the school climate was changed. Qualitative inquiry of this construct sheds light on efficacy beliefs of mathematics teachers. Nurturing teacher efficacy has borne much fruit in the field of mathematics in school.

  9. Activities for Students: Biology as a Source for Algebra Equations--The Heart

    ERIC Educational Resources Information Center

    Horak, Virginia M.

    2005-01-01

    The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…

  10. A cardiovascular system model for lower-body negative pressure response

    NASA Technical Reports Server (NTRS)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  11. What is the Purpose of Biology in Education?

    ERIC Educational Resources Information Center

    Oliver, J. Steve; Nichols, B. Kim

    1998-01-01

    Summarizes a debate over biology education that took place during a symposium sponsored by the School Science and Mathematics editors in 1908. The six published symposium contributions were meant to address such questions as whether zoology, botany, and human physiology should be studied in one biology course, and what the general purposes for…

  12. Sex differences in human cardiovascular stress responses: mathematical and physiological approaches

    NASA Astrophysics Data System (ADS)

    Anishchenko, Tatijana G.; Igosheva, N. B.; Saparin, P. I.

    1993-06-01

    A new quantitative electrocardiogram characteristic is introduced as a distribution entropy, normalized by the signal energy. A perspective of this parameter application as a diagnostic criterion is proved by series of test experiments. By way of comparison with traditional medico-biological characteristics the higher sensitivity and stability of this criterion is proved.

  13. "Accepting Emotional Complexity": A Socio-Constructivist Perspective on the Role of Emotions in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Eynde, Peter Op't; De Corte, Erik; Verschaffel, Lieven

    2006-01-01

    A socio-constructivist account of learning and emotions stresses the situatedness of every learning activity and points to the close interactions between cognitive, conative and affective factors in students' learning and problem solving. Emotions are perceived as being constituted by the dynamic interplay of cognitive, physiological, and…

  14. Theoretical study on the constricted flow phenomena in arteries

    NASA Astrophysics Data System (ADS)

    Sen, S.; Chakravarty, S.

    2012-12-01

    The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

  15. The challenge of cardiac modeling--interaction and integration.

    PubMed

    Sideman, Samuel

    2006-10-01

    The goal of clinical cardiology is to obtain an integrated picture of the interacting parameters of muscle and vessel mechanics, blood circulation and myocardial perfusion, oxygen consumption and energy metabolism, and electrical activation and heart rate, thus relating to the true physiological and pathophysiological characteristics of the heart. Scientific insight into the cardiac physiology and performance is achieved by utilizing life sciences, for example, molecular biology, genetics and related intra- and intercellular phenomena, as well as the exact sciences, for example, mathematics, computer science, and related imaging and visualization techniques. The tools to achieve these goals are based on the intimate interactions between engineering science and medicine and the developments of modern, medically oriented technology. Most significant is the beneficiary effect of the globalization of science, the Internet, and the unprecedented international interaction and scientific cooperation in facing difficult multidisciplined challenges. This meeting aims to explore some important interactions in the cardiac system and relate to the integration of spatial and temporal interacting system parameters, so as to gain better insight into the structure and function of the cardiac system, thus leading to better therapeutic modalities.

  16. Semi-automated Modular Program Constructor for physiological modeling: Building cell and organ models.

    PubMed

    Jardine, Bartholomew; Raymond, Gary M; Bassingthwaighte, James B

    2015-01-01

    The Modular Program Constructor (MPC) is an open-source Java based modeling utility, built upon JSim's Mathematical Modeling Language (MML) ( http://www.physiome.org/jsim/) that uses directives embedded in model code to construct larger, more complicated models quickly and with less error than manually combining models. A major obstacle in writing complex models for physiological processes is the large amount of time it takes to model the myriad processes taking place simultaneously in cells, tissues, and organs. MPC replaces this task with code-generating algorithms that take model code from several different existing models and produce model code for a new JSim model. This is particularly useful during multi-scale model development where many variants are to be configured and tested against data. MPC encodes and preserves information about how a model is built from its simpler model modules, allowing the researcher to quickly substitute or update modules for hypothesis testing. MPC is implemented in Java and requires JSim to use its output. MPC source code and documentation are available at http://www.physiome.org/software/MPC/.

  17. A Bayesian network for modelling blood glucose concentration and exercise in type 1 diabetes.

    PubMed

    Ewings, Sean M; Sahu, Sujit K; Valletta, John J; Byrne, Christopher D; Chipperfield, Andrew J

    2015-06-01

    This article presents a new statistical approach to analysing the effects of everyday physical activity on blood glucose concentration in people with type 1 diabetes. A physiologically based model of blood glucose dynamics is developed to cope with frequently sampled data on food, insulin and habitual physical activity; the model is then converted to a Bayesian network to account for measurement error and variability in the physiological processes. A simulation study is conducted to determine the feasibility of using Markov chain Monte Carlo methods for simultaneous estimation of all model parameters and prediction of blood glucose concentration. Although there are problems with parameter identification in a minority of cases, most parameters can be estimated without bias. Predictive performance is unaffected by parameter misspecification and is insensitive to misleading prior distributions. This article highlights important practical and theoretical issues not previously addressed in the quest for an artificial pancreas as treatment for type 1 diabetes. The proposed methods represent a new paradigm for analysis of deterministic mathematical models of blood glucose concentration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  19. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  20. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  1. Factors Influencing Elementary Mathematics Teachers' Beliefs in Reform-Based Teaching

    ERIC Educational Resources Information Center

    Sawyer, Amanda Gantt

    2017-01-01

    I investigated a reform based teachers' beliefs about the nature of mathematics, teaching mathematics, and learning mathematics, and the factors leading to their formation. I interviewed and observed a reform-based elementary mathematics teacher with 13 years' experience teaching first grade. She held a Platonist/problem solver view of…

  2. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  3. Calibration-free technique for the measurement of oxygen saturation changes in muscles of marine mammals and its proof of concept

    NASA Astrophysics Data System (ADS)

    Ortega-Martinez, Antonio; Goenka, Chhavi; Booker, Marloes; Grange, Robert M. H.; Hindle, Allyson G.; Franco, Walfre

    2018-02-01

    Marine mammals possess impressive breath-holding capabilities made possible by physiological adjustments during dives. Studying marine mammals in their natural environment unravels vital information about these physiological adjustments particularly when we can monitor altered dive behavior in response to stressful situations such as human-induced oceanic disturbances, presence of predators and altered prey distributions. An important indicator of physiological status during submergence is the change in oxygen saturation in the muscles and blood of these mammals. In this work, we aim to investigate oxygen storage and consumption in the muscles of free-diving elephant seals when exposed to disturbances such as sonar or predator sounds while they are at sea. Optical oxygen sensors are a mature technology with multiple medical applications that provide a way to measure oxygenation changes in biological tissues in a minimally invasive manner. While these sensors are well calibrated and readily available for humans, they are still inadequate for marine mammals primarily due to a very small number of test candidates and therefore little data is available for validation and calibration. We propose a probe geometry and associated mathematical model for measuring muscle oxygenation in seals based on near infrared diffuse transport with no need for calibration. A prototype based on this concept has been designed and tested on humans and rats. We use the test results to discuss the advantages and limitations of the approach. We also detail the constraints on size, sensor location, electronics, light source properties and detector characteristics posed by the unique biology of seals.

  4. Computational physiology and the Physiome Project.

    PubMed

    Crampin, Edmund J; Halstead, Matthew; Hunter, Peter; Nielsen, Poul; Noble, Denis; Smith, Nicolas; Tawhai, Merryn

    2004-01-01

    Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.

  5. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis

    PubMed Central

    Gillies, Kendall; Krone, Stephen M.; Nagler, James J.; Schultz, Irvin R.

    2016-01-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. PMID:27096735

  6. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis.

    PubMed

    Gillies, Kendall; Krone, Stephen M; Nagler, James J; Schultz, Irvin R

    2016-04-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales.

  7. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth

    PubMed Central

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C.; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops. PMID:26154262

  8. Multiscale Mathematical Modeling in Dental Tissue Engineering: Toward Computer-Aided Design of a Regenerative System Based on Hydroxyapatite Granules, Focussing on Early and Mid-Term Stiffness Recovery

    PubMed Central

    Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian

    2016-01-01

    We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584

  9. Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation.

    PubMed

    Chisholm, Rebecca H; Lorenzi, Tommaso; Clairambault, Jean

    2016-11-01

    Drug-induced drug resistance in cancer has been attributed to diverse biological mechanisms at the individual cell or cell population scale, relying on stochastically or epigenetically varying expression of phenotypes at the single cell level, and on the adaptability of tumours at the cell population level. We focus on intra-tumour heterogeneity, namely between-cell variability within cancer cell populations, to account for drug resistance. To shed light on such heterogeneity, we review evolutionary mechanisms that encompass the great evolution that has designed multicellular organisms, as well as smaller windows of evolution on the time scale of human disease. We also present mathematical models used to predict drug resistance in cancer and optimal control methods that can circumvent it in combined therapeutic strategies. Plasticity in cancer cells, i.e., partial reversal to a stem-like status in individual cells and resulting adaptability of cancer cell populations, may be viewed as backward evolution making cancer cell populations resistant to drug insult. This reversible plasticity is captured by mathematical models that incorporate between-cell heterogeneity through continuous phenotypic variables. Such models have the benefit of being compatible with optimal control methods for the design of optimised therapeutic protocols involving combinations of cytotoxic and cytostatic treatments with epigenetic drugs and immunotherapies. Gathering knowledge from cancer and evolutionary biology with physiologically based mathematical models of cell population dynamics should provide oncologists with a rationale to design optimised therapeutic strategies to circumvent drug resistance, that still remains a major pitfall of cancer therapeutics. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mathematization Competencies of Pre-Service Elementary Mathematics Teachers in the Mathematical Modelling Process

    ERIC Educational Resources Information Center

    Yilmaz, Suha; Tekin-Dede, Ayse

    2016-01-01

    Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…

  11. A mathematical model for adaptive transport network in path finding by true slime mold.

    PubMed

    Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki

    2007-02-21

    We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior of the model on this parameter.

  12. Computational assessment of model-based wave separation using a database of virtual subjects.

    PubMed

    Hametner, Bernhard; Schneider, Magdalena; Parragh, Stephanie; Wassertheurer, Siegfried

    2017-11-07

    The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preservice Mathematics Teachers' Perceptions of Drama Based Instruction

    ERIC Educational Resources Information Center

    Bulut, Neslihan

    2016-01-01

    The purpose of this study was to determine the perceptions of pre-service mathematics teachers related to drama-based instruction. For this purpose, effects of a drama-based mathematics course on senior class pre-service mathematics teachers' knowledge about drama-based instruction and teacher candidates' competencies for developing and…

  14. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.

    PubMed

    Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre

    2013-08-01

    Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.

  15. Databases for multilevel biophysiology research available at Physiome.jp.

    PubMed

    Asai, Yoshiyuki; Abe, Takeshi; Li, Li; Oka, Hideki; Nomura, Taishin; Kitano, Hiroaki

    2015-01-01

    Physiome.jp (http://physiome.jp) is a portal site inaugurated in 2007 to support model-based research in physiome and systems biology. At Physiome.jp, several tools and databases are available to support construction of physiological, multi-hierarchical, large-scale models. There are three databases in Physiome.jp, housing mathematical models, morphological data, and time-series data. In late 2013, the site was fully renovated, and in May 2015, new functions were implemented to provide information infrastructure to support collaborative activities for developing models and performing simulations within the database framework. This article describes updates to the databases implemented since 2013, including cooperation among the three databases, interactive model browsing, user management, version management of models, management of parameter sets, and interoperability with applications.

  16. CellML metadata standards, associated tools and repositories

    PubMed Central

    Beard, Daniel A.; Britten, Randall; Cooling, Mike T.; Garny, Alan; Halstead, Matt D.B.; Hunter, Peter J.; Lawson, James; Lloyd, Catherine M.; Marsh, Justin; Miller, Andrew; Nickerson, David P.; Nielsen, Poul M.F.; Nomura, Taishin; Subramanium, Shankar; Wimalaratne, Sarala M.; Yu, Tommy

    2009-01-01

    The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website. PMID:19380315

  17. GENERAL: Bursting Ca2+ Oscillations and Synchronization in Coupled Cells

    NASA Astrophysics Data System (ADS)

    Ji, Quan-Bao; Lu, Qi-Shao; Yang, Zhuo-Qin; Duan, Li-Xia

    2008-11-01

    A mathematical model proposed by Grubelnk et al. [Biophys. Chew,. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracel-lular bursting calcium oscillations of point-point, point-cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point-cycle type.

  18. Mathematical foundations of biomechanics.

    PubMed

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  19. Quantifying Diastolic Function: From E-Waves as Triangles to Physiologic Contours via the 'Geometric Method'.

    PubMed

    Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J

    2018-03-01

    Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2  = 0.94, c: R 2  = 0.95, x o : R 2  = 0.95, p < 0.01 all parameters). Additionally, inter-rater reliability for GM-determined parameters was excellent (k: ICC = 0.956 c: ICC = 0.944, x o : ICC = 0.993). Results indicate that E-wave symmetry (AT/DT) may comprise a new index of DF. By employing indexes (E peak , AT, DT) that are already in standard clinical use the GM capitalizes on the power of the PDF method to quantify DF in terms of physiologic chamber properties.

  20. Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock-Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics.

    PubMed

    Mroczek, Tomasz; Małota, Zbigniew; Wójcik, Elżbieta; Nawrat, Zbigniew; Skalski, Janusz

    2011-12-01

    The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics. Based on anatomic details obtained from echocardiographic assessment and angiographic studies, two three-dimensional computer models of post-Norwood physiology were developed. The finite-element method was applied for computational hemodynamic simulations. Norwood physiology with RV-PA 5-mm conduit and Blalock-Taussig shunt (BTS) 3.5-mm shunt were compared. Right ventricle work, wall stress, flow velocity, shear rate stress, energy loss and turbulence eddy dissipation were analyzed in both models. The total work of the right ventricle after Norwood procedure with the 5-mm RV-PA conduit was lower in comparison to the 3.5-mm BTS while establishing an identical systemic blood flow. The Qp/Qs ratio was higher in the BTS group. Hemodynamic performance after Norwood with the RV-PA conduit is more effective than after Norwood with BTS. Computer simulations of complicated hemodynamics after the Norwood procedure could be helpful in establishing optimal post-Norwood physiology. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  1. Fostering improved anatomy and physiology instructor pedagogy.

    PubMed

    Mattheis, Allison; Jensen, Murray

    2014-12-01

    Despite widespread calls for reform in undergraduate science, technology, engineering, and mathematics education, effecting lasting change in instructor practice is challenging to achieve. This article describes the results of a 2-yr research study that involved efforts to develop the pedagogical expertise of a group of anatomy and physiology instructors at the college level. Data were collected through a series of individual interviews that included the use of the Teacher Beliefs Inventory questionnaire (23) along with observations onsite in participants' college classrooms and at process-oriented guided inquiry learning (POGIL) curriculum writing workshops. Findings indicated attitudinal shifts on the part of participants from teacher-centered to more student-centered pedagogy and supported the benefits of long-term professional development for instructors. Here, we documented the successful progress of these professors as they participated in a curriculum development process that emphasized student-centered teaching with the goal of promoting broader change efforts in introductory anatomy and physiology. Copyright © 2014 The American Physiological Society.

  2. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment

    PubMed Central

    Rundo, Francesco; Ortis, Alessandro

    2018-01-01

    Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG “combo” pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting “clean” PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach. PMID:29385774

  3. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment.

    PubMed

    Rundo, Francesco; Conoci, Sabrina; Ortis, Alessandro; Battiato, Sebastiano

    2018-01-30

    Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.

  4. Renal Clearance: Using an Interactive Activity to Visualize a Tricky Concept

    ERIC Educational Resources Information Center

    Hull, Kerry

    2016-01-01

    Renal clearance, the volume of blood cleared of a substance in a particular time period, is commonly recognized as one of the most difficult concepts in physiology. This difficulty may in part reflect the quantitative nature of renal clearance since many life sciences majors perceive that mathematics is irrelevant to their discipline. Students may…

  5. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    ERIC Educational Resources Information Center

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary…

  6. Fractal mechanisms in the electrophysiology of the heart

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1992-01-01

    The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".

  7. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons

    PubMed Central

    Fetsch, Christopher R.

    2013-01-01

    The richness of perceptual experience, as well as its usefulness for guiding behavior, depends upon the synthesis of information across multiple senses. Recent decades have witnessed a surge in our understanding of how the brain combines sensory signals, or cues. Much of this research has been guided by one of two distinct approaches, one driven primarily by neurophysiological observations, the other guided by principles of mathematical psychology and psychophysics. Conflicting results and interpretations have contributed to a conceptual gap between psychophysical and physiological accounts of cue integration, but recent studies of visual-vestibular cue integration have narrowed this gap considerably. PMID:23686172

  8. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  9. Light-induced vibration in the hearing organ

    PubMed Central

    Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders

    2014-01-01

    The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. PMID:25087606

  10. What Is Measured in Mathematics Tests? Construct Validity of Curriculum-Based Mathematics Measures.

    ERIC Educational Resources Information Center

    Thurber, Robin Schul; Shinn, Mark R.; Smolkowski, Keith

    2002-01-01

    Mathematics curriculum-based measurement (M-CBM) is one tool that has been developed for formative evaluation in mathematics. This study examines what constructs M-CBM actually measures in the context of a range of other mathematics measures. Results indicated that a two-factor model of mathematics where Computation and Applications were distinct…

  11. Mathematical Knowledge for Teaching, Standards-Based Mathematics Teaching Practices, and Student Achievement in the Context of the "Responsive Classroom Approach"

    ERIC Educational Resources Information Center

    Ottmar, Erin R.; Rimm-Kaufman, Sara E.; Larsen, Ross A.; Berry, Robert Q.

    2015-01-01

    This study investigates the effectiveness of the Responsive Classroom (RC) approach, a social and emotional learning intervention, on changing the relations between mathematics teacher and classroom inputs (mathematical knowledge for teaching [MKT] and standards-based mathematics teaching practices) and student mathematics achievement. Work was…

  12. Novel mathematical algorithm for pupillometric data analysis.

    PubMed

    Canver, Matthew C; Canver, Adam C; Revere, Karen E; Amado, Defne; Bennett, Jean; Chung, Daniel C

    2014-01-01

    Pupillometry is used clinically to evaluate retinal and optic nerve function by measuring pupillary response to light stimuli. We have developed a mathematical algorithm to automate and expedite the analysis of non-filtered, non-calculated pupillometric data obtained from mouse pupillary light reflex recordings, obtained from dynamic pupillary diameter recordings following exposure of varying light intensities. The non-filtered, non-calculated pupillometric data is filtered through a low pass finite impulse response (FIR) filter. Thresholding is used to remove data caused by eye blinking, loss of pupil tracking, and/or head movement. Twelve physiologically relevant parameters were extracted from the collected data: (1) baseline diameter, (2) minimum diameter, (3) response amplitude, (4) re-dilation amplitude, (5) percent of baseline diameter, (6) response time, (7) re-dilation time, (8) average constriction velocity, (9) average re-dilation velocity, (10) maximum constriction velocity, (11) maximum re-dilation velocity, and (12) onset latency. No significant differences were noted between parameters derived from algorithm calculated values and manually derived results (p ≥ 0.05). This mathematical algorithm will expedite endpoint data derivation and eliminate human error in the manual calculation of pupillometric parameters from non-filtered, non-calculated pupillometric values. Subsequently, these values can be used as reference metrics for characterizing the natural history of retinal disease. Furthermore, it will be instrumental in the assessment of functional visual recovery in humans and pre-clinical models of retinal degeneration and optic nerve disease following pharmacological or gene-based therapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Engaging Future Teachers in Problem-Based Learning with the Park City Mathematics Institute Problems

    ERIC Educational Resources Information Center

    Pilgrim, Mary E.

    2014-01-01

    Problem-based learning (PBL) is a pedagogical technique recommended for K-12 mathematics classrooms. However, the mathematics courses in future teachers' degree programs are often lecture based. Students typically learn about problem-based learning in theory, but rarely get to experience it first-hand in their mathematics courses. The premise…

  14. UTCI—Why another thermal index?

    NASA Astrophysics Data System (ADS)

    Jendritzky, Gerd; de Dear, Richard; Havenith, George

    2012-05-01

    Existing procedures for the assessment of the thermal environment in the fields of public weather services, public health systems, precautionary planning, urban design, tourism and recreation and climate impact research exhibit significant shortcomings. This is most evident for simple (mostly two-parameter) indices, when comparing them to complete heat budget models developed since the 1960s. ISB Commission 6 took up the idea of developing a Universal Thermal Climate Index (UTCI) based on the most advanced multi-node model of thermoregulation representing progress in science within the last three to four decades, both in thermo-physiological and heat exchange theory. Creating the essential research synergies for the development of UTCI required pooling the resources of multidisciplinary experts in the fields of thermal physiology, mathematical modelling, occupational medicine, meteorological data handling (in particular radiation modelling) and application development in a network. It was possible to extend the expertise of ISB Commission 6 substantially by COST (a European programme promoting Cooperation in Science and Technology) Action 730 so that finally over 45 scientists from 23 countries (Australia, Canada, Israel, several Europe countries, New Zealand, and the United States) worked together. The work was performed under the umbrella of the WMO Commission on Climatology (CCl). After extensive evaluations, Fiala's multi-node human physiology and thermal comfort model (FPC) was adopted for this study. The model was validated extensively, applying as yet unused data from other research groups, and extended for the purposes of the project. This model was coupled with a state-of-the-art clothing model taking into consideration behavioural adaptation of clothing insulation by the general urban population in response to actual environmental temperature. UTCI was then derived conceptually as an equivalent temperature (ET). Thus, for any combination of air temperature, wind, radiation, and humidity (stress), UTCI is defined as the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model. As UTCI is based on contemporary science its use will standardise applications in the major fields of human biometeorology, thus making research results comparable and physiologically relevant.

  15. The application of brain-based learning principles aided by GeoGebra to improve mathematical representation ability

    NASA Astrophysics Data System (ADS)

    Priatna, Nanang

    2017-08-01

    The use of Information and Communication Technology (ICT) in mathematics instruction will help students in building conceptual understanding. One of the software products used in mathematics instruction is GeoGebra. The program enables simple visualization of complex geometric concepts and helps improve students' understanding of geometric concepts. Instruction applying brain-based learning principles is one oriented at the efforts of naturally empowering the brain potentials which enable students to build their own knowledge. One of the goals of mathematics instruction in school is to develop mathematical communication ability. Mathematical representation is regarded as a part of mathematical communication. It is a description, expression, symbolization, or modeling of mathematical ideas/concepts as an attempt of clarifying meanings or seeking for solutions to the problems encountered by students. The research aims to develop a learning model and teaching materials by applying the principles of brain-based learning aided by GeoGebra to improve junior high school students' mathematical representation ability. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2x3 factorial model. Based on analysis of the data, it is found that the increase in the mathematical representation ability of students who were treated with mathematics instruction applying the brain-based learning principles aided by GeoGebra was greater than the increase of the students given conventional instruction, both as a whole and based on the categories of students' initial mathematical ability.

  16. Examining the Process of Developing a Research-Based Mathematics Curriculum and Its Policy Implications

    ERIC Educational Resources Information Center

    Superfine, Alison Castro; Kelso, Catherine Randall; Beal, Susan

    2010-01-01

    The implementation of "research-based" mathematics curricula is increasingly becoming a central element of mathematics education reform policies. Given the recent focus on grounding mathematics curriculum policies in research, it is important to understand precisely what it means for a curriculum to be research-based. Using the Curriculum Research…

  17. The Effects of a Web-Based Mathematics Program on Student Achievement

    ERIC Educational Resources Information Center

    Woody, Andrea L.

    2013-01-01

    The purpose of this study was to investigate the impact of a Web-based mathematics program, Education Program for Gifted Youth (EPGY) Stanford Math, on mathematics achievement of fourth- through eighth-grade students in a metropolitan school district. Few studies have researched a Web-based mathematics program that provides an individualized,…

  18. Student Interests and Needs in Hygiene. Project in Research in Universities. Bulletin, 1937, No. 16

    ERIC Educational Resources Information Center

    Rogers, James Frederick

    1937-01-01

    Health has been proclaimed as the first objective in education. One means of teaching this objective would seem to be the furnishing of adequate instruction in physiology, personal hygiene, and public health through teachers who are as thoroughly prepared for this workers are instructors of mathematics, English, or any other subject. The amount…

  19. Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course

    ERIC Educational Resources Information Center

    Ludwig, Patrice; Tongen, Anthony; Walton, Brian

    2018-01-01

    James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…

  20. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model

    PubMed Central

    Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael

    2011-01-01

    With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808

  1. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models

    PubMed Central

    2013-01-01

    Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340

  2. Inquiry based learning: a student centered learning to develop mathematical habits of mind

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.; Setyowidodo, I.; Katminingsih, Y.

    2018-05-01

    Inquiry based learning is learning that based on understanding constructivist mathematics learning. Learning based on constructivism is the Student centered learning. In constructivism, students are trained and guided to be able to construct their own knowledge on the basis of the initial knowledge that they have before. This paper explained that inquiry based learning can be used to developing student’s Mathematical habits of mind. There are sixteen criteria Mathematical Habits of mind, among which are diligent, able to manage time well, have metacognition ability, meticulous, etc. This research method is qualitative descriptive. The result of this research is that the instruments that have been developed to measure mathematical habits of mind are validated by the expert. The conclusion is the instrument of mathematical habits of mind are valid and it can be used to measure student’s mathematical habits of mind.

  3. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. The analysis and utilization of cycling training data.

    PubMed

    Jobson, Simon A; Passfield, Louis; Atkinson, Greg; Barton, Gabor; Scarf, Philip

    2009-01-01

    Most mathematical models of athletic training require the quantification of training intensity and quantity or 'dose'. We aim to summarize both the methods available for such quantification, particularly in relation to cycle sport, and the mathematical techniques that may be used to model the relationship between training and performance. Endurance athletes have used training volume (kilometres per week and/or hours per week) as an index of training dose with some success. However, such methods usually fail to accommodate the potentially important influence of training intensity. The scientific literature has provided some support for alternative methods such as the session rating of perceived exertion, which provides a subjective quantification of the intensity of exercise; and the heart rate-derived training impulse (TRIMP) method, which quantifies the training stimulus as a composite of external loading and physiological response, multiplying the training load (stress) by the training intensity (strain). Other methods described in the scientific literature include 'ordinal categorization' and a heart rate-based excess post-exercise oxygen consumption method. In cycle sport, mobile cycle ergometers (e.g. SRM and PowerTap) are now widely available. These devices allow the continuous measurement of the cyclists' work rate (power output) when riding their own bicycles during training and competition. However, the inherent variability in power output when cycling poses several challenges in attempting to evaluate the exact nature of a session. Such variability means that average power output is incommensurate with the cyclist's physiological strain. A useful alternative may be the use of an exponentially weighted averaging process to represent the data as a 'normalized power'. Several research groups have applied systems theory to analyse the responses to physical training. Impulse-response models aim to relate training loads to performance, taking into account the dynamic and temporal characteristics of training and, therefore, the effects of load sequences over time. Despite the successes of this approach it has some significant limitations, e.g. an excessive number of performance tests to determine model parameters. Non-linear artificial neural networks may provide a more accurate description of the complex non-linear biological adaptation process. However, such models may also be constrained by the large number of datasets required to 'train' the model. A number of alternative mathematical approaches such as the Performance-Potential-Metamodel (PerPot), mixed linear modelling, cluster analysis and chaos theory display conceptual richness. However, much further research is required before such approaches can be considered as viable alternatives to traditional impulse-response models. Some of these methods may not provide useful information about the relationship between training and performance. However, they may help describe the complex physiological training response phenomenon.

  5. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    PubMed

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  6. Effects of Animated Agents in Web-Based Instruction on Mathematics: Achievement and Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Lodree, Anika W.; Moore, Joi L.; Gilbert, Juan E.

    2008-01-01

    This article summarizes a quantitative study of the effects of animated agents in web-based instruction (WBI) on mathematics achievement and attitudes toward mathematics in postsecondary education. Eighty-one college students who were enrolled in a core mathematic course at a doctoral/research-extensive university in central Alabama participated…

  7. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  8. Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA1 includes short reports covering: (1) Indices of Baroreceptor Reflex Sensitivity: The Use in Rehabilitation Medicine and Space Cardiology; (2) +Gz and +Gx Tolerance of Healthy Persons of Non-Flying Trades at Primary Selection of the Centrifuge; (3) Effect of Dry Immersion on Calf Blood Supply During Sustained Contraction and Upright Exercise in Man; (4) Cardiovascular and Valsalva Responses during Parabolic flight; (5) An Analysis of the Cardiovascular Responses under Hyper- and Hypo-Gravity Environments using a Mathematical model; (6) Effect of Very Gradual Onset Rate +Gz Exposures on the Cardiovascular System; and (7) NASA Specialized Center of Research and Training (NSCORT) in Integrated Physiology: Mechanisms of Physiological Adaptations to Microgravity.

  9. Improving students’ mathematical representational ability through RME-based progressive mathematization

    NASA Astrophysics Data System (ADS)

    Warsito; Darhim; Herman, T.

    2018-01-01

    This study aims to determine the differences in the improving of mathematical representation ability based on progressive mathematization with realistic mathematics education (PMR-MP) with conventional learning approach (PB). The method of research is quasi-experiments with non-equivalent control group designs. The study population is all students of class VIII SMPN 2 Tangerang consisting of 6 classes, while the sample was taken two classes with purposive sampling technique. The experimental class is treated with PMR-MP while the control class is treated with PB. The instruments used are test of mathematical representation ability. Data analysis was done by t-test, ANOVA test, post hoc test, and descriptive analysis. The result of analysis can be concluded that: 1) there are differences of mathematical representation ability improvement between students treated by PMR-MP and PB, 2) no interaction between learning approach (PMR-MP, PB) and prior mathematics knowledge (PAM) to improve students’ mathematical representation; 3) Students’ mathematical representation improvement in the level of higher PAM is better than medium, and low PAM students. Thus, based on the process of mathematization, it is very important when the learning direction of PMR-MP emphasizes on the process of building mathematics through a mathematical model.

  10. Postural effects on intracranial pressure: modeling and clinical evaluation.

    PubMed

    Qvarlander, Sara; Sundström, Nina; Malm, Jan; Eklund, Anders

    2013-11-01

    The physiological effect of posture on intracranial pressure (ICP) is not well described. This study defined and evaluated three mathematical models describing the postural effects on ICP, designed to predict ICP at different head-up tilt angles from the supine ICP value. Model I was based on a hydrostatic indifference point for the cerebrospinal fluid (CSF) system, i.e., the existence of a point in the system where pressure is independent of body position. Models II and III were based on Davson's equation for CSF absorption, which relates ICP to venous pressure, and postulated that gravitational effects within the venous system are transferred to the CSF system. Model II assumed a fully communicating venous system, and model III assumed that collapse of the jugular veins at higher tilt angles creates two separate hydrostatic compartments. Evaluation of the models was based on ICP measurements at seven tilt angles (0-71°) in 27 normal pressure hydrocephalus patients. ICP decreased with tilt angle (ANOVA: P < 0.01). The reduction was well predicted by model III (ANOVA lack-of-fit: P = 0.65), which showed excellent fit against measured ICP. Neither model I nor II adequately described the reduction in ICP (ANOVA lack-of-fit: P < 0.01). Postural changes in ICP could not be predicted based on the currently accepted theory of a hydrostatic indifference point for the CSF system, but a new model combining Davson's equation for CSF absorption and hydrostatic gradients in a collapsible venous system performed well and can be useful in future research on gravity and CSF physiology.

  11. THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT

    PubMed Central

    Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.

    2014-01-01

    The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198

  12. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  13. An automated and objective method for age partitioning of reference intervals based on continuous centile curves.

    PubMed

    Yang, Qian; Lew, Hwee Yeong; Peh, Raymond Hock Huat; Metz, Michael Patrick; Loh, Tze Ping

    2016-10-01

    Reference intervals are the most commonly used decision support tool when interpreting quantitative laboratory results. They may require partitioning to better describe subpopulations that display significantly different reference values. Partitioning by age is particularly important for the paediatric population since there are marked physiological changes associated with growth and maturation. However, most partitioning methods are either technically complex or require prior knowledge of the underlying physiology/biological variation of the population. There is growing interest in the use of continuous centile curves, which provides seamless laboratory reference values as a child grows, as an alternative to rigidly described fixed reference intervals. However, the mathematical functions that describe these curves can be complex and may not be easily implemented in laboratory information systems. Hence, the use of fixed reference intervals is expected to continue for a foreseeable time. We developed a method that objectively proposes optimised age partitions and reference intervals for quantitative laboratory data (http://research.sph.nus.edu.sg/pp/ppResult.aspx), based on the sum of gradient that best describes the underlying distribution of the continuous centile curves. It is hoped that this method may improve the selection of age intervals for partitioning, which is receiving increasing attention in paediatric laboratory medicine. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  14. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    PubMed

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology. © 2016 John Wiley & Sons Ltd.

  15. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  16. Evaluation of the lambda model for human postural control during ankle strategy.

    PubMed

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  17. Exploring the Impact of a Standards-Based Mathematics and Pedagogy Class on Preservice Teachers' Beliefs and Subject Matter Knowledge

    ERIC Educational Resources Information Center

    Stohlmann, Micah Stephen

    2012-01-01

    This case study explored the impact of a standards-based mathematics and pedagogy class on preservice elementary teachers' beliefs and conceptual subject matter knowledge of linear functions. The framework for the standards-based mathematics and pedagogy class in this study involved the National Council of Teachers of Mathematics Standards,…

  18. A Randomized Controlled Trial of the Impact of Schema-Based Instruction on Mathematical Outcomes for Third-Grade Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Dupuis, Danielle N.; Rodriguez, Michael C.; Zaslofsky, Anne F.; Slater, Susan; Cozine-Corroy, Kelly; Church, Chris

    2013-01-01

    This study compared the effects of delivering a supplemental, small-group tutoring intervention on the mathematics outcomes of third-grade students at risk for mathematics difficulties (MD) who were randomly assigned to either a schema-based instruction (SBI) or control group. SBI emphasized the underlying mathematical structure of additive…

  19. Modeling and simulation in biomedicine.

    PubMed Central

    Aarts, J.; Möller, D.; van Wijk van Brievingh, R.

    1991-01-01

    A group of researchers and educators in The Netherlands, Germany and Czechoslovakia have developed and adapted mathematical computer models of phenomena in the field of physiology and biomedicine for use in higher education. The models are graphical and highly interactive, and are all written in TurboPascal or the mathematical simulation language PSI. An educational shell has been developed to launch the models. The shell allows students to interact with the models and teachers to edit the models, to add new models and to monitor the achievements of the students. The models and the shell have been implemented on a MS-DOS personal computer. This paper describes the features of the modeling package and presents the modeling and simulation of the heart muscle as an example. PMID:1807745

  20. A mathematical and experimental simulation of the hematological response to weightlessness

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Leonard, J. I.; Johnson, P. C.

    1979-01-01

    A mathematical model of erythropoiesis control was used to simulate the effects of bedrest and zero-g on the circulating red cell mass. The model incorporates the best current understanding of the dynamics of red cell production and destruction and the associated feedback regulation. Specifically studied were the hemodynamic responses of a 28-day bedrest study devised to simulate Skylab experience. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. Model simulation suggested the possibilities that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reduction in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis.

  1. [Monitoring of occupational activities under the risk of heat stress: use of mathematical models in the prediction of physiological parameters].

    PubMed

    Terzi, R; Catenacci, G; Marcaletti, G

    1985-01-01

    Some authors proposed mathematical models that, starting from standardized conditions of environmental microclimate parameters, thermal impedance of the clothing, and energetic expenditure allowed the forecast of the body temperature and heart rate variations in respect to the basal values in subjects standing in the same environment. In the present work we verify the usefulness of these models applied to the working tasks characterized by standardized job made under unfavourable thermal conditions. In subject working in an electric power station the values of the body temperature and heart rate are registered and compared with the values obtained by the application of the studied models. The results are discussed in view of the practical use.

  2. Physiological regulation through learnt control of appetites by contingencies among signals from external and internal environments.

    PubMed

    Booth, David A

    2008-11-01

    As reviewed by [Cooper, S. J. (2008). From Claude Bernard to Walter Cannon: emergence of the concept of homeostasis. Appetite 51, 419-27.] Claude Bernard's idea of stabilisation of bodily states, as realised in Walter B. Cannon's conception of homeostasis, took mathematical form during the 1940s in the principle that externally originating disturbance of a physiological parameter can feed an informative signal around the brain to trigger counteractive processes--a corrective mechanism known as negative feedback, in practice reliant on feedforward. Three decades later, enough was known of the physiology and psychology of eating and drinking for calculations to show how experimentally demonstrated mechanisms of feedforward that had been learnt from negative feedback combine to regulate exchanges of water and energy between the body and the surroundings. Subsequent systemic physiology, molecular neuroscience and experimental psychology, however, have been traduced by a misconception that learnt controls of intake are 'non-homeostatic', the myth of biological 'set points' and an historic failure to address evidence for the ingestion-adapting information-processing mechanisms on which an operationally integrative theory of eating and drinking relies.

  3. Using IMSL Mathematical and Statistical Computer Subroutines in Physiological and Biomechanical Research

    DTIC Science & Technology

    1987-10-01

    NDATA). CSCOEF(4.NDATA). CSVAL. ERROR, F. kFDATA(NDATA). FLOAT, FVAL. RNUNF, SDEV. SMPAR. SQRT. a SYAL . WEIGHT(NDATA), X. XDATA(NDATA). XT INTRINSIC...BREAK.CSCOEF) FYAL - F(XT) ERROR a SVAL - FVAL WRITE (NOUT,’(4F15.4)’) XT. FYAL. SYAL , ERROR 30 CONTINUE C 99999 FORMAT (12X. ’X’. 9X. ’Function’. 7X

  4. Approximating a nonlinear advanced-delayed equation from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-10-01

    We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.

  5. Public Views on the Gendering of Mathematics and Related Careers: International Comparisons

    ERIC Educational Resources Information Center

    Forgasz, Helen; Leder, Gilah; Tan, Hazel

    2014-01-01

    Mathematics continues to be an enabling discipline for Science, Technology, Engineering, and Mathematics (STEM)-based university studies and related careers. Explanatory models for females' underrepresentation in higher level mathematics and STEM-based courses comprise learner-related and environmental variables--including societal beliefs. Using…

  6. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    PubMed

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. © 2015 John Wiley & Sons Ltd.

  7. Indigenous teachers' experiences of the implementation of culture-based mathematics activities in Sámi school

    NASA Astrophysics Data System (ADS)

    Nutti, Ylva Jannok

    2013-03-01

    The goal of Indigenous education is that it should be approached on the basis of the Indigenous language and culture; this is also the case with Sámi education. The Sámi School Board has stated that all teaching in Sámi schools should be culturally based, despite the fact that Sámi culture-based teaching is not specifically defined. Therefore, teachers themselves must adapt the teaching and as a result, usually no Sámi culture-based mathematics teaching takes place. The aim of this article is to discuss Indigenous teachers' experiences with designing and implementing culture-based mathematics activities in Sámi preschool and primary school. The teachers' work with culture-based mathematics activities took the form of Sámi cultural thematic work with ethnomathematical content, Multicultural school mathematics with Sámi cultural elements, and Sámi intercultural mathematics teaching. Culture-based mathematics activities took place within an action research study in the Swedish part of Sápmi. Sápmi comprises northern Norway, Sweden, and Finland, as well as the Kola Peninsula in Russia. In the action research study, six teachers conducted culture-based mathematics activities in preschool and primary school on the basis of the action research loop "plan-act-observe-reflect." During the study the teachers changed from a problem-focused perspective to a possibility-focused culture-based teaching perspective characterised by a self-empowered Indigenous teacher role, as a result of which they started to act as agents for Indigenous school change. The concept of "decolonisation" was visible in the teachers' narratives. The teachers' newly developed knowledge about the ethnomathematical research field seemed to enhance their work with Indigenous culture-based mathematics teaching.

  8. Investigative Approaches to Teaching Mathematics and "Getting through the Curriculum": The Example of Pendulums

    ERIC Educational Resources Information Center

    Beswick, Kim; Muir, Tracey; Callingham, Rosemary

    2014-01-01

    The benefits of rich tasks, project-based learning, and other inquiry-based approaches in terms of student understanding and engagement with mathematics are well documented. Such pedagogies are consistent with the development of mathematical proficiencies as described in the "Australian Curriculum: Mathematics" (Australian Curriculum…

  9. A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics

    ERIC Educational Resources Information Center

    Liang, Jiajuan; Pan, William S. Y.

    2009-01-01

    MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…

  10. Effects of Gender-Based Instruction on Fifth Graders' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Oswald, Deborah R.

    2009-01-01

    Differences in male and female brains may impact the way girls and boys process mathematics and underscores the need for research that examines modification of mathematics instruction according to gender differences. Based in constructivist theory, this mixed-methods study investigated the effect of mathematics instruction modified according to…

  11. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  12. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    PubMed

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  13. What is the problem in problem-based learning in higher education mathematics

    NASA Astrophysics Data System (ADS)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.

  14. Construction of a biodynamic model for Cry protein production studies.

    PubMed

    Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín

    2014-12-01

    Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.

  15. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  16. Systems Chronotherapeutics

    PubMed Central

    Innominato, Pasquale F.; Dallmann, Robert; Rand, David A.; Lévi, Francis A.

    2017-01-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes. PMID:28351863

  17. Systems Chronotherapeutics.

    PubMed

    Ballesta, Annabelle; Innominato, Pasquale F; Dallmann, Robert; Rand, David A; Lévi, Francis A

    2017-04-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes. Copyright © 2017 by The Author(s).

  18. Unraveling the Culture of the Mathematics Classroom: A Video-Based Study in Sixth Grade

    ERIC Educational Resources Information Center

    Depaepe, Fien; De Corte, Erik; Verschaffel, Lieven

    2007-01-01

    Changing perspectives on mathematics teaching and learning resulted in a new generation of mathematics textbooks, stressing among others the importance of mathematical reasoning and problem-solving skills and their application to real-life situations. The article reports a study that investigates to what extent the reform-based ideas underlying…

  19. What Is the Problem in Problem-Based Learning in Higher Education Mathematics

    ERIC Educational Resources Information Center

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge…

  20. Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students

    ERIC Educational Resources Information Center

    Remijan, Kelly W.

    2017-01-01

    This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…

  1. Place-Based Mathematics: A Conflated Pedagogy? Working Paper No. 43

    ERIC Educational Resources Information Center

    Showalter, Daniel A.

    2012-01-01

    Place-based mathematics education (PBME) has the potential to engage students with the mathematics inherent in the local land, culture, and community. However, research has identified daunting barriers to this pedagogy, especially in abstract mathematics courses such as algebra and beyond. In this study, 15 graduates of a doctoral program in rural…

  2. An Examination of the Relationship between Computation, Problem Solving, and Reading

    ERIC Educational Resources Information Center

    Cormier, Damien C.; Yeo, Seungsoo; Christ, Theodore J.; Offrey, Laura D.; Pratt, Katherine

    2016-01-01

    The purpose of this study is to evaluate the relationship of mathematics calculation rate (curriculum-based measurement of mathematics; CBM-M), reading rate (curriculum-based measurement of reading; CBM-R), and mathematics application and problem solving skills (mathematics screener) among students at four levels of proficiency on a statewide…

  3. Identifiability of PBPK Models with Applications to ...

    EPA Pesticide Factsheets

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discrete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology. We consider statistical analy

  4. Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy.

    PubMed

    Huppert, Theodore J

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of light to measure changes in cerebral blood oxygenation levels. In the majority of NIRS functional brain studies, analysis of this data is based on a statistical comparison of hemodynamic levels between a baseline and task or between multiple task conditions by means of a linear regression model: the so-called general linear model. Although these methods are similar to their implementation in other fields, particularly for functional magnetic resonance imaging, the specific application of these methods in fNIRS research differs in several key ways related to the sources of noise and artifacts unique to fNIRS. In this brief communication, we discuss the application of linear regression models in fNIRS and the modifications needed to generalize these models in order to deal with structured (colored) noise due to systemic physiology and noise heteroscedasticity due to motion artifacts. The objective of this work is to present an overview of these noise properties in the context of the linear model as it applies to fNIRS data. This work is aimed at explaining these mathematical issues to the general fNIRS experimental researcher but is not intended to be a complete mathematical treatment of these concepts.

  5. The effects of integrated mathematics/science curriculum and instruction on mathematics achievement and student attitudes in grade six

    NASA Astrophysics Data System (ADS)

    Hill, Mary Denise

    The purpose of this study was to determine whether integrating mathematics and science curriculum and teaching practices significantly improves achievement in mathematics and attitudes towards mathematics among sixth grade students in South Texas. The study was conducted during the 2001--2002 school year. A causal-comparative ex post facto research design was used to explore the effects of integrated mathematics and science classrooms compared to classrooms of traditional, isolated mathematics and science teaching practices on student achievement and student attitudes. Achievement was based on the Spring 2002 Mathematics portion of the standardized Texas Assessment of Academic Skills (TAAS) Texas Learning Index (TLI) scores and individual student's mathematics Grade Point Average (GPA). Measurement of student attitudes was based on the results of the Integrated Mathematics Attitudinal Survey (IMAS), created by the researcher for this study. The sample population included 349 Grade 6 mathematics students attending one middle school involved in a pilot program utilizing integrated mathematics/science curriculum and teaching practices in a South Texas urban school district. The research involved 337 of the 349 sixth grade students to study the effects of mathematics/science curriculum and teaching practices on achievement and 207 of the 349 sixth grade students to study the effects of mathematics/science curriculum on attitudes concerning mathematics. The data were analyzed using chi square analyses, independent samples t-tests, and the analysis of variance (ANOVA). Statistical significance was determined at the .05 level of significance. Significant relationships were found when analyzing the proficiency of mathematics skills and individual growth of mathematics achievement. Chi square analyses indicated that the students in the integrated mathematics/science classrooms were more likely to exhibit individual growth and proficiency of mathematics skills based on the results of TAAS. Independent samples t-tests indicated that students in the integrated mathematics/science program scored significantly higher than the students in the traditional program in mean achievement scores and in mean growth of scores based on the results of TAAS. No significant differences were found when comparing mathematics anxiety scores between students in the integrated mathematics/science program and the traditional program. However, additional significant differences were identified when students in the integrated mathematics/science program scored higher than the students in the traditional program when analyzing the overall mean student attitude scores concerning mathematics and the mean scores of attitudinal values of mathematics in society.

  6. A mathematical modeling approach to risk assessment for normal and anemic women chronically exposed to carbon monoxide from biomass-fueled cookstoves

    PubMed Central

    Bruce, Margaret C.; Erupaka-Chada, Kinnera

    2011-01-01

    In developing countries, the chronic exposure to carbon monoxide (CO) from biomass-fueled cookstoves may pose a significant health risk for women who use these stoves, especially for those with underlying clinical conditions that impair tissue oxygenation, e.g., anemia and coronary artery disease. CO concentrations measured in the vicinity of these cookstoves often exceed World Health Organization (WHO) indoor air guidelines for an 8-h average (9 ppm) and a 1-h maximum (26 ppm). Carboxyhemoglobin levels, reported infrequently because they are difficult to obtain, often exceed the WHO threshold of 2.5%. Despite this evidence, specific adverse effects have not yet been linked with chronic CO exposures in these women. Furthermore, anemia, which is prevalent in populations that use biomass fuels, could exacerbate the adverse effects of chronic CO exposure. Because of the difficulties inherent in conducting prospective studies to address this issue, we used a mathematical model to calculate the effects of reported CO levels and exercise on carboxyhemoglobin for women living in 1) Guatemalan villages at altitudes of 4,429–4,593 ft, and 2) coastal villages in Pakistan. In addition, we used the model to calculate the effects of CO exposures in women with moderate to severe anemia on specific physiological parameters (carboxyhemoglobin, carboxymyoglobin, cardiac output, and tissue Po2) at exercise levels representing the activities in which these women would be engaged. Our results demonstrate the efficacy of using a mathematical model to predict the physiologic responses to CO and also demonstrate that chronic anemia is a critically important determinant of CO toxicity in these women. PMID:21596914

  7. Optimal pacing for running 400- and 800-m track races

    NASA Astrophysics Data System (ADS)

    Reardon, James

    2013-06-01

    We present a toy model of anaerobic glycolysis that utilizes appropriate physiological and mathematical consideration while remaining useful to the athlete. The toy model produces an optimal pacing strategy for 400-m and 800-m races that is analytically calculated via the Euler-Lagrange equation. The calculation of the optimum v(t) is presented in detail, with an emphasis on intuitive arguments in order to serve as a bridge between the basic techniques presented in undergraduate physics textbooks and the more advanced techniques of control theory. Observed pacing strategies in 400-m and 800-m world-record races are found to be well-fit by the toy model, which allows us to draw a new physiological interpretation for the advantages of common weight-training practices.

  8. Student Friendly Technique to Demonstrate Coordination between Postural (Involuntary) and Voluntary Muscle Contractions.

    PubMed

    Colgan, Wes

    2015-01-01

    Electromyography is a very useful technique for a number of clinical and research applications in physiology and other life science applications. We have adapted this technique as a student exercise to explore important aspects of postural control. With minimal effort and some mathematical calculations this student friendly technique efficiently demonstrates the interaction of anticipatory, or feedforward, mechanisms and feedback correction from sensory input.

  9. Specifications of insilicoML 1.0: a multilevel biophysical model description language.

    PubMed

    Asai, Yoshiyuki; Suzuki, Yasuyuki; Kido, Yoshiyuki; Oka, Hideki; Heien, Eric; Nakanishi, Masao; Urai, Takahito; Hagihara, Kenichi; Kurachi, Yoshihisa; Nomura, Taishin

    2008-12-01

    An extensible markup language format, insilicoML (ISML), version 0.1, describing multi-level biophysical models has been developed and available in the public domain. ISML is fully compatible with CellML 1.0, a model description standard developed by the IUPS Physiome Project, for enhancing knowledge integration and model sharing. This article illustrates the new specifications of ISML 1.0 that largely extend the capability of ISML 0.1. ISML 1.0 can describe various types of mathematical models, including ordinary/partial differential/difference equations representing the dynamics of physiological functions and the geometry of living organisms underlying the functions. ISML 1.0 describes a model using a set of functional elements (modules) each of which can specify mathematical expressions of the functions. Structural and logical relationships between any two modules are specified by edges, which allow modular, hierarchical, and/or network representations of the model. The role of edge-relationships is enriched by key words in order for use in constructing a physiological ontology. The ontology is further improved by the traceability of history of the model's development and by linking between different ISML models stored in the model's database using meta-information. ISML 1.0 is designed to operate with a model database and integrated environments for model development and simulations for knowledge integration and discovery.

  10. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Formal analysis of temporal dynamics in anxiety states and traits for virtual patients

    NASA Astrophysics Data System (ADS)

    Aziz, Azizi Ab; Ahmad, Faudziah; Yusof, Nooraini; Ahmad, Farzana Kabir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    This paper presents a temporal dynamic model of anxiety states and traits for an individual. Anxiety is a natural part of life, and most of us experience it from time to time. But for some people, anxiety can be extreme. Based on several personal characteristics, traits, and a representation of events (i.e. psychological and physiological stressors), the formal model can represent whether a human that experience certain scenarios will fall into an anxiety states condition. A number of well-known relations between events and the course of anxiety are summarized from the literature and it is shown that the model exhibits those patterns. In addition, the formal model has been mathematically analyzed to find out which stable situations exist. Finally, it is pointed out how this model can be used in therapy, supported by a software agent.

  12. Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells

    PubMed Central

    Plikus, Maksim V.; Baker, Ruth E.; Chen, Chih-Chiang; Fare, Clyde; de la Cruz, Damon; Andl, Thomas; Maini, Philip K.; Millar, Sarah E.; Widelitz, Randall; Chuong, Cheng-Ming

    2012-01-01

    Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs. PMID:21527712

  13. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    PubMed Central

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  14. Evidence-based pain management: is the concept of integrative medicine applicable?

    PubMed Central

    2012-01-01

    This article is dedicated to the concept of predictive, preventive, and personalized (integrative) medicine beneficial and applicable to advance pain management, overviews recent insights, and discusses novel minimally invasive tools, performed under ultrasound guidance, enhanced by model-guided approach in the field of musculoskeletal pain and neuromuscular diseases. The complexity of pain emergence and regression demands intellectual-, image-guided techniques personally specified to the patient. For personalized approach, the combination of the modalities of ultrasound, EMG, MRI, PET, and SPECT gives new opportunities to experimental and clinical studies. Neuromuscular imaging should be crucial for emergence of studies concerning advanced neuroimaging technologies to predict movement disorders, postural imbalance with integrated application of imaging, and functional modalities for rehabilitation and pain management. Scientific results should initiate evidence-based preventive movement programs in sport medicine rehabilitation. Traditional medicine and mathematical analytical approaches and education challenges are discussed in this review. The physiological management of exactly assessed pathological condition, particularly in movement disorders, requires participative medical approach to gain harmonized and sustainable effect. PMID:23088743

  15. Conversations about Curriculum Change: Mathematical Thinking and Team-Based Learning in a Discrete Mathematics Course

    ERIC Educational Resources Information Center

    Paterson, Judy; Sneddon, Jamie

    2011-01-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…

  16. Equity in Standards-Based Elementary Mathematics Classrooms. Weaving Gender Equity into Math Reform.

    ERIC Educational Resources Information Center

    Perez, Christina

    This article discusses the issue of equity in standards-based elementary mathematics classrooms. It is argued that while some of the gaps in mathematics achievement have slowly diminished (e.g., differences in mathematics grades and participation rates between girls and boys in K-12 education have decreased), others remain intractable. Other…

  17. Is Mathematical Representation of Problems an Evidence-Based Strategy for Students with Mathematics Difficulties?

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Nelson, Gena; Pulles, Sandra M.; Kiss, Allyson J.; Houseworth, James

    2016-01-01

    The purpose of the present review was to evaluate the quality of the research and evidence base for representation of problems as a strategy to enhance the mathematical performance of students with learning disabilities and those at risk for mathematics difficulties. The authors evaluated 25 experimental and quasiexperimental studies according to…

  18. Experimental Evaluation of the Effects of a Research-Based Preschool Mathematics Curriculum

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2008-01-01

    A randomized-trials design was used to evaluate the effectiveness of a preschool mathematics program based on a comprehensive model of research-based curricula development. Thirty-six preschool classrooms were assigned to experimental (Building Blocks), comparison (a different preschool mathematics curriculum), or control conditions. Children were…

  19. Production of biofuels and biochemicals: in need of an ORACLE.

    PubMed

    Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2010-08-01

    The engineering of cells for the production of fuels and chemicals involves simultaneous optimization of multiple objectives, such as specific productivity, extended substrate range and improved tolerance - all under a great degree of uncertainty. The achievement of these objectives under physiological and process constraints will be impossible without the use of mathematical modeling. However, the limited information and the uncertainty in the available information require new methods for modeling and simulation that will characterize the uncertainty and will quantify, in a statistical sense, the expectations of success of alternative metabolic engineering strategies. We discuss these considerations toward developing a framework for the Optimization and Risk Analysis of Complex Living Entities (ORACLE) - a computational method that integrates available information into a mathematical structure to calculate control coefficients. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Recurrence Quantification of Fractal Structures

    PubMed Central

    Webber, Charles L.

    2012-01-01

    By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808

  1. The Use of the History of Mathematics in the Teaching Pre-Service Mathematics Teachers

    ERIC Educational Resources Information Center

    Galante, Dianna

    2014-01-01

    Many scholars have written about using the history of mathematics in the teaching of pre-service mathematics teachers. For this study, pre-service mathematics teachers developed an electronic journal of reflections based on presentations in the history of mathematics in a secondary mathematics education course. The main purpose of the…

  2. Winter wheat: A model for the simulation of growth and yield in winter wheat

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)

    1981-01-01

    The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.

  3. Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel.

    PubMed

    Zhan, Yuexing; Pan, Yihui; Chen, Bing; Lu, Jian; Zhong, Zheng; Niu, Xinrui

    2017-11-01

    Poly (ethylene glycol) diacrylate (PEGDA) derivatives are important biomedical materials. PEGDA based hydrogels have emerged as one of the popular regenerative orthopedic materials. This work aims to study the mechanical behavior of a PEGDA based silica nanoparticle (NP) reinforced nanocomposite (NC) hydrogel at physiological strain rates. The work combines materials fabrication, mechanical experiments, mathematical modeling and structural analysis. The strain rate dependent stress-stretch behaviors were observed, analyzed and quantified. Visco-hyperelasticity was identified as the deformation mechanism of the nano-silica/PEGDA NC hydrogel. NPs showed significant effect on both initial shear modulus and viscoelastic materials properties. A structure-based quasi-linear viscoelastic (QLV) model was constructed and capable to describe the visco-hyperelastic stress-stretch behavior of the NC hydrogel. A group of unified material parameters was extracted by the model from the stress-stretch curves obtained at different strain rates. Visco-hyperelastic behavior of NP/polymer interphase was not only identified but also quantified. The work could provide guidance to the structural design of next-generation NC hydrogel. Copyright © 2017. Published by Elsevier Ltd.

  4. Healthons: errorless healthcare with bionic hugs and no need for quality control.

    PubMed

    Bushko, Renata G

    2005-01-01

    Errorless, invisible, continuous and infrastructure-free healthcare should become our goal. In order to achieve that goal, we need to rapidly move from current episodic and emergency-driven "healthcare delivery system" to an intelligent and extelligent health environment. That requires introduction of distributed affective Intelligent Caring Creatures (ICCs) consisting of healthons. Healthons are tools combining prevention with diagnosis and treatment based on continuous monitoring and analyzing of vital signs and biochemistry. Unlike humans, who posses only two or three dimensions of thinking, healthons can assure errorless health because of their adaptability, flexibility, and multidimensional reasoning capability. ICCs can do "the right thing" based on (1) state-of-art medical knowledge, (2) data about emotional, physiological, and genetic state of a consumer and (3) moral values of a consumer. The transition to the intelligent health environment based on ICCs requires the solutions to many currently unsolved healthcare problems. This paper lists the unsolved problems (by analogy to mathematical unsolved problems list) and explains why errorless healthcare with bionic hugs and no need for quality control is possible.

  5. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    PubMed Central

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  6. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  7. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  8. Mathematics Word Problem Solving: An Investigation into Schema-Based Instruction in a Computer-Mediated Setting and a Teacher-Mediated Setting with Mathematically Low-Performing Students

    ERIC Educational Resources Information Center

    Leh, Jayne

    2011-01-01

    Substantial evidence indicates that teacher-delivered schema-based instruction (SBI) facilitates significant increases in mathematics word problem solving (WPS) skills for diverse students; however research is unclear whether technology affordances facilitate superior gains in computer-mediated (CM) instruction in mathematics WPS when compared to…

  9. The Effects of Game-Based Learning on Mathematical Confidence and Performance: High Ability vs. Low Ability

    ERIC Educational Resources Information Center

    Ku, Oskar; Chen, Sherry Y.; Wu, Denise H.; Lao, Andrew C. C.; Chan, Tak-Wai

    2014-01-01

    Many students possess low confidence toward learning mathematics, which, in turn, may lead them to give up pursuing more mathematics knowledge. Recently, game-based learning (GBL) is regarded as a potential means in improving students' confidence. Thus, this study tried to promote students' confidence toward mathematics by using GBL. In addition,…

  10. Teacher Mathematical Literacy: Case Study of Junior High School Teachers in Pasaman

    NASA Astrophysics Data System (ADS)

    Ahmad, D.; Suherman, S.; Maulana, H.

    2018-04-01

    The aim of this paper was to examine the ability of junior high school mathematics teachers to solve mathematical literacy base Problems (PISA and PISA-like problems) for the case Pasaman regency. The data was collected by interviews and test. As the results of this study, teacher ability in solving mathematical literacy base problems for level 1 until 3 has been good, but for level 4 or above is still low. It is caused by teacher knowledge about mathematical literacy still few.

  11. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture.

    PubMed

    Magrofuoco, Enrico; Elvassore, Nicola; Doyle, Francis J

    2012-01-01

    Three-dimensional (3D) cell cultures in bioreactors are becoming relevant as models for biological and physiological in vitro studies. In such systems, mathematical models can assist the experiment design that links the macroscopic properties to single-cell responses. We investigated the relationship between biochemical stimuli and cell response within a 3D cell culture in scaffold with heterogeneous porosity. Specifically, we studied the effect of insulin on the local glucose metabolism as a function of 3D pore size distribution. The multiscale mathematical model combines the mass transport within a 3D scaffold and a signaling pathways model. It considers the scaffold heterogeneity, and it describes spatiotemporal concentration of metabolites, biochemical stimuli, and cell density. The signaling model was integrated into this model, linking the local insulin concentration at cell membrane to the glucose uptake rate through glucose transporter type 4 (GLUT4) translocation from the cytosol to the cell membrane. The integrated model determines the cell response heterogeneities in a single channel, hence the biological response distribution in a 3D system. It also provides macroscopic outcomes to evaluate the feasibility of an experimental measurement of the system response. From our analysis, it became apparent that the flow rate is the most important operative variable, and that an optimum value ensures a fast and detectable cell response. This model on insulin-dependent glucose consumption rate offers insight into the cell metabolism physiology, which is a fundamental requirement for the study metabolic disorder such as Type 2 diabetes mellitus, in which the physiological insulin-dependent glucose metabolism is impaired. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  12. Mathematical modeling in realistic mathematics education

    NASA Astrophysics Data System (ADS)

    Riyanto, B.; Zulkardi; Putri, R. I. I.; Darmawijoyo

    2017-12-01

    The purpose of this paper is to produce Mathematical modelling in Realistics Mathematics Education of Junior High School. This study used development research consisting of 3 stages, namely analysis, design and evaluation. The success criteria of this study were obtained in the form of local instruction theory for school mathematical modelling learning which was valid and practical for students. The data were analyzed using descriptive analysis method as follows: (1) walk through, analysis based on the expert comments in the expert review to get Hypothetical Learning Trajectory for valid mathematical modelling learning; (2) analyzing the results of the review in one to one and small group to gain practicality. Based on the expert validation and students’ opinion and answers, the obtained mathematical modeling problem in Realistics Mathematics Education was valid and practical.

  13. Development of Mathematics Learning Strategy Module, Based on Higher Order Thinking Skill (Hots) To Improve Mathematic Communication And Self Efficacy On Students Mathematics Department

    NASA Astrophysics Data System (ADS)

    Andriani, Ade; Dewi, Izwita; Halomoan, Budi

    2018-03-01

    In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.

  14. An Investigation of the Engagement of Elementary Students in the NCTM Process Standards after One Year of Standards-Based Instruction

    ERIC Educational Resources Information Center

    Fillingim, Jennifer Gale

    2010-01-01

    Contemporary mathematics education reform has placed increased emphasis on K-12 mathematics curriculum. Reform-based curricula, often referred to as "Standards-based" due to philosophical alignment with the NCTM Process Standards, have generated controversy among families, educators, and researchers. The mathematics education research…

  15. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  16. Implementation and Outcomes of Inquiry-Based Learning in Mathematics Content Courses for Pre-Service Teachers

    ERIC Educational Resources Information Center

    Laursen, Sandra L.; Hassi, Marja-Liisa; Hough, Sarah

    2016-01-01

    This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities,…

  17. Detecting Strengths and Weaknesses in Learning Mathematics through a Model Classifying Mathematical Skills

    ERIC Educational Resources Information Center

    Karagiannakis, Giannis N.; Baccaglini-Frank, Anna E.; Roussos, Petros

    2016-01-01

    Through a review of the literature on mathematical learning disabilities (MLD) and low achievement in mathematics (LA) we have proposed a model classifying mathematical skills involved in learning mathematics into four domains (Core number, Memory, Reasoning, and Visual-spatial). In this paper we present a new experimental computer-based battery…

  18. A Comparative Study of the FET Phase Mathematical Literacy and Mathematics Curriculum

    ERIC Educational Resources Information Center

    Mhakure, Duncan; Mokoena, Mamolahluwa Amelia

    2011-01-01

    This article is based on a study that compared the FET (further education and training) phase mathematics literacy curriculum and mathematics curriculum. The study looked into how the conceptualization of a mathematical literacy curriculum enhanced the acquisition of mathematical concepts among the learners. In order to carry out this comparison…

  19. Prospective Mathematics Teachers' Attitudes Towards Learning Mathematics with Technology

    ERIC Educational Resources Information Center

    Ipek, A. Sabri; Berigel, Muhammed; Albayrak, Mustafa

    2007-01-01

    Role of technology which is an important tool for new approaches in learning mathematics is rapidly increasing at focus point of learning mathematics with new designs. One of the biggest factors at learning and instructing technology based mathematic education is attitudes of mathematics teachers towards technology. At this study, attitudes of…

  20. A Descriptive Study Examining the Impact of Digital Writing Environments on Communication and Mathematical Reasoning for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Huscroft-D'Angelo, Jacqueline; Higgins, Kristina N.; Crawford, Lindy L.

    2014-01-01

    Proficiency in mathematics, including mathematical reasoning skills, requires students to communicate their mathematical thinking. Mathematical reasoning involves making sense of mathematical concepts in a logical way to form conclusions or judgments, and is often underdeveloped in students with learning disabilities. Technology-based environments…

  1. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    ERIC Educational Resources Information Center

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  2. Differences in the Mathematics-Vocabulary Knowledge of Fifth-Grade Students with and without Learning Difficulties

    ERIC Educational Resources Information Center

    Forsyth, Suzanne R.; Powell, Sarah R.

    2017-01-01

    The purpose of this pilot study was to explore the impact of mathematics and reading learning difficulties on the mathematics-vocabulary understanding of fifth-grade students. Students (n = 114) completed three measures: mathematics computation, general vocabulary, and mathematics vocabulary. Based on performance on the mathematics computation and…

  3. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.

  4. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512

  5. Case Study Projects for College Mathematics Courses Based on a Particular Function of Two Variables

    ERIC Educational Resources Information Center

    Shi, Y.

    2007-01-01

    Based on a sequence of number pairs, a recent paper (Mauch, E. and Shi, Y., 2005, Using a sequence of number pairs as an example in teaching mathematics, "Mathematics and Computer Education," 39(3), 198-205) presented some interesting examples that can be used in teaching high school and college mathematics classes such as algebra, geometry,…

  6. Students' Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    ERIC Educational Resources Information Center

    Palinussa, Anderson L.

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students' critical mathematical thinking skills and character through realistic mathematics education (RME) culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in…

  7. Description, validation, and modification of the Guyton model for space-flight applications. Part A. Guyton model of circulatory, fluid and electrolyte control. Part B. Modification of the Guyton model for circulatory, fluid and electrolyte control

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The mathematical model that has been a cornerstone for the systems analysis of space-flight physiological studies is the Guyton model describing circulatory, fluid and electrolyte regulation. The model and the modifications that are made to permit simulation and analysis of the stress of weightlessness are described.

  8. Biological and aerodynamic problems with the flight of animals

    NASA Technical Reports Server (NTRS)

    Holst, E. V.; Kuchemann, D.

    1980-01-01

    Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.

  9. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    DTIC Science & Technology

    2006-12-01

    on specific short term problems. 1.1.1 Dynamic Physiological Modeling The oxygenation of the blood by the lung through respiration is a critical...tests as apnea , reduced arterial saturation, and may even be linked to long term CNS deficits. Inhalation of toxic gases can dramatically affect the...of TGAS model the respiration , circulation, and metabolic processes and include models of the ventilation and cardiac output control due to 3

  10. Successful Implementation of Inquiry-Based Physiology Laboratories in Undergraduate Major and Nonmajor Courses

    ERIC Educational Resources Information Center

    Casotti, G.; Rieser-Danner, L.; Knabb, M. T.

    2008-01-01

    Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular…

  11. The pipeline of physiology courses in community colleges: to university, medical school, and beyond.

    PubMed

    McFarland, Jenny; Pape-Lindstrom, Pamela

    2016-12-01

    Community colleges are significant in the landscape of undergraduate STEM (science technology, engineering, and mathematics) education (9), including biology, premedical, and other preprofessional education. Thirty percent of first-year medical school students in 2012 attended a community college. Students attend at different times in high school, their first 2 yr of college, and postbaccalaureate. The community college pathway is particularly important for traditionally underrepresented groups. Premedical students who first attend community college are more likely to practice in underserved communities (2). For many students, community colleges have significant advantages over 4-yr institutions. Pragmatically, they are local, affordable, and flexible, which accommodates students' work and family commitments. Academically, community colleges offer teaching faculty, smaller class sizes, and accessible learning support systems. Community colleges are fertile ground for universities and medical schools to recruit diverse students and support faculty. Community college students and faculty face several challenges (6, 8). There are limited interactions between 2- and 4-yr institutions, and the ease of transfer processes varies. In addition, faculty who study and work to improve the physiology education experience often encounter obstacles. Here, we describe barriers and detail existing resources and opportunities useful in navigating challenges. We invite physiology educators from 2- and 4-yr institutions to engage in sharing resources and facilitating physiology education improvement across institutions. Given the need for STEM majors and health care professionals, 4-yr colleges and universities will continue to benefit from students who take introductory biology, physiology, and anatomy and physiology courses at community colleges. Copyright © 2016 The American Physiological Society.

  12. Modeling of electrical impedance tomography to detect breast cancer by finite volume methods

    NASA Astrophysics Data System (ADS)

    Ain, K.; Wibowo, R. A.; Soelistiono, S.

    2017-05-01

    The properties of the electrical impedance of tissue are an interesting study, because changes of the electrical impedance of organs are related to physiological and pathological. Both physiological and pathological properties are strongly associated with disease information. Several experiments shown that the breast cancer has a lower impedance than the normal breast tissue. Thus, the imaging based on impedance can be used as an alternative equipment to detect the breast cancer. This research carries out by modelling of Electrical Impedance Tomography to detect the breast cancer by finite volume methods. The research includes development of a mathematical model of the electric potential field by 2D Finite Volume Method, solving the forward problem and inverse problem by linear reconstruction method. The scanning is done by 16 channel electrode with neighbors method to collect data. The scanning is performed at a frequency of 10 kHz and 100 kHz with three objects numeric includes an anomaly at the surface, an anomaly at the depth and an anomaly at the surface and at depth. The simulation has been successfully to reconstruct image of functional anomalies of the breast cancer at the surface position, the depth position or a combination of surface and the depth.

  13. Keypress-Based Musical Preference Is Both Individual and Lawful.

    PubMed

    Livengood, Sherri L; Sheppard, John P; Kim, Byoung W; Malthouse, Edward C; Bourne, Janet E; Barlow, Anne E; Lee, Myung J; Marin, Veronica; O'Connor, Kailyn P; Csernansky, John G; Block, Martin P; Blood, Anne J; Breiter, Hans C

    2017-01-01

    Musical preference is highly individualized and is an area of active study to develop methods for its quantification. Recently, preference-based behavior, associated with activity in brain reward circuitry, has been shown to follow lawful, quantifiable patterns, despite broad variation across individuals. These patterns, observed using a keypress paradigm with visual stimuli, form the basis for relative preference theory (RPT). Here, we sought to determine if such patterns extend to non-visual domains (i.e., audition) and dynamic stimuli, potentially providing a method to supplement psychometric, physiological, and neuroimaging approaches to preference quantification. For this study, we adapted our keypress paradigm to two sets of stimuli consisting of seventeenth to twenty-first century western art music (Classical) and twentieth to twenty-first century jazz and popular music (Popular). We studied a pilot sample and then a separate primary experimental sample with this paradigm, and used iterative mathematical modeling to determine if RPT relationships were observed with high R 2 fits. We further assessed the extent of heterogeneity in the rank ordering of keypress-based responses across subjects. As expected, individual rank orderings of preferences were quite heterogeneous, yet we observed mathematical patterns fitting these data similar to those observed previously with visual stimuli. These patterns in music preference were recurrent across two cohorts and two stimulus sets, and scaled between individual and group data, adhering to the requirements for lawfulness. Our findings suggest a general neuroscience framework that predicts human approach/avoidance behavior, while also allowing for individual differences and the broad diversity of human choices; the resulting framework may offer novel approaches to advancing music neuroscience, or its applications to medicine and recommendation systems.

  14. Keypress-Based Musical Preference Is Both Individual and Lawful

    PubMed Central

    Livengood, Sherri L.; Sheppard, John P.; Kim, Byoung W.; Malthouse, Edward C.; Bourne, Janet E.; Barlow, Anne E.; Lee, Myung J.; Marin, Veronica; O'Connor, Kailyn P.; Csernansky, John G.; Block, Martin P.; Blood, Anne J.; Breiter, Hans C.

    2017-01-01

    Musical preference is highly individualized and is an area of active study to develop methods for its quantification. Recently, preference-based behavior, associated with activity in brain reward circuitry, has been shown to follow lawful, quantifiable patterns, despite broad variation across individuals. These patterns, observed using a keypress paradigm with visual stimuli, form the basis for relative preference theory (RPT). Here, we sought to determine if such patterns extend to non-visual domains (i.e., audition) and dynamic stimuli, potentially providing a method to supplement psychometric, physiological, and neuroimaging approaches to preference quantification. For this study, we adapted our keypress paradigm to two sets of stimuli consisting of seventeenth to twenty-first century western art music (Classical) and twentieth to twenty-first century jazz and popular music (Popular). We studied a pilot sample and then a separate primary experimental sample with this paradigm, and used iterative mathematical modeling to determine if RPT relationships were observed with high R2 fits. We further assessed the extent of heterogeneity in the rank ordering of keypress-based responses across subjects. As expected, individual rank orderings of preferences were quite heterogeneous, yet we observed mathematical patterns fitting these data similar to those observed previously with visual stimuli. These patterns in music preference were recurrent across two cohorts and two stimulus sets, and scaled between individual and group data, adhering to the requirements for lawfulness. Our findings suggest a general neuroscience framework that predicts human approach/avoidance behavior, while also allowing for individual differences and the broad diversity of human choices; the resulting framework may offer novel approaches to advancing music neuroscience, or its applications to medicine and recommendation systems. PMID:28512395

  15. Customizing semen preservation protocols for individual dogs and individual species: sperm preservation beyond the state of the art.

    PubMed

    Farstad, W

    2012-12-01

    Sperm quality can be variable in morphometric and physiological attributes between males of different species, between males within species subtypes reared under different environmental conditions, between ejaculates of the same male or even between sperm populations within an ejaculate. Clinical semen evaluation is based on evaluation of whole ejaculates, which is not a chemically or physiologically well-defined entity, rather a collection of heterogeneous subpopulations giving different measurements and possessing different fertilizing potential. Identification of subpopulations with different motility patterns is important as well as characterizing the subtle structural changes underlying the motility differences observed. The ability to identify populations of sperm responding rapidly or failing to progress through the capacitation process may have clinical applications. Studies of lipid-phase fluidity of sperm membranes, mathematical modelling of membrane ion transport, role of modifying components and detergent-resistant microdomains are of particular interest. When customizing extenders to ejaculates from cryosensitive males or species, a thorough knowledge of species sperm membrane physiology and an assessment of the individual ejaculate's sperm populations are necessary. Structural differences have been found in sperm membranes between fox species with different cryosurvival potential of their spermatozoa. Supplementation of lipids and detergents in cryoextenders may influence membrane fluidity of the surviving spermatozoa in a species-dependent manner and influence capacitation. Immobilization of sperm prior to cryopreservation with subsequent slow release of sperm in the female genital tract may be a way to prolong the fertile life of sperm. In canids with a long oocyte maturation time, delayed capacitation may be beneficial. © 2012 Blackwell Verlag GmbH.

  16. Internationalizing the Mathematical Finance Course

    ERIC Educational Resources Information Center

    Okonkwo, Zephyrinus C.

    2017-01-01

    About the year 2000, the Department of Mathematics and Computer Science, Albany State University (ASU), Albany, Georgia, USA envisioned the need to have a comprehensive curriculum revision based on recommendations of the Conference Boards of The Mathematical Sciences, the American Mathematical Society, the Mathematical Association of American, and…

  17. Didactic trajectory of research in mathematics education using research-based learning

    NASA Astrophysics Data System (ADS)

    Charitas Indra Prahmana, Rully; Kusumah, Yaya S.; Darhim

    2017-10-01

    This study aims to describe the role of research-based learning in design a learning trajectory of research in mathematics education to enhance research and academic writing skills for pre-service mathematics teachers. The method used is a design research with three stages, namely the preliminary design, teaching experiment, and retrospective analysis. The research subjects are pre-service mathematics teacher class of 2012 from one higher education institution in Tangerang - Indonesia. The use of research-based learning in designing learning trajectory of research in mathematics education plays a crucial role as a trigger to enhancing math department preservice teachers research and academic writing skills. Also, this study also describes the design principles and characteristics of the learning trajectory namely didactic trajectory generated by the role of research-based learning syntax.

  18. The Mathematics of "Star Trek"--An Honors Colloquium

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2011-01-01

    After the success of a course on cryptography for a general audience, based on Simon Singh's "The Code Book" [49], I decided to try again and create a mathematics course for a general audience based on "The Physics of Star Trek" by Lawrence Krauss [32]. This article looks at the challenges of designing a physics-based mathematics course "from…

  19. Material Encounters with Mathematics: The Case for Museum Based Cross-Curricular Integration

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; Bentley, Sean J.

    2012-01-01

    This paper reports on research from a network of high school and museum partnerships designed to explore techniques for integrating mathematics and physics learning experiences during the first year of high school. The foundation of the curriculum is a problem-based, museum-based, and hands-on approach to mathematics and physics. In this paper, we…

  20. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

    PubMed Central

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J.; Wolf, Stephanie; Mueller, Nikola S.; D'Alessandro, Lorenza A.; Mueller-Bohl, Stephanie; Boehm, Martin E.; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D.; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J.; Ehlting, Christian; Bode, Johannes G.; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines. PMID:29062282

  1. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib.

    PubMed

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J; Wolf, Stephanie; Mueller, Nikola S; D'Alessandro, Lorenza A; Mueller-Bohl, Stephanie; Boehm, Martin E; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J; Ehlting, Christian; Bode, Johannes G; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

  2. Implementation and outcomes of inquiry-based learning in mathematics content courses for pre-service teachers

    NASA Astrophysics Data System (ADS)

    Laursen, Sandra L.; Hassi, Marja-Liisa; Hough, Sarah

    2016-02-01

    This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities, separately targeting elementary and secondary pre-service teachers. Classroom observation established that the courses were taught with student-centred methods that were comparable to those used in IBL courses for students in mathematics-intensive fields at the same institutions. To measure pre-service teachers' gains in mathematical knowledge for teaching, we administered the Learning Mathematics for Teaching (LMT) instrument developed by Hill, Ball and Schilling for in-service teacher professional development. Results from the LMT show that pre-service teachers made significant score gains from beginning to end of their course, while data from interviews and from surveys of learning gains show that pre-service teachers viewed their gains as relevant to their future teaching work. Measured changes on pre-/post-surveys of attitudes and beliefs were generally supportive of learning mathematics but modest in magnitude. The study is distinctive in applying the LMT to document pre-service teachers' growth in mathematical knowledge for teaching. The study also suggests IBL is an approach well suited to mathematics departments seeking to strengthen their pre-service teacher preparation offerings in ways consistent with research-based recommendations.

  3. Mathematical models used in segmentation and fractal methods of 2-D ultrasound images

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

    2012-11-01

    Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

  4. Mathematical modelling of intra-aortic balloon pump.

    PubMed

    Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran

    2010-10-01

    Ischemic heart diseases now afflict thousands of Iranians and are the major cause of death in many industrialised countries. Mathematical modelling of an intra-aortic balloon pump (IABP) could provide a better understanding of its performance and help to represent blood flow and pressure in systemic arteries before and after inserting the pump. A mathematical modelling of the whole cardiovascular system was formulated using MATLAB software. The block diagram of the model consists of 43 compartments. All the anatomical data was extracted from the physiological references. In the next stage, myocardial infarction (MI) was induced in the model by decreasing the contractility of the left ventricle. The IABP was mathematically modelled and inserted in the model in the thoracic aorta I artery just before the descending aorta. The effects of IABP on MI were studied using the mathematical model. The normal operation of the cardiovascular system was studied firstly. The pressure-time graphs of the ventricles, atriums, aorta, pulmonary system, capillaries and arterioles were obtained. The volume-time curve of the left ventricle was also presented. The pressure-time curves of the left ventricle and thoracic aorta I were obtained for normal, MI, and inserted IABP conditions. Model verification was performed by comparing the simulation results with the clinical observations reported in the literature. IABP can be described by a theoretical model. Our model representing the cardiovascular system is capable of showing the effects of different pathologies such as MI and we have shown that MI effects can be reduced using IABP in accordance with the modelling results. The mathematical model should serve as a useful tool to simulate and better understand cardiovascular operation in normal and pathological conditions.

  5. An analysis of primary school students’ representational ability in mathematics based on gender perspective

    NASA Astrophysics Data System (ADS)

    Kowiyah; Mulyawati, I.

    2018-01-01

    Mathematic representation is one of the basic mathematic skills that allows students to communicate their mathematic ideas through visual realities such as pictures, tables, mathematic expressions and mathematic equities. The present research aims at: 1) analysing students’ mathematic representation ability in solving mathematic problems and 2) examining the difference of students’ mathematic ability based on their gender. A total of sixty primary school students participated in this study comprising of thirty males and thirty females. Data required in this study were collected through mathematic representation tests, interviews and test evaluation rubric. Findings of this study showed that students’ mathematic representation of visual realities (image and tables) was reported higher at 62.3% than at in the form of description (or statement) at 8.6%. From gender perspective, male students performed better than the females at action planning stage. The percentage of males was reported at 68% (the highest), 33% (medium) and 21.3% (the lowest) while the females were at 36% (the highest), 37.7% (medium) and 32.6% (the lowest).

  6. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  7. Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: an object-oriented approach.

    PubMed

    Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V

    2014-04-01

    A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Throw Away Your Mathematical Handbook! Undergraduate Physics with Wolfram|Alpha, a FREE(!) Internet-Based Mathematical Engine

    NASA Astrophysics Data System (ADS)

    Looney, Craig W.

    2009-10-01

    Wolfram|Alpha (http://www.wolframalpha.com/), a free internet-based mathematical engine released earlier this year, represents an orders-of magnitude advance in mathematical power freely available - without money, passwords, or downloads - on the web. Wolfram|Alpha is based on Mathematica, so it can plot functions, take derivatives, solve systems of equations, perform symbolic and numerical integration, and more. These capabilities (especially plotting and integration) will be explored in the context of topics covered in upper level undergraduate physics courses.

  9. Enhancing School Mathematics Culturally: A Path of Reconciliation

    ERIC Educational Resources Information Center

    Aikenhead, Glen S.

    2017-01-01

    Culturally responsive or place-based school mathematics that focuses on Indigenous students has an established presence in the research literature. This culture-based innovation represents a historical shift from conventional approaches to mathematics education. Moreover, it has demonstratively advanced the academic achievement for both Indigenous…

  10. Problem based learning with scaffolding technique on geometry

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-05-01

    Geometry as one of the branches of mathematics has an important role in the study of mathematics. This research aims to explore the effectiveness of Problem Based Learning (PBL) with scaffolding technique viewed from self-regulation learning toward students’ achievement learning in mathematics. The research data obtained through mathematics learning achievement test and self-regulated learning (SRL) questionnaire. This research employed quasi-experimental research. The subjects of this research are students of the junior high school in Banyumas Central Java. The result of the research showed that problem-based learning model with scaffolding technique is more effective to generate students’ mathematics learning achievement than direct learning (DL). This is because in PBL model students are more able to think actively and creatively. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  11. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    NASA Astrophysics Data System (ADS)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  12. State-of-the-Art Review on Physiologically Based Pharmacokinetic Modeling in Pediatric Drug Development.

    PubMed

    Yellepeddi, Venkata; Rower, Joseph; Liu, Xiaoxi; Kumar, Shaun; Rashid, Jahidur; Sherwin, Catherine M T

    2018-05-18

    Physiologically based pharmacokinetic modeling and simulation is an important tool for predicting the pharmacokinetics, pharmacodynamics, and safety of drugs in pediatrics. Physiologically based pharmacokinetic modeling is applied in pediatric drug development for first-time-in-pediatric dose selection, simulation-based trial design, correlation with target organ toxicities, risk assessment by investigating possible drug-drug interactions, real-time assessment of pharmacokinetic-safety relationships, and assessment of non-systemic biodistribution targets. This review summarizes the details of a physiologically based pharmacokinetic modeling approach in pediatric drug research, emphasizing reports on pediatric physiologically based pharmacokinetic models of individual drugs. We also compare and contrast the strategies employed by various researchers in pediatric physiologically based pharmacokinetic modeling and provide a comprehensive overview of physiologically based pharmacokinetic modeling strategies and approaches in pediatrics. We discuss the impact of physiologically based pharmacokinetic models on regulatory reviews and product labels in the field of pediatric pharmacotherapy. Additionally, we examine in detail the current limitations and future directions of physiologically based pharmacokinetic modeling in pediatrics with regard to the ability to predict plasma concentrations and pharmacokinetic parameters. Despite the skepticism and concern in the pediatric community about the reliability of physiologically based pharmacokinetic models, there is substantial evidence that pediatric physiologically based pharmacokinetic models have been used successfully to predict differences in pharmacokinetics between adults and children for several drugs. It is obvious that the use of physiologically based pharmacokinetic modeling to support various stages of pediatric drug development is highly attractive and will rapidly increase, provided the robustness and reliability of these techniques are well established.

  13. Allied Health Applications Integrated into Developmental Mathematics Using Problem Based Learning

    ERIC Educational Resources Information Center

    Shore, Mark; Shore, JoAnna; Boggs, Stacey

    2004-01-01

    For this FIPSE funded project, mathematics faculty attended allied health classes and allied health faculty attended developmental mathematics courses to incorporate health examples into the developmental mathematics curriculum. Through the course of this grant a 450-page developmental mathematics book was written with many problems from a variety…

  14. Improving Preschoolers' Mathematics Achievement with Tablets: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Schacter, John; Jo, Booil

    2017-01-01

    With a randomized field experiment of 433 preschoolers, we tested a tablet mathematics program designed to increase young children's mathematics learning. Intervention students played Math Shelf, a comprehensive iPad preschool and year 1 mathematics app, while comparison children received research-based hands-on mathematics instruction delivered…

  15. Child-Level Predictors of Responsiveness to Evidence-Based Mathematics Intervention

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Cirino, Paul T.; Malone, Amelia S.

    2017-01-01

    We identified child-level predictors of responsiveness to 2 types of mathematics intervention (calculation and word problem) among second-grade children with mathematics difficulty. Participants were 250 children in 107 classrooms in 23 schools pretested on mathematics and general cognitive measures and posttested on mathematics measures. We…

  16. Pre-Service Teachers' Mathematics Content Knowledge: Implications for How Mathematics Is Taught in Higher Education

    ERIC Educational Resources Information Center

    Lowrie, Tom; Jorgensen, Robyn

    2016-01-01

    This investigation explored pre-service teachers' mathematics content knowledge (MCK) and beliefs associated with mathematics education practices. An Exploratory Factor Analysis, conducted on a beliefs and attitudes questionnaire, produced three common attitude factors associated with (1) inquiry-based teaching; (2) how mathematics knowledge is…

  17. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    NASA Astrophysics Data System (ADS)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  18. Prospective Teachers' Perspectives on Mathematics Teaching and Learning: Lens for Interpreting Experiences in a Standards-Based Mathematics Course

    ERIC Educational Resources Information Center

    Chamberlin, Michelle T.

    2013-01-01

    In a mathematics course for prospective elementary teachers, we strove to model standards-based pedagogy. However, an end-of-class reflection revealed the prospective teachers were considering incorporating standards-based strategies in their future classrooms in ways different from our intent. Thus, we drew upon the framework presented by Simon,…

  19. How Curriculum and Classroom Achievement Predict Teacher Time on Lecture- and Inquiry-Based Mathematics Activities

    ERIC Educational Resources Information Center

    Kaufman, Julia H.; Rita Karam; Pane, John F.; Junker, Brian W.

    2012-01-01

    This study drew on data from a large, randomized trial of Cognitive Tutor Algebra (CTA) in high-poverty settings to investigate how mathematics curricula and classroom achievement related to teacher reports of time spent on inquiry-based and lecture-based mathematics activities. We found that teachers using the CTA curriculum reported more time on…

  20. Effects of Finger Counting on Numerical Development – The Opposing Views of Neurocognition and Mathematics Education

    PubMed Central

    Moeller, Korbinian; Martignon, Laura; Wessolowski, Silvia; Engel, Joachim; Nuerk, Hans-Christoph

    2011-01-01

    Children typically learn basic numerical and arithmetic principles using finger-based representations. However, whether or not reliance on finger-based representations is beneficial or detrimental is the subject of an ongoing debate between researchers in neurocognition and mathematics education. From the neurocognitive perspective, finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis, or “finger sense,” enhances mathematical skills. Therefore neurocognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development. However, research in mathematics education recommends fostering mentally based numerical representations so as to induce children to abandon finger counting. More precisely, mathematics education recommends first using finger counting, then concrete structured representations and, finally, mental representations of numbers to perform numerical operations. Taken together, these results reveal an important debate between neurocognitive and mathematics education research concerning the benefits and detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be discussed. PMID:22144969

  1. Conversations about curriculum change: mathematical thinking and team-based learning in a discrete mathematics course

    NASA Astrophysics Data System (ADS)

    Paterson, Judy; Sneddon, Jamie

    2011-10-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused on what he calls the 'unspoken curriculum': mathematical thinking. We consider the ways in which the TBL model promoted and enabled this in the light of literature on mathematical thinking, sense-making and behaviours, and strongly suggest that this approach warrants more attention from the mathematics teaching community. We also discuss shifts in the mathematician's thinking about task construction as he refined the tasks to encourage students to think and behave like mathematicians.

  2. The Consequences of a Problem-Based Mathematics Curriculum

    ERIC Educational Resources Information Center

    Clarke, David; Breed, Margarita; Fraser, Sherry

    2004-01-01

    Implementation of a problem-based mathematics curriculum, the "Interactive Mathematics Program" (IMP), at three high schools in California has been associated with more than just differences in student achievement. The outcomes that distinguished students who participated in the IMP program from students who followed a conventional…

  3. A dynamical system view of cerebellar function

    NASA Astrophysics Data System (ADS)

    Keeler, James D.

    1990-06-01

    First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.

  4. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE PAGES

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.; ...

    2016-12-30

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  5. Modeling cortical circuits.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approachmore » is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.« less

  6. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  7. Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor

    Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  8. Death wins against life in a spatially extended model of the caspase-3/8 feedback loop.

    PubMed

    Daub, M; Waldherr, S; Allgöwer, F; Scheurich, P; Schneider, G

    2012-01-01

    Apoptosis is an important physiological process which enables organisms to remove unwanted or damaged cells. A mathematical model of the extrinsic pro-apoptotic signaling pathway has been introduced by Eissing et al. (2007) and a bistable behavior with a stable death state and a stable life state of the reaction system has been established. In this paper, we consider a spatial extension of the extrinsic pro-apoptotic signaling pathway incorporating diffusion terms and make a model-based, numerical analysis of the apoptotic switch in the spatial dimension. For the parameter regimes under consideration it turns out that for this model diffusion homogenizes rapidly the concentrations which afterward are governed by the original reaction system. The activation of effector-caspase 3 depends on the space averaged initial concentration of pro-caspase 8 and pro-caspase 3 at the beginning of the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Comparison of form in potential functions while maintaining upright posture during exposure to stereoscopic video clips.

    PubMed

    Kutsuna, Kenichiro; Matsuura, Yasuyuki; Fujikake, Kazuhiro; Miyao, Masaru; Takada, Hiroki

    2013-01-01

    Visually induced motion sickness (VIMS) is caused by sensory conflict, the disagreement between vergence and visual accommodation while observing stereoscopic images. VIMS can be measured by psychological and physiological methods. We propose a mathematical methodology to measure the effect of three-dimensional (3D) images on the equilibrium function. In this study, body sway in the resting state is compared with that during exposure to 3D video clips on a liquid crystal display (LCD) and on a head mounted display (HMD). In addition, the Simulator Sickness Questionnaire (SSQ) was completed immediately afterward. Based on the statistical analysis of the SSQ subscores and each index for stabilograms, we succeeded in determining the quantity of the VIMS during exposure to the stereoscopic images. Moreover, we discuss the metamorphism in the potential functions to control the standing posture during the exposure to stereoscopic video clips.

  10. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.

    PubMed

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  11. NASA's Biomedical Research Program

    NASA Technical Reports Server (NTRS)

    Ahn, Chung-Hae

    1981-01-01

    The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long-term flight can be devised. Major new avenues of research will deal with the psychological accompaniments of spaceflight and with mathematical modelling of physiological systems.

  12. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    PubMed

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  13. A School-Based Professional Development Programme for Teachers of Mathematical Modelling in Singapore

    ERIC Educational Resources Information Center

    Tan, Liang Soon; Ang, Keng Cheng

    2016-01-01

    A school-based professional development programme (SBPD) aimed at developing secondary school mathematics teachers' competencies to teach mathematical modelling in Singapore is presented and evaluated in this article. The SBPD is characterized by two key features--content elements to develop teachers' knowledge and skills, and transformative…

  14. Investigating Student Use of Electronic Support Tools and Mathematical Reasoning

    ERIC Educational Resources Information Center

    Higgins, Kristina N.; Crawford, Lindy; Huscroft-D'Angelo, Jacqueline; Horney, Mark

    2016-01-01

    Mathematical reasoning involves comprehending mathematical information and concepts in a logical way and forming conclusions and generalizations based on this comprehension. Computer-based learning has been incorporated into classrooms across the country, and specific aspects of technology need to be studied to determine how programs are…

  15. ICT and Constructivist Strategies Instruction for Science and Mathematics Education

    ERIC Educational Resources Information Center

    Kong, Ng Wai; Lai, Kong Sow

    2005-01-01

    Concept learning in science and mathematics had often times been taught based on assumptions of alternative concepts or even in some instances based on misconceptions. Some educational researchers favour a constructivist approach in teaching science and mathematics. The constructivist literature existing makes use of alternative conceptions as…

  16. Piloting a Web-Based Homework System in Developmental Mathematics Classrooms

    ERIC Educational Resources Information Center

    Dass, Wendi E.

    2012-01-01

    This Capstone project studied a pilot of the web-based homework system "Hawkes" in developmental mathematics classes at a mid-sized community college. The purpose of the study was to investigate how three instructors of developmental mathematics courses incorporated "Hawkes" in their classes, what obstacles they encountered,…

  17. "Standards"-Based Mathematics Curricula and the Promotion of Quantitative Literacy in Elementary School

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.

    2015-01-01

    Background: Prior research has shown that students taught using "Standards"-based mathematics curricula tend to outperform students on measures of mathematics achievement. However, little research has focused particularly on the promotion of student quantitative literacy (QLT). In this study, the potential influence of the…

  18. An Excel-Aided Method for Teaching Calculus-Based Business Mathematics

    ERIC Educational Resources Information Center

    Liang, Jiajuan; Martin, Linda

    2008-01-01

    Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…

  19. The Effectiveness of Project-Based Learning on Mathematics Proficiency with African American Students

    ERIC Educational Resources Information Center

    Jenkins, Justina

    2017-01-01

    This sequential exploratory mixed methods study addressed the problem of low academic achievement in mathematics, specifically for African American middle school students who historically score below proficient levels on standardized mathematics assessments. The purpose was to investigate the effectiveness of the Project-Based Learning (PBL)…

  20. Inquiry-Based Learning and the Art of Mathematical Discourse

    ERIC Educational Resources Information Center

    von Renesse, Christine; Ecke, Volker

    2015-01-01

    Our particular flavor of inquiry-based learning (IBL) uses mathematical discourse, conversations, and discussions to empower students to deepen their mathematical thinking, building on strengths of students in the humanities. We present an organized catalog of powerful questions, discussion prompts, and talk moves that can help faculty facilitate…

  1. Computer-Game-Based Tutoring of Mathematics

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2013-01-01

    This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…

  2. Novice Mathematics Teachers Create Themselves

    ERIC Educational Resources Information Center

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  3. Influence of Problem-Based Learning Model of Learning to the Mathematical Communication Ability of Students of Grade XI IPA SMAN 14 Padang

    NASA Astrophysics Data System (ADS)

    Nisa, I. M.

    2018-04-01

    The ability of mathematical communication is one of the goals of learning mathematics expected to be mastered by students. However, reality in the field found that the ability of mathematical communication the students of grade XI IPA SMA Negeri 14 Padang have not developed optimally. This is evident from the low test results of communication skills mathematically done. One of the factors that causes this happens is learning that has not been fully able to facilitate students to develop mathematical communication skills well. By therefore, to improve students' mathematical communication skills required a model in the learning activities. One of the models learning that can be used is Problem Based learning model Learning (PBL). The purpose of this study is to see whether the ability the students' mathematical communication using the PBL model better than the students' mathematical communication skills of the learning using conventional learning in Class XI IPA SMAN 14 Padang. This research type is quasi experiment with design Randomized Group Only Design. Population in this research that is student of class XI IPA SMAN 14 Padang with sample class XI IPA 3 and class XI IPA 4. Data retrieval is done by using communication skill test mathematically shaped essay. To test the hypothesis used U-Mann test Whitney. Based on the results of data analysis, it can be concluded that the ability mathematical communication of students whose learning apply more PBL model better than the students' mathematical communication skills of their learning apply conventional learning in class XI IPA SMA 14 Padang at α = 0.05. This indicates that the PBL learning model effect on students' mathematical communication ability.

  4. The Effects of Pedagogical Agents on Mathematics Anxiety and Mathematics Learning

    ERIC Educational Resources Information Center

    Wei, Quan

    2010-01-01

    The purpose of this study was to investigate the impact of the mathematics anxiety treatment messages in a computer-based environment on ninth-grade students' mathematics anxiety and mathematics learning. The study also examined whether the impact of the treatment messages would be differentiated by learner's gender and by learner's prior…

  5. The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study

    ERIC Educational Resources Information Center

    Mischo, Christoph; Maaß, Katja

    2013-01-01

    This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…

  6. The Impact of Advanced Curriculum on the Achievement of Mathematically Promising Elementary Students

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Casa, Tutita M.; Adelson, Jill L.; Carroll, Susan R.; Sheffield, Linda Jensen

    2009-01-01

    The primary aim of Project M[superscript 3]: Mentoring Mathematical Minds was to develop and field test advanced units for mathematically promising elementary students based on exemplary practices in gifted and mathematics education. This article describes the development of the units and reports on mathematics achievement results for students in…

  7. Classroom Culture, Mathematics Culture, and the Failures of Reform: The Need for a Collective View of Culture

    ERIC Educational Resources Information Center

    Gill, Michele Gregoire; Boote, David

    2012-01-01

    Background/Context: Despite the tremendous amount of effort devoted by many mathematics educators to promote, defend, and implement reform-based mathematics education, procedural mathematics, which locates mathematical correctness in the procedures learned from textbooks and teachers, persists. Many researchers have identified school and classroom…

  8. Mathematics Placement Test: Typical Results with Unexpected Outcomes

    ERIC Educational Resources Information Center

    Ingalls, Victoria

    2011-01-01

    Based on the results of a prior case-study analysis of mathematics placement at one university, the mathematics department developed and piloted a mathematics placement test. This article describes the implementation process for a mathematics placement test and further analyzes the test results for the pilot group. As an unexpected result, the…

  9. Exploring the Disconnect between Mathematics Ability and Mathematics Efficacy among Preservice Agricultural Education Teachers

    ERIC Educational Resources Information Center

    Hilby, Alyssa C.; Stripling, Christopher T.; Stephens, Carrie A.

    2014-01-01

    STEM disciplines will continue to impact school-based agricultural education programs; thus, in order to produce secondary students proficient in science and mathematics, developing preservice agricultural education teachers who are competent in mathematics and teaching mathematics is essential. This study utilized data collected through a focus…

  10. The Emergence of Objects from Mathematical Practices

    ERIC Educational Resources Information Center

    Font, Vicenc; Godino, Juan D.; Gallardo, Jesus

    2013-01-01

    The nature of mathematical objects, their various types, the way in which they are formed, and how they participate in mathematical activity are all questions of interest for philosophy and mathematics education. Teaching in schools is usually based, implicitly or explicitly, on a descriptive/realist view of mathematics, an approach which is not…

  11. Exploring the Relationship between Questioning, Enacted Mathematical Tasks, and Mathematical Discourse in Elementary School Mathematics

    ERIC Educational Resources Information Center

    Martin, Christie; Polly, Drew; McGee, Jen; Wang, Chuang; Lambert, Richard; Pugalee, David

    2015-01-01

    This study examined the mathematical discourse of elementary school teachers and their students while participating in a year-long professional development project focused on implementing reform-based mathematics curriculum. The teacher participants included 12 teachers, two from each grade level from Kindergarten through Grade 5. Field notes were…

  12. Finnish Mentor Mathematics Teachers' Views of the Teacher Knowledge Required for Teaching Mathematics

    ERIC Educational Resources Information Center

    Asikainen, Mervi A.; Pehkonen, Erkki; Hirvonen, Pekka E.

    2013-01-01

    Seven Finnish mentor mathematics teachers were interviewed about their views regarding the teacher knowledge required for teaching mathematics. The results of the interviews revealed not only the teachers' spontaneous views of the knowledge base needed for effective mathematics teaching but also their views of the particular types of teacher…

  13. The metamorphoses of relativity

    NASA Astrophysics Data System (ADS)

    Staley, Richard

    This talk will explore the ways that problems shifted and disciplinary boundaries changed around physicists' engagement with relational physics and relativistic thought, first in research dealing with physiology, psychology and geometry in the late nineteenth century and then (a better-known story) moving between physics, mathematics and geometry in the twentieth century. I hope to develop a richer approach for understanding the disciplinary and political significance of relativity, especially by considering in one framework the work of Engels, Mach, Einstein and Planck.

  14. Uncovering Physiologic Mechanisms of Circadian Rhythms and Sleep/Wake Regulation Through Mathematical Modeling

    DTIC Science & Technology

    2007-06-01

    the effects of rest -activity-work schedules and interventions on neurobehavioral function. In a symposium titled “Modeling Human Neurobehavioral...physio- logic basis of Process S. The mutually inhibitory neu- ronal populations, together with the surrogate Process S, have the potential to serve...as a function of both ta and φ (Czeisler et al., 1999). Briefly, by imposing a cyclic pattern of bed rest and wake time at a period, T, sufficiently

  15. Statistical Analysis of Physiological Signals

    NASA Astrophysics Data System (ADS)

    Ruiz, María G.; Pérez, Leticia

    2003-07-01

    In spite of two hundred years of clinical practice, Homeopathy still lacks of scientific basis. Its fundamental laws, similia principle and the activity of the denominated ultra-high dilutions are controversial issues that do not fit into the mainstream medicine or current physical-chemistry field as well. Aside its clinical efficacy, the identification of physical - chemistry parameters, as markers of the homeopathic effect, would allow to construct mathematic models [1], which in turn, could provide clues regarding the involved mechanism.

  16. Predicting bifurcation angle effect on blood flow in the microvasculature.

    PubMed

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Value of Flexibility - Phase 1

    DTIC Science & Technology

    2010-09-25

    weaknesses of each approach. During this period, we also explored the development of an analytical framework based on sound mathematical constructs... mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory or guidance on best approaches to...research activities is in developing a coherent value based definition of flexibility that is based on an analytical framework that is mathematically

  18. Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling

    NASA Astrophysics Data System (ADS)

    Meika, I.; Suryadi, D.; Darhim

    2018-01-01

    This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.

  19. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup

    PubMed Central

    2016-01-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the “minimal physiological requirements” to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple “parsimonious” rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important “emergent” phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid “building-block” to generate more detailed ionic models to represent complex rabbit electrophysiology. PMID:27749895

  20. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.

    PubMed

    Gray, Richard A; Pathmanathan, Pras

    2016-10-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the "minimal physiological requirements" to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple "parsimonious" rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important "emergent" phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid "building-block" to generate more detailed ionic models to represent complex rabbit electrophysiology.

  1. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology

    PubMed Central

    Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.

    2014-01-01

    OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed. PMID:25601911

  2. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    PubMed

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  3. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    PubMed Central

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  4. Student teachers’ mathematical questioning and courage in metaphorical thinking learning

    NASA Astrophysics Data System (ADS)

    Hendriana, H.; Hidayat, W.; Ristiana, M. G.

    2018-01-01

    This study was designed in the form of experiments with control group design and post-test only which aimed to examine the role of metaphorical thinking learning in the mathematical questioning ability of student teachers based on the level of mathematical courage. The population of this study was student teachers of mathematics education study program in West Java Province, while the sample of this study was 152 student teachers which were set purposively and then randomly to be included in the experimental class and control class. Based on the results and discussion, it was concluded that: (a) the mathematical questioning ability of student teachers who received Metaphorical Thinking learning was better than those who received conventional learning seen from mathematical courage level; (b) learning and mathematical courage level factors affected the achievement of student teachers’ mathematical questioning ability. In addition, there was no interaction effect between learning and mathematical courage level (high, medium, and low) simultaneously in developing student teachers’ mathematical questioning ability; (c) achievement of mastering mathematical questioning ability of student teacher was still not well achieved on indicator of problem posing in the form of non-routine question and open question.

  5. GetReal in mathematical modelling: a review of studies predicting drug effectiveness in the real world.

    PubMed

    Panayidou, Klea; Gsteiger, Sandro; Egger, Matthias; Kilcher, Gablu; Carreras, Máximo; Efthimiou, Orestis; Debray, Thomas P A; Trelle, Sven; Hummel, Noemi

    2016-09-01

    The performance of a drug in a clinical trial setting often does not reflect its effect in daily clinical practice. In this third of three reviews, we examine the applications that have been used in the literature to predict real-world effectiveness from randomized controlled trial efficacy data. We searched MEDLINE, EMBASE from inception to March 2014, the Cochrane Methodology Register, and websites of key journals and organisations and reference lists. We extracted data on the type of model and predictions, data sources, validation and sensitivity analyses, disease area and software. We identified 12 articles in which four approaches were used: multi-state models, discrete event simulation models, physiology-based models and survival and generalized linear models. Studies predicted outcomes over longer time periods in different patient populations, including patients with lower levels of adherence or persistence to treatment or examined doses not tested in trials. Eight studies included individual patient data. Seven examined cardiovascular and metabolic diseases and three neurological conditions. Most studies included sensitivity analyses, but external validation was performed in only three studies. We conclude that mathematical modelling to predict real-world effectiveness of drug interventions is not widely used at present and not well validated. © 2016 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd. © 2016 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

  6. Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿

    PubMed Central

    Coleman, Matthew C.; Fish, Russell; Block, David E.

    2007-01-01

    A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615

  7. A mathematical model for lactate transport to red blood cells.

    PubMed

    Wahl, Patrick; Yue, Zengyuan; Zinner, Christoph; Bloch, Wilhelm; Mester, Joachim

    2011-03-01

    A simple mathematical model for the transport of lactate from plasma to red blood cells (RBCs) during and after exercise is proposed based on our experimental studies for the lactate concentrations in RBCs and in plasma. In addition to the influx associated with the plasma-to-RBC lactate concentration gradient, it is argued that an efflux must exist. The efflux rate is assumed to be proportional to the lactate concentration in RBCs. This simple model is justified by the comparison between the model-predicted results and observations: For all 33 cases (11 subjects and 3 different warm-up conditions), the model-predicted time courses of lactate concentrations in RBC are generally in good agreement with observations, and the model-predicted ratios between lactate concentrations in RBCs and in plasma at the peak of lactate concentration in RBCs are very close to the observed values. Two constants, the influx rate coefficient C (1) and the efflux rate coefficient C (2), are involved in the present model. They are determined by the best fit to observations. Although the exact electro-chemical mechanism for the efflux remains to be figured out in the future research, the good agreement of the present model with observations suggests that the efflux must get stronger as the lactate concentration in RBCs increases. The physiological meanings of C (1) and C (2) as well as their potential applications are discussed.

  8. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.

    PubMed

    Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P

    2010-11-01

    The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  10. A discrete structure of the brain waves.

    NASA Astrophysics Data System (ADS)

    Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team

    A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.

  11. Teaching Mathematics in Geography Degrees

    ERIC Educational Resources Information Center

    Bennett, Robert

    1978-01-01

    Examines ways of developing college students' motivation for mathematical training; describes the type of mathematical knowledge required in the geography discipline; and explores an applied approach to mathematics teaching based on a systems concept. For journal availability, see SO 506 224. (Author/AV)

  12. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be manipulated to model anatomical variations and patient motion. With the vast improvement in realism, the phantoms developed in our lab can be combined with accurate models of the imaging process (SPECT, PET, CT, magnetic resonance imaging, and ultrasound) to generate simulated imaging data close to that from actual human or animal subjects. As such, they can provide vital tools to generate predictive imaging data from many different subjects under various scanning parameters from which to quantitatively evaluate and improve imaging devices and techniques. From the MCAT to XCAT, we will demonstrate how NURBS and SD surface modeling have resulted in a major evolutionary advance in the development of computerized phantoms for imaging research. PMID:26472880

  13. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research: Computer models that take account of body movements promise to provide evaluation and improvement of medical imaging devices and technology.

    PubMed

    Paul Segars, W; Tsui, Benjamin M W

    2009-12-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal "hybrid" models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be manipulated to model anatomical variations and patient motion. With the vast improvement in realism, the phantoms developed in our lab can be combined with accurate models of the imaging process (SPECT, PET, CT, magnetic resonance imaging, and ultrasound) to generate simulated imaging data close to that from actual human or animal subjects. As such, they can provide vital tools to generate predictive imaging data from many different subjects under various scanning parameters from which to quantitatively evaluate and improve imaging devices and techniques. From the MCAT to XCAT, we will demonstrate how NURBS and SD surface modeling have resulted in a major evolutionary advance in the development of computerized phantoms for imaging research.

  14. Analysis of creative mathematic thinking ability in problem based learning model based on self-regulation learning

    NASA Astrophysics Data System (ADS)

    Munahefi, D. N.; Waluya, S. B.; Rochmad

    2018-03-01

    The purpose of this research identified the effectiveness of Problem Based Learning (PBL) models based on Self Regulation Leaning (SRL) on the ability of mathematical creative thinking and analyzed the ability of mathematical creative thinking of high school students in solving mathematical problems. The population of this study was students of grade X SMA N 3 Klaten. The research method used in this research was sequential explanatory. Quantitative stages with simple random sampling technique, where two classes were selected randomly as experimental class was taught with the PBL model based on SRL and control class was taught with expository model. The selection of samples at the qualitative stage was non-probability sampling technique in which each selected 3 students were high, medium, and low academic levels. PBL model with SRL approach effectived to students’ mathematical creative thinking ability. The ability of mathematical creative thinking of low academic level students with PBL model approach of SRL were achieving the aspect of fluency and flexibility. Students of academic level were achieving fluency and flexibility aspects well. But the originality of students at the academic level was not yet well structured. Students of high academic level could reach the aspect of originality.

  15. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing

    PubMed Central

    Hsu, Chun-Wei; Goh, Joshua O. S.

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466

  16. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing.

    PubMed

    Hsu, Chun-Wei; Goh, Joshua O S

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes.

  17. A Comparison of the Mathematical Performance of Mature Students and Traditional Students over a 10-Year Period

    ERIC Educational Resources Information Center

    Faulkner, Fiona; Fitzmaurice, Olivia; Hannigan, Ailish

    2016-01-01

    Every student who enrols in a degree programme involving service mathematics in the University of Limerick in Ireland is given a mathematics diagnostic test. The diagnostic test was developed due to mathematics lecturers' anxiety regarding students' mathematical competency levels. Students receive the 40 question paper-based test in their first…

  18. Developing Instruction Materials Based on Joyful PBL to Improve Students Mathematical Representation Ability

    ERIC Educational Resources Information Center

    Minarni, Ani; Napitupulu, E. Elvis

    2017-01-01

    Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…

  19. Mathematical Idea Analysis: What Embodied Cognitive Science Can Say about the Human Nature of Mathematics.

    ERIC Educational Resources Information Center

    Nunez, Rafael E.

    This paper gives a brief introduction to a discipline called the cognitive science of mathematics. The theoretical background of the arguments is based on embodied cognition and findings in cognitive linguistics. It discusses Mathematical Idea Analysis, a set of techniques for studying implicit structures in mathematics. Particular attention is…

  20. Girls and Mathematics--A "Hopeless" Issue? A Control-Value Approach to Gender Differences in Emotions towards Mathematics

    ERIC Educational Resources Information Center

    Frenzel, Anne C.; Pekrun, Reinhard; Goetz, Thomas

    2007-01-01

    This study analyzed gender differences in achievement emotions in the domain of mathematics. Based on Pekrun's (2000, 2006) control-value theory of achievement emotions, we hypothesized that there are gender differences in mathematics emotions due to the students' different levels of control and value beliefs in mathematics, even when controlling…

  1. The Effect of Cognitive- and Metacognitive-Based Instruction on Problem Solving by Elementary Students with Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    Grizzle-Martin, Tamieka

    2014-01-01

    Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…

  2. Pre-Service Teachers' Developing Conceptions about the Nature and Pedagogy of Mathematical Modeling in the Context of a Mathematical Modeling Course

    ERIC Educational Resources Information Center

    Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc

    2016-01-01

    Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…

  3. "Mathematics Is Just 1 + 1 = 2, What Is There to Argue About?": Developing a Framework for Argument-Based Mathematical Inquiry

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill

    2016-01-01

    One potential means to develop students' contextual and conceptual understanding of mathematics is through Inquiry Learning. However, introducing a problem context can distract from mathematical content. Incorporating argumentation practices into Inquiry may address this through providing a stronger reliance on mathematical evidence and reasoning.…

  4. Quality of Teaching Mathematics and Learning Achievement Gains: Evidence from Primary Schools in Kenya

    ERIC Educational Resources Information Center

    Ngware, Moses W.; Ciera, James; Musyoka, Peter K.; Oketch, Moses

    2015-01-01

    This paper examines the contribution of quality mathematics teaching to student achievement gains. Quality of mathematics teaching is assessed through teacher demonstration of the five strands of mathematical proficiency, the level of cognitive task demands, and teacher mathematical knowledge. Data is based on 1907 grade 6 students who sat for the…

  5. Examining Teaching Based on Errors in Mathematics Amongst Pupils with Learning Disabilities

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga

    2016-01-01

    Teaching mathematics while learning from students' mistakes, errors and misconceptions, is most important for meaningful learning. This study was based on intervention programs prepared by preservice teachers. It aimed to examine their knowledge of assessment of errors in mathematics amongst pupils with learning disabilities, and their use as a…

  6. Learning Mathematics by Designing, Programming, and Investigating with Interactive, Dynamic Computer-Based Objects

    ERIC Educational Resources Information Center

    Marshall, Neil; Buteau, Chantal

    2014-01-01

    As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…

  7. The mathematical bases for qualitative reasoning

    NASA Technical Reports Server (NTRS)

    Kalagnanam, Jayant; Simon, Herbert A.; Iwasaki, Yumi

    1991-01-01

    The practices of researchers in many fields who use qualitative reasoning are summarized and explained. The goal is to gain an understanding of the formal assumptions and mechanisms that underlie this kind of analysis. The explanations given are based on standard mathematical formalisms, particularly on ordinal properties, continuous differentiable functions, and the mathematics of nonlinear dynamic systems.

  8. Effect of Digital Game Based Learning on Ninth Grade Students' Mathematics Achievement

    ERIC Educational Resources Information Center

    Swearingen, Dixie K.

    2011-01-01

    This experimental study examined the effect of an educational massive multiplayer online game (MMOG) on achievement on a standards-based mathematics exam. It also examined the interaction of student characteristics (gender and socioeconomic status) with digital game play on mathematics achievement. Two hundred eighty ninth grade students from a…

  9. Data-Driven Intervention: Correcting Mathematics Students' Misconceptions, Not Mistakes

    ERIC Educational Resources Information Center

    Holmes, Vicki-Lynn; Miedema, Chelsea; Nieuwkoop, Lindsay; Haugen, Nicholas

    2013-01-01

    In an age when reform is based on standards and instruction is based on research, this article gives practical advice for how mathematics teachers can analyze errors in student problems to create interventions that aid not only the individual's development, but the entire class's as well. By learning how to correct mathematics students'…

  10. Identifying Core Elements of Argument-Based Inquiry in Primary Mathematics Learning

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill

    2015-01-01

    Having students address mathematical inquiry problems that are ill-structured and ambiguous offers potential for them to develop a focus on mathematical evidence and reasoning. However, students may not necessarily focus on these aspects when responding to such problems. Argument-Based Inquiry is one way to guide students in this direction. This…

  11. Mathematical History: Activities, Puzzles, Stories, and Games.

    ERIC Educational Resources Information Center

    Mitchell, Merle

    Based on the history of mathematics, these materials have been planned to enrich the teaching of mathematics in grades four, five, and six. Puzzles and games are based on stories about topics such as famous mathematicians, numerals of ancient peoples, and numerology. The sheets are arranged by grade level and are designed for easy duplication.…

  12. Web-Based Mathematics: Some "Dos" and "Don'ts"

    ERIC Educational Resources Information Center

    Loong, Esther Yook-Kin

    2011-01-01

    This case study describes an "out of field" teacher's use of the Internet to teach a range of mathematical topics in a modified Year 8 mathematics class. It highlights the importance of three factors for implementing a discernible web-based teaching strategy: appropriate choice of web objects, effective "virtual" pedagogy, and technical support…

  13. The Relationship between Reading Level and Sixth Grade Students' Acquisition of Mathematics Standards

    ERIC Educational Resources Information Center

    Caruthers, Tarchell Peeples

    2013-01-01

    Current research shows that, despite standards-based mathematics reform, American students lag behind in mathematics achievement when compared to their counterparts in other countries. The purpose of this mixed methods study was to examine if reading level, as measured by the Scholastic Reading Inventory, is related to standards-based mathematics…

  14. Pre-Service Mathematics Teachers' Learning and Teaching of Activity-Based Lessons Supported with Spreadsheets

    ERIC Educational Resources Information Center

    Agyei, Douglas D.; Voogt, Joke M.

    2016-01-01

    In this study, 12 pre-service mathematics teachers worked in teams to develop their knowledge and skills in using teacher-led spreadsheet demonstrations to help students explore mathematics concepts, stimulate discussions and perform authentic tasks through activity-based lessons. Pre-service teachers' lesson plans, their instruction of the…

  15. Improving Primary Students' Mathematical Literacy through Problem Based Learning and Direct Instruction

    ERIC Educational Resources Information Center

    Firdaus, Fery Muhamad; Wahyudin; Herman, Tatang

    2017-01-01

    This research was done on primary school students who are able to understand mathematical concepts, but unable to apply them in solving real life problems. Therefore, this study aims to improve primary school students' mathematical literacy through problem-based learning and direct instruction. In addition, the research was conducted to determine…

  16. On the Importance of Set-Based Meanings for Categories and Connectives in Mathematical Logic

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian

    2017-01-01

    Based on data from a series of teaching experiments on standard tools of mathematical logic, this paper characterizes a range of student meanings for mathematical properties and logical connectives. Some observed meanings inhibited students' adoption of logical structure, while others greatly facilitated it. "Reasoning with predicates"…

  17. Inquiry-Based Argumentation in Primary Mathematics: Reflecting on Evidence

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill

    2013-01-01

    Argumentation in mathematics teaching has potential to move students beyond tacit understanding of mathematical concepts and procedures towards articulation and justification of their ideas; a practice in which evidence is central. Design-based research was used to examine the nature of evidence used by a class of primary students through levels…

  18. Mathematical models of behavior of individual animals.

    PubMed

    Tsibulsky, Vladimir L; Norman, Andrew B

    2007-01-01

    This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.

  19. College Preparatory Mathematics: Change from Within.

    ERIC Educational Resources Information Center

    Kysh, Judith M.

    1995-01-01

    The College Preparatory Mathematics: Change from Within Project (CPM) was created to develop a rich, integrated mathematics curriculum, based on the best current wisdom of how people learn and the mathematics needed in an era of computers, and involving teachers in materials development. (MKR)

  20. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    NASA Astrophysics Data System (ADS)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  1. The paranasal sinuses: the last frontier in craniofacial biology.

    PubMed

    Márquez, Samuel

    2008-11-01

    This special issue of the Anatomical Record explores the presence and diversity of paranasal sinuses in distinct vertebrate groups. The following topics are addressed in particular: dinosaur physiology; development; physiology; adaptation; imaging; and primate systematics. A variety of approaches and techniques are used to examine and characterize the diversity of paranasal sinus pneumatization in a wide spectrum of vertebrates. These range from dissection to histology, from plain X-rays to computer tomography, from comparative anatomy to natural experimental settings, from mathematical computation to computer model simulation, and 2D to 3D reconstructions. The articles in this issue are a combination of literature review and new, hypothesis-driven anatomical research that highlights the complexities of paranasal sinus growth and development; ontogenetic and disease processes; physiology; paleontology; primate systematics; and human evolution. The issue incorporates a wide variety of vertebrates, encompassing a period of over 65 million years, in an effort to offer insight into the diversity of the paranasal sinus complexes through time and space, and thereby providing a greater understanding and appreciation of these special spaces within the cranium. Copyright 2008 Wiley-Liss, Inc.

  2. Innovative model to simulate exhalation phase in human respiratory system.

    PubMed

    Sbrana, Tommaso; Landi, Alberto; Catapano, Giosuè Angelo

    2011-11-01

    In this paper, we present a mathematical model, which mimics the bronchial resistances of human's lung in an expiratory act. The model is implemented in Matlab. The inputs that are used in this model derive from spirometry test. This model is able to study a physiologic condition, a pathologic one and the patient's follow up after drug treatment. We split our study into two parts. The first one focuses the analysis on the gas fluido dynamic inside of the respiratory pathways. The second part takes care of the pressure equilibrium in the exchange zone. We use the outputs that derive from the second subsystem to solve the Bernoulli's equation of the first part. The model was validated with data provided from "Clinical Physiology Institute" of CNR and G. Monasterio Foundation of Pisa. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Enhancing students’ mathematical representation and selfefficacy through situation-based learning assisted by geometer’s sketchpad program

    NASA Astrophysics Data System (ADS)

    Sowanto; Kusumah, Y. S.

    2018-05-01

    This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.

  4. Mathematical skills in 3- and 5-year-olds with spina bifida and their typically developing peers: a longitudinal approach.

    PubMed

    Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda

    2011-05-01

    Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.

  5. Mathematical Skills in 3- and 5-Year-Olds with Spina Bifida and Their Typically Developing Peers: A Longitudinal Approach

    PubMed Central

    Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda

    2011-01-01

    Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718

  6. The Effectiveness of Problem-Based Learning Approach Based on Multiple Intelligences in Terms of Student’s Achievement, Mathematical Connection Ability, and Self-Esteem

    NASA Astrophysics Data System (ADS)

    Kartikasari, A.; Widjajanti, D. B.

    2017-02-01

    The aim of this study is to explore the effectiveness of learning approach using problem-based learning based on multiple intelligences in developing student’s achievement, mathematical connection ability, and self-esteem. This study is experimental research with research sample was 30 of Grade X students of MIA III MAN Yogyakarta III. Learning materials that were implemented consisting of trigonometry and geometry. For the purpose of this study, researchers designed an achievement test made up of 44 multiple choice questions with respectively 24 questions on the concept of trigonometry and 20 questions for geometry. The researcher also designed a connection mathematical test and self-esteem questionnaire that consisted of 7 essay questions on mathematical connection test and 30 items of self-esteem questionnaire. The learning approach said that to be effective if the proportion of students who achieved KKM on achievement test, the proportion of students who achieved a minimum score of high category on the results of both mathematical connection test and self-esteem questionnaire were greater than or equal to 70%. Based on the hypothesis testing at the significance level of 5%, it can be concluded that the learning approach using problem-based learning based on multiple intelligences was effective in terms of student’s achievement, mathematical connection ability, and self-esteem.

  7. Improving Mathematics Instruction Using Technology: A Vygotskian Perspective.

    ERIC Educational Resources Information Center

    Harvey, Francis A.; Charnitski, Christina Wotell

    Strategies and programs for improving mathematics instruction should be derived from sound educational theory. The sociocultural learning theories of Vygotsky may offer guidance in developing technology-based mathematics curriculum materials consonant with the NCTM (National Council of Teachers of Mathematics) goals and objectives. Vygotsky's…

  8. Preservice Agricultural Education Teachers' Mathematics Ability

    ERIC Educational Resources Information Center

    Stripling, Christopher T.; Roberts, T. Grady

    2012-01-01

    The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…

  9. Mathematics, Music, and Movement: Exploring Concepts and Connections.

    ERIC Educational Resources Information Center

    Shilling, Wynne A.

    2002-01-01

    Explores connections between mathematics, music, and movement in early childhood curriculum. Presents music activities in which mathematical concepts are embedded; focuses on activities providing experiences with time-based relationships and rhythmic patterns. Asserts that integrating movement and mathematics into music activities provides a way…

  10. Physiology response of fourth generation saline resistant soybean (Glycine max (L.) Merrill) with application of several types of antioxidants

    NASA Astrophysics Data System (ADS)

    Manurung, I. R.; Rosmayati; Rahmawati, N.

    2018-02-01

    Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.

  11. A mathematics for medicine: The Network Effect

    PubMed Central

    West, Bruce J.

    2014-01-01

    The theory of medicine and its complement systems biology are intended to explain the workings of the large number of mutually interdependent complex physiologic networks in the human body and to apply that understanding to maintaining the functions for which nature designed them. Therefore, when what had originally been made as a simplifying assumption or a working hypothesis becomes foundational to understanding the operation of physiologic networks it is in the best interests of science to replace or at least update that assumption. The replacement process requires, among other things, an evaluation of how the new hypothesis affects modern day understanding of medical science. This paper identifies linear dynamics and Normal statistics as being such arcane assumptions and explores some implications of their retirement. Specifically we explore replacing Normal with fractal statistics and examine how the latter are related to non-linear dynamics and chaos theory. The observed ubiquity of inverse power laws in physiology entails the need for a new calculus, one that describes the dynamics of fractional phenomena and captures the fractal properties of the statistics of physiological time series. We identify these properties as a necessary consequence of the complexity resulting from the network dynamics and refer to them collectively as The Network Effect. PMID:25538622

  12. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.

    PubMed

    Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon

    2017-12-07

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.

  13. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing

    PubMed Central

    PSIKUTA, Agnes; KOELBLEN, Barbara; MERT, Emel; FONTANA, Piero; ANNAHEIM, Simon

    2017-01-01

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications. PMID:28966294

  14. The enhancement of students' mathematical self-efficacy through teaching with metacognitive scaffolding approach

    NASA Astrophysics Data System (ADS)

    Prabawanto, S.

    2018-05-01

    This research aims to investigate the enhancement of students’ mathematical self- efficacy through teaching with metacognitive scaffolding approach. This research used a quasi- experimental design with pre-post respon control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 students who acquire teaching mathematics under metacognitive approach, while the control group consists of 58 students who acquire teaching mathematics under direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical self-efficacy instruments. By using mean difference test, two conclusions of the research: (1) there is a significant difference in the enhancement of mathematical self-efficacy between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and (2) there is no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students’ mathematical self-efficacy.

  15. Applying mathematical concepts with hands-on, food-based science curriculum.

    PubMed

    Roseno, Ashley T; Carraway-Stage, Virginia G; Hoerdeman, Callan; Díaz, Sebastián R; Eugene, Geist; Duffrin, Melani W

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the FoodMASTER Intermediate curriculum on fourth-grade student's mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20-item researcher-developed mathematics knowledge exam (Intervention n=288; Control n=194). Overall, the results showed a significant increase in mathematics knowledge from pre- to post-test. These findings suggest that students engaged in food-based science activities provided them with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students' mathematics knowledge while building a foundation for becoming quantitatively literate adults.

  16. Applying mathematical concepts with hands-on, food-based science curriculum

    PubMed Central

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Eugene, Geist; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the FoodMASTER Intermediate curriculum on fourth-grade student’s mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20-item researcher-developed mathematics knowledge exam (Intervention n=288; Control n=194). Overall, the results showed a significant increase in mathematics knowledge from pre- to post-test. These findings suggest that students engaged in food-based science activities provided them with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students’ mathematics knowledge while building a foundation for becoming quantitatively literate adults. PMID:26494927

  17. Strategy for integration of coastal culture in learning process of mathematics in junior high school

    NASA Astrophysics Data System (ADS)

    Suyitno, H.; Zaenuri; Florentinus, T. S.; Zakaria, E.

    2018-03-01

    Traditional life in the fishing family is part of the local culture. Many School-age children in the fishing family drop-outs due to lack of parents motivation and the environment was less supportive. The problems were: (1) How the strategy of integration of local culture in learning process of mathematics in Junior High School (JHS)? (2) How to prepare the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, has international level, applicable, and in accordance with the current curriculum? The purposes of this research were: (1) to obtain the strategy of integration of local culture in learning process of mathematics in JHS, through FGD between UNNES and UKM; (2) to obtain the experts validation, through Focus Group Discussion (FGD) between UNNES and UKM toward the draft of the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture; (3) produces Mathematics Student’s Book for grade 7 SMP which based on coastal culture and has an ISBN, international, applicable, and in accordance with the curriculum. The research activity was a qualitative research, so that the research methods include: (1) data reduction, (2) display data, (3) data interpretation, and (4) conclusion/verification. The main activities of this research: drafting the Mathematics Student’s Book of Grade 7 which based on coastal culture; get the validation from international partners;conducting FGD at Education Faculty of Universiti Kebangsaan Malaysia through the program of visiting lecturers for getting the Mathematics Student’s Book of grade 7 which based on coastal culture, registering for ISBN, and publishing the reasearch results in International seminar and International Journals. The results of this research were as follows. (1) Getting a good strategy for integration of local culture in learning process of mathematics in JHS. (2) Getting the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, international level, applicable, and in accordance with the current curriculum.

  18. Efforts to Improve Mathematics Teacher Competency Through Training Program on Design Olympiad Mathematics Problems Based on Higher Order Thinking Skills in The Junior High School

    NASA Astrophysics Data System (ADS)

    Arnellis, A.; Jamaan, E. Z.; Amalita, N.

    2018-04-01

    The goal to analyse a improvement of teacher competence after being trained in preparing high-order math olympicad based on high order thinking skills in junior high school teachers in Pesisir Selatan Regency. The sample of these activities are teachers at the MGMP junior high school in Pesisir Selatan District. Evaluation of the implementation is done by giving a pre test and post test, which will measure the success rate of the implementation of this activities. The existence of the devotion activities is expected to understand the enrichment of mathematics olympiad material and training in the preparation of math olympiad questions for the teachers of South Pesisir district junior high school, motivating and raising the interest of the participants in order to follow the mathematics olympiad with the enrichment of mathematics materials and the training of problem solving about mathematics olympiad for junior high school teachers, the participants gain experience and gain insight, as well as the ins and outs of junior mathematics olympiad and implement to teachers and students in olympic competitions. The result of that the post-test is better than the result of pretest in the training of mathematics teacher competence improvement in composing the mathematics olympiad problem based on high order thinking skills of junior high school (SMP) in Pesisir Selatan District, West Sumatra, Indonesia.

  19. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    PubMed

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

Top