Sample records for physiologically important range

  1. Physiology and growth of redwood and Douglas-fir planted after variable density retention outside redwood’s range

    Treesearch

    Lucy Kerhoulas; Nicholas Kerhoulas; Wade Polda; John-Pascal Berrill

    2017-01-01

    Reforestation following timber harvests is an important topic throughout the coast redwood (Sequoia sempervirens (D. Don) Endl.) range. Furthermore, as drought-induced mortality spreads across many of California’s forests, it is important to understand how physiology and stand structure influence reforestation success. Finally, as climate...

  2. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    PubMed

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  3. Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environment change

    USGS Publications Warehouse

    Middleton, B.A.; McKee, K.L.

    2004-01-01

    Aim: Predictions of vegetation change with global warming require models that accurately reflect physiological processes underlying growth limitations and species distributions. However, information about environmental controls on physiology and consequent effects on species boundaries and ecosystem functions such as production is limited, especially for forested wetlands that are potentially important carbon sinks. Location: The bald cypress (Taxodium distichum) region of the south-eastern United States was studied to examine how production of an important forested wetland varies with latitude and temperature as well as local hydrology. Methods: We used published data to analyse litter production across a latitudinal gradient from 26.2 to 37.8?? N to determine how bald cypress swamps might respond to alternate climate conditions and what changes might occur throughout the distributional range. Results: Litterfall rates followed a bell shaped curve, indicating that production was more limited at the distributional boundaries (c. 225 g/m2 year-1) compared to the mid-range (795-1126 g/m2 year-1). This pattern suggests that conditions are sub-optimal near both boundaries and that the absence of populations outside this latitudinal range may be largely due to physiological constraints on the carbon balance of dominant species. While dispersal limitations cannot be totally discounted, competition with other wetland types at the extremes of the range does not seem likely to be important because the relative basal area of bald cypress does not decrease near the edges of the range. Impaired hydrology depressed production across the entire range, but more in the south than the north. Main conclusions: Our findings suggest that (1) physiological limitations constrain biotic boundaries of bald cypress swamps; (2) future changes in global temperature would affect litter production in a nonlinear manner across the distributional range; (3) local changes in hydrology may interact with climate to further reduce litter production, particularly at lower latitudes; and (4) southernmost forests could be extirpated if environmental conditions compromise carbon balance and water-use efficiency of trees. ?? 2004 Blackwell Publishing Ltd.

  4. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  5. Physiology in conservation translocations.

    PubMed

    Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term 'translocation physiology' and represent an important sub-discipline within conservation physiology generally.

  6. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term ‘translocation physiology’ and represent an important sub-discipline within conservation physiology generally. PMID:27293675

  7. Vital signs in older patients: age-related changes.

    PubMed

    Chester, Jennifer Gonik; Rudolph, James L

    2011-06-01

    Vital signs are objective measures of physiological function that are used to monitor acute and chronic disease and thus serve as a basic communication tool about patient status. The purpose of this analysis was to review age-related changes of traditional vital signs (blood pressure, pulse, respiratory rate, and temperature) with a focus on age-related molecular changes, organ system changes, systemic changes, and altered compensation to stressors. The review found that numerous physiological and pathological changes may occur with age and alter vital signs. These changes tend to reduce the ability of organ systems to adapt to physiological stressors, particularly in frail older patients. Because of the diversity of age-related physiological changes and comorbidities in an individual, single-point measurements of vital signs have less sensitivity in detecting disease processes. However, serial vital sign assessments may have increased sensitivity, especially when viewed in the context of individualized reference ranges. Vital sign change with age may be subtle because of reduced physiological ranges. However, change from an individual reference range may indicate important warning signs and thus may require additional evaluation to understand potential underlying pathological processes. As a result, individualized reference ranges may provide improved sensitivity in frail, older patients. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.

  8. Loss of thermal refugia near equatorial range limits.

    PubMed

    Lima, Fernando P; Gomes, Filipa; Seabra, Rui; Wethey, David S; Seabra, Maria I; Cruz, Teresa; Santos, António M; Hilbish, Thomas J

    2016-01-01

    This study examines the importance of thermal refugia along the majority of the geographical range of a key intertidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological performance and examined the availability of refugia near equatorial range limits. Thermal differences between sun-exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities supported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local populations (and consequently species) respond to climatic changes. © 2015 John Wiley & Sons Ltd.

  9. The singer's voice range profile: female professional opera soloists.

    PubMed

    Lamarche, Anick; Ternström, Sten; Pabon, Peter

    2010-07-01

    This work concerns the collection of 30 voice range profiles (VRPs) of female operatic voice. We address the questions: Is there a need for a singer's protocol in VRP acquisition? Are physiological measurements sufficient or should the measurement of performance capabilities also be included? Can we address the female singing voice in general or is there a case for categorizing voices when studying phonetographic data? Subjects performed a series of structured tasks involving both standard speech voice protocols and additional singing tasks. Singers also completed an extensive questionnaire. Physiological VRPs differ from performance VRPs. Two new VRP metrics, the voice area above a defined level threshold and the dynamic range independent from the fundamental frequency (F(0)), were found to be useful in the analysis of singer VRPs. Task design had no effect on performance VRP outcomes. Voice category differences were mainly attributable to phonation frequency-based information. Results support the clinical importance of addressing the vocal instrument as it is used in performance. Equally important is the elaboration of a protocol suitable for the singing voice. The given context and instructions can be more important than task design for performance VRPs. Yet, for physiological VRP recordings, task design remains critical. Both types of VRPs are suggested for a singer's voice evaluation. Copyright (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Radiotelemetry; techniques and analysis

    Treesearch

    Sybill K. Amelon; David C. Dalton; Joshua J. Millspaugh; Sandy A. Wolf

    2009-01-01

    Radiotelemetry has become and important tool in studies of animal behavior, ecology, management, and conservation. From the first decades following the introduction of radio transmitters, radiotelemetry emerged as a prominent and critically important tool in wildlife science for the study of physiology, animal movements (migration, dispersal, and home range), survival...

  11. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America.

    PubMed

    DE LA Vega, G J; Schilman, P E

    2018-03-01

    In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.

  12. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  13. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    PubMed

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  15. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles

    PubMed Central

    Slatyer, Rachel A.; Schoville, Sean D.

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311

  16. A conceptual framework for homeostasis: development and validation.

    PubMed

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  17. Physiological Stress in Koala Populations near the Arid Edge of Their Distribution

    PubMed Central

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R.; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change. PMID:24265749

  18. Success stories and emerging themes in conservation physiology.

    PubMed

    Madliger, Christine L; Cooke, Steven J; Crespi, Erica J; Funk, Jennifer L; Hultine, Kevin R; Hunt, Kathleen E; Rohr, Jason R; Sinclair, Brent J; Suski, Cory D; Willis, Craig K R; Love, Oliver P

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans.

  19. Statistical physics and physiology: monofractal and multifractal approaches

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.

    1999-01-01

    Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.

  20. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves

    PubMed Central

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W.; Diehl, Peter-Allan

    2015-01-01

    Background When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). Methodology/Principal Findings We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. Conclusions/Significance In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife. PMID:26398784

  1. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves.

    PubMed

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W; Diehl, Peter-Allan

    2015-01-01

    When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife.

  2. The Implications of selenium deficiency for wild herbivore conservation: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner T. Flueck; J.M. Smith Flueck; J. Mionczynski

    Selenium (Se) has been identified as an essential micronutrient in all animals. It is required at the most fundamental physiological level as a component of the selenoproteins containing the 21st amino acid, selenocysteine. Adequate levels of Se are vital to proper reproductive performance, bone metabolism, immune function and iodine metabolism. Yet, Se is a relatively rare element, and is often present at low concentrations in soil and vegetation. Selenium deficiencies are widespread in domestic stock and are unavoidable in some wildlife populations. This may be especially true for populations confined to high elevation ranges, or on areas with granitic bedrockmore » with low Se content, or that have lost access to Se-containing parts of their ranges such as mineral licks or low-elevation winter range. The condition may be exacerbated by increased levels of oxidative stress. Because our understanding of Se as a micronutrient is relatively new, many wildlife managers are unaware of the element’s importance in physiology and population dynamics. Severe deficiency results in obvious symptoms such as white muscle disease. However, more frequently, deficiency may be chronic and subclinical. Individuals then display no obvious signs of malady, yet performance suffers until their populations decline without apparent cause. While mysterious population declines are not always due to Se deficiency, the wildlife manager should be aware of the possibility. Therefore, this review presents not only a summary of the wildlife literature regarding Se nutrition, but also a comprehensive look at the role of Se in mammalian physiology, and the behavior of this important element in the environment. Finally, the role of the biogeochemical Se cycle is discussed, and evidence is provided that the levels of available Se in the environment are decreasing while physiological demands often are increasing.« less

  3. Success stories and emerging themes in conservation physiology

    PubMed Central

    Madliger, Christine L.; Cooke, Steven J.; Crespi, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K. R.; Love, Oliver P.

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans. PMID:27382466

  4. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  5. Anatomy and physiology of urinary elimination. Part 1.

    PubMed

    Pellatt, Glynis Collis

    Elimination of urine is an essential bodily function, but independence in this activity may be affected by physical and mental disability. Part 1 of this article discusses the anatomy and physiology of the renal and urinary tract and the production of urine. Urinalysis is a vital nursing assessment and the collection of specimens and the range of tests undertaken are outlined. Assisting patients to use the toilet, commode or bedpan is an essential nursing skill. The importance of sensitivity, empathy and moving and handling risk assessment is discussed, and the assessment and management of urinary tract infection and urinary tract stones are addressed. The importance of prevention of cross infection for nurses and patients is highlighted throughout the article.

  6. Assessing the Congruence of Thermal Niche Estimations Derived from Distribution and Physiological Data. A Test Using Diving Beetles

    PubMed Central

    Sánchez-Fernández, David; Aragón, Pedro; Bilton, David T.; Lobo, Jorge M.

    2012-01-01

    A basic aim of ecology is to understand the determinants of organismal distribution, the niche concept and species distribution models providing key frameworks to approach the problem. As temperature is one of the most important factors affecting species distribution, the estimation of thermal limits is crucially important for inferring range constraints. It is expectable that thermal physiology data derived from laboratory experiments and species' occurrences may express different aspects of the species' niche. However, there is no study systematically testing this prediction in a given taxonomic group while controlling by potential phylogenetic inertia. We estimate the thermal niches of twelve Palaearctic diving beetles species using physiological data derived from experimental analyses in order to examine the extent to which these coincided with those estimated from distribution models based on observed occurrences. We found that thermal niche estimates derived from both approaches lack general congruence, and these results were similar before and after controlling by phylogeny. The congruence between potential distributions obtained from the two different procedures was also explored, and we found again that the percentage of agreement were not very high (∼60%). We confirm that both thermal niche estimates derived from geographical and physiological data are likely to misrepresent the true range of climatic variation that these diving beetles are able to tolerate, and so these procedures could be considered as incomplete but complementary estimations of an inaccessible reality. PMID:23133560

  7. A conceptual framework for homeostasis: development and validation

    PubMed Central

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  8. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  9. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.

  11. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo; Gentine, Pierre; Swann, Abigail S.; Cook, Benjamin I.; Scheff, Jacob

    2018-04-01

    Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2. This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land.

  12. EDITORIAL: Nobel Prize in Physiology or Medicine 2003 awarded to Paul Lauterbur and Peter Mansfield for discoveries concerning magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leach, Martin O.

    2004-02-01

    The award of the Nobel Prize in Physiology or Medicine recognizes discoveries concerning the use of magnetic resonance to visualize different structures. The Assembly's decision to recognize the discoveries underpinning efficient spatial mapping of biological properties reflects the singular importance of imaging to the medical application of this technique. Without this, abnormalities in morphology cannot be recognized. Equally, the wealth of physiological information that can be obtained by manipulation of the magnetic resonance signal is of little value unless localized to identified organs, pathology or areas of tissue. Based on these early discoveries, a wide range of imaging and measurement techniques, together with enabling instrumentation, have been developed over the last 30 years. Commercial equipment became available in the early 1980s, and some 60 million MRI examinations are now performed each year. The power of the technique, and the range of applications, continues to develop rapidly. The full text of this editorial is given in the PDF file below.

  13. Physiological and behavioural responses to weaning conflict in free-ranging primate infants

    PubMed Central

    Mandalaywala, Tara M.; Higham, James P.; Heistermann, Michael; Parker, Karen J.; Maestripieri, Dario

    2014-01-01

    Weaning, characterized by maternal reduction of resources, is both psychologically and energetically stressful to mammalian offspring. Despite the importance of physiology in this process, previous studies have reported only indirect measures of weaning stress from infants, because of the difficulties of collecting physiological measures from free-ranging mammalian infants. Here we present some of the first data on the relationship between weaning and energetic and psychological stress in infant mammals. We collected data on 47 free-ranging rhesus macaque infants on Cayo Santiago, Puerto Rico, showing that faecal glucocorticoid metabolite (fGCM) concentrations were directly related to the frequency of maternal rejection, with fGCM concentrations increasing as rates of rejection increased. Infants with higher fGCM concentrations also engaged in higher rates of mother following, and mother following was associated with increased time on the nipple, suggesting that infants that experienced greater weaning-related stress increased their efforts to maintain proximity and contact with their mothers. Infants experiencing more frequent rejection uttered more distress vocalizations when being rejected; however, there was no relationship between rates of distress vocalizations and fGCM concentrations, suggesting a disassociation between behavioural and physiological stress responses to weaning. Elevated glucocorticoid concentrations during weaning may function to mobilize energy reserves and prepare the infant for continued maternal rejection and shortage of energetic resources. PMID:25431499

  14. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.

  15. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster.

    PubMed

    Schou, Mads F; Kristensen, Torsten N; Pedersen, Anders; Karlsson, B Göran; Loeschcke, Volker; Malmendal, Anders

    2017-02-01

    The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation responses at benign temperatures. We exposed Drosophila melanogaster to 10 developmental temperatures covering their entire permissible temperature range. We obtained metabolic profiles and reaction norms for several functional traits: egg-to-adult viability, developmental time, and heat and cold tolerance. Females were more heat tolerant than males, whereas no sexual dimorphism was found in cold tolerance. A group of metabolites, mainly free amino acids, had linear reaction norms. Several energy-carrying molecules, as well as some sugars, showed distinct inverted U-shaped norms of reaction across the thermal range, resulting in a positive correlation between metabolite intensities and egg-to-adult viability. At extreme temperatures, low levels of these metabolites were interpreted as a response characteristic of costs of homeostatic perturbations. Our results provide novel insights into a range of metabolites reported to be central for the acclimation response and suggest several new candidate metabolites. Low and high temperatures result in different adaptive physiological responses, but they also have commonalities likely to be a result of the failure to compensate for the physiological stress. We suggest that the regulation of metabolites that are tightly connected to the performance curve is important for the ability of ectotherms to cope with variation in temperature. Copyright © 2017 the American Physiological Society.

  16. Computational Model of Adrenal Steroidogenesis to Predict Biochemical Response to Endocrine Disruptors

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme mediated reactions. The activity of steroidogenic enzymes can be altered by various endocrine disrupters (ED), ...

  17. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only by pH stress but also temperature and oxidative stress, radiation, pressure as well as space stress.

  18. What is conservation physiology? Perspectives on an increasingly integrated and essential science†

    PubMed Central

    Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.

    2013-01-01

    Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive species, refinement of resource management strategies to minimize impacts, and evaluation of restoration plans. This concept of conservation physiology emphasizes the basis, importance, and ecological relevance of physiological diversity at a variety of scales. Real advances in conservation and resource management require integration and inter-disciplinarity. Conservation physiology and its suite of tools and concepts is a key part of the evidence base needed to address pressing environmental challenges. PMID:27293585

  19. Environmental stress and whole-tree physiology

    Treesearch

    Peter L. Jr. Lorio

    1993-01-01

    Interactions among bark beetles, pathogens, and conifers constitute a triangle. Another triangle of interactions exist among the invading organism (bark beetles and pathogens), the trees, and the environment. How important, variable or constant, simple or complex, is the role of trees in these triangles? Understanding the wide range of interactions that take place...

  20. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints. © 2015 John Wiley & Sons Ltd.

  1. Incorporating Research Findings into Standards and Requirements for Space Medicine

    NASA Technical Reports Server (NTRS)

    Duncan, J. Michael

    2006-01-01

    The Vision for Exploration has been the catalyst for NASA to refocus its life sciences research. In the future, life sciences research funded by NASA will be focused on answering questions that directly impact setting physiological standards and developing effective countermeasures to the undesirable physiological and psychological effects of spaceflight for maintaining the health of the human system. This, in turn, will contribute to the success of exploration class missions. We will show how research will impact setting physiologic standards, such as exposure limits, outcome limits, and accepted performance ranges. We will give examples of how a physiologic standard can eventually be translated into an operational requirement, then a functional requirement, and eventually spaceflight hardware or procedures. This knowledge will be important to the space medicine community as well as to vehicle contractors who, for the first time, must now consider the human system in developing and constructing a vehicle that can achieve the goal of success.

  2. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  3. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  4. Integrating multi-scale data to create a virtual physiological mouse heart

    PubMed Central

    Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.

    2013-01-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  5. The effects of dynamic loading on the intervertebral disc.

    PubMed

    Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin

    2011-11-01

    Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

  6. Fatigue in neuromuscular disorders: focus on Guillain-Barré syndrome and Pompe disease.

    PubMed

    de Vries, J M; Hagemans, M L C; Bussmann, J B J; van der Ploeg, A T; van Doorn, P A

    2010-03-01

    Fatigue accounts for an important part of the burden experienced by patients with neuromuscular disorders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such as Guillain-Barré syndrome and Pompe disease. Fatigue can be subdivided into experienced fatigue and physiological fatigue. Physiological fatigue in turn can be of central or peripheral origin. Peripheral fatigue is an important contributor to fatigue in neuromuscular disorders, but in reaction to neuromuscular disease fatigue of central origin can be an important protective mechanism to restrict further damage. In most cases, severity of fatigue seems to be related with disease severity, possibly with the exception of fatigue occurring in a monophasic disorder like Guillain-Barré syndrome. Treatment of fatigue in neuromuscular disease starts with symptomatic treatment of the underlying disease. When symptoms of fatigue persist, non-pharmacological interventions, such as exercise and cognitive behavioral therapy, can be initiated.

  7. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.

    PubMed

    Lee, Chang-Joon; Ngo, Jennifer P; Kar, Saptarshi; Gardiner, Bruce S; Evans, Roger G; Smith, David W

    2017-08-01

    To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po 2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po 2 is predicted to fall most rapidly from Strahler order 4 , under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states. Copyright © 2017 the American Physiological Society.

  8. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator

    PubMed Central

    Chung, Hyung-Joo

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  9. Genesis of breath sounds-Preliminary verification of theory

    NASA Technical Reports Server (NTRS)

    Patterson, J. L.; Hardin, J. C.; Seiner, J. M.

    1980-01-01

    Experimental results are presented which tend to validate a previously developed theory of sound production in the human lung over a particular Reynolds number range. In addition, a new, presently nonunderstood, phenomenon was observed at higher Reynolds number. These results, which show how sound generation in the lung depends upon the physiologically important variables of volume flow rate and bronchial diameter, have potentially important application in noninvasive lung examination and the diagnosis of lung disease.

  10. Characterization of Hippo Pathway Components by Gene Inactivation.

    PubMed

    Plouffe, Steven W; Meng, Zhipeng; Lin, Kimberly C; Lin, Brian; Hong, Audrey W; Chun, Justin V; Guan, Kun-Liang

    2016-12-01

    The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Understanding the physiology and adaptation of staphylococci: a post-genomic approach.

    PubMed

    Becker, Karsten; Bierbaum, Gabriele; von Eiff, Christof; Engelmann, Susanne; Götz, Friedrich; Hacker, Jörg; Hecker, Michael; Peters, Georg; Rosenstein, Ralf; Ziebuhr, Wilma

    2007-11-01

    Staphylococcus aureus as well as coagulase-negative staphylococci are medically highly important pathogens characterized by an increasing resistance rate toward many antibiotics. Although normally being skin and mucosa commensals, some staphylococcal species and strains have the capacity to cause a wide range of infectious diseases. Many of these infections affect immunocompromised patients in hospitals. However, community-acquired staphylococcal infections due to resistant strains are also currently on the rise. In the light of this development, there is an urgent need for novel anti-staphylococcal therapeutic and prevention strategies for which a better understanding of the physiology of these bacteria is an essential prerequisite. Within the past years, staphylococci have been in the focus of genomic research, resulting in the determination and publication of a range of full-genome sequences of different staphylococcal species and strains which provided the basis for the design and application of DNA microarrays and other genomic tools. Here we summarize the results of the project group 'Staphylococci' within the research network 'Pathogenomics' giving new insights into the genome structure, molecular epidemiology, physiology, and genetic adaptation of both S. aureus and coagulase-negative staphylococci.

  12. Computational Steroidogenesis Model To Predict Biochemical Responses to Endocrine Active Chemicals: Model Development and Cross Validation

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chem...

  13. Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids.

    PubMed

    Gaucher, Matthieu; Dugé de Bernonville, Thomas; Lohou, David; Guyot, Sylvain; Guillemette, Thomas; Brisset, Marie-Noëlle; Dat, James F

    2013-06-01

    Flavonoids, like other metabolites synthesized via the phenylpropanoid pathway, possess a wide range of biological activities including functions in plant development and its interaction with the environment. Dihydrochalcones (mainly phloridzin, sieboldin, trilobatin, phloretin) represent the major flavonoid subgroup in apple green tissues. Although this class of phenolic compounds is found in very large amounts in some tissues (≈200mg/g of leaf DW), their physiological significance remains unclear. In the present study, we highlight their tissue-specific localization in young growing shoots suggesting a specific role in important physiological processes, most notably in response to biotic stress. Indeed, dihydrochalcones could constitute a basal defense, in particular phloretin which exhibits a strong broad-range bactericidal and fungicidal activity. Our results also indicate that sieboldin forms complexes with iron with strong affinity, reinforcing its antioxidant properties and conferring to this dihydrochalcone a potential for iron seclusion and/or storage. The importance of localization and biochemical properties of dihydrochalcones are discussed in view of the apple tree defense strategy against both biotic and abiotic stresses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Overview of potential procedural and participant-related confounds for neuroimaging of the resting state

    PubMed Central

    Duncan, Niall W.; Northoff, Georg

    2013-01-01

    Studies of intrinsic brain activity in the resting state have become increasingly common. A productive discussion of what analysis methods are appropriate, of the importance of physiologic correction and of the potential interpretations of results has been ongoing. However, less attention has been paid to factors other than physiologic noise that may confound resting-state experiments. These range from straightforward factors, such as ensuring that participants are all instructed in the same manner, to more obscure participant-related factors, such as body weight. We provide an overview of such potentially confounding factors, along with some suggested approaches for minimizing their impact. A particular theme that emerges from the overview is the range of systematic differences between types of study groups (e.g., between patients and controls) that may influence resting-state study results. PMID:22964258

  15. Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion.

    PubMed

    Cavanaugh, Kyle C; Parker, John D; Cook-Patton, Susan C; Feller, Ilka C; Williams, A Park; Kellner, James R

    2015-05-01

    Predictions of climate-related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2-3.2 km yr(-1) over the next 50 years. © 2014 John Wiley & Sons Ltd.

  16. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  17. Inverse Tone Mapping Based upon Retina Response

    PubMed Central

    Huo, Yongqing; Yang, Fan; Brost, Vincent

    2014-01-01

    The development of high dynamic range (HDR) display arouses the research of inverse tone mapping methods, which expand dynamic range of the low dynamic range (LDR) image to match that of HDR monitor. This paper proposed a novel physiological approach, which could avoid artifacts occurred in most existing algorithms. Inspired by the property of the human visual system (HVS), this dynamic range expansion scheme performs with a low computational complexity and a limited number of parameters and obtains high-quality HDR results. Comparisons with three recent algorithms in the literature also show that the proposed method reveals more important image details and produces less contrast loss and distortion. PMID:24744678

  18. [Physiology in the mirror of systematic catalogue of Russian Academy of Sciences Library].

    PubMed

    Orlov, I V; Lazurkina, V B

    2011-07-01

    Representation of general human and animal physiology publications in the systematic catalogue of the Library of the Russian Academy of Sciences is considered. The organization of the catalogue as applied to the problems of physiology, built on the basis of library-bibliographic classification used in the Russian universal scientific libraries is described. The card files of the systematic catalogue of the Library contain about 8 million cards. Topics that reflect the problems of general physiology contain 39 headings. For the full range of sciences including physiology the tables of general types of divisions were developed. They have been marked by indexes using lower-case letters of the Russian alphabet. For further detalizations of these indexes decimal symbols are used. The indexes are attached directly to the field of knowledge index. With the current relatively easy availability of network resources value and relevance of any catalogue are reduced. However it concerns much more journal articles, rather than reference books, proceedings of various conferences, bibliographies, personalities, and especially the monographs contained in the systematic catalogue. The card systematic catalogue of the Library remains an important source of information on general physiology issues, as well as its magistral narrower sections.

  19. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, R; Denef, Vincent; Kalnejals, Linda

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems.We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism smore » metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ« less

  20. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    USGS Publications Warehouse

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  1. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  2. The Role of Cholesterol Utilization in a Computational Adrenal Steroidogenesis Model to Improve Predictability of Biochemical Responses to Endocrine Active Chemicals

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chem...

  3. The Role of Oxysterols in a Computational Steroidogenesis Model of Human H295R Cells to Improve Predictability of Biochemical Responses to Endocrine Disruptors

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine disruptors (...

  4. Climate and topography explain range sizes of terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  5. Effects of blue light on the circadian system and eye physiology.

    PubMed

    Tosini, Gianluca; Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.

  6. Blood Pressure Regulation XI: Overview and Future Research Directions

    PubMed Central

    Raven, Peter B.; Chapleau, Mark W.

    2014-01-01

    While the importance of regulating arterial blood pressure within a ‘normal’ range is widely appreciated, the definition of ‘normal’ and the means by which humans and other species regulate blood pressure under various conditions remain hotly debated. The effects of diverse physiological, pathological and environmental challenges on blood pressure and the mechanisms that attempt to maintain it at an optimal level are reviewed and critically analyzed in a series of articles published in this themed issue of the European Journal of Applied Physiology. We summarize here the major points made in these reviews, with emphasis on unifying concepts of regulatory mechanisms and future directions for research. PMID:24463603

  7. Avian genomics lends insights into endocrine function in birds.

    PubMed

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Towards more physiological manipulations of hormones in field studies: comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax.

    PubMed

    Quispe, Rene; Trappschuh, Monika; Gahr, Manfred; Goymann, Wolfgang

    2015-02-01

    Hormone manipulations are of increasing interest in the areas of physiological ecology and evolution, because hormones are mediators of complex phenotypic changes. Often, however, hormone manipulations in field settings follow the approaches that have been used in classical endocrinology, potentially using supra-physiological doses. To answer ecological and evolutionary questions, it may be important to manipulate hormones within their physiological range. We compare the release dynamics of three kinds of implants, silastic tubing, time-release pellets, and beeswax pellets, each containing 3mg of testosterone. These implants were placed into female Japanese quail, and plasma levels of testosterone measured over a period of 30 days. Testosterone in silastic tubing led to supraphysiological levels. Also, testosterone concentrations were highly variable between individuals. Time-release pellets led to levels of testosterone that were slightly supraphysiological during the first days. Over the period of 30 days, however, testosterone concentrations were more consistent. Beeswax implants led to a physiological increase in testosterone and a relatively constant release. The study demonstrated that hormone implants in 10mm silastic tubing led to a supraphysiological peak in female quail. Thus, the use of similar-sized or even larger silastic implants in males or in other smaller vertebrates needs careful assessment. Time-release pellets and beeswax implants provide a more controlled release and degrade within the body. Thus, it is not necessary to recapture the animal to remove the implant. We propose beeswax implants as an appropriate procedure to manipulate testosterone levels within the physiological range. Hence, such implants may be an effective alternative for field studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.

    PubMed

    Bonino, Marcelo F; Moreno Azócar, Débora L; Schulte, James A; Abdala, Cristian S; Cruz, Félix B

    2015-08-01

    One of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles.

    PubMed

    Lombardi, Giovanni; Barbaro, Mosè; Locatelli, Massimo; Banfi, Giuseppe

    2017-06-01

    The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.

  11. Physiology modulates social flexibility and collective behaviour in equids and other large ungulates.

    PubMed

    Gersick, Andrew S; Rubenstein, Daniel I

    2017-08-19

    Though morphologically very similar, equids across the extant species occupy ecological niches that are surprisingly non-overlapping. Occupancy of these distinct niches appears related to subtle physiological and behavioural adaptations which, in turn, correspond to significant differences in the social behaviours and emergent social systems characterizing the different species. Although instances of intraspecific behavioural variation in equids demonstrate that the same body plan can support a range of social structures, each of these morphologically similar species generally shows robust fidelity to its evolved social system. The pattern suggests a subtle relationship between physiological phenotypes and behavioural flexibility. While environmental conditions can vary widely within relatively short temporal or spatial scales, physiological changes and changes to the behaviours that regulate physiological processes, are constrained to longer cycles of adaptation. Physiology is then the limiting variable in the interaction between ecological variation and behavioural and socio-structural flexibility. Behavioural and socio-structural flexibility, in turn, will generate important feedbacks that will govern physiological function, thus creating a coupled web of interactions that can lead to changes in individual and collective behaviour. Longitudinal studies of equid and other large-bodied ungulate populations under environmental stress, such as those discussed here, may offer the best opportunities for researchers to examine, in real time, the interplay between individual behavioural plasticity, socio-structural flexibility, and the physiological and genetic changes that together produce adaptive change.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  12. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  13. Fine Tuning of Redox Networks on Multiheme Cytochromes from Geobacter sulfurreducens Drives Physiological Electron/Proton Energy Transduction

    PubMed Central

    Morgado, Leonor; Dantas, Joana M.; Bruix, Marta; Londer, Yuri Y.; Salgueiro, Carlos A.

    2012-01-01

    The bacterium Geobacter sulfurreducens (Gs) can grow in the presence of extracellular terminal acceptors, a property that is currently explored to harvest electricity from aquatic sediments and waste organic matter into microbial fuel cells. A family composed of five triheme cytochromes (PpcA-E) was identified in Gs. These cytochromes play a crucial role by bridging the electron transfer from oxidation of cytoplasmic donors to the cell exterior and assisting the reduction of extracellular terminal acceptors. The detailed thermodynamic characterization of such proteins showed that PpcA and PpcD have an important redox-Bohr effect that might implicate these proteins in the e−/H+ coupling mechanisms to sustain cellular growth. The physiological relevance of the redox-Bohr effect in these proteins was studied by determining the fractional contribution of each individual redox-microstate at different pH values. For both proteins, oxidation progresses from a particular protonated microstate to a particular deprotonated one, over specific pH ranges. The preferred e−/H+ transfer pathway established by the selected microstates indicates that both proteins are functionally designed to couple e−/H+ transfer at the physiological pH range for cellular growth. PMID:22899897

  14. Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes

    Treesearch

    S.B. McLaughlin; R. Wimmer

    1999-01-01

    Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...

  15. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    Treesearch

    Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose

    2005-01-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...

  16. Glial-released proteins in clonal cultures and their modulation by hydrocortisone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenander, A.T.; de Vellis, J.

    Rat glial C6 cells release into the culture medium a reproducible spectrum of soluble proteins of 12 major peaks over a broad molecular weight range as determined by fractionation on SDS-gel electrophoresis. Exposing C6 monolayers to hydrocortisone (HC) results in a selective alteration in the pattern of glial-released protein (GRP). The selective HC-induced increase or decrease in GRP peaks is specific to HC in that 17 ..beta..-estradiol, dibutyryl cyclic AMP, isoproterenol, and melatonin exert either no detectable or a qualitatively different influence on the GRP pattern. The HC influence is dose dependent over a physiological range of concentrations from 10/supmore » -9/ to 10/sup -6/ M. Differences in culture age and in subclones of C6 can influence both the normal and the HC-induced pattern of GRP. The origin of the GRP is unknown, but pattern reproducibility, viability tests, surface labelling studies, and metabolic labelling studies of soluble and particulate compartment proteins and glycoproteins support the position that cell lysis is not an important source of GRP. More importantly, these studies indicate that GRP and HC-induced changes in GRP pattern are physiologically significant aspects of glial cell behavior.« less

  17. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  18. Effects of blue light on the circadian system and eye physiology

    PubMed Central

    Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health. PMID:26900325

  19. The potential effects of climate-change-associated temperature increases on the metabolic rate of a small Afrotropical bird.

    PubMed

    Thompson, Lindy J; Brown, Mark; Downs, Colleen T

    2015-05-15

    Studies have only recently begun to underline the importance of including data on the physiological flexibility of a species when modelling its vulnerability to extinction from climate change. We investigated the effects of a 4°C increase in ambient temperature (Ta), similar to that predicted for southern Africa by the year 2080, on certain physiological variables of a 10-12 g passerine bird endemic to southern Africa, the Cape white-eye Zosterops virens. There was no significant difference in resting metabolism, body mass and intraperitoneal body temperature between birds housed indoors at 4°C above outside ambient temperature and those housed indoors at outside ambient temperature. We conclude that the physiological flexibility of Cape white-eyes will aid them in coping with the 4°C increase predicted for their range by 2080. © 2015. Published by The Company of Biologists Ltd.

  20. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    USGS Publications Warehouse

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  1. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    PubMed

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  2. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    PubMed

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution.

    PubMed

    Dunkin, Robin C; Wilson, Dinah; Way, Nicolas; Johnson, Kari; Williams, Terrie M

    2013-08-01

    Elephant movement patterns in relation to surface water demonstrate that they are a water-dependent species. Thus, there has been interest in using surface water management to mitigate problems associated with localized elephant overabundance. However, the physiological mechanisms underlying the elephant's water dependence remain unclear. Although thermoregulation is likely an important driver, the relationship between thermoregulation, water use and climate has not been quantified. We measured skin surface temperature of and cutaneous water loss from 13 elephants (seven African, 3768±642 kg; six Asian, 3834±498 kg) and determined the contribution of evaporative cooling to their thermal and water budgets across a range of air temperatures (8-33°C). We also measured respiratory evaporative water loss and resting metabolic heat production on a subset of elephants (N=7). The rate of cutaneous evaporative water loss ranged between 0.31 and 8.9 g min(-1) m(-2) for Asian elephants and 0.26 and 6.5 g min(-1) m(-2) for African elephants. Simulated thermal and water budgets using climate data from Port Elizabeth, South Africa, and Okaukuejo, Namibia, suggested that the 24-h evaporative cooling water debt incurred in warm climates can be more than 4.5 times that incurred in mesic climates. This study confirms elephants are obligate evaporative coolers but suggests that classification of elephants as water dependent is insufficient given the importance of climate in determining the magnitude of this dependence. These data highlight the potential for a physiological modeling approach to predicting the utility of surface water management for specific populations.

  4. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    PubMed

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  5. Physiological response to water immersion: a method for sport recovery?

    PubMed

    Wilcock, Ian M; Cronin, John B; Hing, Wayne A

    2006-01-01

    Recovery from exercise can be an important factor in performance during repeated bouts of exercise. In a tournament situation, where athletes may compete numerous times over a few days, enhancing recovery may provide a competitive advantage. One method that is gaining popularity as a means to enhance post-game or post-training recovery is immersion in water. Much of the literature on the ability of water immersion as a means to improve athletic recovery appears to be based on anecdotal information, with limited research on actual performance change. Water immersion may cause physiological changes within the body that could improve recovery from exercise. These physiological changes include intracellular-intravascular fluid shifts, reduction of muscle oedema and increased cardiac output (without increasing energy expenditure), which increases blood flow and possible nutrient and waste transportation through the body. Also, there may be a psychological benefit to athletes with a reduced cessation of fatigue during immersion. Water temperature alters the physiological response to immersion and cool to thermoneutral temperatures may provide the best range for recovery. Further performance-orientated research is required to determine whether water immersion is beneficial to athletes.

  6. Orphan Nuclear Receptors as Targets for Drug Development

    PubMed Central

    Mukherjee, Subhajit

    2012-01-01

    Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994

  7. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  8. Neuroendocrine tumor imaging with 68Ga-DOTA-NOC: physiologic and benign variants.

    PubMed

    Kagna, Olga; Pirmisashvili, Natalia; Tshori, Sagi; Freedman, Nanette; Israel, Ora; Krausz, Yodphat

    2014-12-01

    Imaging with (68)Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-octreotide analogs has become an important modality in patients with neuroendocrine tumors (NETs). In addition to high uptake in NET lesions, prominent physiologic radiotracer activity has been reported in the pituitary gland, pancreas, adrenal glands, liver, and spleen, and faint activity has been reported in the thyroid and gastrointestinal tract. This article describes previously unknown sites of 68Ga-DOTA-1-NaI3-octreotide (NOC) uptake unrelated to NETs. One hundred eighty-two patients (96 female and 86 male patients; age range, 4-89 years) with documented (n=156) or suspected (n=26) NETs underwent 207 68Ga-DOTA-NOC PET/CT studies. Studies were retrospectively reviewed for the presence, intensity, and localization of foci of increased uptake that were further correlated with findings on additional imaging studies and clinical follow-up for a period of 4-32 months. Uptake of 68Ga-DOTA-NOC not identified as NET or known physiologic activity was detected in 297 sites with confirmation in 149 of 207 studies (72%). The most common location of non-NET-related 68Ga-DOTA-NOC-avid sites was in small lymph nodes, followed by prostate, uterus, breasts, lungs, brown fat, musculoskeletal system, and other sites, including oropharynx, pineal body, thymus, aortic plaque, genitalia, surgical bed, and subcutaneous granuloma. Intensity of uptake in non-NET-related 68Ga-DOTA-NOC-avid sites ranged in maximum standardized uptake value from 0.8 to 10.5. Previously unreported benign sites of 68Ga-DOTA-NOC uptake were found in the majority of studies, suggesting the presence of somatostatin receptors in physiologic variants or processes with no evidence of tumor. Knowledge of increased tracer uptake in non-NET-related sites is important for accurate interpretation and for avoiding potential pitfalls of 68Ga-DOTA-NOC PET/CT.

  9. Resilience to Meet the Challenge of Addiction

    PubMed Central

    Alim, Tanja N.; Lawson, William B.; Feder, Adriana; Iacoviello, Brian M.; Saxena, Shireen; Bailey, Christopher R.; Greene, Allison M.; Neumeister, Alexander

    2012-01-01

    Acute and chronic stress–related mechanisms play an important role in the development of addiction and its chronic, relapsing nature. Multisystem adaptations in brain, body, behavioral, and social function may contribute to a dysregulated physiological state that is maintained beyond the homeostatic range. In addition, chronic abuse of substances leads to an altered set point across multiple systems. Resilience can be defined as the absence of psychopathology despite exposure to high stress and reflects a person’s ability to cope successfully in the face of adversity, demonstrating adaptive psychological and physiological stress responses. The study of resilience can be approached by examining interindividual stress responsibility at multiple phenotypic levels, ranging from psychological differences in the way people cope with stress to differences in neurochemical or neural circuitry function. The ultimate goal of such research is the development of strategies and interventions to enhance resilience and coping in the face of stress and prevent the onset of addiction problems or relapse. PMID:23584116

  10. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports.

    PubMed

    Pearson, D T; Naughton, G A; Torode, M

    2006-08-01

    Entrepreneurial marketing of sport increases demands on sport development officers to identify talented individuals for specialist development at the youngest possible age. Talent identification results in the streamlining of resources to produce optimal returns from a sports investment. However, the process of talent identification for team sports is complex and success prediction is imperfect. The aim of this review is to describe existing practices in physiological tests used for talent identification in team sports and discuss the impact of maturity-related differences on the long term outcomes particularly for male participants. Maturation is a major confounding variable in talent identification during adolescence. A myriad of hormonal changes during puberty results in physical and physiological characteristics important for sporting performance. Significant changes during puberty make the prediction of adult performance difficult from adolescent data. Furthermore, for talent identification programs to succeed, valid and reliable testing procedures must be accepted and implemented in a range of performance-related categories. Limited success in scientifically based talent identification is evident in a range of team sports. Genetic advances challenge the ethics of talent identification in adolescent sport. However, the environment remains a significant component of success prediction in sport. Considerations for supporting talented young male athletes are discussed.

  11. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  12. A Review of the Internal and External Physiological Demands Associated With Batting in Cricket.

    PubMed

    Scanlan, Aaron T; Berkelmans, Daniel M; Vickery, William M; Kean, Crystal O

    2016-11-01

    Cricket is a popular international team sport with various game formats ranging from long-duration multiday tests to short-duration Twenty20 game play. The role of batsmen is critical to all game formats, with differing physiological demands imposed during each format. Investigation of the physiological demands imposed during cricket batting has historically been neglected, with much of the research focusing on bowling responses and batting technique. A greater understanding of the physiological demands of the batting role in cricket is required to assist strength and conditioning professionals and coaches with the design of training plans, recovery protocols, and player-management strategies. This brief review provides an updated synthesis of the literature examining the internal (eg, metabolic demands and heart rate) and external (eg, activity work rates) physiological responses to batting in the various game formats, as well as simulated play and small-sided-games training. Although few studies have been done in this area, the summary of data provides important insight regarding physiological responses to batting and highlights that more research on this topic is required. Future research is recommended to combine internal and external measures during actual game play, as well as comparing different game formats and playing levels. In addition, understanding the relationship between batting technique and physiological responses is warranted to gain a more holistic understanding of batting in cricket, as well as to develop appropriate coaching and training strategies.

  13. Physiology undergraduate degree requirements in the U.S.

    PubMed

    VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A

    2017-12-01

    Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.

  14. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. Copyright © 2016 the American Physiological Society.

  15. Use of Invertebrate Animals to Teach Physiological Principles.

    ERIC Educational Resources Information Center

    Deyrup-Olsen, Ingrith; Linder, Thomas M.

    1991-01-01

    The advantages of using invertebrates in teaching physiological principles are discussed. The ability to illustrate with greater clarity physiological principles, the range and variety of physiological processes available for examination, and the unlimited possibilities for student research are topics of discussion. (KR)

  16. Demographic and temporal variations in immunity and condition of polar bears (Ursus maritimus) from the southern Beaufort Sea

    USGS Publications Warehouse

    Neuman-Lee, Lorin; Terletzky, Patricia; Atwood, Todd C.; Gese, Eric; Smith, Geoffrey; Greenfield, Sydney; Pettit, John; French, Susannah

    2017-01-01

    Assessing the health and condition of animals in their natural environment can be problematic. Many physiological metrics, including immunity, are highly influenced by specific context and recent events to which researchers may be unaware. Thus, using a multifaceted physiological approach and a context-specific analysis encompassing multiple time scales can be highly informative. Ecoimmunological tools in particular can provide important indications to the health of animals in the wild. We collected blood and hair samples from free-ranging polar bears (Ursus maritimus) in the southern Beaufort Sea and examined the influence of sex, age, and reproductive status on metrics of immunity, stress, and body condition during 2013–2015. We examined metrics of innate immunity (bactericidal ability and lysis) and stress (hair cortisol, reactive oxygen species, and oxidative barrier), in relation to indices of body condition considered to be short term (urea to creatinine ratio; UC ratio) and long term (storage energy and body mass index). We found the factors of sex, age, and reproductive status of the bear were critical for interpreting different physiological metrics. Additionally, the metrics of body condition were important predictors for stress indicators. Finally, many of these metrics differed between years, illustrating the need to examine populations on a longer time scale. Taken together, this study demonstrates the complex relationship between multiple facets of physiology and how interpretation requires us to examine individuals within a specific context.

  17. Integrated imaging of cardiac anatomy, physiology, and viability.

    PubMed

    Arrighi, James A

    2009-03-01

    Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.

  18. THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT

    PubMed Central

    Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.

    2014-01-01

    The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198

  19. Economic thermoregulatory response explains mismatch between thermal physiology and behaviour in newts.

    PubMed

    Gvoždík, Lumír; Kristín, Peter

    2017-03-15

    Temperature is an important factor determining distribution and abundance of organisms. Predicting the impact of warming climate on ectotherm populations requires information about species' thermal requirements, i.e. their so-called 'thermal niche'. The characterization of thermal niche remains a complicated task. We compared the applicability of two indirect approaches, based on reaction norm (aerobic scope curve) and optimality (preferred body temperature) concepts, for indirect estimation of thermal niche while using newts, Ichthyosaura alpestris , as a study system. If the two approaches are linked, then digesting newts should keep their body temperatures close to values maximizing aerobic scope for digestion. After feeding, newts maintained their body temperatures within a narrower range than did hungry individuals. The range of preferred body temperatures was well below the temperature maximizing aerobic scope for digestion. Optimal temperatures for factorial aerobic scope fell within the preferred body temperature range of digesting individuals. We conclude that digesting newts prefer body temperatures that are optimal for the maximum aerobic performance but relative to the maintenance costs. What might be termed the 'economic' thermoregulatory response explains the mismatch between thermal physiology and behaviour in this system. © 2017. Published by The Company of Biologists Ltd.

  20. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies.

    PubMed

    Garcia, Eloi S; Castro, Daniele P; Figueiredo, Marcela B; Azambuja, Patrícia

    2012-05-30

    Trypanosoma rangeli is a protozoan that is non-pathogenic for humans and other mammals but causes pathology in the genus Rhodnius. T. rangeli and R. prolixus is an excellent model for studying the parasite-vector interaction, but its cycle in invertebrates remains unclear. The vector becomes infected on ingesting blood containing parasites, which subsequently develop in the gut, hemolymph and salivary glands producing short and large epimastigotes and metacyclic trypomastigotes, which are the infective forms. The importance of the T. rangeli cycle is the flagellate penetration into the gut cells and invasion of the salivary glands. The establishment of the parasite depends on the alteration of some vector defense mechanisms. Herein, we present our understanding of T. rangeli infection on the vector physiology, including gut and salivary gland invasions, hemolymph reactions and behavior alteration.

  1. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and intracranial pressure had dominant impact on the peak strains in the ONH and retro-laminar optic nerve, respectively; optic nerve and lamina cribrosa stiffness were also important. This investigation illustrates the ability of LHSPRCC to identify the most influential physiological parameters, which must therefore be well-characterized to produce the most accurate numerical results.

  2. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    PubMed

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  3. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.

    PubMed

    Heckwolf, Marlies; Pater, Dianne; Hanson, David T; Kaldenhoff, Ralf

    2011-09-01

    Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized metabolites produced by Bacillus species are highly conserved, known compounds with important signaling roles in the physiology and development of this bacterium. Additionally, there is significant unique biosynthetic machinery distributed across the genus that might lead to new, unknown metabolites with diverse biological functions. Inspired by the findings of our genomic analysis, we speculate that the highly conserved alkylpyrones might have an important biological activity within this genus. We go on to validate this prediction by demonstrating that these natural products are developmental signals in Bacillus and act by inhibiting sporulation.

  5. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    PubMed

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  6. Two phases of aging separated by the Smurf transition as a public path to death.

    PubMed

    Dambroise, E; Monnier, L; Ruisheng, L; Aguilaniu, H; Joly, J-S; Tricoire, H; Rera, M

    2016-03-22

    Aging's most obvious characteristic is the time dependent increase of an individual's probability to die. This lifelong process is accompanied by a large number of molecular and physiological changes. Although numerous genes involved in aging have been identified in the past decades its leading factors have yet to be determined. To identify the very processes driving aging we have developed in the past years an assay to identify physiologically old individuals in a synchronized population of Drosophila melanogaster. Those individuals show an age-dependent increase of intestinal permeability followed by a high risk of death. Here we show that this physiological marker of aging is conserved in 3 invertebrate species Drosophila mojavensis, Drosophila virilis, Caenorhabditis elegans as well as in 1 vertebrate species Danio rerio. Our findings suggest that intestinal barrier dysfunction may be an important event in the aging process conserved across a broad range of species, thus raising the possibility that it may also be the case in Homo sapiens.

  7. Store-operated Ca2+ entry in muscle physiology and diseases

    PubMed Central

    Pan, Zui; Brotto, Marco; Ma, Jianjie

    2014-01-01

    Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79] PMID:24411466

  8. The dark side of high-frequency oscillations in the developing brain.

    PubMed

    Le Van Quyen, Michel; Khalilov, Ilgam; Ben-Ari, Yehezkel

    2006-07-01

    Adult brain networks generate a wide range of oscillations. Some of these are behaviourally relevant, whereas others occur during seizures and other pathological conditions. This raises the question of how physiological oscillations differ from pathogenic ones. In this review, this issue is discussed from a developmental standpoint. Indeed, both epileptic and physiological high-frequency oscillations (HFOs) appear progressively during maturation, and it is therefore possible to determine how this program corresponds to maturation of the neuronal populations that generate these oscillations. We review here important differences in the development of neuronal populations that might contribute to their different oscillatory properties. In particular, at an early stage, the density of glutamatergic synapses is too low for physiological HFOs but an additional drive can be provided by excitatory GABA, triggering epileptic HFOs and the cascades involved in long-lasting epileptogenic transformations. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  9. Challenges of ambulatory physiological sensing.

    PubMed

    Healey, Jennifer

    2004-01-01

    Applications for ambulatory monitoring span the spectrum from fitness optimization to cardiac defibrillation. This range of applications is associated with a corresponding range of required detection accuracies and a range of inconvenience and discomfort that wearers are willing to tolerate. This paper describes a selection of physiological sensors and how they might best be worn in the unconstrained ambulatory environment to provide the most robust measurements and the greatest comfort to the wearer. Using wireless mobile computing devices, it will be possible to record, analyze and respond to changes in the wearers' physiological signals in real time using these sensors.

  10. Aggressive desert goby males also court more, independent of the physiological demands of salinity.

    PubMed

    Lehtonen, Topi K; Svensson, P Andreas; Wong, Bob B M

    2018-06-19

    Both between- and within-individual variation in behaviour can be important in determining mating opportunities and reproductive outcomes. Such behavioural variability can be induced by environmental conditions, especially if individuals vary in their tolerance levels or resource allocation patterns. We tested the effects of exposure to different salinity levels on male investment into two important components of mating success-intrasexual aggression and intersexual courtship-in a fish with a resource defence mating system, the desert goby, Chlamydogobius eremius. We found that males that were more aggressive to rivals also exhibited higher rates of courtship displays towards females. Contrary to predictions, this positive relationship, and the consistency of the two behaviours, were not affected by the salinity treatment, despite the physiological costs that high salinity imposes on the species. Moreover, over the entire data-set, there was only a marginally non-significant tendency for males to show higher levels of aggression and courtship in low, than high, salinity. The positive correlation between male aggression and courtship, independent of the physiological demands of the environment, suggests that males are not inclined to make contrasting resource investments into these two key reproductive behaviours. Instead, in this relatively euryhaline freshwater species, typical investment into current reproductive behaviours can occur under a range of different salinity conditions.

  11. Calcium, essential for health

    PubMed

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  12. The role of thermal physiology in recent declines of birds in a biodiversity hotspot.

    PubMed

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.

  13. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K

    2015-01-01

    Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning. PMID:27293732

  14. [Monitoring of brain function].

    PubMed

    Doi, Matsuyuki

    2012-01-01

    Despite being the most important of organs, the brain is disproportionately unmonitored compared to other systems such as cardiorespiratory in anesthesia settings. In order to optimize level of anesthesia, it is important to quantify the brain activity suppressed by anesthetic agents. Adverse cerebral outcomes remain a continued problem in patients undergoing various surgical procedures. By providing information on a range of physiologic parameters, brain monitoring may contribute to improve perioperative outcomes. This article addresses the various brain monitoring equipments including bispectral index (BIS), auditory evoked potentials (AEP), near-infrared spectroscopy (NIRS), transcranial Doppler ultrasonography (TCD) and oxygen saturation of the jugular vein (Sjv(O2)).

  15. Mortality from desiccation contributes to a genotype–temperature interaction for cold survival in Drosophila melanogaster

    PubMed Central

    Kobey, Robert L.; Montooth, Kristi L.

    2013-01-01

    SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100

  16. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    PubMed

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  17. Temperature Insensitivity and Behavioural Reduction of the Physiological Stress Response to Longline Capture by the Gummy Shark, Mustelus antarcticus.

    PubMed

    Guida, Leonardo; Walker, Terence I; Reina, Richard D

    2016-01-01

    Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST) and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32-241 min as measured by hook timers or time depth recorders (TDR) in SSTs ranging 12-20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals' landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate) used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies.

  18. Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing

    PubMed Central

    Lin, Amy

    2016-01-01

    Abstract Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off with increasing frequency following a power-law function: P(f)∝1/fβ, which is indicative of scale-free dynamics. Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials (SCPs)—the low-frequency (<5 Hz) component of brain field potentials—and the amplitude fluctuations of α oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencephalography and electrocardiography in healthy subjects in the resting state and while performing a discrimination task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that long-range temporal correlation (captured by the power-law exponent β) in SCPs positively correlated with that of heartbeat dynamics across time within an individual and negatively correlated with that of α-amplitude fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and α-oscillation amplitude predicted subjects’ discrimination performance in the auditory task, albeit through antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural stimuli, which often exhibit scale-free dynamics. PMID:27822495

  19. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.

    PubMed

    Turan, Belma; Tuncay, Erkan

    2017-11-12

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.

  20. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  1. Microbial Response to Microgravity and Other Low Shear Environments

    NASA Technical Reports Server (NTRS)

    Nickerson, C.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.

    2004-01-01

    Microbial existence and survival requires the ability to sense and respond to environmental changes, including changes in physical forces. This is because microbes inhabit an amazingly diverse range of ecological niches and therefore must constantly adapt to a wide variety of changing environmental conditions, including alterations in temperature, pH, nutrient availability, oxygen levels, and osmotic pressure gradients. Microbes sense their environment through a variety of sensors and receptors which serve to integrate the different signals into the appropriate cellular response(s) that is optimal for survival. While numerous environmental stimuli have been examined for their effect on microorganisms, effects due to changes in mechanical and/or physical forces are also becoming increasingly apparent. Recently, several important studies have demonstrated a key role for microgravity and the low fluid shear dynamics associated with microgravity in the regulation of microbial gene expression, physiology and pathogenesis. The mechanosensory response of microorganisms to these environmental signals, which are relevant to those encountered during microbial life cycles on Earth, may provide insight into their adaptations to physiologically relevant conditions and may ultimately lead to eludicidation of the mechanisms important for mechanosensory transduction in living cells. This review summarizes the recent and potential future research trends aimed at understanding the effect of changes in mechanical forces that occur in microgravity and other low shear environments on different microbial parameters. The results of these studies provide an important step towards understanding how microbes integrate information from multiple mechanical stimuli to an appropriate physiological response.

  2. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus.

    PubMed

    Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G; Denlinger, David L; Armbruster, Peter A

    2013-05-22

    Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.

  3. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  4. What goes on behind closed doors: physiological vs. pharmacological steroid hormone actions

    PubMed Central

    Simons, S. Stoney

    2009-01-01

    Summary Steroid hormone-activated receptor proteins are among the best understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (≥100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors. PMID:18623071

  5. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  6. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment.

    PubMed

    Shi, Lijie; Sánchez-Guijo, Alberto; Hartmann, Michaela F; Schönau, Eckhard; Esche, Jonas; Wudy, Stefan A; Remer, Thomas

    2015-02-01

    Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non-obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24-hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength-strain-index (SSI). UFF + UFE, UFE itself, and a urinary metabolite-estimate of 11beta-hydroxysteroid dehydrogenase type1 (11beta-HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine-generated cortisol by bone cell 11beta-HSD1. © 2014 American Society for Bone and Mineral Research.

  7. Infrared thermography: A non-invasive window into thermal physiology.

    PubMed

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Patterns of developmental plasticity in response to incubation temperature in reptiles.

    PubMed

    While, Geoffrey M; Noble, Daniel W A; Uller, Tobias; Warner, Daniel A; Riley, Julia L; Du, Wei-Guo; Schwanz, Lisa E

    2018-05-28

    Early life environments shape phenotypic development in important ways that can lead to long-lasting effects on phenotype and fitness. In reptiles, one aspect of the early environment that impacts development is temperature (termed 'thermal developmental plasticity'). Indeed, the thermal environment during incubation is known to influence morphological, physiological, and behavioral traits, some of which have important consequences for many ecological and evolutionary processes. Despite this, few studies have attempted to synthesize and collate data from this expansive and important body of research. Here, we systematically review research into thermal developmental plasticity across reptiles, structured around the key papers and findings that have shaped the field over the past 50 years. From these papers, we introduce a large database (the 'Reptile Development Database') consisting of 9,773 trait means across 300 studies examining thermal developmental plasticity. This dataset encompasses data on a range of phenotypes, including morphological, physiological, behavioral, and performance traits along with growth rate, incubation duration, sex ratio, and survival (e.g., hatching success) across all major reptile clades. Finally, from our literature synthesis and data exploration, we identify key research themes associated with thermal developmental plasticity, important gaps in empirical research, and demonstrate how future progress can be made through targeted empirical, meta-analytic, and comparative work. © 2018 Wiley Periodicals, Inc.

  9. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  10. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  11. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    PubMed

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  12. Functional MRI of the placenta – From rodents to humans

    PubMed Central

    Avni, R.; Neeman, M.; Garbow, J.R.

    2015-01-01

    The placenta performs a wide range of physiological functions; insufficiencies in these functions may result in a variety of severe prenatal and postnatal syndromes with long-term negative impacts on human adult health. Recent advances in magnetic resonance imaging (MRI) studies of placental function, in both animal models and humans, have contributed significantly to our understanding of placental structure, blood flow, oxygenation status, and metabolic profile, and have provided important insights into pregnancy complications. PMID:25916594

  13. Multi-scale Functional and Molecular Photoacoustic Tomography

    PubMed Central

    Yao, Junjie; Xia, Jun; Wang, Lihong V.

    2015-01-01

    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617

  14. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    NASA Astrophysics Data System (ADS)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  15. Spatial changes in fatty acids signatures of the great scallop Pecten maximus across the Bay of Biscay continental shelf

    NASA Astrophysics Data System (ADS)

    Nerot, Caroline; Meziane, Tarik; Schaal, Gauthier; Grall, Jacques; Lorrain, Anne; Paulet, Yves-Marie; Kraffe, Edouard

    2015-10-01

    The spatial variability of food resources along continental margins can strongly influence the physiology and ecology of benthic bivalves. We explored the variability of food sources of the great scallop Pecten maximus, by determining their fatty acid (FA) composition along an inshore-offshore gradient in the Bay of Biscay (from 15 to 190 m depth). The FA composition of the digestive gland showed strong differences between shallow and deep-water habitats. This trend was mainly driven by their content in diatom-characteristic fatty acids, which are abundant near the coast. Scallops collected from the middle of the continental shelf were characterized by higher contents of flagellate markers than scallops from shallow habitats. This could be related to a permanent vertical stratification in the water column, which reduced vertical mixing of waters, thereby enhancing organic matter recycling through the microbial loop. In the deeper water station (190 m), FA compositions were close to the compositions found in scallops from shallow areas, which suggest that scallops could have access to the same resources (i.e. diatoms). Muscle FA composition was more indicative of the physiological state of scallops over this depth range, revealing contrasting reproductive strategies among the two coastal sites and metabolic or physiological adaptation at greater depth (e.g. structural and functional adjustments of membrane composition). This study therefore revealed contrasted patterns between shallow and deeper habitats for both P. maximus muscle and digestive gland tissues. This emphasizes the variability in the diet of this species along its distribution range, and stresses the importance of analyzing different tissues for their FA composition in order to better understand their physiology and ecology.

  16. Temperature Insensitivity and Behavioural Reduction of the Physiological Stress Response to Longline Capture by the Gummy Shark, Mustelus antarcticus

    PubMed Central

    Guida, Leonardo; Walker, Terence I.; Reina, Richard D.

    2016-01-01

    Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST) and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32–241 min as measured by hook timers or time depth recorders (TDR) in SSTs ranging 12–20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals’ landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate) used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies. PMID:26886126

  17. Hot and Bothered: Changes in Microclimate Alter Chlorophyll Fluorescence Measures and Increase Stress Levels in Tropical Epiphytic Orchids

    Treesearch

    Benjamin J. Crain; Raymond L. Tremblay

    2017-01-01

    Premise of research. Tropical epiphytes are susceptible to climatic changes, as evidenced by documented population declines, range contractions, and range shifts; however, physiological changes in individual plants may also be indicative of deteriorating climate conditions. Consequently, physiological analyses of tropical epiphytes whose natural habitats are...

  18. Measurement of Physiologic Glucose Levels Using Raman Spectroscopy in a Rabbit Aqueous Humor Model

    NASA Technical Reports Server (NTRS)

    Lambert, J.; Storrie-Lombardi, M.; Borchert, M.

    1998-01-01

    We have elecited a reliable glucose signature in mammalian physiological ranges using near infrared Raman laser excitation at 785 nm and multivariate analysis. In a recent series of experiments we measured glucose levels in an artificial aqueous humor in the range from 0.5 to 13X normal values.

  19. Linking Landscape-Scale Disturbances to Stress and Condition of Fish: Implications for Restoration and Conservation.

    PubMed

    Jeffrey, Jennifer D; Hasler, Caleb T; Chapman, Jacqueline M; Cooke, Steven J; Suski, Cory D

    2015-10-01

    Humans have dramatically altered landscapes as a result of urban and agricultural development, which has led to decreases in the quality and quantity of habitats for animals. This is particularly the case for freshwater fish that reside in fluvial systems, given that changes to adjacent lands have direct impacts on the structure and function of watersheds. Because choices of habitat have physiological consequences for organisms, animals that occupy sub-optimal habitats may experience increased expenditure of energy or homeostatic overload that can cause negative outcomes for individuals and populations. With the imperiled and threatened status of many freshwater fish, there is a critical need to define relationships between land use, quality of the habitat, and physiological performance for resident fish as an aid to restoration and management. Here, we synthesize existing literature to relate variation in land use at the scale of watersheds to the physiological status of resident fish. This examination revealed that landscape-level disturbances can influence a host of physiological properties of resident fishes, ranging from cellular and genomic levels to the hormonal and whole-animal levels. More importantly, these physiological responses have been integrated into traditional field-based monitoring protocols to provide a mechanistic understanding of how organisms interact with their environment, and to enhance restoration. We also generated a conceptual model that provides a basis for relating landscape-level changes to physiological responses in fish. We conclude that physiological sampling of resident fish has the potential to assess the effects of landscape-scale disturbances on freshwater fish and to enhance restoration and conservation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Sensitivity of Physiological Emotional Measures to Odors Depends on the Product and the Pleasantness Ranges Used

    PubMed Central

    Pichon, Aline M.; Coppin, Géraldine; Cayeux, Isabelle; Porcherot, Christelle; Sander, David; Delplanque, Sylvain

    2015-01-01

    Emotions are characterized by synchronized changes in several components of an organism. Among them, physiological variations provide energy support for the expression of approach/avoid action tendencies induced by relevant stimuli, while self-reported subjective pleasantness feelings integrate all other emotional components and are plastic. Consequently, emotional responses evoked by odors should be highly differentiated when they are linked to different functions of olfaction (e.g., avoiding environmental hazards). As this differentiation has been observed for contrasted odors (very pleasant or unpleasant), we questioned whether subjective and physiological emotional response indicators could still disentangle subtle affective variations when no clear functional distinction is made (mildly pleasant or unpleasant fragrances). Here, we compared the sensitivity of behavioral and physiological [respiration, skin conductance, facial electromyography (EMG), and heart rate] indicators in differentiating odor-elicited emotions in two situations: when a wide range of odor families was presented (e.g., fruity, animal), covering different functional meanings; or in response to a restricted range of products in one particular family (fragrances). Results show clear differences in physiological indicators to odors that display a wide range of reported pleasantness, but these differences almost entirely vanish when fragrances are used even though their subjective pleasantness still differed. Taken together, these results provide valuable information concerning the ability of classic verbal and psychophysiological measures to investigate subtle differences in emotional reactions to a restricted range of similar olfactory stimuli. PMID:26648888

  1. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology

    PubMed Central

    Turan, Belma; Tuncay, Erkan

    2017-01-01

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144

  2. Seasonal temperature acclimatization in a semi-fossorial mammal and the role of burrows as thermal refuges

    PubMed Central

    Rachlow, Janet L.; Chappell, Mark A.; Camp, Meghan J.; Johnson, Timothy R.; Shipley, Lisa A.; Paul, David R.; Forbey, Jennifer S.

    2018-01-01

    Small mammals in habitats with strong seasonal variation in the thermal environment often exhibit physiological and behavioral adaptations for coping with thermal extremes and reducing thermoregulatory costs. Burrows are especially important for providing thermal refuge when above-ground temperatures require high regulatory costs (e.g., water or energy) or exceed the physiological tolerances of an organism. Our objective was to explore the role of burrows as thermal refuges for a small endotherm, the pygmy rabbit (Brachylagus idahoensis), during the summer and winter by quantifying energetic costs associated with resting above and below ground. We used indirect calorimetry to determine the relationship between energy expenditure and ambient temperature over a range of temperatures that pygmy rabbits experience in their natural habitat. We also measured the temperature of above- and below-ground rest sites used by pygmy rabbits in eastern Idaho, USA, during summer and winter and estimated the seasonal thermoregulatory costs of resting in the two microsites. Although pygmy rabbits demonstrated seasonal physiological acclimatization, the burrow was an important thermal refuge, especially in winter. Thermoregulatory costs were lower inside the burrow than in above-ground rest sites for more than 50% of the winter season. In contrast, thermal heterogeneity provided by above-ground rest sites during summer reduced the role of burrows as a thermal refuge during all but the hottest periods of the afternoon. Our findings contribute to an understanding of the ecology of small mammals in seasonal environments and demonstrate the importance of burrows as thermal refuge for pygmy rabbits. PMID:29576977

  3. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

  4. Why do we eat? Children's and adults' understanding of why we eat different meals.

    PubMed

    Raman, Lakshmi

    2011-01-01

    In this study the author examined why children and adults think they need to eat. Preschoolers through adults were provided with physiological, social, psychological, and routine causes for eating breakfast, lunch, snack, and dinner, and were asked to either agree or disagree with the causal responses provided. A 4 Reason x 4 Meal repeated measures analysis of variance revealed significant main effects for meals and reasons, as well as significant Meal x Reason and Meal x Reason x Grade interactions. The effect sizes ranged from 0.1 to 0.7. Across all age groups, participants acknowledged physiological needs and desires (fulfilling hunger and needs to stay healthy) and routine (e.g., it is dinner time) as the primary causes for eating breakfast, lunch, and dinner. However, for snack physiological needs were the primary reason. Second-grade students onward spontaneously produced biological justifications such as the need for energy and nutrition as important reasons for food consumption. These results lend support to the developmental model that children's and adults' understanding of eating changes in middle childhood.

  5. Learning on Jupiter, learning on the Moon: the dark side of the G-force. Effects of gravity changes on neurovascular unit and modulation of learning and memory

    PubMed Central

    Porte, Yves; Morel, Jean-Luc

    2012-01-01

    On earth, gravity vector conditions the development of all living beings by physically imposing an axis along which to build their organism. Thus, during their whole life, they have to fight against this force not only to maintain their architectural organization but also to coordinate the communication between organs and keep their physiology in a balanced steady-state. In space, astronauts show physiological, psychological, and cognitive deregulations, ranging from bone decalcification or decrease of musculature, to depressive-like disorders, and spatial disorientation. Nonetheless, they are confronted to a great amount of physical changes in their environment such as solar radiations, loss of light-dark cycle, lack of spatial landmarks, confinement, and obviously a dramatic decrease of gravity force. It is thus very hard to selectively discriminate the strict role of gravity level alterations on physiological, and particularly cerebral, dysfunction. To this purpose, it is important to design autonomous models and apparatuses for behavioral phenotyping utilizable under modified gravity environments. Our team actually aims at working on this area of research. PMID:23015785

  6. Optimizing Preprocessing and Analysis Pipelines for Single-Subject FMRI. I. Standard Temporal Motion and Physiological Noise Correction Methods

    PubMed Central

    Churchill, Nathan W.; Oder, Anita; Abdi, Hervé; Tam, Fred; Lee, Wayne; Thomas, Christopher; Ween, Jon E.; Graham, Simon J.; Strother, Stephen C.

    2016-01-01

    Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or “pipeline”) in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. PMID:21455942

  7. A review of factors influencing the stress response in Australian marsupials

    PubMed Central

    Hing, Stephanie; Narayan, Edward; Thompson, R. C. Andrew; Godfrey, Stephanie

    2014-01-01

    Many Australian marsupials are threatened species. In order to manage in situ and ex situ populations effectively, it is important to understand how marsupials respond to threats. Stress physiology (the study of the response of animals to challenging stimuli), a key approach in conservation physiology, can be used to characterize the physiological response of wildlife to threats. We reviewed the literature on the measurement of glucocorticoids (GCs), endocrine indicators of stress, in order to understand the stress response to conservation-relevant stressors in Australian marsupials and identified 29 studies. These studies employed a range of methods to measure GCs, with faecal glucocorticoid metabolite enzyme immunoassay being the most common method. The main stressors considered in studies of marsupials were capture and handling. To date, the benefits of stress physiology have yet to be harnessed fully in marsupial conservation. Despite a theoretical base dating back to the 1960s, GCs have only been used to understand how 21 of the 142 extant species of Australian marsupial respond to stressors. These studies include merely six of the 60 marsupial species of conservation concern (IUCN Near Threatened to Critically Endangered). Furthermore, the fitness consequences of stress for Australian marsupials are rarely examined. Individual and species differences in the physiological stress response also require further investigation, because significant species-specific variations in GC levels in response to stressors can shed light on why some individuals or species are more vulnerable to stress factors while others appear more resilient. This review summarizes trends, knowledge gaps and future research directions for stress physiology research in Australian marsupial conservation. PMID:27293648

  8. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms

    PubMed Central

    Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric

    2017-01-01

    Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174

  9. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma

    PubMed Central

    Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros

    2010-01-01

    The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693

  10. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma.

    PubMed

    Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros

    2010-06-01

    The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.

  11. Detection of physiological changes after exercise via a remote optophysiological imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Zheng, Jia; Greenwald, Stephen; Chambers, Jonathon; Zhu, Yisheng

    2011-03-01

    A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the time-dependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed opto-physiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments.

  12. The role of plant physiology in hydrology: looking backwards and forwards

    NASA Astrophysics Data System (ADS)

    Roberts, J.

    2007-01-01

    The implementation of plant physiological studies at the Institute of Hydrology focussed both on examining and understanding the physiological controls of transpiration as well as evaluating the value of using physiological methods to measure transpiration. Transpiration measurement by physiological methods would be particularly valuable where this could not be achieved by micrometeorological and soil physics methods. The principal physiological measurements used were determinations of leaf stomatal conductance and leaf water relations to monitor plant water stress. In this paper the value of these approaches is illustrated by describing a few case studies in which plant physiological insight, provided both as new measurements and existing knowledge, would aid in the interpretation of the hydrological behaviour of important vegetation. Woody vegetation figured largely in these studies, conducted in the UK and overseas. Each of these case studies is formulated as a quest to answer a particular question. A collaborative comparison of conifer forest transpiration in Thetford forest using micrometeorological and soil physics techniques exhibited a substantially larger (~1 mm day-1) estimate from the micrometeorological approach. So the question - Why is there a disagreement in the estimates of forest transpiration made using micrometeorological and soil physics approaches? A range of physiological studies followed that suggested that there was no one simple answer but that the larger estimate from the micrometeorology technique might include contributions of water taken up by deep roots, from shallow-rooted vegetation and possibly also from water previously stored in trees. These sources of water were probably not included in the soil physics estimate of transpiration. The annual transpiration from woodlands in NW Europe shows a low magnitude and notable similarity between different sites raising the question - Why is transpiration from European forests low and conservative? An important contribution both to the similar and low transpiration is the likely reduction of stomatal conductance of the foliage associated with increasing air humidity deficit. A greater response is usually found when initial conductances are highest. Also contributing to similarities in transpiration from forest stands would be a compensatory role of understories and that deficits in soil moisture may not come into play until severe soil water deficits occur. Physiological studies have been conducted in many locations overseas. The modest transpiration of tropical rainforest is intriguing - Why is tropical rainforest transpiration so low? In common with temperate trees the reduction of stomatal conductance of tropical trees in association with increasing air humidity deficit will limit transpiration. In addition the high leaf area index of tropical rainforest creates conditions in the lower canopy layers that mean transpiration from those layers is much reduced from what might be possible. As well as being used to quantify and understand transpiration, physiological techniques might be used to assess when plants require water. What is the first signal that plants need water? Studies on sugar cane in Mauritius indicated that leaf growth was the most sensitive measure. A look forward to the future suggests that there will be a continued need for physiological measurements particularly where other techniques more suited to extensive vegetation are not appropriate. There are many unresolved issues about water use from fragmented, heterogeneous vegetation and physiological approaches are best suited to these. The measurement of sap flow in individual stems will be an important methodology in the future but there are still methodological issues to resolve.

  13. Technological advances in site-directed spin labeling of proteins.

    PubMed

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Statistical Distance as a Measure of Physiological Dysregulation Is Largely Robust to Variation in Its Biomarker Composition

    PubMed Central

    Cohen, Alan A.; Leroux, Maxime; Faucher, Samuel; Morissette-Thomas, Vincent; Legault, Véronique; Fried, Linda P.; Ferrucci, Luigi

    2015-01-01

    Physiological dysregulation may underlie aging and many chronic diseases, but is challenging to quantify because of the complexity of the underlying systems. Recently, we described a measure of physiological dysregulation, DM, that uses statistical distance to assess the degree to which an individual’s biomarker profile is normal versus aberrant. However, the sensitivity of DM to details of the calculation method has not yet been systematically assessed. In particular, the number and choice of biomarkers and the definition of the reference population (RP, the population used to define a “normal” profile) may be important. Here, we address this question by validating the method on 44 common clinical biomarkers from three longitudinal cohort studies and one cross-sectional survey. DMs calculated on different biomarker subsets show that while the signal of physiological dysregulation increases with the number of biomarkers included, the value of additional markers diminishes as more are added and inclusion of 10-15 is generally sufficient. As long as enough markers are included, individual markers have little effect on the final metric, and even DMs calculated from mutually exclusive groups of markers correlate with each other at r~0.4-0.5. We also used data subsets to generate thousands of combinations of study populations and RPs to address sensitivity to differences in age range, sex, race, data set, sample size, and their interactions. Results were largely consistent (but not identical) regardless of the choice of RP; however, the signal was generally clearer with a younger and healthier RP, and RPs too different from the study population performed poorly. Accordingly, biomarker and RP choice are not particularly important in most cases, but caution should be used across very different populations or for fine-scale analyses. Biologically, the lack of sensitivity to marker choice and better performance of younger, healthier RPs confirm an interpretation of DM physiological dysregulation and as an emergent property of a complex system. PMID:25875923

  15. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons.

    PubMed

    Boulet, Jason; Bruce, Ian C

    2017-04-01

    Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

  16. Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery

    PubMed Central

    Schlenker, Lela S.; Latour, Robert J.; Brill, Richard W.; Graves, John E.

    2016-01-01

    White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures. PMID:27293745

  17. Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery.

    PubMed

    Schlenker, Lela S; Latour, Robert J; Brill, Richard W; Graves, John E

    2016-01-01

    White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures.

  18. Laser blood irradiation effect on electrophysiological characteristics of acute coronary syndrome patients

    NASA Astrophysics Data System (ADS)

    Khotiaintsev, Sergei N.; Doger-Guerrero, E.; Glebova, L.; Svirid, V.; Sirenko, Yuri

    1996-11-01

    This paper treats electro-physiological effects of the low- level laser irradiation of blood (LBI). The data presented here are based on the observation of almost 200 patients suffering from the acute disruption of coronary blood circulation, unstable angina pectoris and myocardial infarction. Statistically significant changes of the electro-physiological characteristics were observed in the group of 65 patients, treated by the LBI. In particular, the significant 6 percent extension of the effective refractory period was observed. The electrical situation threshold has increased by 20.6 percent. The significant changes of some other important electro-physiological characteristics were within the range of 5-15 percent. In this paper, the data obtained on the LBI effectiveness are compared also with the results obtained on 94 patients who in addition to the standard anti-angina therapy were treated by the autohaemo- transfusion performed simultaneously with the UV-light irradiation of the transfused blood. The results obtained demonstrate the significant positive effect of the low energy LBI. The electrophysiological data obtained have good correlation with observed anti-arrhythmic effect of the LBI. This is proved by the data obtained on the electro- physiological characteristics of the cardiovascular system and by other clinical data on the experimental and control group of patients. In the course of this research the exact effect of the low level LBI was established. LBI led to the pronounced positive changes in electro-physiological characteristics of the cardiovascular system of the patients, it also led to the pronounced anti-arrhythmic effect.

  19. Physiological and behavioural assessment of pain in ruminants: principles and caveats.

    PubMed

    Mellor, David J; Stafford, Kevin J

    2004-06-01

    Pain elicits a range of physiological and behavioural responses. These are commonly used to assess the impact of pain-inducing stimuli on animals, to determine whether or not significant pain is experienced and to devise strategies for alleviating pain. This paper outlines a range of principles and caveats to guide the evaluation of physiological and behavioural responses to painful stimuli, so that they can be better used to minimise pain in the experimental context. Although this advice is based on studies of farm animals responding to painful husbandry practices, it is more generally applicable.

  20. Predicted Hematologic and Plasma Volume Responses Following Rapid Ascent to Progressive Altitudes

    DTIC Science & Technology

    2014-06-01

    of these changes, and define baseline demographics and physiologic descriptors that are important in predicting these changes. The overall impact of... physiologic descriptors that are important in predicting these changes. Using general linear mixed models and a comprehensive relational database...accomplished using a comprehensive relational database containing individual ascent profiles, demographics, and physiologic subject descriptors as well as

  1. Sex-specific ecophysiological responses to environmental fluctuations of free-ranging Hermann's tortoises: implication for conservation.

    PubMed

    Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie

    2016-01-01

    Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.

  2. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Goto, Akira; Merilä, Juha

    2011-06-01

    Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  3. Reduced Salinity Improves Marine Food Availability With Positive Feedbacks on pH in a Tidally-Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Lowe, A. T.; Roberts, E. A.; Galloway, A. W. E.

    2016-02-01

    Coastal regions around the world are changing rapidly, generating many physiological stressors for marine organisms. Food availability, a major factor determining physiological condition of marine organisms, in these systems reflects the influence of biological and environmental factors, and will likely respond dramatically to long-term changes. Using observations of phytoplankton, detritus, and their corresponding fatty acids and stable isotopes of carbon, nitrogen and sulfur, we identified environmental drivers of pelagic food availability and quality along a salinity gradient in a large tidally influenced estuary (San Juan Archipelago, Salish Sea, USA). Variation in chlorophyll a (Chl a), biomarkers and environmental conditions exhibited a similar range at both tidal and seasonal scales, highlighting a tide-related mechanism controlling productivity that is important to consider for long-term monitoring. Multiple parameters of food availability were inversely and non-linearly correlated to salinity, such that availability of high-quality (based on abundance, essential fatty acid concentration and C:N) seston increased below a salinity threshold of 30. The increased marine productivity was associated with increased pH and dissolved oxygen (DO) at lower salinity. Based on this observation we predicted that a decrease of salinity to below the threshold would result in higher Chl a, temperature, DO and pH across a range of temporal and spatial scales, and tested the prediction with a meta-analysis of available data. At all scales, these variables showed significant and consistent increases related to the salinity threshold. This finding provides important context to the increased frequency of below-threshold salinity over the last 71 years in this region, suggesting greater food availability with positive feedbacks on DO and pH. Together, these findings indicate that many of the environmental factors predicted to increase physiological stress to benthic suspension feeders (e.g. decreased salinity) may simultaneously and paradoxically improve conditions for benthic organisms.

  4. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  5. The Virtue of Just Enough Stress: A Molecular Model

    PubMed Central

    Bishopric, Nanette H.

    2012-01-01

    Molecular biology emphasizes the study of all-or-nothing phenomena and molecular events with a large dynamic range. However, many important physiologic parameters in the clinical setting are tightly constrained (e.g., serum sodium concentration, body mass, venous oxygen saturation, sleep duration). Stress responses exhibit both a wide dynamic range and a potential for important effects at a “just-enough” threshold activation level. Stress responses occur in a number of body systems (e.g., neuropsychiatric, immune, cardiovascular) and are essential for short-term damage control, but also must be tightly constrained in range and duration to permit the organism to walk the narrow homeostatic path to long-term survival. Using an example of a newly appreciated stress-responsive molecule in the heart, acetyltransferase p300, as well as examples from the literature, this article discusses the advantages of self-limited stress, the adverse effects of sustained stress, and the built-in mechanisms that feed back on and terminate stress signals, and advances a hypothesis regarding stress as a pharmacological target in the heart. PMID:23303984

  6. Environmental stressors alter relationships between physiology and behaviour.

    PubMed

    Killen, Shaun S; Marras, Stefano; Metcalfe, Neil B; McKenzie, David J; Domenici, Paolo

    2013-11-01

    Although correlations have frequently been observed between specific physiological and behavioural traits across a range of animal taxa, the nature of these associations has been shown to vary. Here we argue that a major source of this inconsistency is the influence of environmental stressors, which seem capable of revealing, masking, or modulating covariation in physiological and behavioural traits. These effects appear to be mediated by changes in the observed variation of traits and differential sensitivity to stressors among phenotypes. Considering that wild animals routinely face a range of biotic and abiotic stressors, increased knowledge of these effects is imperative for understanding the causal mechanisms of a range of ecological phenomena and evolutionary responses to stressors associated with environmental change. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    PubMed

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  8. Neighborhood Socioeconomic Deprivation and Allostatic Load: A Scoping Review.

    PubMed

    Ribeiro, Ana Isabel; Amaro, Joana; Lisi, Cosima; Fraga, Silvia

    2018-05-28

    Residing in socioeconomically deprived neighborhoods may pose substantial physiological stress, which can then lead to higher allostatic load (AL), a marker of biological wear and tear that precedes disease. The aim of the present study was to map the current evidence about the relationship between neighborhood socioeconomic deprivation and AL. A scoping review approach was chosen to provide an overview of the type, quantity, and extent of research available. The review was conducted using three bibliographic databases (PubMed, SCOPUS, and Web of Science) and a standardized protocol. Fourteen studies were identified. Studies were predominantly from the USA, cross-sectional, focused on adults, and involved different races and ethnic groups. A wide range of measures of AL were identified: the mode of the number of biomarkers per study was eight but with large variability (range: 6⁻24). Most studies ( n = 12) reported a significant association between neighborhood deprivation and AL. Behaviors and environmental stressors seem to mediate this relationship and associations appear more pronounced among Blacks, men, and individuals with poor social support. Such conclusions have important public health implications as they enforce the idea that neighborhood environment should be improved to prevent physiological dysregulation and consequent chronic diseases.

  9. Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary.

    PubMed

    Schaeffer, Marie; Hodson, David J; Lafont, Chrystel; Mollard, Patrice

    2010-12-01

    The pulsatile release of hormone is obligatory for the control of a range of important body homeostatic functions. To generate these pulses, endocrine organs have developed finely regulated mechanisms to modulate blood flow both to meet the metabolic demand associated with intense endocrine cell activity and to ensure the temporally precise uptake of secreted hormone into the bloodstream. With a particular focus on the pituitary gland as a model system, we review here the importance of the interplay between blood flow regulation and oxygen tensions in the functioning of endocrine systems, and the known regulatory signals involved in the modification of flow patterns under both normal physiological and pathological conditions. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. California gull chicks raised near colony edges have elevated stress levels

    USGS Publications Warehouse

    Herring, Garth; Ackerman, Joshua T.

    2011-01-01

    Coloniality in nesting birds represents an important life history strategy for maximizing reproductive success. Birds nesting near the edge of colonies tend to have lower reproductive success than individuals nesting near colony centers, and offspring of edge-nesting parents may be impaired relative to those of central-nesting parents. We used fecal corticosterone metabolites in California gull chicks (Larus californicus) to examine whether colony size or location within the colony influenced a chick's physiological condition. We found that chicks being raised near colony edges had higher fecal corticosterone metabolite concentrations than chicks raised near colony centers, but that colony size (ranging from 150 to 11,554 nests) had no influence on fecal corticosterone levels. Fecal corticosterone metabolite concentrations also increased with chick age. Our results suggest that similarly aged California gull chicks raised near colony edges may be more physiologically stressed, as indicated by corticosterone metabolites, than chicks raised near colony centers.

  11. The mechanical response of talin

    NASA Astrophysics Data System (ADS)

    Yao, Mingxi; Goult, Benjamin T.; Klapholz, Benjamin; Hu, Xian; Toseland, Christopher P.; Guo, Yingjian; Cong, Peiwen; Sheetz, Michael P.; Yan, Jie

    2016-07-01

    Talin, a force-bearing cytoplasmic adapter essential for integrin-mediated cell adhesion, links the actin cytoskeleton to integrin-based cell-extracellular matrix adhesions at the plasma membrane. Its C-terminal rod domain, which contains 13 helical bundles, plays important roles in mechanosensing during cell adhesion and spreading. However, how the structural stability and transition kinetics of the 13 helical bundles of talin are utilized in the diverse talin-dependent mechanosensing processes remains poorly understood. Here we report the force-dependent unfolding and refolding kinetics of all talin rod domains. Using experimentally determined kinetics parameters, we determined the dynamics of force fluctuation during stretching of talin under physiologically relevant pulling speeds and experimentally measured extension fluctuation trajectories. Our results reveal that force-dependent stochastic unfolding and refolding of talin rod domains make talin a very effective force buffer that sets a physiological force range of only a few pNs in the talin-mediated force transmission pathway.

  12. Distributed Egg Production Functions for Meloidogyne arenaria in Grape Varieties and Consideration of the Mechanistic Relationship between Plant and Parasite.

    PubMed

    Ferris, H; Schneider, S M; Semenoff, M C

    1984-04-01

    Nematode egg production rates, as mediated by environmental conditions and host status, are important determinants of population development. Rates of egg production by Meloidogyne arenaria varied from 0.48 to 1.0 egg per female per DD (degree days above 10 C) in different grape varieties. The length of the egg production period ranged from 550 to 855 DD where measurable, and was generally longer in those varieties where the production rate was slow. We hypothesize that if a successful infection site is established, a constant number of eggs is produced if favorable environmental conditions prevail. Mechanistic coupling structures between plant growth and nematode population models are formulated. The nematode population influences metabolite supply through its effect on physiological efficiency and also acts as a metabolic sink; the degree of plant physiological stress influences nematode population development by affecting the sex ratio and egg production rates.

  13. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    PubMed

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  14. Measurement of intrinsic physiological membrane noise in cultured living cells.

    PubMed

    Bukhari, Masroor H Shah; Miller, John H

    2010-06-01

    An experimental technique and some preliminary observations are reported here for the measurement of electric noise and potentials intrinsic to the physiological function of living cells, using an in vitro yeast cells (Saccharomyces cerevisiae) model. The design and working of technique is based on a micro-electrode-based sensor working in a modified patch-clamp configuration. We present recordings of intrinsic noise and cellular electric potentials in living and aerobically respiring cells (in an electromagnetically shielded environment). An important observation of the effect of aerobic respiration on the studied cells is discussed, whereby conspicuously higher magnitude potentials were seen with aerobically respiring active yeast cells, as compared to anaerobic or dead cells. Recorded noise potentials from aerobically respiring cells are found to have a magnitude on the order of a few microVolts/cm and fall within the range of 140- in the low-frequency (LF) band.

  15. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  16. Aquaporin water channels – from atomic structure to clinical medicine

    PubMed Central

    Agre, Peter; King, Landon S; Yasui, Masato; Guggino, Wm B; Ottersen, Ole Petter; Fujiyoshi, Yoshinori; Engel, Andreas; Nielsen, Søren

    2002-01-01

    The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous pore that permits single-file passage of water molecules but interrupts the hydrogen bonding needed for passage of protons. At least 10 mammalian aquaporins have been identified, and these are selectively permeated by water (aquaporins) or water plus glycerol (aquaglyceroporins). The sites of expression coincide closely with the clinical phenotypes – ranging from congenital cataracts to nephrogenic diabetes insipidus. More than 200 members of the aquaporin family have been found in plants, microbials, invertebrates and vertebrates, and their importance to the physiology of these organisms is being uncovered. PMID:12096044

  17. Interspecies chemical communication in bacterial development.

    PubMed

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  18. The importance of mammalian torpor for survival in a post-fire landscape.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2015-06-01

    Wildfires have increased in frequency and intensity worldwide with climate change as a main driving factor. While a number of studies have focused on population changes in regard to fires, there are essentially no quantitative data on behavioural and physiological adjustments that are vital for the persistence of individuals during and after fires. Here we show that brown antechinus, a small insectivorous marsupial mammal, (i) endured a prescribed fire in situ, (ii) remained in their scorched home range despite unburned areas nearby, and (iii) substantially increased post-fire torpor use and thus reduced foraging requirements and exposure to predators. Hence, torpor is a physiological adaptation that, although not quantified in this context previously, appears to play a key role in post-fire survival for this and other heterothermic species. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    PubMed

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  20. Nutritional support of the elderly cancer patient: the role of the nurse.

    PubMed

    Hopkinson, Jane B

    2015-04-01

    Cancer in the geriatric population is a growing problem. Malnutrition is common in cancer. A number of factors increase the risk for malnutrition in older people with cancer, including chronic comorbid conditions and normal physiological changes of aging. Nurses have an important role in the nutritional support of older cancer patients. To contribute to the improvement of nutritional support of these patients, nurses need appropriate training to be able to identify risk for malnutrition and offer a range of interventions tailored to individual need. Factors to consider in tailoring interventions include disease status, cancer site, cancer treatment, comorbidity, physiological age, method of facilitating dietary change, and family support. This article identifies ways in which nurses can contribute to the nutritional support of older cancer patients and thus help mitigate the effects of malnutrition. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector?

    PubMed

    Peterson, Jennifer K; Graham, Andrea L

    2016-06-01

    The phrase, "T. rangeli is pathogenic to its insect vector," is commonly found in peer-reviewed publications on the matter, such that it has become the orthodox view of this interaction. In a literature survey, we identified over 20 papers with almost the exact phrase and several others alluding to it. The idea is of particular importance in triatomine population dynamics and the study of vector-borne T. cruzi transmission, as it could mean that triatomines infected with T. rangeli have lower fitness than uninfected insects. Trypanosoma rangeli pathogenicity was first observed in a series of studies carried out over fifty years ago using the triatomine species Rhodnius prolixus. However, there are few studies of the effect of T. rangeli on its other vector species, and several of the studies were carried out with R. prolixus under non-physiological conditions. Here, we re-evaluate the published studies that led to the conclusion that T. rangeli is pathogenic to its vector, to determine whether or not this indeed is the "true" effect of T. rangeli on its triatomine vector. © 2016 The Society for Vector Ecology.

  2. A Novel, Ecologically Relevant, Highly Preferred, and Non-invasive Means of Oral Substance Administration for Rodents

    PubMed Central

    Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.

    2017-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606

  3. A novel, ecologically relevant, highly preferred, and non-invasive means of oral substance administration for rodents.

    PubMed

    Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A

    2016-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.

  4. Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.

    2009-01-01

    Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047

  5. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America

    PubMed Central

    2016-01-01

    The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus. Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus. PMID:27354438

  6. Chewing Over Physiology Integration

    ERIC Educational Resources Information Center

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  7. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    PubMed Central

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  8. The pragmatics of feeding the pediatric patient with acute respiratory distress syndrome.

    PubMed

    Verger, Judy T; Bradshaw, Darla J; Henry, Elizabeth; Roberts, Kathryn E

    2004-09-01

    Acute respiratory distress syndrome (ARDS) represents the ultimate pulmonary response to a wide range of injuries, from septicemia to trauma. Optimal nutrition is vital to enhancing oxygen delivery, supporting adequate cardiac contractility and respiratory musculature, eliminating fluid and electrolyte imbalances, and supporting the proinflammatory response. Research is providing a better understanding of nutrients that specifically address the complex physiologic changes in ARDS. This article highlights the pathophysiology of ARDS as it relates to nutrition, relevant nutritional assessment, and important enteral and parenteral considerations for the pediatric patient who has ARDS.

  9. Fluid dynamic study in a femoral artery branch casting of man with upstream main lumen curvature for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Back, M. R.

    1985-01-01

    An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plague formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.

  10. Selected questions of topical interest in human bioclimatology

    NASA Astrophysics Data System (ADS)

    Jendritzky, G.

    1991-09-01

    This paper deals with the different effects of climate, and the likely impact of climatic change, on the human being, his health and well-being. Those effects follow from consideration of the human energy budget and air pollution, including photooxidants and radiation, the latter especially in the UV-range. The development of tools to produce bioclimate maps, i.e. maps expressed in physiologically significant terms, in different scales up to the high resolution necessary for the microscale urban climate, will be discussed. The most important questions in bioclimate research and its application will be considered.

  11. Selected questions of topical interest in human bioclimatology.

    PubMed

    Jendritzky, G

    1991-11-01

    This paper deals with the different effects of climate, and the likely impact of climatic change, on the human being, his health and well-being. Those effects follow from consideration of the human energy budget and air pollution, including photooxidants and radiation, the latter especially in the UV-range. The development of tools to produce bioclimate maps, i.e. maps expressed in physiologically significant terms, in different scales up to the high resolution necessary for the microscale urban climate, will be discussed. The most important questions in bioclimate research and its application will be considered.

  12. The Core Principles ("Big Ideas") of Physiology: Results of Faculty Surveys

    ERIC Educational Resources Information Center

    Michael, Joel; McFarland, Jenny

    2011-01-01

    Physiology faculty members at a wide range of institutions (2-yr colleges to medical schools) were surveyed to determine what core principles of physiology they want their students to understand. From the results of the first survey, 15 core principles were described. In a second survey, respondents were asked to rank order these 15 core…

  13. Development of a simple intensified fermentation strategy for growth of Magnetospirillum gryphiswaldense MSR-1: Physiological responses to changing environmental conditions.

    PubMed

    Fernández-Castané, Alfred; Li, Hong; Thomas, Owen R T; Overton, Tim W

    2018-06-01

    The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L -1 ) and 33.1 mg iron·g -1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes.

    PubMed

    Hirata, Tomoya; Terai, Takuya; Yamamura, Hisao; Shimonishi, Manabu; Komatsu, Toru; Hanaoka, Kenjiro; Ueno, Tasuku; Imaizumi, Yuji; Nagano, Tetsuo; Urano, Yasuteru

    2016-03-01

    K(+) is the most abundant metal ion in cells, and changes of [K(+)] around cell membranes play important roles in physiological events. However, there is no practical method to selectively visualize [K(+)] at the surface of cells. To address this issue, we have developed a protein-coupled fluorescent probe for K(+), TLSHalo. TLSHalo is responsive to [K(+)] in the physiological range, with good selectivity over Na(+) and retains its K(+)-sensing properties after covalent conjugation with HaloTag protein. By using cells expressing HaloTag on the plasma membrane, we successfully directed TLSHalo specifically to the outer surface of target cells. This enabled us to visualize localized extracellular [K(+)] change with TLSHalo under a fluorescence microscope in real time. To confirm the experimental value of this system, we used TLSHalo to monitor extracellular [K(+)] change induced by K(+) ionophores or by activation of a native Ca(2+)-dependent K(+) channel (BK channel). Further, we show that K(+) efflux via BK channel induced by electrical stimulation at the bottom surface of the cells can be visualized with TLSHalo by means of total internal reflection fluorescence microscope (TIRFM) imaging. Our methodology should be useful to analyze physiological K(+) dynamics with high spatiotemporal resolution.

  15. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  16. Relevance, structure and analysis of ferulic acid in maize cell walls.

    PubMed

    Bento-Silva, Andreia; Vaz Patto, Maria Carlota; do Rosário Bronze, Maria

    2018-04-25

    Phenolic compounds in foods have been widely studied due to their health benefits. In cereals, phenolic compounds are extensively linked to cell wall polysaccharides, mainly arabinoxylans, which cross-link with each other and with other cell wall components. In maize, ferulic acid is the phenolic acid present in the highest concentration, forming ferulic acid dehydrodimers, trimers and tetramers. The cross-linking of polysaccharides is important for the cell wall structure and growth, and may protect against pathogen invasion. In addition to the importance for maize physiology, ferulic acid has been recognized as an important chemical structure with a wide range of health benefits when consumed in a diet rich in fibre. This review paper presents the different ways ferulic acid can be present in maize, the importance of ferulic acid derivatives and the methodologies that can be used for their analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique

    NASA Astrophysics Data System (ADS)

    Heatwole, Harold; Lillywhite, Harvey; Grech, Alana

    2016-09-01

    Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.

  18. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information

    PubMed Central

    Zhou, Gao; Zhou, Wenyu; Schüssler-Fiorenza Rose, Sophia Miryam; Perelman, Dalia; Colbert, Elizabeth; Runge, Ryan; Rego, Shannon; Sonecha, Ria; Datta, Somalee; McLaughlin, Tracey; Snyder, Michael P.

    2017-01-01

    A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography. PMID:28081144

  19. Winter course in physiology: a successful example of continuing education for secondary school teachers in Brazil.

    PubMed

    Café-Mendes, Cecília C; Righi, Luana L; Calil-Silveira, Jamile; Nunes, Maria Tereza; Abdulkader, Fernando

    2016-12-01

    In international surveys, Brazilian students have been consistently ranking low in science. Continuing education for secondary school teachers is certainly a way to change this situation. To update teachers and provide teaching and learning experiences for graduate students, our department organized a "Winter Course in Physiology" where schoolteachers had the opportunity to attend lectures that were offered by graduate students and participate in discussions on teaching and learning strategies and their applicability, considering different schools and student age groups. This work evaluated the ways in which the Winter Course in Physiology improves continuing education for secondary school teachers. Graduate students prepared, presented, and discussed with the audience the concepts, content, and topics of the program, which were previously presented to the organizing committee and a supervising professor. Potential participants were recruited based on their curriculum vitae and a letter of intent. During the course, they completed a questionnaire that graded different aspects of course organization and lectures. The results indicated that the Winter Course was positively evaluated. Most topics received a grade of ≥4.0, considering a range of 1.0 (low) to 5.0 (high). In a followup, both the participants and instructors reported positive impacts on their overall knowledge in physiology. Schoolteachers reported improvements in the performance and participation of their students. In conclusion, the results suggested that the Winter Course is a good way to promote continuing education for schoolteachers and promote university outreach. It also provided an important experience for graduate students to develop teaching skills. Copyright © 2016 The American Physiological Society.

  20. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    PubMed

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea.

    PubMed

    Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Long, You-Hua; Li, Ming

    2015-02-01

    Given the importance of finding alternatives to synthetic fungicides, the antifungal effects of natural product citral on six plant pathogenic fungi (Magnaporthe grisea, Gibberella zeae, Fusarium oxysporum, Valsa mali, Botrytis cinerea, and Rhizoctonia solani) were determined. Mycelial growth rate results showed that citral possessed high antifungal activities on those test fungi with EC50 values ranging from 39.52 to 193.00 µg/mL, which had the highest inhibition rates against M. grisea. Further action mechanism of citral on M. grisea was carried out. Citral treatment was found to alter the morphology of M. grisea hyphae by causing a loss of cytoplasm and distortion of mycelia. Moreover, citral was able to induce an increase in chitinase activity in M. grisea, indicating disruption of the cell wall. These results indicate that citral may act by disrupting cell wall integrity and membrane permeability, thus resulting in physiology changes and causing cytotoxicity. Importantly, the inhibitory effect of citral on M. grisea appears to be associated with its effects on mycelia reducing sugar, soluble protein, chitinase activity, pyruvate content, and malondialdehyde content. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  3. The pathophysiology of pulmonary hypertension in left heart disease.

    PubMed

    Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M

    2015-11-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.

  4. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.

    PubMed

    Kocaadam, Betül; Şanlier, Nevin

    2017-09-02

    Turmeric (Curcuma longa) is a type of herb belonging to ginger family, which is widely grown in southern and south western tropical Asia region. Turmeric, which has an importance place in the cuisines of Iran, Malesia, India, China, Polynesia, and Thailand, is often used as spice and has an effect on the nature, color, and taste of foods. Turmeric is also known to have been used for centuries in India and China for the medical treatments of illnesses such as dermatologic diseases, infection, stress, and depression. Turmeric's effects on health are generally centered upon an orange-yellow colored, lipophilic polyphenol substance called "curcumin," which is acquired from the rhizomes of the herb. Curcumin is known recently to have antioxidant, anti-inflammatory, anticancer effects and, thanks to these effects, to have an important role in prevention and treatment of various illnesses ranging notably from cancer to autoimmune, neurological, cardiovascular diseases, and diabetic. Furthermore, it is aimed to increase the biological activity and physiological effects of the curcumin on the body by synthesizing curcumin analogues. This article reviews the history, chemical and physical features, analogues, metabolites, mechanisms of its physiological activities, and effects on health of curcumin.

  5. Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation.

    PubMed

    Podaru, George; Ogden, Saralyn; Baxter, Amanda; Shrestha, Tej; Ren, Shenqiang; Thapa, Prem; Dani, Raj Kumar; Wang, Hongwang; Basel, Matthew T; Prakash, Punit; Bossmann, Stefan H; Chikan, Viktor

    2014-10-09

    Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.

  6. Contextual processing in unpredictable auditory environments: the limited resource model of auditory refractoriness in the rhesus

    PubMed Central

    Gurnsey, Kate; Salisbury, Dean; Sweet, Robert A.

    2016-01-01

    Auditory refractoriness refers to the finding of smaller electroencephalographic (EEG) responses to tones preceded by shorter periods of silence. To date, its physiological mechanisms remain unclear, limiting the insights gained from findings of abnormal refractoriness in individuals with schizophrenia. To resolve this roadblock, we studied auditory refractoriness in the rhesus, one of the most important animal models of auditory function, using grids of up to 32 chronically implanted cranial EEG electrodes. Four macaques passively listened to sounds whose identity and timing was random, thus preventing animals from forming valid predictions about upcoming sounds. Stimulus onset asynchrony ranged between 0.2 and 12.8 s, thus encompassing the clinically relevant timescale of refractoriness. Our results show refractoriness in all 8 previously identified middle- and long-latency components that peaked between 14 and 170 ms after tone onset. Refractoriness may reflect the formation and gradual decay of a basic sensory memory trace that may be mirrored by the expenditure and gradual recovery of a limited physiological resource that determines generator excitability. For all 8 components, results were consistent with the assumption that processing of each tone expends ∼65% of the available resource. Differences between components are caused by how quickly the resource recovers. Recovery time constants of different components ranged between 0.5 and 2 s. This work provides a solid conceptual, methodological, and computational foundation to dissect the physiological mechanisms of auditory refractoriness in the rhesus. Such knowledge may, in turn, help develop novel pharmacological, mechanism-targeted interventions. PMID:27512021

  7. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  8. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

  9. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).

    PubMed

    Holt, Rebecca E; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.

  10. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)

    PubMed Central

    Holt, Rebecca E.; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology. PMID:27293671

  11. Network feedback regulates motor output across a range of modulatory neuron activity

    PubMed Central

    Spencer, Robert M.

    2016-01-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5–35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  12. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    NASA Astrophysics Data System (ADS)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect the occurrence and local abundance of cosmopolitan CWC species, consequently influencing their important role in habitat engineering and ecosystem functioning in various thermal environments.

  13. Explaining intermediate filament accumulation in giant axonal neuropathy

    PubMed Central

    Opal, Puneet; Goldman, Robert D.

    2013-01-01

    Giant axonal neuropathy (GAN)1 is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.1 This disease is characterized by the aggregation of Intermediate Filaments (IF)—cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape, motility, mechanics and intra-cellular signaling. Although a range of cell types are affected in GAN, neurons display the most severe pathology, with neuronal intermediate filament accumulation and aggregation; this in turn causes axonal swellings or “giant axons.” A mechanistic understanding of GAN IF pathology has eluded researchers for many years. In a recent study1 we demonstrate that the normal function of gigaxonin is to regulate the degradation of IF proteins via the proteasome. Our findings present the first direct link between GAN mutations and IF pathology; moreover, given the importance of IF aggregations in a wide range of disease conditions, our findings could have wider ramifications. PMID:25003002

  14. The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters.

    PubMed

    Price, G Dean; Howitt, Susan M

    2011-04-01

    The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.

  15. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  16. Obstructive sleep apnea syndrome in Prader-Willi Syndrome: an unrecognized and untreated cause of cognitive and behavioral deficits?

    PubMed

    Camfferman, Danny; Lushington, Kurt; O'Donoghue, Fergal; Doug McEvoy, R

    2006-09-01

    Prader-Willi Syndrome (PWS) is a rare genetic disorder characterized by a range of physical, psychological, and physiological abnormalities. It is also distinguished by the high prevalence of obstructive sleep apnea syndrome (OSAS), i.e., repetitive upper airway collapse during sleep resulting in hypoxia and sleep fragmentation. In non-PWS populations, OSAS is associated with a range of neurocognitive and psychosocial deficits. Importantly, these deficits are at least partly reversible following treatment. Given the findings in non-PWS populations, it is possible that OSAS may contribute to neurocognitive and psychosocial deficits in PWS. The present review examines this possibility. While acknowledging a primary contribution from the primary genetic abnormality to central neural dysfunction in PWS, we conclude that OSAS may be an important secondary contributing factor to reduced neurocognitive and psychosocial performance. Treatment of OSAS may have potential benefits in improving neurocognitive performance and behavior in PWS, but this awaits confirmatory investigation.

  17. An Escherichia coli nitrogen starvation response is important for mutualistic coexistence with Rhodopseudomonas palustris.

    PubMed

    McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B

    2018-05-04

    Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli growing cooperatively through bidirectional nutrient exchange, we determined that an E. coli nitrogen starvation response is important for maintaining a stable coexistence. The lack of an E. coli nitrogen starvation response ultimately destabilized the mutualism and, in some cases, led to community collapse after serial transfers. Our findings thus inform on the potential necessity of an alternative physiological state for mutualistic coexistence with another species compared to the physiology of species grown in isolation. Copyright © 2018 American Society for Microbiology.

  18. Can Computer-Based Visual-Spatial Aids Lead to Increased Student Performance in Anatomy & Physiology?

    ERIC Educational Resources Information Center

    Kesner, Michael H.; Linzey, Alicia V.

    2005-01-01

    InterActive Physiology (IAP) is one of a new generation of anatomy and physiology learning aids with a broader range of sensory inputs than is possible from a static textbook or moderately dynamic lecture. This best-selling software has modules covering the muscular, respiratory, urinary, cardiovascular, and nervous systems plus a module on fluids…

  19. Terrestrial implications of mathematical modeling developed for space biomedical research

    NASA Technical Reports Server (NTRS)

    Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.

  20. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.

    PubMed

    Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T

    2015-10-01

    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.

  1. Alterations in physiology and anatomy during pregnancy.

    PubMed

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Integrating physiological regulation with stem cell and tissue homeostasis

    PubMed Central

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  4. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  5. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE PAGES

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  6. How is physiology relevant to behavior analysis?

    PubMed Central

    Reese, Hayne W.

    1996-01-01

    Physiology is an important biological science; but behavior analysis is not a biological science, and behavior analysts can safely ignore biological processes. However, ignoring products of biological processes might be a serious mistake. The important products include behavior, instinctive drift, behavior potentials, hunger, and many developmental milestones and events. Physiology deals with the sources of such products; behavior analysis can deal with how the products affect behavior, which can be understood without understanding their sources. PMID:22478240

  7. The right tool and the right place for the job: the importance of the field in experimental neurophysiology, 1880-1945.

    PubMed

    Muka, Samantha K

    2016-09-01

    This paper seeks to contribute to understandings of practice and place in the history of early American neurophysiology by exploring research with jellyfish at marine stations. Jellyfish became a particularly important research tool to experimental physiologists studying neurological subjects at the turn of the twentieth century. But their enthusiasm for the potential of this organism was constrained by its delicacy in captivity. The discovery of hardier species made experimentation at the shore possible and resulted in two epicenters of neurophysiological research on the American East Coast: the Marine Biological Laboratory and the Carnegie Institution's Dry Tortugas Laboratory. Work done in these locations had impacts on a wide range of physiological questions. These centers were short lived-researchers at the MBL eventually focused on the squid giant axon and the Tortugas lab closed after the death of Mayer-but the development of basic requirements and best practices to sustain these organisms paints an important picture of early experimental neurophysiology. Marine organisms and locations have played an integral role in the development of experimental life sciences in America. By understanding the earliest experimental research done at these locations, and the organisms that lured researchers from the campus to the coastline, we can begin to integrate marine stations into the larger historical narrative of American physiology.

  8. Human physiology in space

    NASA Technical Reports Server (NTRS)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  9. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    PubMed Central

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075

  10. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics.

    PubMed

    Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.

  11. Calibration of the physiological equivalent temperature index for three different climatic regions

    NASA Astrophysics Data System (ADS)

    Krüger, E.; Rossi, F.; Drach, P.

    2017-07-01

    In human biometeorology, the integration of several microclimatic variables as a combined index facilitates the understanding of how users perceive thermal environments. Indices, such as the physiological equivalent temperature (PET) index, translate the combined effects of meteorological variables on humans in terms of thermal stress or comfort and serve as important aids to climate-responsive urban and regional planning as well as heat stress and thermal comfort analyses. However, there is a need for adjusting proposed comfort/stress ranges of a given index when using it in different climatic contexts. The purpose of this study is to present a preliminary calibration procedure for the PET index for three different climatic regions: Curitiba, Brazil, a subtropical location; Rio de Janeiro, Brazil, a tropical city; and Glasgow, UK, a high-latitude location. Field studies have been carried out by the authors according to a similar protocol and using similar equipment, yielding actual thermal sensation votes and microclimate data, post-processed as PET data. The calibration procedure uses exclusively thermal sensation data as reported by pedestrians during outdoor comfort campaigns and concurrent microclimatic data recorded during the interviews. PET comfort/stress classes differ among the three locations and, in general, are less restrictive as in the original ranges proposed by the index developers.

  12. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    PubMed

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  13. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification

    NASA Astrophysics Data System (ADS)

    Riebesell, Ulf; Bach, Lennart T.; Bellerby, Richard G. J.; Monsalve, J. Rafael Bermúdez; Boxhammer, Tim; Czerny, Jan; Larsen, Aud; Ludwig, Andrea; Schulz, Kai G.

    2017-01-01

    Coccolithophores--single-celled calcifying phytoplankton--are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.

  14. Interpersonal Autonomic Physiology: A Systematic Review of the Literature.

    PubMed

    Palumbo, Richard V; Marraccini, Marisa E; Weyandt, Lisa L; Wilder-Smith, Oliver; McGee, Heather A; Liu, Siwei; Goodwin, Matthew S

    2017-05-01

    Interpersonal autonomic physiology is defined as the relationship between people's physiological dynamics, as indexed by continuous measures of the autonomic nervous system. Findings from this field of study indicate that physiological activity between two or more people can become associated or interdependent, often referred to as physiological synchrony. Physiological synchrony has been found in both new and established relationships across a range of contexts, and it correlates with a number of psychosocial constructs. Given these findings, interpersonal physiological interactions are theorized to be ubiquitous social processes that co-occur with observable behavior. However, this scientific literature is fragmented, making it difficult to evaluate consistency across reports. In an effort to facilitate more standardized scholarly approaches, this systematic review provides a description of existing work in the area and highlights theoretical, methodological, and statistical issues to be addressed in future interpersonal autonomic physiology research.

  15. Physiological asymmetry of trunk ranging and pelvis motility: an anatomo-functional study in 80 healthy subjects.

    PubMed

    Macchi, Claudio; Biricolti, Claudia; Cappelli, Lorenza; Galli, Francesca; Molino-Lova, Raffaele; Cecchi, Francesca; Corigliano, Alvaro; Miniati, Benedetta; Conti, Andrea A; Gulisano, Massimo; Catini, Claudio; Gensini, Gian Franco

    2002-01-01

    A key feature in physiotherapeutic treatment of patients with motion disturbances is the appropriate ranging of the trunk and pelvis motility. Eighty subjects randomly selected and free from known pathology of the muscular-skeletal and/or of the neurological system classed into four groups according to the age and the sex have been assessed, by using a new, simple and easy administrable tool. Our results demonstrate that the new measurement tool showed a very low intra- and inter-observer variability, that healthy subjects showed a more adduced and elevated right scapula if compared to the contralateral one and, as regard as the pelvic motion, a broader joint excursion in passive motion compared with active motion in the overall group, a broader joint excursion in young subjects compared with elderly ones, and a broader joint excursion in female subjects compared with males subjects. In conclusion our study allowed to identify a range of physiological asymmetry and pelvis motility. Such a range of physiological asymmetry might be useful as a reference for the physiotherapists.

  16. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae).

    PubMed

    Mackenzie, Berin D E; Auld, Tony D; Keith, David A; Hui, Francis K C; Ooi, Mark K J

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change.

  17. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    PubMed

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  18. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae)

    PubMed Central

    Auld, Tony D.; Keith, David A.; Hui, Francis K. C.; Ooi, Mark K. J.

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change. PMID:27218652

  19. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    PubMed

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic + chemometric methodology enables investigating the link between chemical conditions in a marine ecosystem and their consequences for phytoplankton living in it.

  20. Cardiorespiratory interactions in humans and animals: Rhythms for life.

    PubMed

    Elstad, Maja; O'Callaghan, Erin L; Smith, Alexander J; Ben-Tal, A; Ramchandra, Rohit

    2018-03-09

    The cardiorespiratory system exhibits oscillations from a range of sources. One of the most studied oscillations is heart rate variability, which is thought to be beneficial and can serve as an index of a healthy cardiovascular system. Heart rate variability is dampened in many diseases including depression, autoimmune diseases, hypertension and heart failure. Thus, understanding the interactions that lead to heart rate variability, and its physiological role, could help with prevention, diagnosis and treatment of cardiovascular diseases. In this review we consider three types of cardiorespiratory interactions; Respiratory Sinus Arrhythmia - variability in heart rate at the frequency of breathing, Cardioventilatory Coupling - synchronization between the heart beat and the onset of inspiration, and Respiratory Stroke Volume Synchronization - constant phase difference between the right and the left stroke volumes over one respiratory cycle. While the exact physiological role of these oscillations continues to be debated, the redundancies in the mechanisms responsible for its generation and its strong evolutionary conservation point to the importance of cardiorespiratory interactions. The putative mechanisms driving cardiorespiratory oscillations as well as the physiological significance of these oscillations will be reviewed. We suggest that cardiorespiratory interactions have the capacity to both dampen the variability in systemic blood flow as well as improve the efficiency of work done by the heart while maintaining physiological levels of arterial CO 2 . Given that reduction in variability is a prognostic indicator of disease, we argue that restoration of this variability via pharmaceutical or device-based approaches may be beneficial in prolonging life.

  1. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa.

    PubMed

    Kamp, G; Schmidt, H; Stypa, H; Feiden, S; Mahling, C; Wegener, G

    2007-01-01

    Glycolysis is crucial for sperm functions (motility and fertilization), but how this pathway is regulated in spermatozoa is not clear. This prompted to study the location and the regulatory properties of 6-phosphofructokinase (PFK, EC 2.7.1.11), the most important element for control of glycolytic flux. Unlike some other glycolytic enzymes, PFK showed no tight binding to sperm structures. It could readily be extracted from ejaculated boar spermatozoa by sonication and was then chromatographically purified. At physiological pH, the enzyme was allosterically inhibited by near-physiological concentrations of its co-substrate ATP, which induced co-operativity, i.e. reduced the affinity for the substrate fructose 6-phosphate. Inhibition by ATP was reinforced by citrate and H+. Above pH 8, PFK lost all its regulatory properties and showed maximum activity. However, in the physiological pH range, PFK activity was very sensitive to small changes in effectors. At near-physiological substrate concentrations, PFK activity requires activators (de-inhibitors) of which the combination of AMP and fructose 2,6-bisphosphate (F2,6P2) was most efficient as a result of synergistic effects. The kinetics of PFK suggest AMP, F2,6P2, H+, and citrate as allosteric effectors controlling PFK activity in boar spermatozoa. Using immunogold labeling, PFK was localized in the mid-piece and principal piece of the flagellum as well as in the acrosomal area at the top of the head and in the cytoplasmic droplets released from the mid-piece after ejaculation.

  2. Physiology and biochemistry of honey bees

    USDA-ARS?s Scientific Manuscript database

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  3. Recognition of American Physiological Society Members Whose Research Publications Had a Significant Impact on the Discipline of Physiology

    ERIC Educational Resources Information Center

    Tipton, Charles M.

    2013-01-01

    Society members whose research publication during the past 125 yr had an important impact on the discipline of physiology were featured at the American Physiological Society (APS)'s 125th Anniversary symposium. The daunting and challenging task of identifying and selecting significant publications was assumed by the Steering Committee of the…

  4. [Prescribing monitoring in clinical practice: from enlightened empiricism to rational strategies].

    PubMed

    Buclin, Thierry; Herzig, Lilli

    2013-05-15

    Monitoring of a medical condition is the periodic measurement of one or several physiological or biological variables to detect a signal regarding its clinical progression or its response to treatment. We distinguish different medical situations between diagnostic, clinical and therapeutic process to apply monitoring. Many clinical, variables can be used for monitoring, once their intrinsic properties (normal range, critical difference, kinetics, reactivity) and external validity (pathophysiological importance, predictive power for clinical outcomes) are established. A formal conceptualization of monitoring is being developed and should support the rational development of monitoring strategies and their validation through appropriate clinical trials.

  5. The role of microRNAs in skeletal muscle health and disease

    PubMed Central

    Kirby, Tyler J.; Chaillou, Thomas; McCarthy, John J.

    2016-01-01

    Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ~ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease. PMID:25553440

  6. Cross spectral, active and passive approach to face recognition for improved performance

    NASA Astrophysics Data System (ADS)

    Grudzien, A.; Kowalski, M.; Szustakowski, M.

    2017-08-01

    Biometrics is a technique for automatic recognition of a person based on physiological or behavior characteristics. Since the characteristics used are unique, biometrics can create a direct link between a person and identity, based on variety of characteristics. The human face is one of the most important biometric modalities for automatic authentication. The most popular method of face recognition which relies on processing of visual information seems to be imperfect. Thermal infrared imagery may be a promising alternative or complement to visible range imaging due to its several reasons. This paper presents an approach of combining both methods.

  7. Differences in autonomic physiological responses between good and poor inductive reasoners.

    PubMed

    Melis, C; van Boxtel, A

    2001-11-01

    We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic physiological response measures and respiration rate (RR). Weighted multidimensional scaling analyses of the physiological responses revealed three underlying dimensions, primarily characterized by RR, parasympathetic, and sympathetic activity. RR and sympathetic activity appeared to be relatively more important response dimensions for poor reasoners, whereas parasympathetic responsivity was relatively more important for good reasoners. These results suggest that poor reasoners showed higher levels of cognitive processing intensity than good reasoners. Furthermore, for the good reasoners, the dimension of sympathetic activity was relatively more important during the figural than during the verbal reasoning task, which was explained in terms of hemispheric lateralization in autonomic function.

  8. Sensitivity analysis of physiological factors in space habitat design

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1982-01-01

    The costs incurred by design conservatism in space habitat design are discussed from a structural standpoint, and areas of physiological research into less than earth-normal conditions that offer the greatest potential decrease in habitat construction and operating costs are studied. The established range of human tolerance limits is defined for those physiological conditions which directly affect habitat structural design. These entire ranges or portions thereof are set as habitat design constraints as a function of habitat population and degree of ecological closure. Calculations are performed to determine the structural weight and cost associated with each discrete population size and its selected environmental conditions, on the basis of habitable volume equivalence for four basic habitat configurations: sphere, cylinder with hemispherical ends, torus, and crystal palace.

  9. Androgen Metabolism in Progression to Androgen-Independent Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    confirming that AKR1C3 was mediating the synthesis of physiologically significant levels of testosterone from androstenedione. Although not selective, the... physiologically significant levels of androgen synthesis and AR reactivation (Figure 6D). While our data indicate that CYP17A1 mRNA is not...the micromolar range [14]. The low affinity of these antagonists compared to physiological ligands, in conjunction with adaptations that appear

  10. Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure.

    PubMed

    Bernardo, Joseph; Ossola, Ryan J; Spotila, James; Crandall, Keith A

    2007-12-22

    Global warming is now recognized as the dominant threat to biodiversity because even protected populations and habitats are susceptible. Nonetheless, current criteria for evaluating species' relative endangerment remain purely ecological, and the accepted conservation strategies of habitat preservation and population management assume that species can mount ecological responses if afforded protection. The insidious threat from climate change is that it will attenuate or preclude ecological responses by species that are physiologically constrained; yet, quantitative, objective criteria for assessing relative susceptibility of diverse taxa to warming-induced stress are wanting. We explored the utility of using interspecies physiological variation for this purpose by relating species' physiological phenotypes to landscape patterns of ecological and genetic exchange. Using a salamander model system in which ecological, genetic and physiological diversity are well characterized, we found strong quantitative relationships of basal metabolic rates (BMRs) to both macroecological and phylogeographic patterns, with decreasing BMR leading to dispersal limitation (small contemporary ranges with marked phylogeographic structure). Measures of intrinsic physiological tolerance, which vary systematically with macroecological and phylogeographic patterns, afford objective criteria for assessing endangerment across a wide range of species and should be incorporated into conservation assessment criteria that currently rely exclusively upon ecological predictors.

  11. Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.

    PubMed

    Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D

    2014-02-21

    Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.

  12. Food, gastrointestinal pH, and models of oral drug absorption.

    PubMed

    Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R

    2017-03-01

    This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Scale dependency of forest functional diversity assessed using imaging spectroscopy and airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.

    2016-12-01

    Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.

  14. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor.

    PubMed

    Shibasaki, Koji

    2016-09-01

    This review provides a summary of the physiological significance of the TRPV2 ion channel. While TRPV2 was initially characterized as a noxious heat sensor, we found that TRPV2 can also act as a mechanosensor in embryonic neurons or adult myenteric neurons. Here, we summarize the newly characterized functions of TRPV2, including the research progress that has been made toward our understanding of TRPV2 physiology, and discuss other recent data pertaining to TRPV2. It is thought that TRPV2 may be an important drug target based on its broad expression patterns and important physiological roles. The possible associations between diseases and TRPV2 are also discussed.

  15. Prostanoid receptors as possible targets for anti-allergic drugs: recent advances in prostanoids on allergy and immunology.

    PubMed

    Honda, Tetsuya; Tokura, Yoshiki; Miyachi, Yoshiki; Kabashima, Kenji

    2010-12-01

    Prostanoids, consisting of prostaglandins and thromboxane, are cyclooxygenase metabolites of arachidonic acid released in various pathophysiological conditions which exert a range of actions mediated through their respective receptors expressed on target cells. Although it has been difficult to analyze the physiological role of prostanoids, recent developments in both the disruption of the respective gene and receptor selective compounds have enabled us to investigate the physiological roles for each receptor. It has been demonstrated that each prostanoid receptor has multiple functions, and that their expression is regulated in a context-dependent manner that sometimes results in opposite, excitatory and inhibitory, outcomes. The balance of prostanoid production and receptor expression has been revealed to be important for homeostasis of the human body. Here, we review new findings on the roles of prostanoids in allergic and immune diseases, focusing on contact dermatitis, atopic dermatitis, asthma, rheumatoid arthritis, and encephalomyelitis, and also discuss the clinical potentials of receptor-selective drugs.

  16. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  17. Ecology, Microbial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, theymore » interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.« less

  18. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium

    NASA Astrophysics Data System (ADS)

    Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.

    2014-02-01

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.

  19. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    PubMed

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Calcitonin and calcitonin receptors: bone and beyond

    PubMed Central

    Pondel, Marc

    2000-01-01

    Calcitonin (CT), a 32 amino acid peptide hormone produced primarily by the thyroid, and its receptor (CTR) are well known for their ability to regulate osteoclast mediated bone resorption and enhance Ca2+ excretion by the kidney. However, recent studies now suggest that CT and CTRs may play an important role in a variety of processes as wide ranging as embryonic/foetal development and sperm function/physiology. In this review article, CT and CTR gene transcription, signal transduction and function are addressed. The effects of CT on the physiology of a variety of organ systems are discussed and the relationship between polymorphisms in the CTR gene and bone mineral density (BMD)/osteoporosis is examined. Recent studies demonstrating the ability of receptor activity modifying proteins (RAMPs) to post-translationally modify the calcitonin receptor-like receptor (CRLR) are detailed and studies employing transgenic mouse technology to determine the temporal and tissue specific transcriptional activity of the CTR gene in vivo are discussed. PMID:11298188

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, theymore » interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.« less

  2. Biosynthesis and function of plant lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds andmore » chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function.« less

  3. From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range

    PubMed Central

    Fernandes, Jolyn; Hao, Li; Bijli, Kaiser M.; Chandler, Joshua D.; Orr, Michael; Hu, Xin; Jones, Dean P.

    2017-01-01

    Manganese (Mn) is an abundant redox-active metal with well-characterized mitochondrial accumulation and neurotoxicity due to excessive exposures. Mn is also an essential co-factor for the mitochondrial antioxidant protein, superoxide dismutase-2 (SOD2), and the range for adequate intake established by the Institute of Medicine Food and Nutrition Board is 20% of the interim guidance value for toxicity by the Agency for Toxic Substances and Disease Registry, leaving little margin for safety. To study toxic mechanisms over this critical dose range, we treated human neuroblastoma SH-SY5Y cells with a series of MnCl2 concentrations (from 0 to 100 μM) and measured cellular content to compare to human brain Mn content. Concentrations ≤10 μM gave cellular concentrations comparable to literature values for normal human brain, whereas concentrations ≥50 μM resulted in values comparable to brains from individuals with toxic Mn exposures. Cellular oxygen consumption rate increased as a function of Mn up to 10 μM and decreased with Mn dose ≥50 μM. Over this range, Mn had no effect on superoxide production as measured by aconitase activity or MitoSOX but increased H2O2 production as measured by MitoPY1. Consistent with increased production of H2O2, SOD2 activity, and steady-state oxidation of total thiol increased with increasing Mn. These findings have important implications for Mn toxicity by re-directing attention from superoxide anion radical to H2O2-dependent mechanisms and to investigation over the entire physiologic range to toxicologic range. Additionally, the results show that controlled Mn exposure provides a useful cell manipulation for toxicological studies of mitochondrial H2O2 signaling. PMID:27701121

  4. Malassezia vespertilionis sp. nov.: A new cold-tolerant species of yeast isolated from bats

    USGS Publications Warehouse

    Lorch, Jeffrey M.; Palmer, Jonathan M.; Vanderwolf, Karen J.; Schmidt, Katie Z.; Verant, Michelle L.; Weller, Theodore J.; Blehert, David S.

    2018-01-01

    Malassezia is a genus of medically-important, lipid-dependent yeasts that live on the skin of warm-blooded animals. The 17 described species have been documented primarily on humans and domestic animals, but few studies have examined Malassezia species associated with more diverse host groups such as wildlife. While investigating the skin mycobiota of healthy bats, we isolated a Malassezia sp. that exhibited only up to 92 % identity with other known species in the genus for the portion of the DNA sequence of the internal transcribed spacer region that could be confidently aligned. The Malassezia sp. was cultured from the skin of nine species of bats in the subfamily Myotinae; isolates originated from bats sampled in both the eastern and western United States. Physiological features and molecular characterisation at seven additional loci (D1/D2 region of 26S rDNA, 18S rDNA, chitin synthase, second largest subunit of RNA polymerase II, β-tubulin, translation elongation factor EF-1α, and minichromosome maintenance complex component 7) indicated that all of the bat Malasseziaisolates likely represented a single species distinct from other named taxa. Of particular note was the ability of the Malassezia sp. to grow over a broad range of temperatures (7–40 °C), with optimal growth occurring at 24 °C. These thermal growth ranges, unique among the described Malassezia, may be an adaptation by the fungus to survive on bats during both the host's hibernation and active seasons. The combination of genetic and physiological differences provided compelling evidence that this lipid-dependent yeast represents a novel species described herein as Malassezia vespertilionis sp. nov. Whole genome sequencing placed the new species as a basal member of the clade containing the species M. furfur, M. japonica, M. obtusa, and M. yamatoensis. The genetic and physiological uniqueness of Malassezia vespertilionis among its closest relatives may make it important in future research to better understand the evolution, life history, and pathogenicity of the Malasseziayeasts.

  5. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species

    PubMed Central

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Abstract Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator–prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento–San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta smelt physiological performance, causing significant effects on overall stress, food intake and mortality. They also highlight the need for turbidity to be considered in habitat and water management decisions. PMID:27293756

  6. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.

    PubMed

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta smelt physiological performance, causing significant effects on overall stress, food intake and mortality. They also highlight the need for turbidity to be considered in habitat and water management decisions.

  7. Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    PubMed

    Lindblad-Toh, Kerstin; Wade, Claire M; Mikkelsen, Tarjei S; Karlsson, Elinor K; Jaffe, David B; Kamal, Michael; Clamp, Michele; Chang, Jean L; Kulbokas, Edward J; Zody, Michael C; Mauceli, Evan; Xie, Xiaohui; Breen, Matthew; Wayne, Robert K; Ostrander, Elaine A; Ponting, Chris P; Galibert, Francis; Smith, Douglas R; DeJong, Pieter J; Kirkness, Ewen; Alvarez, Pablo; Biagi, Tara; Brockman, William; Butler, Jonathan; Chin, Chee-Wye; Cook, April; Cuff, James; Daly, Mark J; DeCaprio, David; Gnerre, Sante; Grabherr, Manfred; Kellis, Manolis; Kleber, Michael; Bardeleben, Carolyne; Goodstadt, Leo; Heger, Andreas; Hitte, Christophe; Kim, Lisa; Koepfli, Klaus-Peter; Parker, Heidi G; Pollinger, John P; Searle, Stephen M J; Sutter, Nathan B; Thomas, Rachael; Webber, Caleb; Baldwin, Jennifer; Abebe, Adal; Abouelleil, Amr; Aftuck, Lynne; Ait-Zahra, Mostafa; Aldredge, Tyler; Allen, Nicole; An, Peter; Anderson, Scott; Antoine, Claudel; Arachchi, Harindra; Aslam, Ali; Ayotte, Laura; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Benamara, Mostafa; Berlin, Aaron; Bessette, Daniel; Blitshteyn, Berta; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Brown, Adam; Cahill, Patrick; Calixte, Nadia; Camarata, Jody; Cheshatsang, Yama; Chu, Jeffrey; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Dawoe, Tenzin; Daza, Riza; Decktor, Karin; DeGray, Stuart; Dhargay, Norbu; Dooley, Kimberly; Dooley, Kathleen; Dorje, Passang; Dorjee, Kunsang; Dorris, Lester; Duffey, Noah; Dupes, Alan; Egbiremolen, Osebhajajeme; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Ferreira, Patricia; Fisher, Sheila; FitzGerald, Mike; Foley, Karen; Foley, Chelsea; Franke, Alicia; Friedrich, Dennis; Gage, Diane; Garber, Manuel; Gearin, Gary; Giannoukos, Georgia; Goode, Tina; Goyette, Audra; Graham, Joseph; Grandbois, Edward; Gyaltsen, Kunsang; Hafez, Nabil; Hagopian, Daniel; Hagos, Birhane; Hall, Jennifer; Healy, Claire; Hegarty, Ryan; Honan, Tracey; Horn, Andrea; Houde, Nathan; Hughes, Leanne; Hunnicutt, Leigh; Husby, M; Jester, Benjamin; Jones, Charlien; Kamat, Asha; Kanga, Ben; Kells, Cristyn; Khazanovich, Dmitry; Kieu, Alix Chinh; Kisner, Peter; Kumar, Mayank; Lance, Krista; Landers, Thomas; Lara, Marcia; Lee, William; Leger, Jean-Pierre; Lennon, Niall; Leuper, Lisa; LeVine, Sarah; Liu, Jinlei; Liu, Xiaohong; Lokyitsang, Yeshi; Lokyitsang, Tashi; Lui, Annie; Macdonald, Jan; Major, John; Marabella, Richard; Maru, Kebede; Matthews, Charles; McDonough, Susan; Mehta, Teena; Meldrim, James; Melnikov, Alexandre; Meneus, Louis; Mihalev, Atanas; Mihova, Tanya; Miller, Karen; Mittelman, Rachel; Mlenga, Valentine; Mulrain, Leonidas; Munson, Glen; Navidi, Adam; Naylor, Jerome; Nguyen, Tuyen; Nguyen, Nga; Nguyen, Cindy; Nguyen, Thu; Nicol, Robert; Norbu, Nyima; Norbu, Choe; Novod, Nathaniel; Nyima, Tenchoe; Olandt, Peter; O'Neill, Barry; O'Neill, Keith; Osman, Sahal; Oyono, Lucien; Patti, Christopher; Perrin, Danielle; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Rachupka, Anthony; Raghuraman, Sujaa; Rameau, Rayale; Ray, Verneda; Raymond, Christina; Rege, Filip; Rise, Cecil; Rogers, Julie; Rogov, Peter; Sahalie, Julie; Settipalli, Sampath; Sharpe, Theodore; Shea, Terrance; Sheehan, Mechele; Sherpa, Ngawang; Shi, Jianying; Shih, Diana; Sloan, Jessie; Smith, Cherylyn; Sparrow, Todd; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Stone, Sabrina; Sykes, Sean; Tchuinga, Pierre; Tenzing, Pema; Tesfaye, Senait; Thoulutsang, Dawa; Thoulutsang, Yama; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Venkataraman, Vijay; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Yang, Shuli; Yang, Xiaoping; Young, Geneva; Yu, Qing; Zainoun, Joanne; Zembek, Lisa; Zimmer, Andrew; Lander, Eric S

    2005-12-08

    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.

  8. Experimental assessment of critical anthropogenic sediment burial in eelgrass Zostera marina.

    PubMed

    Munkes, Britta; Schubert, Philipp R; Karez, Rolf; Reusch, Thorsten B H

    2015-11-15

    Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and population parameters. In a full factorial field experiment, burial level (5-20cm) and burial duration (4-16weeks) were manipulated. Negative effects were visible even at the lowest burial level (5cm) and shortest duration (4weeks), with increasing effects over time and burial level. Buried seagrasses showed higher shoot mortality, delayed growth and flowering and lower carbohydrate storage. The observed effects will likely have an impact on next year's survival of buried plants. Our results have implications for the management of this important coastal plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electricity and colloidal stability: how charge distribution in the tissue can affects wound healing.

    PubMed

    Farber, Paulo Luiz; Hochman, Bernardo; Furtado, Fabianne; Ferreira, Lydia Masako

    2014-02-01

    The role of endogenous electric fields in wound healing is still not fully understood. Electric fields are of fundamental importance in various biological processes, ranging from embryonic development to disease progression, as described by many investigators in the last century. This hypothesis brings together some relevant literature on the importance of electric fields in physiology and pathology, the theory of biologically closed electric circuits, skin battery (a phenomenon that occurs after skin injury and seems to be involved in tissue repair), the relationship between electric charge and interstitial exclusion, and how skin tissues can be regarded as colloidal systems. The importance of electric charges, as established in the early works on the subject and the relevance of zeta potential and colloid stability are also analyzed, and together bring a new light for the physics involved in the wound repair of all the body tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins.

    PubMed

    Schuler, Benjamin; Soranno, Andrea; Hofmann, Hagen; Nettels, Daniel

    2016-07-05

    The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.

  11. Cell Competition: Roles and Importance as a Central Phenomenon.

    PubMed

    Patel, Manish; Antala, Bhavesh; Shrivastava, Neeta

    2015-01-01

    Cell competition is a type of short-range cell-cell interaction first observed in Drosophila melanogaster. In two heterogeneous cell populations, cells that have a higher fitness level would have a competitive advantage and grow at the cost of neighbor cells that have comparatively lower fitness. This interaction is due to differences in expression levels of a specific protein in the two cell populations, and it is known as cell competition. In this review, we have studied recent findings of cell competition in different biological processes in Drosophila as well as mammalian systems. The purpose of this review is to collate important studies of competitive cell interactions, and to understand its roles and importance as a central phenomenon. This review provides evidence of the relevance of cell competition in various physiological and pathological conditions, such as size control in organ development, stem cell maintenance, tissue repair, organ regeneration, aging, formation of memory, and cancer.

  12. How to quantify conduits in wood?

    PubMed

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.

  13. pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten

    2010-02-01

    Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.

  14. Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments

    NASA Astrophysics Data System (ADS)

    Gori, Andrea; Reynaud, Stephanie; Orejas, Covadonga; Gili, Josep-Maria; Ferrier-Pagès, Christine

    2014-09-01

    Cold-water corals (CWCs) are key ecosystem engineers in deep-sea benthic communities around the world. Their distribution patterns are related to several abiotic and biotic factors, of which seawater temperature is arguably one of the most important due to its role in coral physiological processes. The CWC Dendrophyllia cornigera has the particular ability to thrive in several locations in which temperatures range from 11 to 17 °C, but to be apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess the thermal tolerance of this CWC species, collected in the Mediterranean Sea at 12 °C, and grown at the three relevant temperatures of 8, 12, and 16 °C. This species displayed thermal tolerance to the large range of seawater temperatures investigated, but growth, calcification, respiration, and total organic carbon (TOC) fluxes severely decreased at 8 °C compared to the in situ temperature of 12 °C. Conversely, no significant differences in calcification, respiration, and TOC fluxes were observed between corals maintained at 12 and 16 °C, suggesting that the fitness of this CWC is higher in temperate rather than cold environments. The capacity to maintain physiological functions between 12 and 16 °C allows D. cornigera to be the most abundant CWC species in deep-sea ecosystems where temperatures are too warm for other CWC species (e.g., Canary Islands). This study also shows that not all CWC species occurring in the Mediterranean Sea (at deep-water temperatures of 12-14 °C) are currently living at their upper thermal tolerance limit.

  15. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy.

    PubMed

    Song, Zuoqing; Ren, Dian; Xu, Xiaohong; Wang, Yuxin

    2018-06-01

    IL-6, a cytokine activated by type I interferons (IFNs), is encoded by the IL-6 gene, and secreted by T cells and macrophages. It serves many purposes in the human body and is significant to pathological and physiological activities, such as acute inflammatory responses, autoimmune diseases, and tumor formation. The wide range of IL-6 actions on tumors rely on more than one specific pathway. Advances in modern research have determined that to fulfill its complex physiological functions, IL-6 must be involved in cross-talk with a number of other molecular pathways. Therefore, it is important to clarify the comprehensive pathway network associated with IL-6 activity and to explore the mechanisms to inhibit its pathological activity in order to develop corresponding treatment plans. This study is a simple review of the pathological and physiological actions of IL-6 on the human body. It explains in detail the molecular pathways involved in cross-talk between IL-6 and tumors, summarizing and discussing the latest progress made in IL-6-related internal medicine treatments in recent years, including chemotherapies, targeted therapies, and immunotherapies. Our results provide new insight into the treatment of tumors. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  16. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme

    PubMed Central

    Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien

    2013-01-01

    Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181

  17. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.

    PubMed

    Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin

    2010-08-15

    A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Gravity and the Evolution of Cardiopulmonary Morphology in Snakes

    PubMed Central

    Lillywhite, Harvey B.; Albert, James S.; Sheehy, Coleman M.; Seymour, Roger S.

    2011-01-01

    Physiological investigations of snakes have established the importance of heart position and pulmonary structure in contexts of gravity effects on blood circulation. Here we investigate morphological correlates of cardiopulmonary physiology in contexts related to ecology, behavior and evolution. We analyze data for heart position and length of vascular lung in 154 species of snakes that exhibit a broad range of characteristic behaviors and habitat associations. We construct a composite phylogeny for these species, and we codify gravitational stress according to species habitat and behavior. We use conventional regression and phylogenetically independent contrasts to evaluate whether trait diversity is correlated with gravitational habitat related to evolutionary transitions within the composite tree topology. We demonstrate that snake species living in arboreal habitats, or which express strongly climbing behaviors, possess relatively short blood columns between the heart and the head, as well as relatively short vascular lungs, compared to terrestrial species. Aquatic species, which experience little or no gravity stress in water, show the reverse – significantly longer heart–head distance and longer vascular lungs. These phylogenetic differences complement the results of physiological studies and are reflected in multiple habitat transitions during the evolutionary histories of these snake lineages, providing strong evidence that heart–to–head distance and length of vascular lung are co–adaptive cardiopulmonary features of snakes. PMID:22079804

  19. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  20. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  1. Elderly fall risk prediction based on a physiological profile approach using artificial neural networks.

    PubMed

    Razmara, Jafar; Zaboli, Mohammad Hassan; Hassankhani, Hadi

    2016-11-01

    Falls play a critical role in older people's life as it is an important source of morbidity and mortality in elders. In this article, elders fall risk is predicted based on a physiological profile approach using a multilayer neural network with back-propagation learning algorithm. The personal physiological profile of 200 elders was collected through a questionnaire and used as the experimental data for learning and testing the neural network. The profile contains a series of simple factors putting elders at risk for falls such as vision abilities, muscle forces, and some other daily activities and grouped into two sets: psychological factors and public factors. The experimental data were investigated to select factors with high impact using principal component analysis. The experimental results show an accuracy of ≈90 percent and ≈87.5 percent for fall prediction among the psychological and public factors, respectively. Furthermore, combining these two datasets yield an accuracy of ≈91 percent that is better than the accuracy of single datasets. The proposed method suggests a set of valid and reliable measurements that can be employed in a range of health care systems and physical therapy to distinguish people who are at risk for falls.

  2. Evaluating theories of bird song learning: implications for future directions.

    PubMed

    Margoliash, D

    2002-12-01

    Studies of birdsong learning have stimulated extensive hypotheses at all levels of behavioral and physiological organization. This hypothesis building is valuable for the field and is consistent with the remarkable range of issues that can be rigorously addressed in this system. The traditional instructional (template) theory of song learning has been challenged on multiple fronts, especially at a behavioral level by evidence consistent with selectional hypotheses. In this review I highlight the caveats associated with these theories to better define the limits of our knowledge and identify important experiments for the future. The sites and representational forms of the various conceptual entities posited by the template theory are unknown. The distinction between instruction and selection in vocal learning is not well established at a mechanistic level. There is as yet insufficient neurophysiological data to choose between competing mechanisms of error-driven learning and reinforcement learning. Both may obtain for vocal learning. The possible role of sleep in acoustic or procedural memory consolidation, while supported by some physiological observations, does not yet have support in the behavioral literature. The remarkable expansion of knowledge in the past 20 years and the recent development of new technologies for physiological and behavioral experiments should permit direct tests of these theories in the coming decade.

  3. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  4. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.

    PubMed

    Kapranas, Apostolos; Tena, Alejandro

    2015-01-07

    Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.

  5. Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters

    NASA Astrophysics Data System (ADS)

    Bauerle, William L.; Daniels, Alex B.; Barnard, David M.

    2014-05-01

    Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.

  6. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    PubMed

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology

    PubMed Central

    Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark

    2015-01-01

    ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608

  8. Electrocardiographic consequences of a peripatetic lifestyle in gray wolves (Canis lupus)

    USGS Publications Warehouse

    Constable, Peter; Hinchcliff, Ken; Demma, Nick; Callahan, Margaret; Dale, Bruce W.; Fox, Kevin; Adams, Layne G.; Wack, Ray; Kramer, Lynn

    1998-01-01

    Cardiac chamber enlargement and hypertrophy are normal physiologic responses to repetitive endurance exercise activity in human beings and domestic dogs. Whether similar changes occur in wild animals as a consequence of increased activity is unknown. We found that free-ranging gray wolves (Canis lupus, n=11), the archetypical endurance athlete, have electrocardiographic evidence of cardiac chamber enlargement and hypertrophy relative to sedentary captive gray wolves (n=20), as demonstrated by significant increases in QRS duration, QT interval, and QT interval corrected for heart rate, a tendency towards increased Q, R, and S wave voltages in all leads, and a significant decrease in heart rate. We conclude that exercise activity level and therefore lifestyle affects physiologic variables in wild animals. An immediate consequence of this finding is that physiologic measurements obtained from a captive wild-animal population with reduced exercise activity level may not accurately reflect the normal physiologic state for free-ranging members of the same species.

  9. Effects of Recurrent Stress and a Music Intervention on Tumor Progression and Indices of Distress in an MNU-induced Mammary Cancer in Rats

    DTIC Science & Technology

    2011-03-04

    through negative emotions, behavioral disruptions, and/or physiological reactions (Grunberg & Singer, 1990; Baum, Gatchel, & Krantz, 1997; Park...biological responses that range from activation of the HPA axis to 14 altering the physiology of internal organs and organ systems (Kvetnansky, Weise...Females consistently show greater physiological response to both acute and chronic stressors, which many investigators attribute to sex hormone

  10. Optical coherence tomography for the quantitative study of cerebrovascular physiology

    PubMed Central

    Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A

    2011-01-01

    Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599

  11. The Case of Thyroid Hormones: How to Learn Physiology by Solving a Detective Case

    ERIC Educational Resources Information Center

    Lellis-Santos, Camilo; Giannocco, Gisele; Nunes, Maria Tereza

    2011-01-01

    Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify…

  12. Modifications of the chemical structure of phenolics differentially affect physiological activities in pulvinar cells of Mimosa pudica L. I. Multimode effect on early membrane events.

    PubMed

    Rocher, Françoise; Dédaldéchamp, Fabienne; Saeedi, Saed; Fleurat-Lessard, Pierrette; Chollet, Jean-Francois; Roblin, Gabriel

    2014-11-01

    A study of the structure-activity relationship carried out on several benzoic acid-related phenolics indicates that this type of compounds hinders the osmocontractile reaction of pulvinar cells in the range of 0-100%. Tentatively, we tried to find a way that could explain this differential action. With this aim, the relationship between the inhibitory effect and important molecular physico-chemical parameters (namely lipophilicity and degree of dissociation) was drawn. In addition, the effect of a variety of these compounds was investigated on their capacity to modify the electrical transmembrane potential and induce modifications in proton fluxes. Finally, using plasma membrane vesicles purified from pulvinar tissues, we examined the effects of some selected compounds on the proton pump activity and catalytic activity of the plasma membrane H(+)-ATPase. Taken together, the results indicate that a modification of the molecular structure of phenolics may induce important variation in the activity of the compound on these early membrane events. Among the tested phenolics, salicylic acid (SA) and acetylsalicylic acid (ASA, aspirin) are of particuler note, as they showed atypical effects on the physiological processes studied. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Dietary fibers and associated phytochemicals in cereals.

    PubMed

    Bach Knudsen, Knud Erik; Nørskov, Natalja P; Bolvig, Anne Katrine; Hedemann, Mette Skou; Laerke, Helle Nygaard

    2017-07-01

    Epidemiological studies have linked whole-grain (WG) cereal consumption to a reduced risk of developing several chronic diseases-coronary heart disease, arteriosclerosis, type-2 diabetes, and some form of cancers. The underlying physiological mechanisms behind the protective effects of WG are unclear, but can most likely be assigned to a concerted action of dietary fiber (DF) and a wide variety of phytochemicals. Physiologically, it is important that soluble nonstarch polysaccharides contribute to higher viscosity in the small intestine as this may influence rate and extent of digestion and absorption. Associated with the DF matrix of cereals is an array of nonnutritive constituents predominantly concentrated in the bran fraction. Among them, the phenolic phytochemicals, benzoic acid and cinnamic derivatives and lignans, are of importance in a nutritional-health perspective. Only a small fraction of the phenolics is absorbed in the small intestine, but the availability can be increased by bioprocessing. The major part, however, is passed to the large intestine where the microbiota, which degrade and metabolize DF to SCFAs and gases, also convert the phenolic compounds into a range of other metabolites that are absorbed into the body and with the capability of influencing the metabolism at the cellular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular physiology of weight regulation in mice and humans

    PubMed Central

    Leibel, RL

    2009-01-01

    Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999

  15. Fractal dynamics in physiology: Alterations with disease and aging

    PubMed Central

    Goldberger, Ary L.; Amaral, Luis A. N.; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Peng, C.-K.; Stanley, H. Eugene

    2002-01-01

    According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era. PMID:11875196

  16. Stimulatory effects of calcium on respiration and NAD(P)H synthesis in intact rat heart mitochondria utilizing physiological substrates cannot explain respiratory control in vivo.

    PubMed

    Vinnakota, Kalyan C; Dash, Ranjan K; Beard, Daniel A

    2011-09-02

    Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca(2+) under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca(2+) in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mM extramitochondrial free magnesium, Ca(2+) can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca(2+) concentration averaged per beat, Ca(2+) had no observable stimulatory effect. A modest apparent stimulatory effect (22-27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mM initial phosphate. The stimulatory effects observed over the physiological Ca(2+) range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo.

  17. Stimulatory Effects of Calcium on Respiration and NAD(P)H Synthesis in Intact Rat Heart Mitochondria Utilizing Physiological Substrates Cannot Explain Respiratory Control in Vivo*

    PubMed Central

    Vinnakota, Kalyan C.; Dash, Ranjan K.; Beard, Daniel A.

    2011-01-01

    Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca2+ under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca2+ in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mm extramitochondrial free magnesium, Ca2+ can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca2+ concentration averaged per beat, Ca2+ had no observable stimulatory effect. A modest apparent stimulatory effect (22–27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mm initial phosphate. The stimulatory effects observed over the physiological Ca2+ range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo. PMID:21757763

  18. Anatomy and Physiology of the Small Bowel.

    PubMed

    Volk, Neil; Lacy, Brian

    2017-01-01

    Comprehension of small intestine physiology and function provides a framework for the understanding of several important disease pathways of the gastrointestinal system. This article reviews the development, anatomy and histology of the small bowel in addition to physiology and digestion of key nutrients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    PubMed

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Asymmetric protonation of EmrE

    PubMed Central

    Morrison, Emma A.; Robinson, Anne E.; Liu, Yongjia

    2015-01-01

    The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states. PMID:26573622

  1. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2010-01-01

    Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442

  2. Reference range of blood biomarkers for oxidative stress in Thoroughbred racehorses (2–5 years old)

    PubMed Central

    KUSANO, Kanichi; YAMAZAKI, Masahiko; KIUCHI, Masataka; KANEKO, Kouki; KOYAMA, Katsuhiro

    2016-01-01

    ABSTRACT The oxidant and antioxidant equilibrium is known to play an important role in equine medicine and equine exercise physiology. There are abundant findings in this field; however, not many studies have been conducted for reference ranges of oxidative stress biomarkers in horses. This study was conducted to determine the reference values of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) using blood samples from 372 (191 males, 181 females) Thoroughbred racehorse aged 2 to 5 (3.43 ± 1.10 (mean ± SD)) years old. There were obvious gender differences in oxidative biomarkers, and growth/age-related changes were observed especially in females. Gender and age must be considered when interpreting obtained oxidative stress biomarkers for diagnosis of disease or fitness alterations in Thoroughbred racehorses. PMID:27703408

  3. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function*

    PubMed Central

    Lowery, Jason; Kuczmarski, Edward R.; Herrmann, Harald; Goldman, Robert D.

    2015-01-01

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. PMID:25957409

  4. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  5. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    PubMed Central

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  6. Early life exposure to artificial light at night affects the physiological condition: An experimental study on the ecophysiology of free-living nestling songbirds.

    PubMed

    Raap, Thomas; Casasole, Giulia; Pinxten, Rianne; Eens, Marcel

    2016-11-01

    Light pollution or artificial light at night (ALAN) is increasingly recognised to be an important anthropogenic environmental pressure on wildlife, affecting animal behaviour and physiology. Early life experiences are extremely important for the development, physiological status and health of organisms, and as such, early exposure to artificial light may have detrimental consequences for organism fitness. We experimentally manipulated the light environment of free-living great tit nestlings (Parus major), an important model species in evolutionary and environmental research. Haptoglobin (Hp) and nitric oxide (NOx), as important indicators of immunity, health, and physiological condition, were quantified in nestlings at baseline (13 days after hatching) and after a two night exposure to ALAN. We found that ALAN increased Hp and decreased NOx. ALAN may increase stress and oxidative stress and reduce melatonin which could subsequently lead to increased Hp and decreased NOx. Haptoglobin is part of the immune response and mounting an immune response is costly in energy and resources and, trade-offs are likely to occur with other energetically demanding tasks, such as survival or reproduction. Acute inhibition of NOx may have a cascading effect as it also affects other physiological aspects and may negatively affect immunocompetence. The consequences of the observed effects on Hp and NOx remain to be examined. Our study provides experimental field evidence that ALAN affects nestlings' physiology during development and early life exposure to ALAN could therefore have long lasting effects throughout adulthood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Alternative nutritional strategies in protists: symposium introduction and a review of freshwater protists that combine photosynthesis and heterotrophy.

    PubMed

    Sanders, Robert W

    2011-01-01

    The alternative nutritional strategies in protists that were addressed during the symposium by that name at the 2010 annual meeting of the International Society of Protistologists and here in contributed papers, include a range of mechanisms that combine photosynthesis with heterotrophy in a single organism. Often called mixotrophy, these multiple trophic level combinations occur across a broad range of organisms and environments. Consequently, there is great variability in the physiological abilities and relative importance of phototrophy vs. phagotrophy and/or osmotrophy in mixotrophic protists. Recently, research papers addressing ecological questions about mixotrophy in marine systems have been more numerous than those that deal with freshwater systems, a trend that is probably partly due to a realization that many harmful algal blooms in coastal marine systems involve mixotrophic protists. After an introduction to the symposium presentations, recent studies of mixotrophy in freshwater systems are reviewed to encourage continuing research on their importance to inland waters. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  8. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood.

    PubMed

    Isokawa, Muneki; Kanamori, Takahiro; Funatsu, Takashi; Tsunoda, Makoto

    2014-08-01

    Low-molecular-weight biothiols such as homocysteine, cysteine, and glutathione are metabolites of the sulfur cycle and play important roles in biological processes such as the antioxidant defense network, methionine cycle, and protein synthesis. Thiol concentrations in human plasma and blood are related to diseases such as cardiovascular disease, neurodegenerative disease, and cancer. The concentrations of homocysteine, cysteine, and glutathione in plasma samples from healthy human subjects are approximately in the range of 5-15, 200-300, and 1-5 μM, respectively. Glutathione concentration in the whole blood is in the millimolar range. Measurement of biothiol levels in plasma and blood is thought to be important for understanding the physiological roles and biomarkers for certain diseases. This review summarizes the relationship of biothiols with certain disease as well as pre-analytical treatment and analytical methods for determination of biothiols in human plasma and blood by using high-performance liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, or chemiluminescence detection; or mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    PubMed Central

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  10. A method to quantify infection and colonization of holm oak (Quercus ilex) roots by Phytophthora cinnamomi

    PubMed Central

    2012-01-01

    Phytophthora cinnamomi Rands. is an important root rot pathogen widely distributed in the north hemisphere, with a large host range. Among others diseases, it is known to be a principal factor in the decline of holm oak and cork oak, the most important tree species in the “dehesa” ecosystem of south-western Spain. Previously, the focus of studies on P. cinnamomi and holm oak have been on molecular tools for identification, functional responses of the host, together with other physiological and morphological host variables. However, a microscopic index to describe the degree of infection and colonization in the plant tissues has not yet been developed. A colonization or infection index would be a useful tool for studies that examine differences between individuals subjected to different treatments or to individuals belonging to different breeding accessions, together with their specific responses to the pathogen. This work presents a methodology based on the capture and digital treatment of microscopic images, using simple and accessible software, together with a range of variables that quantify the infection and colonization process. PMID:22974221

  11. Continuous remote monitoring of COPD patients-justification and explanation of the requirements and a survey of the available technologies.

    PubMed

    Tomasic, Ivan; Tomasic, Nikica; Trobec, Roman; Krpan, Miroslav; Kelava, Tomislav

    2018-04-01

    Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO 2 ) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems. Graphical abstract ᅟ.

  12. Exploring the range of climate biome projections for tropical South America: The role of CO2 fertilization and seasonality

    NASA Astrophysics Data System (ADS)

    Lapola, David M.; Oyama, Marcos D.; Nobre, Carlos A.

    2009-09-01

    Tropical South America vegetation cover projections for the end of the century differ considerably depending on climate scenario and also on how physiological processes are considered in vegetation models. In this paper we use a potential vegetation model (CPTEC-PVM2) to analyze biome distribution in tropical South America under a range of climate projections and a range of estimates about the effects of increased atmospheric CO2. We show that if the CO2 "fertilization effect" indeed takes place and is maintained in the long term in tropical forests, then it will avoid biome shifts in Amazonia in most of the climate scenarios, even if the effect of CO2 fertilization is halved. However, if CO2 fertilization does not play any important role on tropical forests in the future or if dry season is longer than 4 months (projected by 2/14 GCMs), then there is replacement of large portions of Amazonia by tropical savanna.

  13. Autoimmune thyroid disease in pregnancy: a review.

    PubMed

    Galofre, Juan C; Davies, Terry F

    2009-11-01

    The maternal physiological changes that occur in normal pregnancy induce complex endocrine and immune responses. During a normal pregnancy, thyroid gland volume may enlarge, and thyroid hormone production increases. Hence, the interpretation of thyroid function during gestation needs to be adjusted according to pregnancy-specific ranges. The elevated prevalence of gestation-related thyroid disorders (10%-15%) and the important repercussions for both mother and fetus reported in multiple studies throughout the world denote, in our opinion, the necessity for routine thyroid function screening both before and during pregnancy. Once thyroid dysfunction is suspected or confirmed, management of the thyroid disorder necessitates regular monitoring in order to ensure a successful outcome. The aim of treating hyperthyroidism in pregnancy with antithyroid drugs is to maintain serum thyroxine (T(4)) in the upper normal range of the assay used with the lowest possible dose of drug, whereas in hypothyroidism, the goal is to return serum thyroid-stimulating hormone (TSH) to the range between 0.5 and 2.5 mU/L.

  14. Autoimmune Thyroid Disease in Pregnancy: A Review

    PubMed Central

    Galofre, Juan C.

    2009-01-01

    Abstract The maternal physiological changes that occur in normal pregnancy induce complex endocrine and immune responses. During a normal pregnancy, thyroid gland volume may enlarge, and thyroid hormone production increases. Hence, the interpretation of thyroid function during gestation needs to be adjusted according to pregnancy-specific ranges. The elevated prevalence of gestation-related thyroid disorders (10%–15%) and the important repercussions for both mother and fetus reported in multiple studies throughout the world denote, in our opinion, the necessity for routine thyroid function screening both before and during pregnancy. Once thyroid dysfunction is suspected or confirmed, management of the thyroid disorder necessitates regular monitoring in order to ensure a successful outcome. The aim of treating hyperthyroidism in pregnancy with antithyroid drugs is to maintain serum thyroxine (T4) in the upper normal range of the assay used with the lowest possible dose of drug, whereas in hypothyroidism, the goal is to return serum thyroid-stimulating hormone (TSH) to the range between 0.5 and 2.5 mU/L. PMID:19951221

  15. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    PubMed Central

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  16. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    PubMed

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  17. Effect of monitoring technique on quality of conservation science.

    PubMed

    Jewell, Zoe

    2013-06-01

    Monitoring free-ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable-that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide-ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer-term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science. © 2013 Society for Conservation Biology.

  18. Dehydration: physiology, assessment, and performance effects.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W

    2014-01-01

    This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill). © 2014 American Physiological Society.

  19. Is Physiology the Locus of Health/Health Promotion?

    ERIC Educational Resources Information Center

    Zbilut, Joseph P.

    2008-01-01

    A current trend in physiology education involves the use of clinical vignettes to demonstrate the importance of knowing normal physiology to appreciate pathophysiology. Although laudable, in effect, such tactics promote the so-called "disease" model of medicine while at the same time suggesting that the only utility for the knowledge of physiology…

  20. [Climatic factors influencing the performance of cattle and buffalos in Egypt].

    PubMed

    Legel, S

    1979-01-01

    Previous analogous investigations of climatic factors influencing the performance of cattle in Syria were continued for Egypt between August 1975 and July 1977. Temperature and humidity data were recorded and related to standard physiological compatibility ranges for cattle and buffalos, respectively. The values found for the two test years largely agreed. 23.3% of the average temperatures of the two years were above the 0 to 24 degrees C temperature range, which is physiologically compatible. Only 28.8% of the total hours were within the optimum temperature range for cattle and buffalos. The values of the relative humidity in the first year were up to 38.5% within the optimum compatibility range, whereas 11.0% were within the too dry and 50.5% within the too moist range. The percentage increased when the animals were in direct sunshine, which reduced their performance.

  1. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  2. Changes in blood flow and cellular metabolism at a myofascial trigger point with trigger point release (ischemic compression): a proof-of-principle pilot study

    PubMed Central

    Moraska, Albert F.; Hickner, Robert C.; Kohrt, Wendy M.; Brewer, Alan

    2012-01-01

    Objective To demonstrate proof-of-principle measurement for physiological change within an active myofascial trigger point (MTrP) undergoing trigger point release (ischemic compression). Design Interstitial fluid was sampled continuously at a trigger point before and after intervention. Setting A biomedical research clinic at a university hospital. Participants Two subjects from a pain clinic presenting with chronic headache pain. Interventions A single microdialysis catheter was inserted into an active MTrP of the upper trapezius to allow for continuous sampling of interstitial fluid before and after application of trigger point therapy by a massage therapist. Main Outcome Measures Procedural success, pain tolerance, feasibility of intervention during sample collection, determination of physiologically relevant values for local blood flow, as well as glucose and lactate concentrations. Results Both patients tolerated the microdialysis probe insertion into the MTrP and treatment intervention without complication. Glucose and lactate concentrations were measured in the physiological range. Following intervention, a sustained increase in lactate was noted for both subjects. Conclusions Identifying physiological constituents of MTrP’s following intervention is an important step toward understanding pathophysiology and resolution of myofascial pain. The present study forwards that aim by showing proof-of-concept for collection of interstitial fluid from an MTrP before and after intervention can be accomplished using microdialysis, thus providing methodological insight toward treatment mechanism and pain resolution. Of the biomarkers measured in this study, lactate may be the most relevant for detection and treatment of abnormalities in the MTrP. PMID:22975226

  3. [Proposal of a different interpretation of the physiology of labor useful in more edifying teaching of obstetric psychoprophylaxis courses].

    PubMed

    Mergoni, A

    1994-01-01

    Without underestimating the undeniable benefit which can be achieved from various physical and mental relaxation exercises, the author expresses the conviction that the didactic and cultural aspect of preparative courses during pregnancy by definition improve, to a greater extent than is widely believed, the positive outcome of obstetric psychoprophylaxis. It is therefore opportune that the didactic part of courses should cover a wider and more detailed range than is usually the case, in particular including a more exhaustive and accurate description of the mechanical phenomenon of birth. Without a clear knowledge and awareness of such mechanical aspects, pregnant women will not feel prepared for and in full and rational control of her own labour. Given that a correct knowledge of the physiology of labour inevitably includes aspects which will enrich the pregnant woman's psyche, the author hopes that interest will soon be reawakened in the physiology of labour whose interpretation has for a long time contained a number of basic and unresolved problems. In order to rectify and further our knowledge of the physiology of labour, it is important to be willing to consider other interpretative models which differ from the traditional one. On this subject, the author aims to rediscuss one model in which Pascal's principle is recognised as the decisive cause of the majority of the mechanical phenomena of labour, and which, in addition to providing solutions to many unresolved problems, makes the teaching of preparative courses during pregnancy more edifying in psychological terms.

  4. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma.

    PubMed

    Dong, Yun-Wei; Han, Guo-Dong; Huang, Xiong-Wei

    2014-09-01

    In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change. © 2014 John Wiley & Sons Ltd.

  5. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions.

    PubMed

    Chapman, Robert W; Mancia, Annalaura; Beal, Marion; Veloso, Artur; Rathburn, Charles; Blair, Anne; Holland, A F; Warr, G W; Didinato, Guy; Sokolova, Inna M; Wirth, Edward F; Duffy, Edward; Sanger, Denise

    2011-04-01

    Understanding the mechanisms by which organisms adapt to environmental conditions is a fundamental question for ecology and evolution. In this study, we evaluate changes in gene expression of a marine mollusc, the eastern oyster Crassostrea virginica, associated with the physico-chemical conditions and the levels of metals and other contaminants in their environment. The results indicate that transcript signatures can effectively disentangle the complex interactive gene expression responses to the environment and are also capable of disentangling the complex dynamic effects of environmental factors on gene expression. In this context, the mapping of environment to gene and gene to environment is reciprocal and mutually reinforcing. In general, the response of transcripts to the environment is driven by major factors known to affect oyster physiology such as temperature, pH, salinity, and dissolved oxygen, with pollutant levels playing a relatively small role, at least within the range of concentrations found in the studied oyster habitats. Further, the two environmental factors that dominate these effects (temperature and pH) interact in a dynamic and nonlinear fashion to impact gene expression. Transcriptomic data obtained in our study provide insights into the mechanisms of physiological responses to temperature and pH in oysters that are consistent with the known effects of these factors on physiological functions of ectotherms and indicate important linkages between transcriptomics and physiological outcomes. Should these linkages hold in further studies and in other organisms, they may provide a novel integrated approach for assessing the impacts of climate change, ocean acidification and anthropogenic contaminants on aquatic organisms via relatively inexpensive microarray platforms. © 2011 Blackwell Publishing Ltd.

  6. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus

    PubMed Central

    McCauley, Robert D.; Fitzgibbon, Quinn P.; Hartmann, Klaas; Semmens, Jayson M.

    2017-01-01

    Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth’s crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic “flinch” response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops. PMID:28923925

  7. The effects of host size and temperature on the emergence of Echinoparyphium recurvatum cercariae from Lymnaea peregra under natural light conditions.

    PubMed

    Morley, N J; Adam, M E; Lewis, J W

    2010-09-01

    The production of cercariae from their snail host is a fundamental component of transmission success in trematodes. The emergence of Echinoparyphium recurvatum (Trematoda: Echinostomatidae) cercariae from Lymnaea peregra was studied under natural sunlight conditions, using naturally infected snails of different sizes (10-17 mm) within a temperature range of 10-29 degrees C. There was a single photoperiodic circadian cycle of emergence with one peak, which correlated with the maximum diffuse sunlight irradiation. At 21 degrees C the daily number of emerging cercariae increased with increasing host snail size, but variations in cercarial emergence did occur between both individual snails and different days. There was only limited evidence of cyclic emergence patterns over a 3-week period, probably due to extensive snail mortality, particularly those in the larger size classes. Very few cercariae emerged in all snail size classes at the lowest temperature studied (10 degrees C), but at increasingly higher temperatures elevated numbers of cercariae emerged, reaching an optimum between 17 and 25 degrees C. Above this range emergence was reduced. At all temperatures more cercariae emerged from larger snails. Analysis of emergence using the Q10 value, a measure of physiological processes over temperature ranges, showed that between 10 and 21 degrees C (approximately 15 degrees C) Q10 values exceeded 100 for all snail size classes, indicating a substantially greater emergence than would be expected for normal physiological rates. From 14 to 25 degrees C (approximately 20 degrees C) cercarial emergence in most snail size classes showed little change in Q10, although in the smallest size class emergence was still substantially greater than the typical Q10 increase expected over this temperature range. At the highest range of 21-29 degrees C (approximately 25 degrees C), Q10 was much reduced. The importance of these results for cercarial emergence under global climate change is discussed.

  8. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in C. elegans

    PubMed Central

    Beverly, Matthew; Anbil, Sriram; Sengupta, Piali

    2011-01-01

    Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201

  9. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    PubMed

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.

  10. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  11. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age

    PubMed Central

    Jahn, Stephan C.; Rowland-Faux, Laura; Stacpoole, Peter W.; James, Margaret O.

    2015-01-01

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7 – 365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9 – 22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. PMID:25748576

  12. Paving a Path to Understanding Metabolic Responses to Iron Bioavailability: Global Proteomic Analysis of Crocosphaera watsonii

    NASA Astrophysics Data System (ADS)

    Gauglitz, J.; McIlvin, M. R.; Moran, D. M.; Waterbury, J. B.; Saito, M. A.

    2016-02-01

    Marine diazotrophic cyanobacteria provide a key source of new nitrogen into the oceans and are important contributors to primary production. The geographic distribution of these cyanobacteria is impacted by available iron and phosphorus as well as environmental conditions such as temperature, however available iron concentrations are thought to be particularly critical due to the high demand for iron in cellular processes. Iron bioavailability and microorganismal adaptations to low iron environments may thus play a key role in dictating community structure, however the mechanisms by which cyanobacteria acquire iron and regulate its uptake are not well defined. In this study, the unicellular diazotroph, Crocosphaera watsonii WH8501, was acclimated to a range of bioavailable iron concentrations (from 0.001nM to 8.13nM Fe') using trace metal clean culturing techniques and the proteomes were analyzed by LC/MS-MS. Physiological and proteomic data indicate three distinct phenotypic ranges: iron-replete, iron-limited, and iron-starved. Trends in photosynthetic, carbon fixation and iron storage proteins across the iron gradient indicate that the C. watsonii proteome responds directly to iron availability. Further analysis of relative protein expression, which describes the physiological state of the cell, will lead to insights into how C. watsonii is able to adapt to iron-limited conditions and the resulting biogeochemical implications will be discussed.

  13. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    PubMed

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  15. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  16. Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide.

    PubMed

    McCarron, David A; Kazaks, Alexandra G; Geerling, Joel C; Stern, Judith S; Graudal, Niels A

    2013-10-01

    The recommendation to restrict dietary sodium for management of hypertensive cardiovascular disease assumes that sodium intake exceeds physiologic need, that it can be significantly reduced, and that the reduction can be maintained over time. In contrast, neuroscientists have identified neural circuits in vertebrate animals that regulate sodium appetite within a narrow physiologic range. This study further validates our previous report that sodium intake, consistent with the neuroscience, tracks within a narrow range, consistent over time and across cultures. Peer-reviewed publications reporting 24-hour urinary sodium excretion (UNaV) in a defined population that were not included in our 2009 publication were identified from the medical literature. These datasets were combined with those in our previous report of worldwide dietary sodium consumption. The new data included 129 surveys, representing 50,060 participants. The mean value and range of 24-hour UNaV in each of these datasets were within 1 SD of our previous estimate. The combined mean and normal range of sodium intake of the 129 datasets were nearly identical to that we previously reported (mean = 158.3±22.5 vs. 162.4±22.4 mmol/d). Merging the previous and new datasets (n = 190) yielded sodium consumption of 159.4±22.3 mmol/d (range = 114-210 mmol/d; 2,622-4,830mg/d). Human sodium intake, as defined by 24-hour UNaV, is characterized by a narrow range that is remarkably reproducible over at least 5 decades and across 45 countries. As documented here, this range is determined by physiologic needs rather than environmental factors. Future guidelines should be based on this biologically determined range.

  17. Alarmins and immunity.

    PubMed

    Yang, De; Han, Zhen; Oppenheim, Joost J

    2017-11-01

    More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. Putting Neutrophils in Motion | Center for Cancer Research

    Cancer.gov

    During chemotaxis, immune cells such as neutrophils orient themselves and move along a chemical gradient that is induced by chemicals called chemoattractants. Chemoattractants bind to specific G-protein linked receptors to put things in motion. The binding triggers the dissociation of the Gα-subunit from the Gβγ-subunit, which activate several downstream signaling cascades. This ultimately leads to the polarization of actin and myosin filament networks at the front and back of cells, respectively. The end result is directed cell migration, which is important in a wide range of physiological responses including wound healing and leukocyte trafficking, as well as in pathological processes such as metastasis.

  19. Eating for Life: Designing Foods for Appetite Control

    PubMed Central

    Wilde, Peter J.

    2009-01-01

    We are all well aware that rising levels of obesity in developed countries is having a significant impact on the health of the population. This is despite the availability of a wide range of low-calorie foods and an awareness of how important it is to adopt a healthy lifestyle. A new and emerging approach is to design foods that enhance the physiological regulatory mechanisms controlling appetite and energy intake. This is achieved through either promoting gastric distension or slowing intestinal transit in order to promote satiety-enhancing neuroendocrine feedback responses. This commentary explores the background and mechanisms involved in developing these strategies. PMID:20144369

  20. Coronary microvascular dysfunction in diabetes mellitus

    PubMed Central

    Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario

    2017-01-01

    The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578

  1. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings suggest that repeated exposure to extreme thermal stressor could cause chronic stress and consequently suppress the physiological endocrine sensitivity to acute stressors (e.g. pathogenic diseases) in amphibians. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Using Bio-Optics to Reveal Phytoplankton Physiology from a Wirewalker Autonomous Platform

    NASA Technical Reports Server (NTRS)

    Omand, M. M.; Cetinic, I.; Lucas, A. J.

    2017-01-01

    Rapid, wave-powered profiling of bio-optical properties from an autonomous Wirewalker platform provides useful insights into phytoplankton physiology, including the patterns of diel growth, phytoplankton mortality, nonphotochemical quenching of chlorophyll a fluorescence, and natural (sun-induced) fluorescence of mixed communities. Methods are proposed to quantify each of these processes. Such autonomous measurements of phytoplankton physiological rates and responses open up new possibilities for studying phytoplankton in situ, over longer periods, and under a broader range of environmental conditions.

  3. [Physiology in Relation to Anesthesia Practice: Preface and Comments].

    PubMed

    Yamada, Yoshitsugu

    2016-05-01

    It has been long recognized that anesthesia practice is profoundly based in physiology. With the advance of the technology of imaging, measurement and information, a serious gap has emerged between anesthesia mainly handling gross systemic parameters and molecular physiology. One of the main reasons is the lack of establishment of integration approach. This special series of reviews deals with systems physiology covering respiratory, cardiovascular, and nervous systems. It also includes metabolism, and fluid, acid-base, and electrolyte balance. Each review focuses on several physiological concepts in each area, explaining current understanding and limits of the concepts based on the new findings. They reaffirm the importance of applying physiological inference in anesthesia practice and underscore the needs of advancement of systems physiology.

  4. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cell-Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research.

    PubMed

    Holle, Andrew W; Young, Jennifer L; Van Vliet, Krystyn J; Kamm, Roger D; Discher, Dennis; Janmey, Paul; Spatz, Joachim P; Saif, Taher

    2018-01-10

    Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.

  6. An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities.

    PubMed

    Cabedo, N; Berenguer, I; Figadère, B; Cortes, D

    2009-01-01

    Dopamine and serotonin are important neurotransmitters in the mammalian central nervous system (CNS) involved in numerous physiological and behavioural disorders such as schizophrenia, major depression, anxiety, Parkinson's and Huntington's diseases, and attention deficit hyperactivity disorder. Several natural and synthetic benzylisoquinoline derivatives have displayed affinity for dopamine and serotonin receptors in nanomolar or micromolar ranges. This review covers the last three decades of dopaminergic and serotonergic activities, and especially focuses on structure-activity relationships of natural and synthetic benzylisoquinoline derivatives. We have included aporphines, 1-benzyltetrahydroisoquinolines, bis-benzylisoquinolines, protoberberines, cularines and other structural analogues. Further molecular modelling calculations have been considered as important tools to not only obtain structural information of both neurotransmitter receptors, but to also identify their pharmacophore features. The development of selective potential ligands like benzylisoquinoline derivatives may help in the therapy of diseases related to CNS dysfunction.

  7. Comparative Genomics of Bacillus species and its Relevance in Industrial Microbiology.

    PubMed

    Sharma, Archana; Satyanarayana, T

    2013-01-01

    With the advent of high throughput sequencing platforms and relevant analytical tools, the rate of microbial genome sequencing has accelerated which has in turn led to better understanding of microbial molecular biology and genetics. The complete genome sequences of important industrial organisms provide opportunities for human health, industry, and the environment. Bacillus species are the dominant workhorses in industrial fermentations. Today, genome sequences of several Bacillus species are available, and comparative genomics of this genus helps in understanding their physiology, biochemistry, and genetics. The genomes of these bacterial species are the sources of many industrially important enzymes and antibiotics and, therefore, provide an opportunity to tailor enzymes with desired properties to suit a wide range of applications. A comparative account of strengths and weaknesses of the different sequencing platforms are also highlighted in the review.

  8. Erroneous Arrhenius: Modified Arrhenius model best explains the temperature dependence of ectotherm fitness

    PubMed Central

    Knies, Jennifer L.; Kingsolver, Joel G.

    2013-01-01

    The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477

  9. Erroneous Arrhenius: modified arrhenius model best explains the temperature dependence of ectotherm fitness.

    PubMed

    Knies, Jennifer L; Kingsolver, Joel G

    2010-08-01

    The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.

  10. Effect of Habitat Conditions and Plant Traits on Leaf Damage in the Carduoideae Subfamily

    PubMed Central

    Münzbergová, Zuzana; Skuhrovec, Jiří

    2013-01-01

    Plant traits are the key factors that determine herbivore foraging selection. The traits serving as defense traits against herbivores represent a wide range of traits, such as chemical, physiological, morphological and life-history traits. While many studies considered plant defense traits at the within-species scale, much less is known from comparisons of a wide range of closely related species. The aim of this study was to identify factors responsible for the intensity of leaf damage in the Carduoideae subfamily of Asteraceae, which hosts many invasive species and thus is potential candidate plant species that could be controlled by biological control. Specifically, we wanted to see the relative importance of habitat characteristics, plant size and plants traits in determining the degree of folivory. The study identified several defense traits able to explain differences in herbivory between species after accounting for differences in the habitats in which the species occur and the plant size. Specifically, the most important traits were traits related to the quality of the leaf tissue expressed as the content of phosphorus, water and specific leaf area, which suggests that the leaf quality had a more important effect on the degree of herbivory than the presence of specific defense mechanisms such as spines and hair. Leaf quality is thus a candidate factor that drives herbivore choice when selecting which plant to feed on and should be considered when assessing the danger that a herbivore will switch hosts when introduced to a new range. PMID:23717643

  11. Sensory matched filters.

    PubMed

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Physiology Undergraduate Major in the University of Arizona College of Medicine: Past, Present, and Future

    ERIC Educational Resources Information Center

    Henriksen, Erik J.; Atwater, Anne E.; Delamere, Nicholas A.; Dantzler, William H.

    2011-01-01

    The American Physiological Society (APS) and APS Council encourage the teaching of physiology at the undergraduate, graduate, and medical school levels to support the continued prominence of this area of science. One area identified by the APS Council that is of particular importance for the development of future physiologists (the…

  13. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    PubMed

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  14. The physiological diversity and similarity of ten Quercus species

    Treesearch

    Shi-Jean S. Sung; M.N. Angelov; R.R. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black

    1994-01-01

    Based on anatomical, photosynthetic, and biochemical data, the range of physiological differences and similarities was defined for ten Quercus species. There were no correlations between species' site adaptability, leaf anatomy and photosynthetic rate (A). It is concluded from these data that each oak species must be treated individually when incorporated into...

  15. Physiological-Cognitive-Emotional Responses to Defense-Arousing Communication: Overview and Sex Differences.

    ERIC Educational Resources Information Center

    Gordon, Ronald D.

    A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…

  16. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological

    USDA-ARS?s Scientific Manuscript database

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  17. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  18. Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas.

    PubMed

    Tepolt, Carolyn K; Somero, George N

    2014-04-01

    As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine heat and cold tolerance and acclimatory plasticity. We found that, overall, the species is highly tolerant of both heat and cold, and that it survives higher temperatures than co-occurring native marine crustaceans. Further, we found that both heat and cold tolerance are plastic in response to short-term acclimation (18-31 days at either 5 or 25°C). Comparing patterns within ranges, we found latitudinal gradients in thermal tolerance in the native European range and in the invasive range in eastern North America. This pattern is strongest in the native range, and likely evolved there. Because of a complicated invasion history, the latitudinal pattern in the eastern North American invasive range may be due either to rapid adaptation post-invasion or to adaptive differences between the ancestral populations that founded the invasion. Overall, the broad thermal tolerance ranges of green crabs, which may facilitate invasion of novel habitats, derive from high inherent eurythermality and acclimatory plasticity and potentially adaptive differentiation among populations. The highly flexible physiology that results from these capacities may represent the hallmark of a successful invasive species, and may provide a model for success in a changing world.

  19. Measuring salivary analytes from free-ranging monkeys

    PubMed Central

    Higham, James P.; Vitale, Alison; Rivera, Adaris Mas; Ayala, James E.; Maestripieri, Dario

    2014-01-01

    Studies of large free-ranging mammals have been revolutionized by non-invasive methods for assessing physiology, which usually involve the measurement of fecal or urinary biomarkers. However, such techniques are limited by numerous factors. To expand the range of physiological variables measurable non-invasively from free-ranging primates, we developed techniques for sampling monkey saliva by offering monkeys ropes with oral swabs sewn on the ends. We evaluated different attractants for encouraging individuals to offer samples, and proportions of individuals in different age/sex categories willing to give samples. We tested the saliva samples we obtained in three commercially available assays: cortisol, Salivary Alpha Amylase, and Secretory Immunoglobulin A. We show that habituated free-ranging rhesus macaques will give saliva samples voluntarily without training, with 100% of infants, and over 50% of adults willing to chew on collection devices. Our field methods are robust even for analytes that show poor recovery from cotton, and/or that have concentrations dependent on salivary flow rate. We validated the cortisol and SAA assays for use in rhesus macaques by showing aspects of analytical validation, such as that samples dilute linearly and in parallel to assay standards. We also found that values measured correlated with biologically meaningful characteristics of sampled individuals (age and dominance rank). The SIgA assay tested did not react to samples. Given the wide range of analytes measurable in saliva but not in feces or urine, our methods considerably improve our ability to study physiological aspects of the behavior and ecology of free-ranging primates, and are also potentially adaptable to other mammalian taxa. PMID:20837036

  20. Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dan; Zhang, Jun; Zhao, Dian

    2016-09-15

    A near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method using Ln{sup 3+} (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H{sub 3}BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd{sub 0.676}Yb{sub 0.324}BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K), and the maximum relative sensitivity is determined to be 1.187% K{sup −1} at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing. - Graphical abstract: A near infrared luminescent MOFs thermometer (Nd{sub 0.054}Yb{sub 0.946}BTCmore » ) displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K). Display Omitted - Highlights: • A ratiometric near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method. • The maximum relative sensitivity of Nd{sub 0.676}Yb{sub 0.324}BTC is determined to be 1.187% K{sup −1} at 323 K. • Nd{sub 0.676}Yb{sub 0.324}BTC showed excellent repeatability in the physiological temperature range (288–323 K).« less

  1. Shape and shear guide sperm cells spiraling upstream

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  2. Evaluation of the biological effects of police radar RAMER 7F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotkovska, D.; Kautska, J.; Bartonickova, A.

    1993-06-01

    This paper presents results of experiments on the effects of electromagnetic radiation in the millimeter range (frequency 34.0 [+-] 0.1 GHz, power density 20 [mu]W/cm[sup 2]) emitted by a police radar device. Considering the physical properties of the radiation in millimeter range (skin effects), the experiments were carried out on hairless mice. The main physiological parameters tested were body mass, body temperature, peripheral blood, and mass and cellularity of several important organs. Critical organs, the skin, and cornea were examined by electron microscopy. Differentiation ability of hematopoietic cells, progenitors of granulocytes and macrophages, and DNA synthesis in the cornea weremore » compared in irradiated and nonirradiated animals. None of the parameters tested was affected to an extent that would indicate the start of a pathological process or the risk of damage to genetic material.« less

  3. Research and application of microbial enzymes--India's contribution.

    PubMed

    Chand, Subhash; Mishra, Prashant

    2003-01-01

    Enzymes have attracted the attention of scientists world over due to their wide range of physiological, analytical and industrial applications. Although enzymes have been isolated, purified and studied from microbial, animal and plant sources, microorganisms represent the most common source of enzymes due to their broad biochemical diversity, feasibility of mass culture and ease of genetic manipulation. With the advent of molecular biology techniques, a number of genes of industrially important enzymes has been cloned and expressed in order to improve the production of enzymes, substrate utilization and other commercially useful properties. Special attention has been focused on enzymes isolated from thermophiles due to their inherent stability and industrial applications. In addition, a variety of methods have been employed to modify enzymes for their industrial usage including strain improvement, chemical modifications, modification of reaction environment, immobilization and protein engineering. A wide range of applications of enzymes in different bioprocess industries is discussed.

  4. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  5. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.

    PubMed

    Lowery, Jason; Kuczmarski, Edward R; Herrmann, Harald; Goldman, Robert D

    2015-07-10

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Physiological Gut Oxygenation Alters GLP-1 Secretion from the Enteroendocrine Cell Line STC-1.

    PubMed

    Kondrashina, Alina; Papkovsky, Dmitri; Giblin, Linda

    2018-02-01

    Enteroendocrine cell lines are routinely assayed in simple buffers at ≈20% oxygen to screen foods for bioactives that boost satiety hormone levels. However, in vivo, enteroendocrine cells are exposed to different phases of food digestion and function at low oxygen concentration, ranging from 7.5% in the stomach to 0.5% in the colon-rectal junction. The objective of this study is to investigate the effect of physiologically relevant O 2 concentrations of the gut on the production and secretion of the satiety hormone, glucagon-like peptide 1 (GLP-1), from the murine enteroendocrine cell line, secretin tumor cell line (STC-1), in response to dairy macronutrients as they transit the gut. GLP-1 exocytosis from STC-1 cells is influenced by both oxygen concentration and by individual macronutrients. At low oxygen, STC-1 cell viability is significantly improved for all macronutrient stimulations and cyclic adenosine monophosphate levels are dampened. GLP-1 secretion from STC-1 cells is influenced by both the phase of yogurt digestion and corresponding O 2 concentration. Atmospheric oxygen at 4.5% combined with upper gastric digesta, which simulates ileum conditions, yields the highest GLP-1 response. This demonstrates the importance of considering physiological oxygen levels and food digestion along gastrointestinal tract for reliable in vitro analysis of gut hormone secretion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils.

    PubMed

    Du, Yu-Mei; Tian, Jiang; Liao, Hong; Bai, Chang-Jun; Yan, Xiao-Long; Liu, Guo-Dao

    2009-06-01

    Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood. Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils. Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype 'TPRC2001-1' had higher Al tolerance than the P-inefficient genotype 'Fine-stem' as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, 'TPRC2001-1', had superior ability to utilize phytate-P. The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.

  8. Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos.

    PubMed

    Wang, Fusheng; Yu, Xiaohan; Liu, Xiaona; Shen, Wanxia; Zhu, Shiping; Zhao, Xiaochun

    2016-09-01

    Limonoids are the important secondary metabolites in the citrus. In this study, the accumulation of limonoids at different fruit developmental stages and distribution among different genotypes, tissues and developmental stages were investigated in 12 pummelo varieties. The large variations on limonoids concentration were found among different varieties, which ranged from 233.78 mg/kg FW to 4090.41 mg/kg FW in the seeds at full color stage of the fruit. Classification of pummelos based on the limonoids content divided 12 varieties into three groups. It was matched well with the geographic origination of the pummelo varieties, suggesting that the accumulation of limonoids was mainly determined by the genotype of the pummelo. Accumulation of the limonoids in different tissues was highly variable, and in a tissue specific fashion. The trend of the change on the levels of nomilin and limonin in the seeds and segment membrane were corresponded to the physiological development of the fruit. The rapid accumulation of nomilin and limonoids was observed from the physiological ripening of the seeds. It suggested that physiological maturation of the seeds is a key point that the seeds accelerate the accumulation of nomilin and limonin. In most of pummelo varieties, 10% color break of the fruit was a phenotypic landmark associated with the maximum level of nomilin accumulated in the seeds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Abnormal aldosterone physiology and cardiometabolic risk factors.

    PubMed

    Vaidya, Anand; Underwood, Patricia C; Hopkins, Paul N; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H; Adler, Gail K

    2013-04-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardiometabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardiometabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the sodium-modulated aldosterone suppression-stimulation index (SASSI for serum and SAUSSI for urine), could predict cardiometabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal and restricted sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on liberal (maximally suppressed aldosterone) to the aldosterone on restricted (stimulated aldosterone) diets and associated with risk factors using adjusted regression models. Cardiometabolic risk factors associated with either impaired suppression of aldosterone on liberal diet, or impaired stimulation on restricted diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that constitute the metabolic syndrome, there was a strong positive association between the number of metabolic syndrome components (0-4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero metabolic syndrome components (86% for SASSI and 83% for SAUSSI). Assessing the physiological range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, or result from, early cardiometabolic abnormalities.

  10. Comparative biochemistry and physiology in Brazil: a critical appraisal.

    PubMed

    Navas, Carlos Arturo; Chaui-Berlinck, José Guilherme; Bicudo, José Eduardo P W; Pivello, Vânia R; Martins, Marcio

    2007-07-01

    Brazil stood out as the country with the highest number of submissions to the editorial project dedicated to Latin America by the journal Comparative Biochemistry and Physiology. Therefore, we felt that it was important to critically discuss the state of comparative biochemistry and physiology in this country. Our study is based on data collected from the ISI Web-of-Science. We analyzed publication trends through time, availability of novel approaches and techniques, patterns of collaboration among different geographical regions, patterns of collaboration with researchers abroad, and relative efforts dedicated to the study of biochemical and physiological adaptation of native fauna representing different terrestrial Brazilian biomes. Overall, our data shows that comparative biochemistry and physiology is a lively and productive discipline, but that some biases limit the scope of the field in Brazil. Some important limitations are the very heterogeneous distribution of research nuclei throughout the country and the absence of some important approaches, such as remote sensing and the use of molecular biology techniques in a comparative or evolutionary context. We also noticed that international collaboration far surpasses interregional collaboration, and discuss the possible causes and consequences of this situation. Finally, we found that Brazilian comparative biochemistry and physiology is biome-biased, as the Amazonian fauna has received far more attention than the whole pool of fauna representing other terrestrial biomes. We discuss the possible causes of these biases, and propose some directions that may contribute to invigorate the field in the country.

  11. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts

    PubMed Central

    Nickerson, Kourtney P.; Chanin, Rachael B.; Sistrunk, Jeticia R.; Fink, Peter J.; Barry, Eileen M.; Nataro, James P.

    2017-01-01

    ABSTRACT The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae. Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection. PMID:28348056

  12. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    PubMed

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The anatomy and physiology of the avian endocrine system.

    PubMed

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  14. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  15. Molecular cell biology and physiology of solute transport

    PubMed Central

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  16. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium

    PubMed Central

    Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.

    2015-01-01

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable bioti-/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy. PMID:24569383

  17. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baconguis, Isabelle; Gouaux, Eric

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na +-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the poremore » is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.« less

  18. Progress and challenges in understanding planar cell polarity signaling.

    PubMed

    Axelrod, Jeffrey D

    2009-10-01

    During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.

  19. Transitions in Physiologic Coupling: Sleep Stage and Age Dependence of Cardio-respiratory Phase Synchronization

    NASA Astrophysics Data System (ADS)

    Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2012-02-01

    Recent studies have focused on various features of cardiac and respiratory dynamics with the aim to better understand key aspects of the underlying neural control of these systems. We investigate how sleep influences cardio-respiratory coupling, and how the degree of this coupling changes with transitions across sleep stages in healthy young and elderly subjects. We analyze full night polysomnographic recordings of 189 healthy subjects (age range: 20 to 90 years). To probe cardio-respiratory coupling, we apply a novel phase synchronization analysis method to quantify the adjustment of rhythms between heartbeat and breathing signals. We investigate how cardio-respiratory synchronization changes with sleep-stage transitions and under healthy aging. We find a statistically significant difference in the degree of cardio-respiratory synchronization during different sleep stages for both young and elderly subjects and a significant decline of synchronization with age. This is a first evidence of how sleep regulation and aging influence a key nonlinear mechanism of physiologic coupling as quantified by the degree of phase synchronization between the cardiac and respiratory systems, which is of importance to develop adequate modeling approaches.

  20. Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation.

    PubMed

    Bianchini, Adalto; Lauer, Mariana Machado; Nery, Luiz Eduardo Maia; Colares, Elton Pinto; Monserrat, José María; Dos Santos Filho, Euclydes Antônio

    2008-11-01

    Neohelice granulata (Chasmagnathus granulatus) is an intertidal crab species living in salt marshes from estuaries and lagoons along the Atlantic coast of South America. It is a key species in these environments because it is responsible for energy transfer from producers to consumers. In order to deal with the extremely marked environmental salinity changes occurring in salt marshes, N. granulata shows important and interesting structural, biochemical, and physiological adaptations at the gills level. These adaptations characterize this crab as a euryhaline species, tolerating environmental salinities ranging from very diluted media to concentrated seawater. These characteristics had led to its use as an animal model to study estuarine adaptations in crustaceans. Therefore, the present review focuses on the influence of environmental salinity on N. granulata responses at the ecological, organismic and molecular levels. Aspects covered include salinity tolerance, osmo- and ionoregulatory patterns, morphological and structural adaptations at the gills, and mechanisms of ion transport and their regulation at the gills level during environmental salinity acclimation. Finally, this review compiles information on the effects of some environmental pollutants on iono- and osmoregulatory adaptations showed by N. granulata.

  1. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird

    PubMed Central

    Liebl, Andrea L.; Martin, Lynn B.

    2012-01-01

    Global anthropogenic changes are occurring at an unprecedented rate; one change, human-facilitated introduction of species outside their native range, has had significant ecological and economic impacts. Surprisingly, what traits facilitate range expansions post-introduction is relatively unknown. This information could help predict future expansions of introduced species as well as native species shifting their ranges as climate conditions change. Here, we asked whether specific behavioural and physiological traits were important in the ongoing expansion of house sparrows (Passer domesticus) across Kenya. We predicted that birds at the site of initial introduction (Mombasa, introduced approx. 1950) would behave and regulate corticosterone, a stress hormone, differently than birds at the range edge (Kakamega, approx. 885 km from Mombasa; colonized within the last 5 years). Specifically, we predicted greater exploratory behaviour and stronger corticosterone response to stressors in birds at the range edge, which may facilitate the identification, resolution and memory of stressors. Indeed, we found that distance from Mombasa (a proxy for population age) was a strong predictor of both exploratory behaviour and corticosterone release in response to restraint (but only while birds were breeding). These results suggest that certain behavioural and neuroendocrine traits may influence the ability of species to colonize novel habitats. PMID:22951742

  2. Physiology informed virtual surgical planning: a case study with a virtual airway surgical planner and BioGears

    NASA Astrophysics Data System (ADS)

    Potter, Lucas; Arikatla, Sreekanth; Bray, Aaron; Webb, Jeff; Enquobahrie, Andinet

    2017-03-01

    Stenosis of the upper airway affects approximately 1 in 200,000 adults per year1 , and occurs in neonates as well2 . Its treatment is often dictated by institutional factors and clinicians' experience or preferences 3 . Objective and quantitative methods of evaluating treatment options hold the potential to improve care in stenosis patients. Virtual surgical planning software tools are critically important for this. The Virtual Pediatric Airway Workbench (VPAW) is a software platform designed and evaluated for upper airway stenosis treatment planning. It incorporates CFD simulation and geometric authoring with objective metrics from both that help in informed evaluation and planning. However, this planner currently lacks physiological information which could impact the surgical planning outcomes. In this work, we integrated a lumped parameter, model based human physiological engine called BioGears with VPAW. We demonstrated the use of physiology informed virtual surgical planning platform for patient-specific stenosis treatment planning. The preliminary results show that incorporating patient-specific physiology in the pretreatment plan would play important role in patient-specific surgical trainers and planners in airway surgery and other types of surgery that are significantly impacted by physiological conditions during surgery.

  3. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  4. Baseline Physiologic and Psychosocial Characteristics of Transgender Youth Seeking Care for Gender Dysphoria

    PubMed Central

    Olson, Johanna; Schrager, Sheree M.; Belzer, Marvin; Simons, Lisa K.; Clark, Leslie F.

    2016-01-01

    Purpose The purpose of this study was to describe baseline characteristics of participants in a prospective observational study of transgender youth (aged 12–24 years) seeking care for gender dysphoria at a large, urban transgender youth clinic. Methods Eligible participants presented consecutively for care at between February 2011 and June 2013 and completed a computer-assisted survey at their initial study visit. Physiologic data were abstracted from medical charts. Data were analyzed by descriptive statistics, with limited comparisons between transmasculine and transfeminine participants. Results A total of 101 youth were evaluated for physiologic parameters, 96 completed surveys assessing psychosocial parameters. About half (50.5%) of the youth were assigned a male sex at birth. Baseline physiologic values were within normal ranges for assigned sex at birth. Youth recognized gender incongruence at a mean age of 8.3 years (standard deviation = 4.5), yet disclosed to their family much later (mean = 17.1; standard deviation = 4.2). Gender dysphoria was high among all participants. Thirty-five percent of the participants reported depression symptoms in the clinical range. More than half of the youth reported having thought about suicide at least once in their lifetime, and nearly a third had made at least one attempt. Conclusions Baseline physiologic parameters were within normal ranges for assigned sex at birth. Transgender youth are aware of the incongruence between their internal gender identity and their assigned sex at early ages. Prevalence of depression and suicidality demonstrates that youth may benefit from timely and appropriate intervention. Evaluation of these youth over time will help determine the impact of medical intervention and mental health therapy. PMID:26208863

  5. Baseline Physiologic and Psychosocial Characteristics of Transgender Youth Seeking Care for Gender Dysphoria.

    PubMed

    Olson, Johanna; Schrager, Sheree M; Belzer, Marvin; Simons, Lisa K; Clark, Leslie F

    2015-10-01

    The purpose of this study was to describe baseline characteristics of participants in a prospective observational study of transgender youth (aged 12-24 years) seeking care for gender dysphoria at a large, urban transgender youth clinic. Eligible participants presented consecutively for care at between February 2011 and June 2013 and completed a computer-assisted survey at their initial study visit. Physiologic data were abstracted from medical charts. Data were analyzed by descriptive statistics, with limited comparisons between transmasculine and transfeminine participants. A total of 101 youth were evaluated for physiologic parameters, 96 completed surveys assessing psychosocial parameters. About half (50.5%) of the youth were assigned a male sex at birth. Baseline physiologic values were within normal ranges for assigned sex at birth. Youth recognized gender incongruence at a mean age of 8.3 years (standard deviation = 4.5), yet disclosed to their family much later (mean = 17.1; standard deviation = 4.2). Gender dysphoria was high among all participants. Thirty-five percent of the participants reported depression symptoms in the clinical range. More than half of the youth reported having thought about suicide at least once in their lifetime, and nearly a third had made at least one attempt. Baseline physiologic parameters were within normal ranges for assigned sex at birth. Transgender youth are aware of the incongruence between their internal gender identity and their assigned sex at early ages. Prevalence of depression and suicidality demonstrates that youth may benefit from timely and appropriate intervention. Evaluation of these youth over time will help determine the impact of medical intervention and mental health therapy. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  6. Assessing formal teaching of ethics in physiology: an empirical survey, patterns, and recommendations.

    PubMed

    Goswami, Nandu; Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut

    2012-09-01

    Ethics should be an important component of physiological education. In this report, we examined to what extent teaching of ethics is formally being incorporated into the physiology curriculum. We carried out an e-mail survey in which we asked the e-mail recipients whether their institution offered a course or lecture on ethics as part of the physiology teaching process at their institution, using the following query: "We are now doing an online survey in which we would like to know whether you offer a course or a lecture on ethics as part of your physiology teaching curriculum." The response rate was 53.3%: we received 104 responses of a total of 195 sent out. Our responses came from 45 countries. While all of our responders confirmed that there was a need for ethics during medical education and scientific training, the degree of inclusion of formal ethics in the physiology curriculum varied widely. Our survey showed that, in most cases (69%), including at our Medical University of Graz, ethics in physiology is not incorporated into the physiology curriculum. Given this result, we suggest specific topics related to ethics and ethical considerations that could be integrated into the physiology curriculum. We present here a template example of a lecture "Teaching Ethics in Physiology" (structure, content, examples, and references), which was based on guidelines and case reports provided by experts in this area (e.g., Benos DJ. Ethics revisited. Adv Physiol Educ 25: 189-190, 2001). This lecture, which we are presently using in Graz, could be used as a base that could lead to greater awareness of important ethical issues in students at an early point in the educational process.

  7. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  8. The aesthetics of laboratory inscription: Claude Bernard's Cahier Rouge.

    PubMed

    Sattar, Atia

    2013-03-01

    This essay explores the aesthetic sensibilities of the French physiologist Claude Bernard (1813-1878). In particular, it analyzes the Cahier Rouge (1850-1860), Bernard's acclaimed laboratory notebook. In this notebook, Bernard articulates the range of his experience as an experimental physiologist, juxtaposing without differentiation details of laboratory procedure and more personal queries, doubts, and reflections on experimentation, life, and art. Bernard's insights, it is argued, offer an aesthetic and phenomenological template for considering experimentation. His physiological point of view ranges from his own bodily aesthesis or sensory perception, through personal reflections on scientific discovery as an artistic process, to a broader metaphysical conception of life as an artistic creation. Such an aesthetic approach to physiology enables Bernard to reconcile his empirical methodology and his romantic idealism; it offers the history of laboratory science a framework for considering the individual, bodily, and emotional labor inherent in physiological experimentation.

  9. Photoperiodic regulation of cellular retinol binding protein, CRBP1 [corrected] and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster.

    PubMed

    Barrett, Perry; Ivanova, Elena; Graham, E Scott; Ross, Alexander W; Wilson, Dana; Plé, Helene; Mercer, Julian G; Ebling, Francis J; Schuhler, Sandrine; Dupré, Sandrine M; Loudon, Andrew; Morgan, Peter J

    2006-12-01

    Tanycytes in the ependymal layer of the third ventricle act both as a barrier and a communication gateway between the cerebrospinal fluid, brain and portal blood supply to the pituitary gland. However, the range, importance and mechanisms involved in the function of tanycytes remain to be explored. In this study, we have utilized a photoperiodic animal to examine the expression of three unrelated gene sequences in relation to photoperiod-induced changes in seasonal physiology and behaviour. We demonstrate that cellular retinol binding protein [corrected] (CRBP1), a retinoic acid transport protein, GPR50, an orphan G-protein-coupled receptor and nestin, an intermediate filament protein, are down-regulated in short-day photoperiods. The distribution of the three sequences is very similar, with expression located in cells with tanycyte morphology in the region of the ependymal layer where tanycytes are located. Furthermore, CRBP1 expression in the ependymal layer is shown to be independent of a circadian clock and altered testosterone levels associated with testicular regression in short photo-period. Pinealectomy of Siberian hamsters demonstrates CRBP1 expression is likely to be dependent on melatonin output from the pineal gland. This provides evidence that tanycytes are seasonally responsive cells and are likely to be an important part of the mechanism to facilitate seasonal physiology and behaviour in the Siberian hamster.

  10. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  11. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation

    PubMed Central

    Kent, Brianne A.; Beynon, Amy L.; Hornsby, Amanda K.E.; Bekinschtein, Pedro; Bussey, Timothy J.; Davies, Jeffrey S.; Saksida, Lisa M.

    2015-01-01

    Summary An important link exists between intact metabolic processes and normal cognitive functioning; however, the underlying mechanisms remain unknown. There is accumulating evidence that the gut hormone ghrelin, an orexigenic peptide that is elevated during calorie restriction (CR) and known primarily for stimulating growth hormone release, has important extra-hypothalamic functions, such as enhancing synaptic plasticity and hippocampal neurogenesis. The present study was designed to evaluate the long-term effects of elevating acyl-ghrelin levels, albeit within the physiological range, on the number of new adult born neurons in the dentate gyrus (DG) and performance on the Spontaneous Location Recognition (SLR) task, previously shown to be DG-dependent and sensitive to manipulations of plasticity mechanisms and cell proliferation. The results revealed that peripheral treatment of rats with acyl-ghrelin enhanced both adult hippocampal neurogenesis and performance on SLR when measured 8–10 days after the end of acyl-ghrelin treatment. Our data show that systemic administration of physiological levels of acyl-ghrelin can produce long-lasting improvements in spatial memory that persist following the end of treatment. As ghrelin is potentially involved in regulating the relationship between metabolic and cognitive dysfunction in ageing and neurodegenerative disease, elucidating the underlying mechanisms holds promise for identifying novel therapeutic targets and modifiable lifestyle factors that may have beneficial effects on the brain. PMID:25462915

  12. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  13. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that appear to be locally adapted physiologically to their specific environmental conditions. Populations with more challenging migrations have enhanced cardiorespiratory performance. Pacific salmonids are able to maintain aerobic scope across the broad range of temperatures encountered historically during their migration; however, climate change-induced river warming has created lethal conditions for many populations, raising conservation concerns. Despite considerable research examining cardiorespiratory physiology in Pacific salmonids over the last 70 years, critical knowledge gaps are identified. © 2015 The Fisheries Society of the British Isles.

  14. A simulation study on the constancy of cardiac energy metabolites during workload transition.

    PubMed

    Saito, Ryuta; Takeuchi, Ayako; Himeno, Yukiko; Inagaki, Nobuya; Matsuoka, Satoshi

    2016-12-01

    The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant during physiological cardiac workload transition. How this is accomplished is not yet clarified, though Ca 2+ has been suggested to be one of the possible mechanisms. We constructed a detailed mathematical model of cardiac mitochondria based on experimental data and studied whether known Ca 2+ -dependent regulation mechanisms play roles in the metabolite constancy. Model simulations revealed that the Ca 2+ -dependent regulation mechanisms have important roles under the in vitro condition of isolated mitochondria where malate and glutamate were mitochondrial substrates, while they have only a minor role and the composition of substrates has marked influence on the metabolite constancy during workload transition under the simulated in vivo condition where many substrates exist. These results help us understand the regulation mechanisms of cardiac energy metabolism during physiological cardiac workload transition. The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant over a wide range of cardiac workload, though the mechanisms are not yet clarified. One possible regulator of mitochondrial metabolism is Ca 2+ , because it activates several mitochondrial enzymes and transporters. Here we constructed a mathematical model of cardiac mitochondria, including oxidative phosphorylation, substrate metabolism and ion/substrate transporters, based on experimental data, and studied whether the Ca 2+ -dependent activation mechanisms play roles in metabolite constancy. Under the in vitro condition of isolated mitochondria, where malate and glutamate were used as mitochondrial substrates, the model well reproduced the Ca 2+ and inorganic phosphate (P i ) dependences of oxygen consumption, NADH level and mitochondrial membrane potential. The Ca 2+ -dependent activations of the aspartate/glutamate carrier and the F 1 F o -ATPase, and the P i -dependent activation of Complex III were key factors in reproducing the experimental data. When the mitochondrial model was implemented in a simple cardiac cell model, simulation of workload transition revealed that cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyt ) within the physiological range markedly increased NADH level. However, the addition of pyruvate or citrate attenuated the Ca 2+ dependence of NADH during the workload transition. Under the simulated in vivo condition where malate, glutamate, pyruvate, citrate and 2-oxoglutarate were used as mitochondrial substrates, the energy metabolites were more stable during the workload transition and NADH level was almost insensitive to [Ca 2+ ] cyt . It was revealed that mitochondrial substrates have a significant influence on metabolite constancy during cardiac workload transition, and Ca 2+ has only a minor role under physiological conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Mechanistic species distribution modelling as a link between physiology and conservation.

    PubMed

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and conservation practitioners would work collaboratively to build models, interpret results and consider conservation management options, and articulating this need here may help to stimulate collaboration.

  16. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    ERIC Educational Resources Information Center

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  17. Using time-series intervention analysis to model cow heart rate affected by programmed audio and environmental/physiological cues

    USDA-ARS?s Scientific Manuscript database

    This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...

  18. Establishing good dietary habits -- capturing the minds of children.

    PubMed

    Westenhoefer, J

    2001-02-01

    To review the psycho-social research with respect to relevance for the development of nutritional education strategies. The eating behaviour of the newborn baby is controlled by innate preferences and dislikes, and by biological self-regulation. These innate control-systems are modified by learning processes, most importantly by the mere exposure to unknown food, by social influences, and by associating the physiological consequences of food intake with taste cues. The last decades have witnessed a change of the social meaning of food and eating, and the social context of eating is subject to dramatic changes. While on the one hand, prevalence of overweight and obesity is increasing, even young children deliberately practise weight control measures ranging from selective food choice to self-induced vomiting thus including behaviours which are clearly symptomatic of eating disorders. Such behaviour is motivated by unrealistic conceptions of a healthy body weight and shape. Children are interested in a range of nutrition topics. However, these topics have to be related to direct perceivable benefits from nutrition. Educational strategies should: firstly, focus on providing a variety of foods, including a range of nutrient-dense 'healthy' food and encouraging children to taste it; secondly, provide a stable and predictive pattern of social eating occasions to promote the social meaning and importance of eating and to enable social learning of food preferences; and finally, encourage a positive body image by providing advice and reassurance regarding the range of healthy and acceptable body weights and shapes.

  19. Evaluation of Water Content in Lumbar Intervertebral Discs and Facet Joints Before and After Physiological Loading Using T2 Mapping MRI.

    PubMed

    Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru

    2017-12-15

    T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.

  20. Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea

    PubMed Central

    Sanchez-Amat, Antonio; Solano, Francisco; Lucas-Elío, Patricia

    2010-01-01

    The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid l-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology. Characterization of the operon encoding the tyrosinase responsible for melanin synthesis revealed that a second gene in that operon encodes a protein, PpoB2, which is involved in copper transfer to tyrosinase. This finding made PpoB2 the first protein in the COG5486 group to which a physiological role has been assigned. Another enzyme of interest described in M. mediterranea is a multicopper oxidase encoding a membrane-associated enzyme that shows oxidative activity on a wide range of substrates typical of both laccases and tyrosinases. Finally, an enzyme very specific for l-lysine, which oxidises this amino acid in epsilon position and that has received a new EC number (1.4.3.20), has also been described for M. mediterranea. Overall, the studies carried out on this bacterium illustrate the power of exploring the physiology of selected microorganisms to discover novel enzymes of biotechnological relevance. PMID:20411113

  1. Relationship between behavioral and physiological spectral-ripple discrimination.

    PubMed

    Won, Jong Ho; Clinard, Christopher G; Kwon, Seeyoun; Dasika, Vasant K; Nie, Kaibao; Drennan, Ward R; Tremblay, Kelly L; Rubinstein, Jay T

    2011-06-01

    Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 "change" responses were significantly correlated with d' values from the single-interval behavioral procedure. Results suggest that the single-interval procedure with spectral-ripple phase inversion in ongoing stimuli is a valid approach for measuring behavioral or physiological spectral resolution.

  2. The importance of dietary carbohydrates.

    PubMed

    Sánchez-Castillo, Claudia P; Hudson, Geoffrey J; Englyst, Hans N; Dewey, Peter; James, W Philip T

    2002-12-01

    Forty years ago carbohydrates (CHO) were regarded as a simple energy source whereas they are now recognized as important food components. The human diet contains a wide range of CHO, the vast majority of which are of plant origin. Modern techniques based on chemical classification of dietary CHO replaced the traditional "by difference" measurement. They provide a logical basis for grouping into categories of specific nutritional importance. The physiological effects of dietary CHO are highly dependent on the rate and extent of digestion and absorption in the small intestine and fermentation in the large intestine, interactions which promote human health. Current knowledge of the fate of dietary CHO means that the potentially undesirable properties of many modern foods could be altered by using processing techniques that yield foods with more intact plant cell wall structures. Such products would more closely resemble the foods in the pre-agriculture diet with respect to the rate of digestion and absorption of CHO in the small intestine. The potentially detrimental physiological consequences of eating sugars and starch that are rapidly digested and absorbed in the small intestine suggest that, as fibre, the form, as well as the amount of starch should be considered. Increasing consumer awareness of the relationship between diet and health has led to demands for more widespread nutrition labelling. The entry "carbohydrate" is required in most countries, and the value is usually obtained "by difference" and used in the calculation of energy content. However, the value provides no nutritional information per se. Food labels should provide values that aid consumers in selecting a healthy diet.

  3. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

    PubMed

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.

  4. Fecal glucocorticoid metabolites in wild yellow-bellied marmots: experimental validation, individual differences and ecological correlates.

    PubMed

    Smith, Jennifer E; Monclús, Raquel; Wantuck, Danielle; Florant, Gregory L; Blumstein, Daniel T

    2012-09-01

    Natural selection is expected to shape phenotypic traits that permit organisms to respond appropriately to the environments in which they live. One important mechanism by which animals cope with changes in their environment is through physiological responses to stressors mediated by glucocorticoid hormones. Here we perform biological and physiological validations of a minimally-invasive technique for assessing fecal corticosterone metabolites (FCMs) in captive and wild groups of yellow-bellied marmots (Marmota flaviventris). Then we draw from ten years of data on these obligate hibernators at the Rocky Mountain Biological Laboratory in Colorado, USA to assess the extent to which seasonal and daily changes explain naturalistic variation in baseline levels of FCMs. Interestingly, beyond important population-level variation with respect to year, season, time of day, sex, age and reproductive state, we found repeatable inter-individual differences in FCMs, suggesting this hormonal trait might be a meaningful target of selection. FCM levels were 68% lower in captive than wild marmots, suggesting that the natural environment in which these animals occur is generally more challenging or less predictable than life in captivity. Most live-trapping events failed to represent stressors for wild marmots such that repeated measurements of traits were possible with minimal "stress" to subjects. We also document the natural ranges of annual and seasonal variation necessary for understanding the extent to which anthropogenic assaults represent stressors for wild mammals. Taken together, this study provides a foundation for understanding the evolution of hormonal traits and has important welfare and conservation implications for field biologists. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Why are there so few freshwater fish species in most estuaries?

    PubMed

    Whitfield, A K

    2015-04-01

    The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0-17·9), polyhaline (salinity: 18·0-29·9) or euhaline (salinity: 30·0-39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0-100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role. © 2015 The Fisheries Society of the British Isles.

  6. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    PubMed

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development?

    PubMed

    Obradović, Jelena

    2012-05-01

    The focus of this article is to present current progress in understanding the interplay among adversity, physiological sensitivity to context, and adaptive functioning, with an emphasis on implications and future directions for resilience researchers. It includes a review of current literature that demonstrates (a) links between various levels of adversity exposure and variability in physiological reactivity, (b) how the interplay between children's physiological reactivity and different sources of risk and adversity relates to variability in adaptive functioning, and (c) various approaches for capturing a more dynamic nature of physiological reactivity and related processes. Throughout, important conceptual and empirical issues are highlighted.

  9. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  10. Visualization and classification of physiological failure modes in ensemble hemorrhage simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Pruett, William Andrew; Hester, Robert

    2015-01-01

    In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.

  11. Applying standardized uptake values in gallium-67-citrate single-photon emission computed tomography/computed tomography studies and their correlation with blood test results in representative organs.

    PubMed

    Toriihara, Akira; Daisaki, Hiromitsu; Yamaguchi, Akihiro; Yoshida, Katsuya; Isogai, Jun; Tateishi, Ukihide

    2018-05-21

    Recently, semiquantitative analysis using standardized uptake value (SUV) has been introduced in bone single-photon emission computed tomography/computed tomography (SPECT/CT). Our purposes were to apply SUV-based semiquantitative analytic method for gallium-67 (Ga)-citrate SPECT/CT and to evaluate correlation between SUV of physiological uptake and blood test results in representative organs. The accuracy of semiquantitative method was validated using an National Electrical Manufacturers Association body phantom study (radioactivity ratio of sphere : background=4 : 1). Thereafter, 59 patients (34 male and 25 female; mean age, 66.9 years) who had undergone Ga-citrate SPECT/CT were retrospectively enrolled in the study. A mean SUV of physiological uptake was calculated for the following organs: the lungs, right atrium, liver, kidneys, spleen, gluteal muscles, and bone marrow. The correlation between physiological uptakes and blood test results was evaluated using Pearson's correlation coefficient. The phantom study revealed only 1% error between theoretical and actual SUVs in the background, suggesting the sufficient accuracy of scatter and attenuation corrections. However, a partial volume effect could not be overlooked, particularly in small spheres with a diameter of less than 28 mm. The highest mean SUV was observed in the liver (range: 0.44-4.64), followed by bone marrow (range: 0.33-3.60), spleen (range: 0.52-2.12), and kidneys (range: 0.42-1.45). There was no significant correlation between hepatic uptake and liver function, renal uptake and renal function, or bone marrow uptake and blood cell count (P>0.05). The physiological uptake in Ga-citrate SPECT/CT can be represented as SUVs, which are not significantly correlated with corresponding blood test results.

  12. Physiological principles of vestibular function on earth and in space

    NASA Technical Reports Server (NTRS)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  13. Validation of Lower Body Negative Pressure as an Experimental Model of Hemorrhage

    DTIC Science & Technology

    2013-12-19

    saving intervention (15). Therefore it is important to develop a valid model for understanding the physiology of human hemorrhage especially during the...hemorrhage to investigate the physiological responses to hypovolemia (7). LBNP causes a reduction in pressure sur- rounding the lower extremities. As...from that observed with hemorrhage reflects the physiological mechanisms producing central hypovolemia. During LBNP, intravascular fluid shifts to the

  14. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    PubMed

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. Copyright © 2014 the American Physiological Society.

  15. Monitoring the wild black bear's reaction to human and environmental stressors

    PubMed Central

    2011-01-01

    Background Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices. Results Insertable cardiac monitors that were developed for use in human heart patients (Reveal® XT, Medtronic, Inc) were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds) and low respiration rates (1.5 breaths/min) during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm)) and during interactions with hunters (exceeding 250 bpm). The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter) to 1084 minutes (summer). Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data. Conclusions Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years. PMID:21849079

  16. Century long assessment of herbaceous plants' physiological responses to climate change in Switzerland

    NASA Astrophysics Data System (ADS)

    Moreno-Gutierrez, Cristina; Kahmen, Ansgar

    2017-04-01

    The isotopic analysis of archived plant material offers the exceptional opportunity to reconstruct the physiological activity of plants over long time periods and thus, to assess plant responses to environmental changes during the last centuries. In addition, the stable isotope analysis of herbarium samples offers the opportunity to reconstruct the physiological processes of a large range of different plant species and from different environments. Interestingly, only few studies have to date assessed these archives. We will present a novel analysis of leaf nitrogen, oxygen and carbon isotope ratios of more than a thousand herbarium specimens collected since 1800 until present from the unique herbaria hold at the University of Basel. The objective of our study was to assess century-long physiological responses of herbaceous plant species from different plant functional groups and along an altitudinal gradient in Switzerland. The goal of our study was to determine with our investigations the long-term responses of plants to climate change. Such investigations are important as they allow to assess long-term processes of acclimation and adaptation in plants to global enviromental change. In our study we found that herbaceous plants have increased their intrinsic water use efficiency in response to increasing atmospheric CO2 concentration but this increment was higher in plants from higher altitudes, due to the higher efficiency of CO2 assimilation of alpine plants compared to plants from lowlands. There were also differences among functional groups, with grasses and forbs showing the highest increments. In addition, herbaceous plants showed a decreasing trend with time in their N isotopic composition, which may indicate progressive N limitation due to higher biological activity with increasing atmospheric CO2 concentration.

  17. Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density.

    PubMed

    Baussant, Thierry; Nilsen, Marianne; Ravagnan, Elisa; Westerlund, Stig; Ramanand, Sreerekha

    2017-01-01

    Despite the importance of the cold-water coral Lophelia pertusa to deep-sea reef ecosystem functioning, current knowledge of key physiological responses to available food resources is scarce. Scenarios with varying food density may help to understand how corals deal with seasonal variations in the dark ocean and might be used to study consequences of anthropogenic activities potentially affecting food availability. Thus, the physiological responses of L. pertusa to varying food (Artemia salina nauplii) concentration, ranging from 20% to 300% of carbon equivalent turned over by basal coral respiration, were investigated. A starvation group was also included. Measurements of respiration, growth, mucus production, and energy reserves (storage fatty acids) were performed at several time intervals over 26 weeks. In general, data showed a stronger effect of experimental time on measured responses, but no significant influence of food density treatment. In starved corals, respiration rate declined to 52% of initial respiration, while skeleton growth rate was maintained at the same rate as Artemia-fed corals throughout the investigation. Mucus production measured as the sum of dissolved organic carbon (DOC) and particulate organic carbon (POC) was also similar across food treatments, but POC production exceeded that of DOC at the highest food density. No marked effect was observed on storage fatty acids. These results confirm that L. pertusa is highly resilient to environmental conditions with suboptimal food densities over a time scale of months. Regulation of several physiological processes, including respiration and mucus production, possibly in combination with an opportunistic feeding strategy, contributed to this tolerance to maintain viable corals. Thus, it appears that L. pertusa is well adapted to life in the deep sea.

  18. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587

  19. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium.

    PubMed

    Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2015-12-15

    Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.

  20. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    PubMed

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  1. Home-based vs. laboratory-based practical activities in the learning of human physiology: the perception of students.

    PubMed

    Neves, Ben-Hur S; Altermann, Caroline; Gonçalves, Rithiele; Lara, Marcus Vinícius; Mello-Carpes, Pâmela B

    2017-03-01

    Different tools have been used to facilitate the teaching and learning process in different areas of knowledge. Practical activities represent a form of teaching in which students not only listen to theoretical concepts but are also able to link theory and practice, and their importance in the biological sciences is notable. Sometimes, however, there is neither the time nor the resources to promote laboratory practices in physiology classes. In this sense, home-based practical activities may be an interesting alternative. Here, different approaches of practical activities were used and students' perceptions of the contributions of home-based practical activities (HBPA) and laboratory-based practical activities (LBPA) for physiology learning were collected. After each approach, the students evaluated the activities through an anonymous questionnaire. A total of 49 students completed the questionnaires, and the results demonstrate that both HBPA and LBPA were considered important contributors to physiology learning but that this contribution was more significant in the case of LBPA (χ 2 = 4.356, P = 0.037). Copyright © 2017 the American Physiological Society.

  2. Importance of the gut-brain axis in the control of glucose homeostasis.

    PubMed

    Migrenne, Stéphanie; Marsollier, Nicolas; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2006-12-01

    Adult mammals finely match glucose production to glucose utilization, thus allowing glycaemia to be maintained in a physiological range of 0.8-1.2mg/dl whatever the energetic status of the mammal (i.e. fed or fasted, rested or exercised). To accomplish this, peripheral signals originating from the gut 'inform' the central nervous system, which in turn is able to monitor the status of both peripheral glucose stores and ongoing fuel availability. Indeed, both secretion and action of hormones regulating endogenous glucose production and utilization are regulated by the autonomic nervous system. These gut signals are either hormonal (e.g. glucagon-like peptide-1, ghrelin and cholecystokinine) or neuronal (e.g. afferent vagus nerve fibres). Recent data, combined with the development of incretin analogues for treatment of diabetes, highlight the importance of the gut-brain axis, especially glucagon-like peptide-1 and ghrelin, in the control of glucose homeostasis.

  3. TRPC5 channels participate in pressure-sensing in aortic baroreceptors

    PubMed Central

    Lau, On-Chai; Shen, Bing; Wong, Ching-On; Tjong, Yung-Wui; Lo, Chun-Yin; Wang, Hui-Chuan; Huang, Yu; Yung, Wing-Ho; Chen, Yang-Chao; Fung, Man-Lung; Rudd, John Anthony; Yao, Xiaoqiang

    2016-01-01

    Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications. PMID:27411851

  4. Metabolic constituents of grapevine and grape-derived products

    PubMed Central

    Ali, Kashif; Maltese, Federica; Verpoorte, Robert

    2009-01-01

    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology. PMID:20835385

  5. Deep learning for neuroimaging: a validation study.

    PubMed

    Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.

  6. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  7. Sitting in the sun: Nest microhabitat affects incubation temperatures in seabirds.

    PubMed

    Hart, Lorinda A; Downs, Colleen T; Brown, Mark

    2016-08-01

    During incubation parent birds are committed to a nest site and endure a range of ambient conditions while regulating egg temperatures. Using artificial eggs containing temperature loggers alongside ambient temperature (Ta) controls, incubation profiles were determined for four tropical seabird species at different nest site locations. Camera traps were used for ad-hoc behavioural incubation observations. Eggs experienced a range of temperatures during incubation and varied significantly between species and in some cases between different microhabitats within a species. Such variation has important consequences in the phenotypic expression of both physical and physiological traits of chicks, and ultimately species fitness. Exposed nest sites were more strongly correlated to Tas. Camera traps highlighted different incubation strategies employed by these species that could be related to trade-offs in predator defence, feeding habits, and temperature regulation of eggs. This study provides evidence that species with similar breeding habits could be affected by environmental stressors in similar ways and that the differences shown in nest site selection could negate some of these effects. We propose that habitats providing suitable nest microclimates will become increasingly important for the successful breeding of seabird species, particularly under predicted climate change scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    PubMed Central

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems. PMID:25721758

  9. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone.

    PubMed

    He, Qiang; Cui, Baoshan

    2015-02-27

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems.

  10. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy.

    PubMed

    Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg

    2017-11-01

    In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.

  11. Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    PubMed Central

    Typlt, Marei; Englitz, Bernhard; Sonntag, Mandy; Dehmel, Susanne; Kopp-Scheinpflug, Cornelia; Ruebsamen, Rudolf

    2012-01-01

    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies. PMID:22253838

  12. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  13. [The hip joint in neuromuscular disorders].

    PubMed

    Strobl, W M

    2009-07-01

    Physiologic motor and biomechanical parameters are prerequisites for normal hip development and hip function. Disorders of muscle activity and lack of weight bearing due to neuromuscular diseases may cause clinical symptoms such as an unstable hip or reduced range of motion. Disability and handicap because of pain, hip dislocation, osteoarthritis, gait disorders, or problems in seating and positioning are dependent on the severity of the disease, the time of occurrence, and the means of prevention and treatment. Preservation of pain-free and stable hip joints should be gained by balancing muscular forces and by preventing progressive dislocation. Most important is the exact indication of therapeutic options such as movement and standing therapy as well as drugs and surgery.

  14. Increased anxiety and synaptic plasticity in estrogen receptor -deficient mice

    NASA Astrophysics Data System (ADS)

    Krel, Wojciech; Dupont, Sonia; Krust, Andrée; Chambon, Pierre; Chapman, Paul F.

    2001-10-01

    Estrogens are powerful modulators of neuronal physiology and in humans may affect a broad range of functions, including reproductive, emotional, and cognitive behaviors. We studied the contribution of estrogen receptors (ERs) in modulation of emotional processes and analyzed the effects of deleting ER or ER in mice. Behavior consistent with increased anxiety was observed principally in ER mutant females and was associated with a reduced threshold for the induction of synaptic plasticity in the basolateral amygdala. Local increase of 5-hydroxytryptamine 1a receptor expression inmedial amygdala may contribute to these changes. Our data show that, particularly in females, there is an important role for ERβ-mediated estrogen signaling in the processing of emotional behavior.

  15. A holistic approach on the neurological benefits of music.

    PubMed

    Jimenez-Dabdoub, Lily; Catterall, Jenn

    2015-09-01

    A holistic perspective on human beings allows health carers to achieve an understanding of all the physiological, psychological and social disturbances of the patient as a whole. Through this article we wish to focus on how music has holistic neurological benefits. Music-therapy interventions can be more accessible and even "self-managed" by the patient's relatives. They can reinforce social cohesion, family ties and patients' self-esteem and thus produce a better quality of life. Overall, it is important to consider the benefits that an evolutionary understanding of musical behaviour and a holistic clinical perspective of the role of music may bring for rehabilitation of a wide range of symptoms and conditions.

  16. TRP ion channels in thermosensation, thermoregulation and metabolism

    PubMed Central

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  17. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  18. ABNORMAL ALDOSTERONE PHYSIOLOGY AND CARDIO-METABOLIC RISK FACTORS

    PubMed Central

    Vaidya, Anand; Underwood, Patricia C.; Hopkins, Paul N.; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H.; Adler, Gail K.

    2013-01-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardio-metabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardio-metabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI for serum and SAUSSI for urine), could predict cardio-metabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal (LIB) and restricted (RES) sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on LIB (maximally suppressed aldosterone) to aldosterone on RES (stimulated aldosterone) diets, and associated with risk factors using adjusted regression models. Cardio-metabolic risk factors associated with either impaired suppression of aldosterone on LIB diet, or impaired stimulation on RES diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that comprise the metabolic syndrome (MetS), there was a strong positive association between the number of MetS components (0–4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero MetS components (86% for SASSI and 83% for SAUSSI). Assessing the physiologic range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, and/or result from, early cardio-metabolic abnormalities. PMID:23399714

  19. Psychological traits influence autonomic nervous system recovery following esophageal intubation in health and functional chest pain.

    PubMed

    Farmer, A D; Coen, S J; Kano, M; Worthen, S F; Rossiter, H E; Navqi, H; Scott, S M; Furlong, P L; Aziz, Q

    2013-12-01

    Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. © 2013 John Wiley & Sons Ltd.

  20. Yield physiology of short rotation intensively cultured poplars

    Treesearch

    J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael

    1983-01-01

    An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.

  1. Process-Oriented Guided-Inquiry Learning in an Introductory Anatomy and Physiology Course with a Diverse Student Population

    ERIC Educational Resources Information Center

    Brown, Patrick J. P.

    2010-01-01

    Process-oriented guided-inquiry learning (POGIL), a pedagogical technique initially developed for college chemistry courses, has been implemented for 2 yr in a freshman-level anatomy and physiology course at a small private college. The course is populated with students with backgrounds ranging from no previous college-level science to junior and…

  2. The physiological ecology of the supratidal amphipod Talorchestia longicornis.

    PubMed

    Ramus, Aaron P; Forward, Richard B

    2012-02-01

    Physiology, behavior, habitat, and morphology are used to determine the degree of adaptation to life on land for amphipod species and systemization within the four functional groups of the family talitridae. Talorchestia longicornis is a semi-terrestrial amphipod found in the supratidal zone of estuaries. The present study investigates the physiological adaptations of this species to life on land through measurements of osmoregulation and respiration. Over the salinity range of 1-40‰, T. longicornis regulated its hemolymph hyperosmotically at low salinities and hypoosmotically at high salinities. The isosmotic point was about 27‰. Analogously, hemolymph chloride levels were well regulated being hyperionic at low salinities and hypoionic at high salinities. This species is capable of respiration in both air and water. Slopes (b values) of the relationship between weight and oxygen uptake rates ranged from 0.316 to 0.590. Oxygen uptake rates were higher in air than water and at night versus day. Q(10) values were slightly below 2.0 for respiration in air for amphipods, irrespective of weight. These physiological adaptations, along with its behaviors, habitat, and morphology, place T. longicornis within the Group III sandhoppers of the Talitridae. Copyright © 2011. Published by Elsevier Inc.

  3. Effects of food supplementation on the physiological ecology of female Western diamond-backed rattlesnakes (Crotalus atrox).

    PubMed

    Taylor, Emily N; Malawy, Michael A; Browning, Dawn M; Lemar, Shea V; DeNardo, Dale F

    2005-06-01

    Food availability is an important factor in the life histories of organisms because it is often limiting and thus can affect growth, mass change, reproduction, and behaviors such as thermoregulation, locomotion, and mating. Experimental studies in natural settings allow researchers to examine the effects of food on these parameters while animals are free to behave naturally. The wide variation among organisms in energy demands and among environmental food resources suggest that responses to changes in food availability may vary among organisms. Since most supplemental feeding field experiments have been conducted on species with high energy demands, we conducted a supplemental feeding study on free-ranging, female Western diamond-backed rattlesnakes (Crotalus atrox), a species with low energy demands and infrequent reproductive investment. Snakes were offered thawed rodents 1-4 times per week. Over two active seasons, we collected data on surface activity, home range size, growth, mass change, and reproduction of supplementally fed and control snakes. Fed and control snakes did not differ in surface activity levels (proportion of time encountered above versus below ground) or home range size. Fed snakes grew and gained mass faster, and had a dramatically higher occurrence of reproduction than control snakes. Also, fed snakes were in better body condition following reproduction than snakes that were not fed. However, litter characteristics such as offspring number and size were not increased by feeding, suggesting that these characteristics may be fixed. These data experimentally demonstrate that food availability can directly impact some life history traits (i.e., growth and reproduction for C. atrox), but not others (i.e., surface activity and home range size for C. atrox). The relationship between food availability and life history traits is affected in a complex way by ecological traits and physiological constraints, and thus interspecific variation in this relationship is likely to be high.

  4. Physiological responses to dyadic interactions are influenced by neurotypical adults' levels of autistic and empathy traits.

    PubMed

    Truzzi, Anna; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca

    2016-10-15

    Autistic traits are distributed on a continuum that ranges from non-clinical to clinical condition. Atypical responses to social situations represent a core feature of the Autism Spectrum Disorders phenotype. Here, we hypothesize that atypical physiological responses to social stimuli may predict non-clinical autistic and empathy traits levels. We measured physiological responses (heart rate, facial temperature) of 40 adults (20F) while showing them 24 movies representing dyadic interactions. Autistic traits were assessed through Autism Quotient questionnaire (AQ), while empathy traits were measured using the Empathy Quotient questionnaire (EQ). Opposite correlations between AQ and EQ scores and physiological responses were found. Analysis of physiological responses revealed that individuals with better social abilities, low AQ and high EQ, show opposite activation patterns compared to people with high AQ and low EQ. Findings show that physiological responses could be biomarkers for people's autistic traits and social abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  6. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry.

    PubMed

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.

  7. Detection of plum pox virus infection in selection plum trees using spectral imaging

    NASA Astrophysics Data System (ADS)

    Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar

    2016-01-01

    Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.

  8. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. A novel approach for estimating ingested dose associated with paracetamol overdose.

    PubMed

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  10. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  11. The Drosophila serpins: multiple functions in immunity and morphogenesis.

    PubMed

    Reichhart, Jean Marc; Gubb, David; Leclerc, Vincent

    2011-01-01

    Members of the serpin superfamily of proteins have been found in all living organisms, although rarely in bacteria or fungi. They have been extensively studied in mammals, where many rapid physiological responses are regulated by inhibitory serpins. In addition to the inhibitory serpins, a large group of noninhibitory proteins with a conserved serpin fold have also been identified in mammals. These noninhibitory proteins have a wide range of functions, from storage proteins to molecular chaperones, hormone transporters, and tumor suppressors. In contrast, until recently, very little was known about insect serpins in general, or Drosophila serpins in particular. In the last decade, however, there has been an increasing interest in the serpin biology of insects. It is becoming clear that, like in mammals, a similar wide range of physiological responses are regulated in insects and that noninhibitory serpin-fold proteins also play key roles in insect biology. Drosophila is also an important model organism that can be used to study human pathologies (among which serpinopathies or other protein conformational diseases) and mechanisms of regulation of proteolytic cascades in health or to develop strategies for control of insect pests and disease vectors. As most of our knowledge on insect serpins comes from studies on the Drosophila immune response, we survey here the Drosophila serpin literature and describe the laboratory techniques that have been developed to study serpin-regulated responses in this model genetic organism. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis

    PubMed Central

    Gill, B. A.; Kondratieff, B. C.; Casner, K. L.; Encalada, A. C.; Flecker, A. S.; Gannon, D. G.; Ghalambor, C. K.; Guayasamin, J. M.; Poff, N. L.; Simmons, M. P.; Thomas, S. A.; Zamudio, K. R.; Funk, W. C.

    2016-01-01

    The ‘mountain passes are higher in the tropics’ (MPHT) hypothesis posits that reduced climate variability at low latitudes should select for narrower thermal tolerances, lower dispersal and smaller elevational ranges compared with higher latitudes. These latitudinal differences could increase species richness at low latitudes, but that increase may be largely cryptic, because physiological and dispersal traits isolating populations might not correspond to morphological differences. Yet previous tests of the MPHT hypothesis have not addressed cryptic diversity. We use integrative taxonomy, combining morphology (6136 specimens) and DNA barcoding (1832 specimens) to compare the species richness, cryptic diversity and elevational ranges of mayflies (Ephemeroptera) in the Rocky Mountains (Colorado; approx. 40°N) and the Andes (Ecuador; approx. 0°). We find higher species richness and smaller elevational ranges in Ecuador than Colorado, but only after quantifying and accounting for cryptic diversity. The opposite pattern is found when comparing diversity based on morphology alone, underscoring the importance of uncovering cryptic species to understand global biodiversity patterns. PMID:27306051

  13. Collective behaviour in vertebrates: a sensory perspective

    PubMed Central

    Collignon, Bertrand; Fernández-Juricic, Esteban

    2016-01-01

    Collective behaviour models can predict behaviours of schools, flocks, and herds. However, in many cases, these models make biologically unrealistic assumptions in terms of the sensory capabilities of the organism, which are applied across different species. We explored how sensitive collective behaviour models are to these sensory assumptions. Specifically, we used parameters reflecting the visual coverage and visual acuity that determine the spatial range over which an individual can detect and interact with conspecifics. Using metric and topological collective behaviour models, we compared the classic sensory parameters, typically used to model birds and fish, with a set of realistic sensory parameters obtained through physiological measurements. Compared with the classic sensory assumptions, the realistic assumptions increased perceptual ranges, which led to fewer groups and larger group sizes in all species, and higher polarity values and slightly shorter neighbour distances in the fish species. Overall, classic visual sensory assumptions are not representative of many species showing collective behaviour and constrain unrealistically their perceptual ranges. More importantly, caution must be exercised when empirically testing the predictions of these models in terms of choosing the model species, making realistic predictions, and interpreting the results. PMID:28018616

  14. The Accuracy of Point-of-Care Glucose Measurements

    PubMed Central

    Rebel, Annette; Rice, Mark A.; Fahy, Brenda G.

    2012-01-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making. PMID:22538154

  15. Literature Review and Annotated Bibliography: Water Requirements of Desert Ungulates

    USGS Publications Warehouse

    Cain, James W.; Krausman, Paul R.; Rosenstock, Steven S.; Turner, Jack C.

    2005-01-01

    Executive Summary Ungulates adapted to desert areas are able to survive extreme temperatures and limited water availability. This ability is largely due to behavioral, morphological, and physiological adaptations that allow these animals to avoid or tolerate extreme environmental conditions. The physiological adaptations possessed by ungulates for thermoregulation and maintenance of water balance have been the subject of numerous studies involving a wide range of species. In this report we review the behavioral, morphological, and physiological mechanisms used by ungulates and other desert mammals to maintain water and temperature balance in arid environments. We also review some of the more commonly used methods for studying the physiological mechanisms involved in water balance and thermoregulation, and the influence of dehydration on these mechanisms.

  16. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    PubMed

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  17. Lung Mechanics in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    468. 13. Fahlman, A., et al., Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath -hold diving: the Scholander...vital to understand how diving mammals manage inert and metabolic gases during diving and will help determine what behavioral and physiological...N2 levels, and that they use both physiological and behavioral means to avoid DCS [1, 2]. But what physiological variables are the most important to

  18. Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication

    PubMed Central

    Karsenty, Gerard; Olson, Eric N.

    2016-01-01

    Most physiological functions originate with the communication between organs. Mouse genetics has revived this holistic view of physiology through the identification of inter-organ communications that are unanticipated, functionally important and would have been difficult to uncover otherwise. This review highlights this point by showing how two tissues usually not seen as endocrine ones, bone and striated muscles, influence in a significant manner several physiological processes. PMID:26967290

  19. [The practicum in physiology: from Laufberger to today].

    PubMed

    Kuthan, V; Sedlácek, J; Trojan, S

    1990-09-21

    An outline of Prof. Laufberger's concept of practical exercises in physiology, proposed just after the Second World War, is given. Especially, his new pedagogical approach is emphasized, here. Further, the development of the organization of practical courses in the Institute of Physiology in Prague is described: e.g. the modernization of the methods used, and of the educational process in early 70 s'. Today, the importance of biocybernetics is growing.

  20. Health assessment of free-ranging endangered Australian sea lion (Neophoca cinerea) pups: effect of haematophagous parasites on haematological parameters.

    PubMed

    Marcus, Alan D; Higgins, Damien P; Gray, Rachael

    2015-06-01

    Evaluation of the health status of free-ranging populations is important for understanding the impact of disease on individuals and on population demography and viability. In this study, haematological reference intervals were developed for free-ranging endangered Australian sea lion (Neophoca cinerea) pups within the context of endemic hookworm (Uncinaria sanguinis) infection and the effects of pathogen, host, and environment factors on the variability of haematological parameters were investigated. Uncinaria sanguinis was identified as an important agent of disease, with infection causing regenerative anaemia, hypoproteinaemia, and a predominantly lymphocytic-eosinophilic systemic inflammatory response. Conversely, the effects of sucking lice (Antarctophthirus microchir) were less apparent and infestation in pups appears unlikely to cause clinical impact. Overall, the effects of U. sanguinis, A. microchir, host factors (standard length, body condition, pup sex, moult status, and presence of lesions), and environment factors (capture-type and year of sampling) accounted for 26-65% of the total variance observed in haematological parameters. Importantly, this study demonstrated that anaemia in neonatal Australian sea lion pups is not solely a benign physiological response to host-environment changes, but largely reflects a significant pathological process. This impact of hookworm infection on pup health has potential implications for the development of foraging and diving behaviour, which would subsequently influence the independent survival of juveniles following weaning. The haematological reference intervals developed in this study can facilitate long-term health surveillance, which is critical for the early recognition of changes in disease impact and to inform conservation management. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish.

    PubMed

    Ream, Rachael A; Theriot, Julie A; Somero, George N

    2003-12-01

    The ability to heal superficial wounds is an important element in an organism's repertoire of adaptive responses to environmental stress. In fish, motile cells termed keratocytes are thought to play important roles in the wound-healing process. Keratocyte motility, like other physiological rate processes, is likely to be dependent on temperature and to show adaptive variation among differently thermally adapted species. We have quantified the effects of acute temperature change and thermal acclimation on actin-based keratocyte movement in primary cultures of keratocytes from four species of teleost fish adapted to widely different thermal conditions: two eurythermal species, the longjaw mudsucker Gillichthys mirabilis (environmental temperature range of approximately 10-37 degrees C) and a desert pupfish, Cyprinodon salinus (10-40 degrees C), and two species from stable thermal environments, an Antarctic notothenioid, Trematomus bernacchii (-1.86 degrees C), and a tropical clownfish, Amphiprion percula (26-30 degrees C). For all species, keratocyte speed increased with increasing temperature. G. mirabilis and C. salinus keratocytes reached maximal speeds at 25 degrees C and 35 degrees C, respectively, temperatures within the species' normal thermal ranges. Keratocytes of the stenothermal species continued to increase in speed as temperature increased above the species' normal temperature ranges. The thermal limits of keratocyte motility appear to exceed those of whole-organism thermal tolerance, notably in the case of T. bernacchii. Keratocytes of T. bernacchii survived supercooling to -6 degrees C and retained motility at temperatures as high as 20 degrees C. Mean keratocyte speed was conserved at physiological temperatures for the three temperate and tropical species, which suggests that a certain rate of motility is advantageous for wound healing. However, there was no temperature compensation in speed of movement for keratocytes of the Antarctic fish, which have extremely slow rates of movement at physiological temperatures. Keratocytes from all species moved in a persistent, unidirectional manner at low temperatures but at higher temperatures began to take more circular or less-persistent paths. Thermal acclimation affected the persistence and turning magnitude of keratocytes, with warmer acclimations generally yielding more persistent cells that followed straighter paths. However, acclimation did not alter the effect of experimental temperature on cellular speed. These findings suggest that more than one temperature-sensitive mechanism may govern cell motility: the rate-limiting process(es) responsible for speed is distinct from the mechanism(s) underlying directionality and persistence. Keratocytes represent a useful study system for evaluating the effects of temperature at the cellular level and for studying adaptive variation in actin-based cellular movement and capacity for wound healing.

  2. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters

    USGS Publications Warehouse

    Hanni, K.D.; Mazet, J.A.K.; Gulland, F.M.D.; Estes, James A.; Staedler, M.; Murray, M.J.; Miller, M.; Jessup, David A.

    2003-01-01

    The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.

  3. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters.

    PubMed

    Hanni, Krista D; Mazet, Jonna A K; Gulland, Frances M D; Estes, James; Staedler, Michelle; Murray, Michael J; Miller, Melissa; Jessup, David A

    2003-10-01

    The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.

  4. Morphology, physiology, genetics, enigmas, and status of an extremely rare tree: Mutant tanoak

    Treesearch

    Philip M. McDonald; Jianwei Zhang; Randy S. Senock; Jessica W. Wright

    2013-01-01

    Important physical characteristics, morphological attributes, physiological functions, and genetic properties of mutant tanoak, Notholithocarpus densiflorus f. attenuato-dentatus (Fagaceae), and normal tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh, were studied on the Challenge...

  5. Physiological benefits of nectar-feeding by a predatory beetle

    USDA-ARS?s Scientific Manuscript database

    Extrafloral nectar is an important food source for many animals, including predatory lady beetles (Coleoptera: Coccinellidae), although the physiological benefits of nectar consumption are poorly understood for most consumers. Under laboratory conditions, we confined new females of Coleomegilla macu...

  6. COMPETITION FOR RESOURCES IN TREES: PHYSIOLOGICAL VERSUS MORPHOLOGICAL PLASTICITY

    EPA Science Inventory

    In this review we examine two hypotheses related to resource acquisition in trees. The first hypothesis states that when competition is size-asymmetrical, then allocation changes leading to morphological shifts are more important than physiological shifts in obtaining limited re...

  7. Anthropometric and physiological characteristics of rugby union football players.

    PubMed

    Nicholas, C W

    1997-06-01

    Rugby union enjoys worldwide popularity, but there is a lack of comprehensive research into the anthropometric and physiological characteristics of its players and the demands of the game, particularly at the elite level. One of the possible explanations for this is that the sport has previously been primarily concerned with the aspects of skill related to the game, rather than the physical and physiological requirements. However, with the increased physiological demands being placed on the elite players (using the British Isles as an example), with the recent introduction of professionalism, regional championships, the World Cup and major tours, information about the demands of the game and the assessment of, and methods of improving, the anthropometric and physiological characteristics of its players, are of paramount importance. Match analysis has indicated that rugby is an interval or intermittent sport and players must be able to perform a large number of intensive efforts of 5 to 15 seconds' duration with less than 40 seconds' recovery between each bout of high intensity activity. These observations, together with the metabolic responses during the game, give some insight into its physiological demands and are a prerequisite in the development and prescription of training programmes by coaches in preparing individual players for competition. The results from studies reporting the anthropometric and physiological characteristics of rugby union players observed that these individuals had unique anthropometric and physiological attributes which depended on positional role and the playing standard. These have important implications for team selection and highlight the necessity for individualised training programmes and fitness attainment targets.

  8. A Microbial Perspective on the Grand Challenges in Comparative Animal Physiology

    PubMed Central

    2018-01-01

    ABSTRACT Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). In this perspective, I discuss how the field of host-microbe interactions can be used to address topics that have been identified as grand challenges in comparative animal physiology: (i) horizontal integration of physiological processes across organisms, (ii) vertical integration of physiological processes across organizational levels within organisms, and (iii) temporal integration of physiological processes during evolutionary change. Addressing these challenges will require the use of a variety of animal models and the development of systems approaches that can integrate large, multiomic data sets from both microbial communities and animal hosts. Integrating host-microbe interactions into the established field of comparative physiology represents an exciting frontier for both fields. PMID:29556549

  9. Geophysiology, Extended Organisms, and the Problem of Emergent Homeostasis

    NASA Astrophysics Data System (ADS)

    Turner, S.

    2001-12-01

    Physiology may be broadly defined as the managed flow of matter, energy and information. Central to this concept is the attendant phenomenon of homeostasis, doing physiological work to balance the thermodynamically driven flows of matter, energy or information that naturally attend to living things. Organisms in general exhibit what might be termed a "strong" homeostasis, in which well-regulated and complex physiological machines drive the physiological fluxes of matter, energy and information within the organism and at the organism's outermost integumentary boundary. Organisms also structure their environments to manage flows of matter, energy and information between themselves and their environment. In so doing, living things constitute a sort of extended organism, in which an organism's physiology reaches beyond the outermost boundary of the skin. Geophysiology's radical promise is that physiology can arise at levels of organization higher than the organism, ranging from social insect colonies through ecosystems, perhaps even to the biosphere itself. However, a simple demonstration that organisms affect the flows of matter, energy and information in their environments is not sufficient to qualify as physiology. That amounts to a demonstration that organisms do physiological work on their environments, which is neither a radical nor a new idea. To be truly physiological, geophysiology must exhibit physiology's most essential attribute, namely homeostasis. Finding homeostasis and explaining how it works in the extended organism is geophysiology's radical challenge.

  10. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89.

    PubMed

    2002-01-01

    This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological features of the human body pertinent to radiation dosimetry. The reference values given in this report are based on: (a) anatomical and physiological information not published before by the ICRP; (b) recent ICRP publications containing reference value information; and (c) information in Publication 23 that is still considered valid and appropriate for radiation protection purposes. Moving from the past emphasis on 'Reference Man', the new report presents a series of reference values for both male and female subjects of six different ages: newborn, 1 year, 5 years, 10 years, 15 years, and adult. In selecting reference values, the Commission has used data on Western Europeans and North Americans because these populations have been well studied with respect to antomy, body composition, and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations. The first section of the report provides summary tables of all the anatomical and physiological parameters given as reference values in this publication. These results give a comprehensive view of reference values for an individual as influenced by age and gender. The second section describes characteristics of dosimetric importance for the embryo and fetus. Information is provided on the development of the total body and the timing of appearance and development of the various organ systems. Reference values are provided on the mass of the total body and selected organs and tissues, as well as a number of physiological parameters. The third section deals with reference values of important anatomical and physiological characteristics of reference individuals from birth to adulthood. This section begins with details on the growth and composition of the total body in males and females. It then describes and quantifies anatomical and physiological characteristics of various organ systems and changes in these characteristics during growth, maturity, and pregnancy. Reference values are specified for characteristics of dosimetric importance. The final section gives a brief summary of the elemental composition of individuals. Focusing on the elements of dosimetric importance, information is presented on the body content of 13 elements: calcium, carbon, chloride, hydrogen, iodine, iron, magnesium, nitrogen, oxygen, potassium, sodium, sulphur, and phosphorus.

  11. Relationship Between Physiological and Perceived Fall Risk in People With Multiple Sclerosis: Implications for Assessment and Management.

    PubMed

    Gunn, Hilary; Cameron, Michelle; Hoang, Phu; Lord, Stephen; Shaw, Steve; Freeman, Jennifer

    2018-04-24

    This study evaluated the relationship between physiological and perceived fall risk in people with multiple sclerosis (MS). Secondary analysis of data from prospective cohort studies undertaken in Australia, the United Kingdom, and the United States. Community. Ambulatory people with MS (N=416) (age 51.5±12.0 years; 73% female; 62% relapsing-remitting MS; 13.7±9.9 years disease duration). Not applicable. All participants completed measures of physiological (Physiological Profile Assessment [PPA]) and perceived (Falls Efficacy Scale-international [FESi]) fall risk and prospectively recorded falls for 3 months. 155 (37%) of the participants were recurrent fallers (≥2 falls). Mean PPA and FESi scores were high (PPA 2.14±1.87, FESi 34.27±11.18). The PPA and the FESi independently predicted faller classification in logistic regression, which indicated that the odds of being classified as a recurrent faller significantly increased with increasing scores (PPA odds ratio [OR] 1.30 [95% CI 1.17-1.46], FESi OR 1.05 [95% CI 1.03-1.07]). Classification and regression tree analysis divided the sample into four groups based on cutoff values for the PPA: (1) low physiological/low perceived risk (PPA <2.83, FESi <27.5), (2) low physiological/high perceived risk (PPA <2.83, FESi >27.5), (3) high physiological/low perceived risk (PPA >2.83, FESi <35.5), and (4) high physiological/high perceived risk (PPA <2.83, FESi >35.5). Over 50% of participants had a disparity between perceived and physiological fall risk; most were in group 2. It is possible that physiological risk factors not detected by the PPA may also be influential. This study highlights the importance of considering both physiological and perceived fall risk in MS and the need for further research to explore the complex interrelationships of perceptual and physiological risk factors in this population. This study also supports the importance of developing behavioral and physical interventions that can be tailored to the individual's needs. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Determination of plant growth rate and growth temperature range from measurement of physiological parameters

    Treesearch

    R. S. Criddle; B. N. Smith; L. D. Hansen; J. N. Church

    2001-01-01

    Many factors influence species range and diversity, but temperature and temperature variability are always major global determinants, irrespective of local constraints. On a global scale, the ranges of many taxa have been observed to increase and their diversity decrease with increasing latitude. On a local scale, gradients in species distribution are observable with...

  13. 5-Fluorouracil sensitivity varies among oral micro-organisms.

    PubMed

    Vanlancker, Eline; Vanhoecke, Barbara; Smet, Rozel; Props, Ruben; Van de Wiele, Tom

    2016-08-01

    5-Fluorouracil (5-FU), a commonly used chemotherapeutic agent, often causes oral mucositis, an inflammation and ulceration of the oral mucosa. Micro-organisms in the oral cavity are thought to play an important role in the aggravation and severity of mucositis, but the mechanisms behind this remain unclear. Although 5-FU has been shown to elicit antibacterial effects at high concentrations (>100 µM), its antibacterial effect at physiologically relevant concentrations in the oral cavity is unknown. This study reports the effect of different concentrations of 5-FU (range 0.1-50 µM) on the growth and viability of bacterial monocultures that are present in the oral cavity and the possible role in the activity of dihydropyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU resistance. Our data showed a differential sensitivity among the tested oral species towards physiological concentrations of 5-FU. Klebsiellaoxytoca, Streptococcus salivarius, Streptococcus mitis, Streptococcus oralis, Pseudomonas aeruginosa and Lactobacillus salivarius appeared to be highly resistant to all tested concentrations. In contrast, Lactobacillusoris, Lactobacillus plantarum, Streptococcus pyogenes, Fusobacterium nucleatum and Neisseria mucosa showed a significant reduction in growth and viability starting from very low concentrations (0.2-3.1 µM). We can also provide evidence that DPD is not involved in the 5-FU resistance of the selected species. The observed variability in response to physiological 5-FU concentrations may explain why certain microbiota lead to a community dysbiosis and/or an overgrowth of certain resistant micro-organisms in the oral cavity following cancer treatment.

  14. Perioperative fluid management: From physiology to improving clinical outcomes.

    PubMed

    Bennett, Victoria A; Cecconi, Maurizio

    2017-08-01

    Perioperative fluid management is a key component in the care of the surgical patient. It is an area that has seen significant changes and developments, however there remains a wide disparity in practice between clinicians. Historically, patients received large volumes of intravenous fluids perioperatively. The concept of goal directed therapy was then introduced, with the early studies showing significant improvements in morbidity and mortality. The current focus is on fluid therapy guided by an individual patient's physiology. A fluid challenge is commonly performed as part of an assessment of a patient's fluid responsiveness. There remains wide variation in how clinicians perform a fluid challenge and this review explores the evidence for how to administer an effective challenge that is both reliable and reproducible. The methods for monitoring cardiac output have evolved from the pulmonary artery catheter to a range of less invasive techniques. The different options that are available for perioperative use are considered. Fluid status can also be assessed by examining the microcirculation and the importance of recognising the possibility of a lack of coherence between the macro and microcirculation is discussed. Fluid therapy needs to be targeted to specific end points and individualised. Not all patients who respond to a fluid challenge will necessarily require additional fluid administration and care should be aimed at identifying those who do. This review aims to explain the underlying physiology and describe the evidence base and the changes that have been seen in the approach to perioperative fluid therapy.

  15. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2014-01-01

    Abiotic stress is one of the primary constraints limiting the range and success of arthropods, and nowhere is this more apparent than Antarctica. Antarctic arthropods have evolved a suite of adaptations to cope with extremes in temperature and water availability. Here, we review the current state of knowledge regarding the environmental physiology of terrestrial arthropods in Antarctica. To survive low temperatures, mites and Collembola are freeze-intolerant and rely on deep supercooling, in some cases supercooling below -30°C. Also, some of these microarthropods are capable of cryoprotective dehydration to extend their supercooling capacity and reduce the risk of freezing. In contrast, the two best-studied Antarctic insects, the midges Belgica antarctica and Eretmoptera murphyi, are freeze-tolerant year-round and rely on both seasonal and rapid cold-hardening to cope with decreases in temperature. A common theme among Antarctic arthropods is extreme tolerance of dehydration; some accomplish this by cuticular mechanisms to minimize water loss across their cuticle, while a majority have highly permeable cuticles but tolerate upwards of 50-70% loss of body water. Molecular studies of Antarctic arthropod stress physiology are still in their infancy, but several recent studies are beginning to shed light on the underlying mechanisms that govern extreme stress tolerance. Some common themes that are emerging include the importance of cuticular and cytoskeletal rearrangements, heat shock proteins, metabolic restructuring and cell recycling pathways as key mediators of cold and water stress in the Antarctic.

  16. The concept of comparative information yield curves and its application to risk-based site characterization

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe P. J.; Rubin, Yoram; Maxwell, Reed M.

    2009-06-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance as such efforts are always resource limited. Usually, strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on uncertainty. This paper presents an approach for determining site characterization needs on the basis of human health risk. The main challenge is in striking a balance between reduction in uncertainty in hydrogeological, behavioral, and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical simulation. A wide range of factors that affect site characterization needs are investigated, including the dimensions of the contaminant plume and additional length scales that characterize the transport problem, as well as the model of human health risk. The concept of comparative information yield curves is used for investigating the relative impact of hydrogeological and physiological parameters in risk. Results show that characterization needs are dependent on the ratios between flow and transport scales within a risk-driven approach. Additionally, the results indicate that human health risk becomes less sensitive to hydrogeological measurements for large plumes. This indicates that under near-ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a more detailed hydrogeological characterization.

  17. A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides)

    PubMed Central

    Collins, Sara; Dornburg, Alex; Flores, Joseph M.; Dombrowski, Daniel S.

    2016-01-01

    Despite the promise of hematological parameters and blood chemistry in monitoring the health of marine fishes, baseline data is often lacking for small fishes that comprise central roles in marine food webs. This study establishes blood chemistry and hematological baseline parameters for the pinfish Lagodon rhomboides, a small marine teleost that is among the most dominant members of near-shore estuarine communities of the Atlantic Ocean and Gulf of Mexico. Given their prominence, pinfishes are an ideal candidate species to use as a model for monitoring changes across a wide range of near-shore marine communities. However, pinfishes exhibit substantial morphological differences associated with a preference for feeding in primarily sea-grass or sand dominated habitats, suggesting that differences in the foraging ecology of individuals could confound health assessments. Here we collect baseline data on the blood physiology of pinfish while assessing the relationship between blood parameters and measured aspects of feeding morphology using data collected from 37 individual fish. Our findings provide new baseline health data for this important near shore fish species and find no evidence for a strong linkage between blood physiology and either sex or measured aspects of feeding morphology. Comparing our hematological and biochemical data to published results from other marine teleost species suggests that analyses of trends in blood value variation correlated with major evolutionary transitions in ecology will shed new light on the physiological changes that underlie the successful diversification of fishes. PMID:27602261

  18. An experimental model to investigate the biomechanical determinants of pharyngeal mucosa coating during swallowing.

    PubMed

    Mathieu, Vincent; de Loubens, Clément; Thomas, Chloé; Panouillé, Maud; Magnin, Albert; Souchon, Isabelle

    2018-04-27

    The development of innovative experimental approaches is necessary to gain insights in the complex biomechanics of swallowing. In particular, unraveling the mechanisms of formation of the thin film of bolus coating the pharyngeal mucosa after the ingestion of liquid or semi-liquid food products is an important challenge, with implication in dysphagia treatment and sensory perceptions. The aim here is to propose an original experimental model of swallowing (i) to simulate the peristaltic motions driving the bolus from the oral cavity to the esophagus, (ii) to mimic and vary complex physiological variables of the pharyngeal mucosa (lubrication, deformability and velocity) and (iii) to measure the thickness and the composition of the coatings resulting from bolus flow. Three Newtonian glucose solutions were considered as model food boli, through sets of experiments covering different ranges of each physiological parameter mimicked. The properties of the coatings (thickness and dilution in saliva film) were shown to depend significantly on the physical properties of food products considered (viscosity and density), but also on physiological variables such as lubrication by saliva, velocity of the peristaltic wave, and to a lesser extent, the deformability of the pharyngeal mucosa. The biomechanical peristalsis simulator developed here can contribute to unravel the determinants of bolus adhesion on pharyngeal mucosa, necessary both for the design of alternative food products for people affected by swallowing disorders, and for a better understanding of the dynamic mechanisms of aroma perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Manipulating glucocorticoids in wild animals: basic and applied perspectives

    PubMed Central

    Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.

    2015-01-01

    One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716

  20. Growth and Photosynthetic Characteristics of Toxic and Non-Toxic Strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light

    PubMed Central

    Islam, M. Ashraful; Beardall, John

    2017-01-01

    Cyanobacteria are major bloom-forming organisms in freshwater ecosystems and many strains are known to produce toxins. Toxin production requires an investment in energy and resources. As light is one of the most important factors for cyanobacterial growth, any changes in light climate might affect cyanobacterial toxin production as well as their growth and physiology. To evaluate the effects of light on the growth and physiological parameters of both toxic and non-toxic strains of Microcystis aeruginosa and Anabaena circinalis, cultures were grown at a range of light intensities (10, 25, 50, 100, 150 and 200 µmol m−2 s−1). The study revealed that the toxic strains of both species (CS558 for M. aeruginosa and CS537 and CS541 for A. circinalis) showed growth (µ) saturation at a higher light intensity compared to the non-toxic strains (CS338 for M. aeruginosa and CS534 for A. circinalis). Both species showed differences in chlorophyll a, carotenoid, allophycocyanin (APC) and phycoerythrin (PE) content between strains. There were also differences in dark respiration (Rd), light saturated oxygen evolution rates (Pmax) and efficiency of light harvesting (α) between strains. All other physiological parameters showed no statistically significant differences between strains. This study suggest that the different strains respond differently to different light habitats. Thus, changes in light availability may affect bloom intensity of toxic and nontoxic strains of cyanobacteria by changing the dominance and succession patterns. PMID:28777340

  1. A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Bridges, Michael D.; López, Carlos J.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Brooks, Evan K.; Tormyshev, Victor; Halpern, Howard J.; Hubbell, Wayne L.

    2016-08-01

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has become an important tool for measuring distances in proteins on the order of a few nm. For this purpose pairs of spin labels, most commonly nitroxides, are site-selectively introduced into the protein. Recent efforts to develop new spin labels are focused on tailoring the intrinsic properties of the label to either extend the upper limit of measurable distances at physiological temperature, or to provide a unique spectral lineshape so that selective pairwise distances can be measured in a protein or complex containing multiple spin label species. Triarylmethyl (TAM) radicals are the foundation for a new class of spin labels that promise to provide both capabilities. Here we report a new methanethiosulfonate derivative of a TAM radical that reacts rapidly and selectively with an engineered cysteine residue to generate a TAM containing side chain (TAM1) in high yield. With a TAM1 residue and Cu2+ bound to an engineered Cu2+ binding site, enhanced T1 relaxation of TAM should enable measurement of interspin distances up to 50 Å at physiological temperature. To achieve favorable TAM1-labeled protein concentrations without aggregation, proteins are tethered to a solid support either site-selectively using an unnatural amino acid or via native lysine residues. The methodology is general and readily extendable to complex systems, including membrane proteins.

  2. A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides).

    PubMed

    Collins, Sara; Dornburg, Alex; Flores, Joseph M; Dombrowski, Daniel S; Lewbart, Gregory A

    2016-01-01

    Despite the promise of hematological parameters and blood chemistry in monitoring the health of marine fishes, baseline data is often lacking for small fishes that comprise central roles in marine food webs. This study establishes blood chemistry and hematological baseline parameters for the pinfish Lagodon rhomboides, a small marine teleost that is among the most dominant members of near-shore estuarine communities of the Atlantic Ocean and Gulf of Mexico. Given their prominence, pinfishes are an ideal candidate species to use as a model for monitoring changes across a wide range of near-shore marine communities. However, pinfishes exhibit substantial morphological differences associated with a preference for feeding in primarily sea-grass or sand dominated habitats, suggesting that differences in the foraging ecology of individuals could confound health assessments. Here we collect baseline data on the blood physiology of pinfish while assessing the relationship between blood parameters and measured aspects of feeding morphology using data collected from 37 individual fish. Our findings provide new baseline health data for this important near shore fish species and find no evidence for a strong linkage between blood physiology and either sex or measured aspects of feeding morphology. Comparing our hematological and biochemical data to published results from other marine teleost species suggests that analyses of trends in blood value variation correlated with major evolutionary transitions in ecology will shed new light on the physiological changes that underlie the successful diversification of fishes.

  3. Important Functional Roles of Basigin in Thymocyte Development and T cell Activation

    PubMed Central

    Yao, Hui; Teng, Yan; Sun, Qian; Xu, Jing; Chen, Ya-Tong; Hou, Ning; Cheng, Xuan; Yang, Xiao; Chen, Zhi-Nan

    2014-01-01

    Basigin is a highly glycosylated transmembrane protein that is expressed in a broad range of tissues and is involved in a number of physiological and pathological processes. However, the in vivo role of basigin remains unknown. To better understand the physiological and pathological functions of basigin in vivo, we generated a conditional null allele by introducing two loxP sites flanking exons 2 and 7 of the basigin gene (Bsg). Bsgfl/fl mice were born at the expected Mendelian ratio and showed a similar growth rate compared with wildtype mice. After crossing these mice with Lck-Cre transgenic mice, basigin expression was specifically inactivated in T cells in the resulting Lck-Cre; Bsgfl/fl mice. Although the birth and growth rate of Lck-Cre; Bsgfl/fl mice were similar to control mice, thymus development was partially arrested in Lck-Cre; Bsgfl/fl mice, specifically at the CD4+CD8+ double-positive (DP) and CD4 single-positive (CD4+CD8-, CD4SP) stages. In addition, CD4+ T cell activation was enhanced upon Concanavalin A (Con A) or anti-CD3/anti-CD28 stimulation but not upon PMA/Ionomycin stimulation in the absence of basigin. Overall, this study provided the first in vivo evidence for the function of basigin in thymus development. Moreover, the successful generation of the conditional null basigin allele provides a useful tool for the study of distinct physiological or pathological functions of basigin in different tissues at different development stages. PMID:24391450

  4. Naval Biodynamics Laboratory 1993 Command History

    DTIC Science & Technology

    1993-01-01

    position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field

  5. Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas

    DTIC Science & Technology

    2015-09-30

    IMPACT/APPLICATIONS Developing methods to better understand the sub-lethal, physiologic consequences of underwater noise disturbance on species of...baseline ranges of stress-related fecal hormones are being developed and can be applied in the future to assess physiologic responses to elevated acoustic...fecal aldosterone assays as an additional measure of adrenal activation during stress responses in North Atlantic right whales (Eubalaena glacialis

  6. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.

  7. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining intraspecific variation in salt tolerance. Plant morphology (size attributes) were strongly associated with salt tolerance in P. hemitomon, weakly associated with salt tolerance in S. patens, and not associated with salt tolerance in S. alterniflora. Highly salt-tolerant populations of Spartina alterniflora displayed the greatest ion selectivity (lower leaf Na+/K+ ratios), which was not displayed by the other two species. These results suggest that plant size attributes can be very important in explaining population differences in salt tolerance in glycophytes, but may be independent of salt tolerance in halophytes, which have specialized physiological (and/or anatomical) adaptations that can confer salinity stress resistance through mechanisms such as selective ion exclusion and secretion. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. ADSA Foundation Scholar Award: A role for serotonin in lactation physiology-Where do we go from here?

    PubMed

    Hernandez, L L

    2018-04-25

    Lactation is a physiological event that is exclusive to mammals. Lactation evolved as a strategy to improve the survival of the young by providing them with the complete nutrition that is required for survival upon birth as well as maternal-offspring bonding. Typically, milk production by the dam matches the demand of the young. The dairy cow is a unique exception in which the discoveries and genetic selection related to lactation physiology have been applied and resulted in a dramatic increase in milk yield of dairy cows. Studies on the role of mammary-derived serotonin and the coordination of various aspects of milk production and maternal metabolism have revealed novel mechanisms by which milk production and maternal metabolism can be improved. Furthermore, the investigation into molecular and cellular mechanisms regulating mammary gland function has revealed the importance of epigenetics on mammary gland function. Understanding mammary gland function at the cellular and physiological levels will be important for improving mammary gland control of maternal metabolism during early lactation. The early lactation period is a critical time for a dairy cow as that is when she is most susceptible to disease and metabolic disorders that can lead to negative effects on her productive capacity and overall health. Our research in the area of serotonin physiology has illustrated the importance of serotonin on the regulation of lactation and maternal homeostasis. Future research in the area of lactation physiology should be targeted at improving maternal health and longevity in the herd through manipulation of the signals the mammary gland sends to coordinate maternal metabolism and synthesize milk. Specifically, we believe that serotonin will play a central role in understanding the communication between the mammary gland and the maternal physiology during lactation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. The short history of gastroenterology.

    PubMed

    Sródka, A

    2003-12-01

    In this paper research on the stomach and bowel physiology is presented in a historical perspective. The author tries to show how digestive processes were interpreted by the ancients and how they tried to adjust them to the dominating humoral theory of disease. It is pointed out that the breakthrough which created a new way of understanding of the function of the digestive system was made by Andreas Vesalius and his modern model of anatomy. The meaning of acceptance of chemical processes in digestion by iatrochemics representatives in XVII century is shown. Physiological research in XIX century, which decided about a rapid development of physiology, especially the physiology of the gastrointestinal tract, is discussed. Experiments were performed by all main representatives of this discipline: Claude Bernard, Jan Ewangelista Purkyne, Rudolph Heidenhain and especially Ivan Pavlov, who, thanks to the discoveries in the secretion physiology, explained basic functions of the central nervous system. The XX century was dominated by the research showing the important role of the endocrine system and biological agents in the regulation of secretion and motility of the digestive system. The following discoveries are discussed: Ernest Sterling (secretin), John Edkins (gastrin) and André Latarjet and Lester Dragstedt (acetylcholine). It is underlined that Polish scientists play an important role in the development of the gastroenterological science--among others, Walery Jaworski, who made a historical suggestion about the role of the spiral bacteria in etiopathogenesis of the peptic ulcer, Leon Popielski, who stated the stimulating influence of histamine on the stomach acid secretion, Julian Walawski, who discovered enterogastrons--hormones decreasing secretion. As a supplement, there is the list of achievements in the field of the physiology and pathology of the gastrointestinal tract awarded with Nobel Prize and the list of most important Polish papers in this field.

  10. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    PubMed Central

    Marchiori, Paulo E. R.; Machado, Eduardo C.; Sales, Cristina R. G.; Espinoza-Núñez, Erick; Magalhães Filho, José R.; Souza, Gustavo M.; Pires, Regina C. M.; Ribeiro, Rafael V.

    2017-01-01

    The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa); intermediate (Ψm reached -65 and -90 kPa at the end of experimental period) and low (Ψm reached values lower than -150 kPa). Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA) and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants. PMID:29326744

  11. Phenotypic Variability in the Coccolithophore Emiliania huxleyi.

    PubMed

    Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.

  12. Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in Posidonia australis (Posidoniaceae).

    PubMed

    Sinclair, Elizabeth A; Statton, John; Hovey, Renae; Anthony, Janet M; Dixon, Kingsley W; Kendrick, Gary A

    2016-02-01

    Organisms occupying the edges of natural geographical ranges usually survive at the extreme limits of their innate physiological tolerances. Extreme and prolonged fluctuations in environmental conditions, often associated with climate change and exacerbated at species' geographical range edges, are known to trigger alternative responses in reproduction. This study reports the first observations of adventitious inflorescence-derived plantlet formation in the marine angiosperm Posidonia australis, growing at the northern range edge (upper thermal and salinity tolerance) in Shark Bay, Western Australia. These novel plantlets are described and a combination of microsatellite DNA markers and flow cytometry is used to determine their origin. Polymorphic microsatellite DNA markers were used to generate multilocus genotypes to determine the origin of the adventitious inflorescence-derived plantlets. Ploidy and genome size were estimated using flow cytometry. All adventitious plantlets were genetically identical to the maternal plant and were therefore the product of a novel pseudoviviparous reproductive event. It was found that 87 % of the multilocus genotypes contained three alleles in at least one locus. Ploidy was identical in all sampled plants. The genome size (2 C value) for samples from Shark Bay and from a separate site much further south was not significantly different, implying they are the same ploidy level and ruling out a complete genome duplication (polyploidy). Survival at range edges often sees the development of novel responses in the struggle for survival and reproduction. This study documents a physiological response at the trailing edge, whereby reproductive strategy can adapt to fluctuating conditions and suggests that the lower-than-usual water temperature triggered unfertilized inflorescences to 'switch' to growing plantlets that were adventitious clones of their maternal parent. This may have important long-term implications as both genetic and ecological constraints may limit the ability to adapt or range-shift; this seagrass meadow in Shark Bay already has low genetic diversity, no sexual reproduction and no seedling recruitment. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears.

    PubMed

    Didyk, L A; Bogdanov, V B; Lysenko, V A; Didyk, N P; Gorgo, Yu P; Dirckx, J J J

    2007-01-01

    This study was designed to clarify whether the pars flaccida (PF) as a flexible part of the tympanic membrane is capable of reacting to pressure oscillations (PO) with amplitudes and frequencies typical for natural atmospheric pressure fluctuations in the far infrasound frequency range (APF). If so, the PF mechanical reactions to APF might be involved in the overall physiologic regulation processes, which make organisms susceptible to APF. The displacements of the PF in response to PO were measured in vitro in ears of gerbils and rabbits by means of laser Doppler vibrometry. The index of the PF reactivity (R(a)) was determined as the ratio of the amplitude of the PF oscillations (PFO) to the amplitude of the PO. All kinds of PO applied caused PFO. The amplitude of the PFO increased when the amplitude of the PO was increased. In gerbils, a decrease in R(a) with the increase in amplitude of the PO was observed. In the range of PO lowest amplitudes (4-20 Pa) R(a) proved to be 1.4 times higher than in the range of highest amplitudes (90-105 Pa). Considering that the natural APF are usually within the range of +/-20 Pa, this fact points to an important contribution of the PF to the pressure dynamics in the middle ear (ME) of gerbils. In rabbit ears, R(a) was lower and recovery from plastic deformation was slower than in gerbils. Our findings are in line with the suggestion that the PF might play an important role in respect of adaptation to natural APF.

  14. Inference of quantitative models of bacterial promoters from time-series reporter gene data.

    PubMed

    Stefan, Diana; Pinel, Corinne; Pinhal, Stéphane; Cinquemani, Eugenio; Geiselmann, Johannes; de Jong, Hidde

    2015-01-01

    The inference of regulatory interactions and quantitative models of gene regulation from time-series transcriptomics data has been extensively studied and applied to a range of problems in drug discovery, cancer research, and biotechnology. The application of existing methods is commonly based on implicit assumptions on the biological processes under study. First, the measurements of mRNA abundance obtained in transcriptomics experiments are taken to be representative of protein concentrations. Second, the observed changes in gene expression are assumed to be solely due to transcription factors and other specific regulators, while changes in the activity of the gene expression machinery and other global physiological effects are neglected. While convenient in practice, these assumptions are often not valid and bias the reverse engineering process. Here we systematically investigate, using a combination of models and experiments, the importance of this bias and possible corrections. We measure in real time and in vivo the activity of genes involved in the FliA-FlgM module of the E. coli motility network. From these data, we estimate protein concentrations and global physiological effects by means of kinetic models of gene expression. Our results indicate that correcting for the bias of commonly-made assumptions improves the quality of the models inferred from the data. Moreover, we show by simulation that these improvements are expected to be even stronger for systems in which protein concentrations have longer half-lives and the activity of the gene expression machinery varies more strongly across conditions than in the FliA-FlgM module. The approach proposed in this study is broadly applicable when using time-series transcriptome data to learn about the structure and dynamics of regulatory networks. In the case of the FliA-FlgM module, our results demonstrate the importance of global physiological effects and the active regulation of FliA and FlgM half-lives for the dynamics of FliA-dependent promoters.

  15. Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis.

    PubMed

    Cross, Karissa L; Chirania, Payal; Xiong, Weili; Beall, Clifford J; Elkins, James G; Giannone, Richard J; Griffen, Ann L; Guss, Adam M; Hettich, Robert L; Joshi, Snehal S; Mokrzan, Elaine M; Martin, Roman K; Zhulin, Igor B; Leys, Eugene J; Podar, Mircea

    2018-03-13

    The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis , a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome "dark matter," cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.

  16. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  17. Effects of experiment start time and duration on measurement of standard physiological variables.

    PubMed

    Page, Amanda J; Cooper, Christine E; Withers, Philip C

    2011-07-01

    Duration and start time of respirometry experiments have significant effects on the measurement of basal values for several commonly measured physiological variables (metabolic rate, evaporative water loss and body temperature). A longer measurement duration reduced values for all variables for all start times, and this was an effect of reduced animal activity rather than random sampling. However, there was also an effect of circadian rhythm on the timing of minimal physiological values. Experiment start time had a significant effect on time taken to reach minimal values for all variables, ranging from 0400 hours ± 38 min (body temperature, start time 2300 hours) to 0854 hours ± 52 min (evaporative water loss, start time 1700 hours). It also influenced the time of day that minimal values were obtained, ranging from 2224 hours ± 40 min (carbon dioxide production, start time 1500 hours) to 0600 hours ± 57 min (oxygen consumption, start time 2300 hours), and the minimum values measured. Consequently, both the measurement duration and the experiment start time should be considered in experimental design to account for both a handling and a circadian effect on the animal's physiology. We suggest that experiments to measure standard physiological variables for small diurnal birds should commence between 1700 and 2100 hours, and measurement duration should be at least 9 h.

  18. Aquaporins and root water uptake

    USDA-ARS?s Scientific Manuscript database

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  19. The Leafhoppers: Anatomy, Physiology and Behavior of Feeding and Its Sensory Mediation

    USDA-ARS?s Scientific Manuscript database

    The present book contains chapters summarizing all major aspects of the biology of leafhoppers (family Cicadellidae), among the most numerous and important insect pests in the world. Major chapter topics discussed include internal and external morphology, physiology, behavior, reproduction, taxonom...

  20. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

Top