Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas; Selen, Arzu; Müllertz, Anette
2017-02-01
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.
Contact lens deposits, adverse responses, and clinical ocular surface parameters.
Zhao, Zhenjun; Naduvilath, Thomas; Flanagan, Judith L; Carnt, Nicole A; Wei, Xiaojia; Diec, Jennie; Evans, Vicki; Willcox, Mark D P
2010-09-01
To correlate clinical responses during contact lens wear with the amount of protein or cholesterol extracted from lenses after wear. Clinical parameters, including adverse response rates and corneal staining, and symptomatology rating during lens wear were collected from a series of clinical tests comprising four different silicone hydrogel lenses with four different multipurpose solutions. To test for correlates, the amount of total protein or cholesterol extracted from lenses after daily wear were compared statistically to clinical parameters. The amount of protein (p = 0.008) or cholesterol (p = 0.01) extracted from lenses was higher for those subjects who showed solution-induced corneal staining. Amount of protein extracted was correlated (p < 0.01) with conjunctival staining (R = -0.23), lens front surface wetting (r = 0.14), and lens fit tightness (R = -0.20). These clinical parameters accounted for 48% of lens protein deposition. The amount of cholesterol extracted from lenses was much more weakly associated with clinical variables. Amount of protein or cholesterol extracted from lenses was not associated with the production of any corneal infiltrative or mechanical adverse event during wear and was only very weakly correlated with insertion comfort of lenses. These results suggest that there may be no physiologically relevant consequence of cholesterol depositing on silicone hydrogel lenses. The amount of protein that deposits onto silicone hydrogel lenses during wear may have more affect on lens performance on-eye. However, the correlations were generally small and may still not indicate any causative relevant physiological response. Further work is required to determine whether there is any direct causative effect to support these correlative findings.
A Database as a Service for the Healthcare System to Store Physiological Signal Data.
Chang, Hsien-Tsung; Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records- 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users-we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance.
A Database as a Service for the Healthcare System to Store Physiological Signal Data
Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records– 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users—we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance. PMID:28033415
Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes.
Wehunt, Mark P; Winschel, Christine A; Khan, Ali K; Guo, Tai L; Abdrakhmanova, Galya R; Sidorov, Vladimir
2013-03-01
New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.
Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies
Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S
2014-01-01
There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397
Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
PPDB - A tool for investigation of plants physiology based on gene ontology.
Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra
2014-09-02
Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible on-line ( http://www.iitr.ernet.in/ajayshiv/ ) through a user friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multi-component complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.
PPDB: A Tool for Investigation of Plants Physiology Based on Gene Ontology.
Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra
2015-09-01
Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible online ( http://www.iitr.ac.in/ajayshiv/ ) through a user-friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multicomponent complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.
Optical diagnostics of osteoblast cells and osteogenic drug screening
NASA Astrophysics Data System (ADS)
Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.
2016-02-01
Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.
Vitamin C physiology: the known and the unknown and Goldilocks
Padayatty, Sebastian J; Levine, Mark
2016-01-01
Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful. PMID:26808119
Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering.
Rodríguez-Sotelo, J L; Peluffo-Ordoñez, D; Cuesta-Frau, D; Castellanos-Domínguez, G
2012-10-01
The computer-assisted analysis of biomedical records has become an essential tool in clinical settings. However, current devices provide a growing amount of data that often exceeds the processing capacity of normal computers. As this amount of information rises, new demands for more efficient data extracting methods appear. This paper addresses the task of data mining in physiological records using a feature selection scheme. An unsupervised method based on relevance analysis is described. This scheme uses a least-squares optimization of the input feature matrix in a single iteration. The output of the algorithm is a feature weighting vector. The performance of the method was assessed using a heartbeat clustering test on real ECG records. The quantitative cluster validity measures yielded a correctly classified heartbeat rate of 98.69% (specificity), 85.88% (sensitivity) and 95.04% (general clustering performance), which is even higher than the performance achieved by other similar ECG clustering studies. The number of features was reduced on average from 100 to 18, and the temporal cost was a 43% lower than in previous ECG clustering schemes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Saran, M; Bors, W
1997-01-01
Contrary to common belief, hydrogen peroxide (H2O2) and hypochlorite (HOCl) are not produced continuously and independently during the irradiation of buffer solution containing chloride. Different buildup and decay reactions are involved in a complex interaction of these substances during irradiation. Which of the species predominates is determined by the parameters of the solution. The amount of either compound detectable after irradiation depends on the dissolved gas (O2, N2O or N2), on the pH value and to some extent on the presence of catalytic metals: Under slightly acidic conditions, low oxygen content and high generation rates of OH radicals, the only detectable species is hypochlorite; at high oxygen content and at pH values in the physiological range, hydrogen peroxide is the main detectable product. However, H2O2 and HOCl react with each other in a pH-dependent way, yielding the stable products O2 and Cl-. This reaction limits the expected lifetime of both species in aqueous solution to some tens of seconds. Therefore, analysis of the sample solution after irradiation determines only the substance that was present in greater relative concentration at the termination of irradiation. Such analysis, however, does not allow conclusions about the processes that occurred during irradiation. We have investigated the decay and formation reactions of H2O2 and HOCl under all relevant irradiation conditions and found evidence that the formation and further reaction of HOCl-, the precursor of HOCl, is of central importance even in cases where no significant amounts of H2O2 or HOCl are detectable after irradiation. We discuss the consequences of these results for the cytotoxicity observed after irradiation of cells suspended in physiological saline and conclude that analogous processes must also be relevant for irradiations under in vivo conditions.
Iwanowicz, L.R.; Blazer, V.S.
2011-01-01
Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.
Sanchez-Amat, Antonio; Solano, Francisco; Lucas-Elío, Patricia
2010-01-01
The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid l-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology. Characterization of the operon encoding the tyrosinase responsible for melanin synthesis revealed that a second gene in that operon encodes a protein, PpoB2, which is involved in copper transfer to tyrosinase. This finding made PpoB2 the first protein in the COG5486 group to which a physiological role has been assigned. Another enzyme of interest described in M. mediterranea is a multicopper oxidase encoding a membrane-associated enzyme that shows oxidative activity on a wide range of substrates typical of both laccases and tyrosinases. Finally, an enzyme very specific for l-lysine, which oxidises this amino acid in epsilon position and that has received a new EC number (1.4.3.20), has also been described for M. mediterranea. Overall, the studies carried out on this bacterium illustrate the power of exploring the physiology of selected microorganisms to discover novel enzymes of biotechnological relevance. PMID:20411113
The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; ...
2014-10-21
Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less
Kim, Sangwon F.; Mollace, Vincenzo
2013-01-01
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111
Vitamin B12 and Semen Quality.
Banihani, Saleem Ali
2017-06-09
Various studies have revealed the effects of vitamin B12, also named cobalamin, on semen quality and sperm physiology; however, these studies collectively are still unsummarized. Here, we systematically discuss and summarize the currently understood role of vitamin B12 on semen quality and sperm physiology. We searched the Web of Science, PubMed, and Scopus databases for only English language articles or abstracts from September 1961 to March 2017 (inclusive) using the key words "vitamin B12" and "cobalamin" versus "sperm". Certain relevant references were included to support the empirical as well as the mechanistic discussions. In conclusion, the mainstream published work demonstrates the positive effects of vitamin B12 on semen quality: first, by increasing sperm count, and by enhancing sperm motility and reducing sperm DNA damage, though there are a few in vivo system studies that have deliberated some adverse effects. The beneficial effects of vitamin B12 on semen quality may be due to increased functionality of reproductive organs, decreased homocysteine toxicity, reduced amounts of generated nitric oxide, decreased levels of oxidative damage to sperm, reduced amount of energy produced by spermatozoa, decreased inflammation-induced semen impairment, and control of nuclear factor-κB activation. However, additional research, mainly clinical, is still needed to confirm these positive effects.
Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M Margaret; Butte, Atul J; Manley, Geoffrey T
2010-01-01
Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enables pattern recognition and identification of physiologic patient states. We hypothesized that processing of multivariate data using hierarchical clustering techniques would allow identification of otherwise hidden patient physiologic patterns that would be predictive of outcome. Multivariate physiologic and ventilator data were collected continuously using a multimodal bioinformatics system in the surgical ICU at San Francisco General Hospital. These data were incorporated with non-continuous data and stored on a server in the ICU. A hierarchical clustering algorithm grouped each minute of data into 1 of 10 clusters. Clusters were correlated with outcome measures including incidence of infection, multiple organ failure (MOF), and mortality. We identified 10 clusters, which we defined as distinct patient states. While patients transitioned between states, they spent significant amounts of time in each. Clusters were enriched for our outcome measures: 2 of the 10 states were enriched for infection, 6 of 10 were enriched for MOF, and 3 of 10 were enriched for death. Further analysis of correlations between pairs of variables within each cluster reveals significant differences in physiology between clusters. Here we show for the first time the feasibility of clustering physiological measurements to identify clinically relevant patient states after trauma. These results demonstrate that hierarchical clustering techniques can be useful for visualizing complex multivariate data and may provide new insights for the care of critically injured patients.
Mauclaire, Laurie; Egli, Marcel
2010-08-01
Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.
Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit
2012-10-01
Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
Knowledge Retention of Exercise Physiology Content between Athletes and Nonathletes
ERIC Educational Resources Information Center
Clark, Brian; Webster, Collin; Druger, Marvin
2006-01-01
Based on the idea that learning is linked to personal relevance, this study examined knowledge retention of exercise physiology content between college athletes and nonathletes. No differences were observed between the groups. These findings have implications on understanding the relationship between personal relevance and memory. (Contains 1…
Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B
2001-01-01
Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p < 0.01). The kinesiologic electromyogram of selected lower-limb muscles revealed a more physiologic pattern. The confounding influence of spontaneous recovery, the lack of a control group, and the double amount of therapy limit the clinical relevance of this study. Nevertheless, the gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.
A systematic review of standing and treadmill desks in the workplace.
MacEwen, Brittany T; MacDonald, Dany J; Burr, Jamie F
2015-01-01
Standing and treadmill desks are intended to reduce the amount of time spent sitting in today's otherwise sedentary office. Proponents of these desks suggest that health benefits may be acquired as standing desk use discourages long periods of sitting, which has been identified as an independent health risk factor. Our objectives were thus to analyze the evidence for standing and treadmill desk use in relation to physiological (chronic disease prevention and management) and psychological (worker productivity, well-being) outcomes. A computer-assisted systematic search of Medline, PubMed, PsycINFO, SPORTDiscus, CINAHL, CENTRAL, and EMBASE databases was employed to identify all relevant articles related to standing and treadmill desk use. Treadmill desks led to the greatest improvement in physiological outcomes including postprandial glucose, HDL cholesterol, and anthropometrics, while standing desk use was associated with few physiological changes. Standing and treadmill desks both showed mixed results for improving psychological well-being with little impact on work performance. Standing and treadmill desks show some utility for breaking up sitting time and potentially improving select components of health. At present; however, there exist substantial evidence gaps to comprehensively evaluate the utility of each type of desk to enhance health benefits by reducing sedentary time. Copyright © 2014 Elsevier Inc. All rights reserved.
Physiological effects and therapeutic potential of proinsulin C-peptide
Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John
2014-01-01
Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503
Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce
2015-06-01
Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.
Immunological responses to semen in the female genital tract.
Schuberth, H J; Taylor, U; Zerbe, H; Waberski, D; Hunter, R; Rath, D
2008-11-01
When spermatozoa, seminal plasma and semen extender reach the uterus and interact with local leukocytes and endometrial cells, several immune mechanisms are initiated which have immediate, mid-term and long-term effects on ovulation, sperm cell selection, fertilization and pregnancy success by assuring the acceptance of fetal tissues. This report gives an overview on relevant key immune mechanisms following roughly the time axis after insemination. Detailed knowledge regarding these mechanisms will aid maximizing reproductive efficiency in livestock production. In the future, the many species involved will require a more comparative approach, since evidence is growing that endometrial physiology and the response to varying amounts and compositions of seminal plasma, various semen extenders, and variable numbers of spermatozoa also provoke different immune responses.
Conservation physiology across scales: insights from the marine realm
Cooke, Steven J.; Killen, Shaun S.; Metcalfe, Julian D.; McKenzie, David J.; Mouillot, David; Jørgensen, Christian; Peck, Myron A.
2014-01-01
As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology—both the challenges and the opportunities that it creates—will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored. PMID:27293645
ERIC Educational Resources Information Center
Marton, Janos
1983-01-01
Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…
A Low Cost Device for Monitoring the Urine Output of Critical Care Patients
Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey
2010-01-01
In critical care units most of the patients’ physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals. PMID:22163495
A low cost device for monitoring the urine output of critical care patients.
Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey
2010-01-01
In critical care units most of the patients' physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals.
An Organotypic Liver System for Tumor Progression
2006-04-01
a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association
NASA Astrophysics Data System (ADS)
Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.
2017-06-01
An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.
Creating Simulated Microgravity Patient Models
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Bacal, Kira
2004-01-01
The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).
In-cell thermodynamics and a new role for protein surfaces.
Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J
2016-02-16
There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.
Bruegger, Joel J; Smith, Brian C; Wynia-Smith, Sarah L; Marletta, Michael A
2018-04-27
Cysteine S -nitrosation is a reversible post-translational modification mediated by nitric oxide ( • NO)-derived agents. S -Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical • NO-signaling pathway, little is understood about how much S -nitrosation affects protein function. Moreover, identifying physiologically relevant targets of S -nitrosation is difficult because of the dynamics of transnitrosation and a limited understanding of the physiological mechanisms leading to selective protein S -nitrosation. To identify proteins whose activities are modulated by S -nitrosation, we performed a metabolomics study comparing WT and endothelial nitric-oxide synthase knockout mice. We integrated our results with those of a previous proteomics study that identified physiologically relevant S -nitrosated cysteines, and we found that the activity of at least 21 metabolic enzymes might be regulated by S -nitrosation. We cloned, expressed, and purified four of these enzymes and observed that S -nitrosation inhibits the metabolic enzymes 6-phosphogluconate dehydrogenase, Δ1-pyrroline-5-carboxylate dehydrogenase, catechol- O -methyltransferase, and d-3-phosphoglycerate dehydrogenase. Furthermore, using site-directed mutagenesis, we identified the predominant cysteine residue influencing the observed activity changes in each enzyme. In summary, using an integrated metabolomics approach, we have identified several physiologically relevant S -nitrosation targets, including metabolic enzymes, which are inhibited by this modification, and we have found the cysteines modified by S -nitrosation in each enzyme. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen
2016-04-08
Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.
Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K
2011-01-01
Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.
Attention modifies sound level detection in young children.
Sussman, Elyse S; Steinschneider, Mitchell
2011-07-01
Have you ever shouted your child's name from the kitchen while they were watching television in the living room to no avail, so you shout their name again, only louder? Yet, still no response. The current study provides evidence that young children process loudness changes differently than pitch changes when they are engaged in another task such as watching a video. Intensity level changes were physiologically detected only when they were behaviorally relevant, but frequency level changes were physiologically detected without task relevance in younger children. This suggests that changes in pitch rather than changes in volume may be more effective in evoking a response when sounds are unexpected. Further, even though behavioral ability may appear to be similar in younger and older children, attention-based physiologic responses differ from automatic physiologic processes in children. Results indicate that 1) the automatic auditory processes leading to more efficient higher-level skills continue to become refined through childhood; and 2) there are different time courses for the maturation of physiological processes encoding the distinct acoustic attributes of sound pitch and sound intensity. The relevance of these findings to sound perception in real-world environments is discussed.
Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight
NASA Technical Reports Server (NTRS)
Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.
1990-01-01
The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.
State of the Science-Ultraendurance Sports.
Hoffman, Martin D
2016-09-01
Participation in ultraendurance sports has been increasing in recent years. This participation growth has been associated with an increase in research focused on such events. While the total amount of research related to these sports remains relatively small compared with other sports, the research growth is encouraging. New sources for research funding for ultraendurance sports should advance the science. In addition to continued opportunities with observational studies, promising areas of investigation remain for experimental studies and research that uses ultraendurance-sport environments as models for studies relevant to wider populations. Insight into the breadth of research opportunities in ultraendurance sports can be gained by reviewing the abstracts published online in the International Journal of Sports Physiology and Performance from the annual Medicine & Science in Ultra-Endurance Sports Conference that took place this year in Chamonix, France.
In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants
Holman, Hoi-Ying N.
2000-01-01
The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.
Fusani, Leonida; Cardinale, Massimiliano; Carere, Claudio; Goymann, Wolfgang
2009-06-23
During migration, a number of bird species rely on stopover sites for resting and feeding before and after crossing ecological barriers such as deserts or seas. The duration of a stopover depends on the combined effects of environmental factors, endogenous programmes and physiological conditions. Previous studies indicated that lean birds prolong their refuelling stopover compared with fat birds; however, the quantitative relationship between physiological conditions and stopover behaviour has not been studied yet. Here, we tested in a large sample of free-living birds of three European passerines (whinchats, Saxicola rubetra, garden warblers, Sylvia borin and whitethroats, Sylvia communis) whether the amount of migratory restlessness (Zugunruhe) shown at a stopover site depends on physiological conditions. An integrated measure of condition based on body mass, amount of subcutaneous fat and thickness of pectoral muscles strongly predicted the intensity of Zugunruhe shown in recording cages in the night following capture. These results provide novel and robust quantitative evidence in support of the hypothesis that the amount of energy reserves plays a major role in determining the stopover duration in migratory birds.
Fusani, Leonida; Cardinale, Massimiliano; Carere, Claudio; Goymann, Wolfgang
2009-01-01
During migration, a number of bird species rely on stopover sites for resting and feeding before and after crossing ecological barriers such as deserts or seas. The duration of a stopover depends on the combined effects of environmental factors, endogenous programmes and physiological conditions. Previous studies indicated that lean birds prolong their refuelling stopover compared with fat birds; however, the quantitative relationship between physiological conditions and stopover behaviour has not been studied yet. Here, we tested in a large sample of free-living birds of three European passerines (whinchats, Saxicola rubetra, garden warblers, Sylvia borin and whitethroats, Sylvia communis) whether the amount of migratory restlessness (Zugunruhe) shown at a stopover site depends on physiological conditions. An integrated measure of condition based on body mass, amount of subcutaneous fat and thickness of pectoral muscles strongly predicted the intensity of Zugunruhe shown in recording cages in the night following capture. These results provide novel and robust quantitative evidence in support of the hypothesis that the amount of energy reserves plays a major role in determining the stopover duration in migratory birds. PMID:19324648
TRPV5-mediated Ca2+ Reabsorption and Hypercalciuria
NASA Astrophysics Data System (ADS)
Renkema, Kirsten Y.; Hoenderop, Joost G. J.; Bindels, René J. M.
2007-04-01
The concerted action of the intestine, kidney and bone results in the maintenance of a normal Ca2+ balance, a mechanism that is tightly controlled by the calciotropic hormones vitamin D, parathyroid hormone and calcitonin. Disturbances in the Ca2+ balance have been linked to diverse pathophysiological disorders like urolithiasis, hypertension, electroencephalogram abnormalities and rickets. Importantly, the final amount of Ca2+ that is released from the body is determined in the distal part of the nephron, where active Ca2+ reabsorption occurs. Here, Transient Receptor Potential Vanilloid member 5 (TRPV5), a highly Ca2+-selective channel, has been recognized as the gatekeeper of active Ca2+ reabsorption. The in vivo relevance of TRPV5 has been further investigated by the characterization of TRPV5 knockout (TRPV5-/-) mice, which exhibit severe disturbances in renal Ca2+ handling, such as profound hypercalciuria, intestinal Ca2+ hyperabsorption and reduced bone thickness. Hypercalciuria increases the risk of kidney stone formation in these mice. This review highlights our current knowledge about TRPV5-mediated Ca2+ reabsorption and emphasizes the physiological relevance and the clinical implications related to the TRPV5-/- mice model.
Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop.
Peters, Harry P F; Schrauwen, Patrick; Verhoef, Petra; Byrne, Christopher D; Mela, David J; Pfeiffer, Andreas F H; Risérus, Ulf; Rosendaal, Frits R; Schrauwen-Hinderling, Vera
2017-01-01
Currently it is estimated that about 1 billion people globally have non-alcoholic fatty liver disease (NAFLD), a condition in which liver fat exceeds 5 % of liver weight in the absence of significant alcohol intake. Due to the central role of the liver in metabolism, the prevalence of NAFLD is increasing in parallel with the prevalence of obesity, insulin resistance and other risk factors of metabolic diseases. However, the contribution of liver fat to the risk of type 2 diabetes mellitus and CVD, relative to other ectopic fat depots and to other risk markers, is unclear. Various studies have suggested that the accumulation of liver fat can be reduced or prevented via dietary changes. However, the amount of liver fat reduction that would be physiologically relevant, and the timeframes and dose-effect relationships for achieving this through different diet-based approaches, are unclear. Also, it is still uncertain whether the changes in liver fat per se or the associated metabolic changes are relevant. Furthermore, the methods available to measure liver fat, or even individual fatty acids, differ in sensitivity and reliability. The present report summarises key messages of presentations from different experts and related discussions from a workshop intended to capture current views and research gaps relating to the points above.
Vuletic, L; Spalj, S; Peros, K
2016-02-01
The primary objective of this study was to assess whether exposing dental students to visual stimuli related to dental profession during the medical physiology seminar could affect their perception of the clinical relevance of the topic. A self-administered questionnaire on attitudes towards medical physiology was conducted amongst 105 students of the School of Dental Medicine in Zagreb, Croatia, aged 19-24 years (80% females) following a seminar on respiratory system physiology. Power-point presentation accompanying the seminar for a total of 52 students (study group) was enriched with pictures related to dental practice in order to assess whether these pictures could make the topic appear more clinically relevant for a future dentist. The results of the survey indicated that dental students in the study group perceived the topic of the seminar as more important for them as future dentists when compared to the perception of the control group (P = 0.025). The results of this survey encourage physiology lecturers to present medical physiology as clinically relevant for dental students whenever possible as this could increase students' interest in the subject and their motivation for learning. Such an approach could be particularly beneficial if there is a significant time gap between basic courses and involvement of students into clinical training for it could promote meaningful learning. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pair Comparison Study of the Relevance of Nine Basic Science Courses
ERIC Educational Resources Information Center
Spilman, Edra L.; Spilman, Helen W.
1975-01-01
Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…
Teaching Stress Physiology Using Zebrafish ("Danio Rerio")
ERIC Educational Resources Information Center
Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed
2009-01-01
A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…
Phun Week: Understanding Physiology
ERIC Educational Resources Information Center
Limson, Mel; Matyas, Marsha Lakes
2009-01-01
Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…
Bimmler, D; Graf, R; Scheele, G A; Frick, T W
1997-01-31
Apart from digestive enzymes, pancreatic juice contains several proteins that are not directly involved in digestion. One of these, lithostathine, has been reported to exhibit calcite crystal inhibitor activity in vitro. As pancreatic juice is supersaturated with respect to calcium carbonate, it was hypothesized that lithostathine stabilizes pancreatic juice. Lithostathine is cleaved by trace amounts of trypsin, resulting in a C-terminal polypeptide and an N-terminal undecapeptide, which has been identified as the active site of lithostathine regarding crystal inhibition. We produced rat lithostathine in a baculovirus expression system. In order to test its functional activity, the protein was purified using a nondenaturing multi-step procedure. In the low micromolar range, recombinant rat lithostathine in vitro exhibited calcite crystal inhibitor activity, confirming earlier reports. Limited tryptic proteolysis of recombinant lithostathine was performed, and the two cleavage products were separated; the C-terminal polypeptide was precipitated by centrifugation, and the N-terminal undecapeptide was purified by high performance liquid chromatography. Only the C-terminal peptide displayed measurable calcite crystal inhibitory activity. Furthermore, synthetic undecapeptides with identical sequence to the N-terminal undecapeptides of rat or human lithostathine were inactive. However, when tested in the same in vitro assays, other pancreatic or extra-pancreatic proteins show inhibitory activity in the same concentration range as lithostathine, and inorganic phosphate is active as well. Based on these findings it seems unlikely that lithostathine is a physiologically relevant calcite crystal inhibitor. The name "lithostathine" is therefore inappropriate, and the protein's key function remains to be elucidated.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
Ferreira, Carlos R.; Gahl, William A.
2017-01-01
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481
Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji
2015-12-10
D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.
Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M
2015-01-01
Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.
Cholesterol blocks spontaneous insertion of membrane proteins into liposomes of phosphatidylcholine.
Nakamura, Shota; Suzuki, Sonomi; Saito, Hiroaki; Nishiyama, Ken-Ichi
2018-04-01
Spontaneous insertion of membrane proteins into liposomes formed from Escherichia coli polar phospholipids is blocked by diacylglycerol (DAG) at a physiological level. We found that cholesterol also blocks this spontaneous insertion, although a much larger amount is necessary for sufficient blockage. Reversely, sphingomyelin enhanced the spontaneous insertion. DAG at a physiological level was found not to block spontaneous insertion into liposomes formed from phosphatidylcholine (PC), while non-physiologically high concentrations of DAG reduced it. On the other hand, cholesterol blocked the spontaneous insertion into PC liposomes at a physiological level, explaining that both PC and cholesterol are absent in E. coli. While sphingomyelin did not enhance spontaneous insertion into PC liposomes, the effect of cholesterol on blockage of spontaneous insertion was dominant over that of sphingomyelin, suggesting that cholesterol functions as a blocker of disordered spontaneous insertion in eukaryotic cells. Lower amount of cholesterol was necessary to block spontaneous insertion into ER-mimic liposomes, explaining that ER membranes contain less amount of cholesterol. These results also explain that cholesterol, but not DAG, is involved in blockage of spontaneous insertion in eukaryotic cells, since DAG plays an important role as a second messenger in signal transduction.
Frontiers in the Teaching of Physiology. Computer Literacy and Simulation.
ERIC Educational Resources Information Center
Tidball, Charles S., Ed.; Shelesnyak, M. C., Ed.
Provided is a collection of papers on computer literacy and simulation originally published in The Physiology Teacher, supplemented by additional papers and a glossary of terms relevant to the field. The 12 papers are presented in five sections. An affirmation of conventional physiology laboratory exercises, coping with computer terminology, and…
Nitric oxide: a physiologic messenger.
Lowenstein, C J; Dinerman, J L; Snyder, S H
1994-02-01
To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.
Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian
2017-01-01
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J
2012-07-01
The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.
Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W
2015-06-01
What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Kocijancic, Igor
2007-12-01
The aim of this article is to present an overview of our 10 years clinical research work and early clinical experience with small pleural effusions. Small amounts of pleural fluid are severely difficult to identify with imaging methods (chest x-rays and ultrasound). Nevertheless, it may be an important finding, sometimes leading to a definitive diagnosis of pleural carcinomatosis, infection or other pathologic condition. Chest x-rays were used for many years for the diagnosis of small pleural effusions. Lateral decubitus chest radiographs represented a gold standard for imaging of small amounts of plural fluid for more than 80 years. In the last two decades, ultrasonography of pleural space became a leading real-time method for demonstrating small pleural effusions. Furthermore, the advent of sonographic technology actually enables detection of physiologic pleural fluid in some otherwise healthy individuals. In conclusion, new definitions of the key terms in the field of diagnostic imaging of small amounts of pleural fluid seem to be justified. We suggest that the term pleural fluid should determine physiologic pleural space condition while the term pleural effusion should only be used in the cases of pleural involvement or pleural illness.
Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation.
Blifernez-Klassen, Olga; Chaudhari, Swapnil; Klassen, Viktor; Wördenweber, Robin; Steffens, Tim; Cholewa, Dominik; Niehaus, Karsten; Kalinowski, Jörn; Kruse, Olaf
2018-01-01
The microalga Botryococcus braunii is widely regarded as a potential renewable and sustainable source for industrial applications because of its capability to produce large amounts of metabolically expensive (exo-) polysaccharides and lipids, notably hydrocarbons. A comprehensive and systematic metabolic characterization of the Botryococcus braunii race A strain CCAP 807/2 was conducted within the present study, including the detailed analysis of growth-associated and physiological parameters. In addition, the intracellular metabolome was profiled for the first time and showed growth- and product-specific fluctuations in response to the different availability of medium resources during the cultivation course. Among the identified metabolites, a constant expression of raffinose was observed for the first time under standard conditions, which has until now only been described for higher plants. Overall, the multilayered analysis during the cultivation of strain CCAP 807/2 allowed the differentiation of four distinct physiological growth phases and revealed differences in the production profiles and content of liquid hydrocarbons and carbohydrates with up to 84% of organic dry weight (oDW). In the process, an enhanced production of carbohydrates with up to 63% of oDW (1.36±0.03 g L-1) could be observed during the late linear growth phase, whereas the highest accumulation of extracellular hydrocarbons with up to 24% of oDW (0.66±0.12 g L-1) occurred mainly during the stationary growth phase. Altogether, the knowledge obtained is potentially useful for the general understanding of the overall physiology of Botryococcus braunii and provide important insights into the growth behavior and product formation of this microalga, and is thus relevant for large scale biofuel production and industrial applications.
Women and Women's Issues in Industrial and Physiological Psychology.
ERIC Educational Resources Information Center
Knight, Patrick A.; And Others
In the area of industrial/organizational (I/O) psychology and physiological psychology, issues of gender have only begun to be addressed. An examination of the recent literatures in I/O and physiological psychology was undertaken to document the extent to which women are used as research subjects, to determine whether or not research relevant to…
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria
Xu, Zeling; Yan, Aixin
2015-01-01
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630
Medical student attitudes toward kidney physiology and nephrology: a qualitative study.
Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W
2016-11-01
Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.
A {beta}{sub 2}-microglobulin cleavage variant fibrillates at near-physiological pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corlin, Dorthe B.; Johnsen, Christina K.; Nissen, Mogens H.
2009-04-03
{beta}{sub 2}-microglobulin ({beta}{sub 2}m) deposits as amyloid in dialysis-related amyloidosis (DRA), predominantly in joints. The molecular mechanisms underlying the amyloidogenicity of {beta}{sub 2}m are still largely unknown. In vitro, acidic conditions, pH < 4.5, induce amyloid fibrillation of native {beta}{sub 2}m within several days. Here, we show that amyloid fibrils are generated in less than an hour when a cleavage variant of {beta}{sub 2}m-found in the circulation of many dialysis patients-is exposed to pH levels (pH 6.6) occurring in joints during inflammation. Aggregation and fibrillation, including seeding effects with intact, native {beta}{sub 2}m were studied by Thioflavin T fluorescence spectroscopy,more » turbidimetry, capillary electrophoresis, and electron microscopy. We conclude that a biologically relevant variant of {beta}{sub 2}m is amyloidogenic at slightly acidic pH. Also, only a very small amount of preformed fibrils of this variant is required to induce fibrillation of native {beta}{sub 2}m. This may explain the apparent lack of detectable amounts of the variant {beta}{sub 2}m in extracts of amyloid from DRA patients.« less
Odor Landscapes in Turbulent Environments
NASA Astrophysics Data System (ADS)
Celani, Antonio; Villermaux, Emmanuel; Vergassola, Massimo
2014-10-01
The olfactory system of male moths is exquisitely sensitive to pheromones emitted by females and transported in the environment by atmospheric turbulence. Moths respond to minute amounts of pheromones, and their behavior is sensitive to the fine-scale structure of turbulent plumes where pheromone concentration is detectible. The signal of pheromone whiffs is qualitatively known to be intermittent, yet quantitative characterization of its statistical properties is lacking. This challenging fluid dynamics problem is also relevant for entomology, neurobiology, and the technological design of olfactory stimulators aimed at reproducing physiological odor signals in well-controlled laboratory conditions. Here, we develop a Lagrangian approach to the transport of pheromones by turbulent flows and exploit it to predict the statistics of odor detection during olfactory searches. The theory yields explicit probability distributions for the intensity and the duration of pheromone detections, as well as their spacing in time. Predictions are favorably tested by using numerical simulations, laboratory experiments, and field data for the atmospheric surface layer. The resulting signal of odor detections lends itself to implementation with state-of-the-art technologies and quantifies the amount and the type of information that male moths can exploit during olfactory searches.
Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.
Thrasher, Cat; LoBue, Vanessa
2016-02-01
In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B
2015-02-01
Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.
Oral Exposure and Absorption of Toxicants
This chapter provides an overview of the toxicokinetics of orally absorbed xenobiotics. This includes a description of the basic anatomy and physiology of the digestive tract most relevant to the absorption process. In addition, differences in anatomy and physiology between human...
Sleep and Rest Requirements: Physiological Considerations
NASA Technical Reports Server (NTRS)
Neri, David F.; Rosekind, Mark R. (Technical Monitor)
1997-01-01
Sleep is a vital physiological need which must be met to insure optimal functioning. A single night of significantly shortened sleep negatively impacts performance, alertness, and mood. Restricted sleep studies have shown that even a relatively small amount of sleep loss over several consecutive days can be additive and result in a cumulative sleep debt with similar detrimental effects. Compounding the problem of sleep loss in the operational environment is the poor correlation between subjective reports of sleepiness and objective measures of physiological sleep need. Some of the factors determining how sleepy an individual is at a given point in time are: (1) individual characteristics (e.g., amount of prior sleep and wakefulness, circadian phase, age), (2) environmental conditions (e.g., noise, temperature, amount of social interaction), and (3) task variables (e.g., signal rate, workload). Although sleep need can be masked with medications, the only way to reduce it is with sleep itself. The timing of the sleep period can affect sleep duration and quality and thus its restorative strength. The data are clear that increasing sleep time results in improved alertness. This paper will briefly review the scientific findings on sleep need, the effects of sleep loss, napping strategies, and the implications of incorporating physiologically sound sleep and rest strategies into the operational aviation environment.
Rapid Acyl-Homoserine Lactone Quorum Signal Biodegradation in Diverse Soils†
Wang, Ya-Juan; Leadbetter, Jared Renton
2005-01-01
Signal degradation impacts all communications. Although acyl-homoserine lactone (acyl-HSL) quorum-sensing signals are known to be degraded by defined laboratory cultures, little is known about their stability in nature. Here, we show that acyl-HSLs are biodegraded in soils sampled from diverse U.S. sites and by termite hindgut contents. When amended to samples at physiologically relevant concentrations, 14C-labeled acyl-HSLs were mineralized to 14CO2 rapidly and, at most sites examined, without lag. A lag-free turf soil activity was characterized in further detail. Heating or irradiation of the soil prior to the addition of radiolabel abolished mineralization, whereas protein synthesis inhibitors did not. Mineralization exhibited an apparent Km of 1.5 μM acyl-HSL, ca. 1,000-fold lower than that reported for a purified acyl-HSL lactonase. Under optimal conditions, acyl-HSL degradation proceeded at a rate of 13.4 nmol · h−1 · g of fresh weight soil−1. Bioassays established that the final extent of signal inactivation was greater than for its full conversion to CO2 but that the two processes were well coupled kinetically. A most probable number of 4.6 × 105 cells · g of turf soil−1 degraded physiologically relevant amounts of hexanoyl-[1-14C]HSL to 14CO2. It would take chemical lactonolysis months to match the level of signal decay achieved in days by the observed biological activity. Rapid decay might serve either to quiet signal cross talk that might otherwise occur between spatially separated microbial aggregates or as a full system reset. Depending on the context, biological signal decay might either promote or complicate cellular communications and the accuracy of population density-based controls on gene expression in species-rich ecosystems. PMID:15746331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, Svetlana; Hussein, Jabeen; Ariano, Robert E.
Epidemiological studies support an association between perinatal cigarette smoke (CS) exposure and a number of severe pre- and postnatal complications. However, the mechanisms through which CS enhances such risks largely remain unknown. One of the reasons for our inability to discover such mechanisms has been the unavailability of a clinically relevant and physiologically concordant animal model. A number of studies have previously used nicotine (Nic) as surrogate for CS. We sought to (1) establish the amount of CS exposure to achieve plasma Nic concentrations observed among moderate to heavy smokers (20-60 ng/ml) (2) investigate the temporal changes in plasma Nicmore » concentrations, carboxyhemoglobin, and hematocrit with advancing pregnancy, and (3) elucidate the effects of CS exposure on pregnancy outcome. Pregnant Sprague-Dawley rats were exposed to various doses of CS or room air (Sham) from days 6 to 21 of gestation. Exposure to 6000 ml/day of CS led to very high plasma Nic concentrations and increased maternal and fetal mortality (P < 0.001). The plasma Nic concentrations remained higher than those observed in moderate smokers until the CS dose was reduced to 1000 ml/day and showed dose-dependent temporal changes with advancing gestational age. Significant increases in carboxyhemoglobin and hematocrit were observed in the CS group as compared with the Sham group (P < 0.001). In addition, prenatally CS exposed fetuses had lower birth weight as compared with the Sham group (P = 0.04). Our current study establishes a newly standardized and physiologically relevant model to investigate the mechanisms of CS-mediated adverse effects during the critical period of fetal development.« less
2003-03-01
51 Figure 30. SpO2 vs G Profile...and physiological monitoring. The system will be composed of a shirt having non- invasive physiological sensors , Global Positioning System (GPS...Positioning System (GPS)), and other sensor technology. It is now possible to transmit large amounts of data at a high rate in real-time. These
PHYSIOLOGICAL DYSFUNCTION IN ESTUARINE MYSIDS AND LARVAL DECAPODS WITH CHRONIC PESTICIDE EXPOSURE
A variety of physiological functions was examined in an estuarine mysid (Mysidopsis bahia) during life-cycle exposures to four classes of pesticides. Pesticide exposure initially elevated respiration rates of juveniles. These increased metabolic requirements reduced the amount of...
D, Savitha; Vaz, Manjulika; Vaz, Mario
2017-06-01
Integrating medical ethics into the physiology teaching-learning program has been largely unexplored in India. The objective of this exercise was to introduce an interactive and integrated ethics program into the Physiology course of first-year medical students and to evaluate their perceptions. Sixty medical students (30 men, 30 women) underwent 11 sessions over a 7-mo period. Two of the Physiology faculty conducted these sessions (20-30 min each) during the routine physiology (theory/practicals) classes that were of shorter duration and could, therefore, accommodate the discussion of related ethical issues. This exercise was in addition to the separate ethics classes conducted by the Medical Ethics department. The sessions were open ended, student centered, and designed to stimulate critical thinking. The students' perceptions were obtained through a semistructured questionnaire and focused group discussions. The students found the program unique, thought provoking, fully integrated, and relevant. It seldom interfered with the physiology teaching. They felt that the program sensitized them about ethical issues and prepared them for their clinical years, to be "ethical doctors." Neutral observers who evaluated each session felt that the integrated program was relevant to the preclinical year and that the program was appropriate in its content, delivery, and student involvement. An ethics course taught in integration with Physiology curriculum was found to be beneficial, feasible, and compatible with Physiology by students as well as neutral observers. Copyright © 2017 the American Physiological Society.
Relevance of human anatomy in daily clinical practice.
Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón
2010-12-20
the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.
Review of the photo-induced toxicity of environmental contaminants.
Roberts, Aaron P; Alloy, Matthew M; Oris, James T
2017-01-01
Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.
Recognition of schematic facial displays of emotion in parents of children with autism.
Palermo, Mark T; Pasqualetti, Patrizio; Barbati, Giulia; Intelligente, Fabio; Rossini, Paolo Maria
2006-07-01
Performance on an emotional labeling task in response to schematic facial patterns representing five basic emotions without the concurrent presentation of a verbal category was investigated in 40 parents of children with autism and 40 matched controls. 'Autism fathers' performed worse than 'autism mothers', who performed worse than controls in decoding displays representing sadness or disgust. This indicates the need to include facial expression decoding tasks in genetic research of autism. In addition, emotional expression interactions between parents and their children with autism, particularly through play, where affect and prosody are 'physiologically' exaggerated, may stimulate development of social competence. Future studies could benefit from a combination of stimuli including photographs and schematic drawings, with and without associated verbal categories. This may allow the subdivision of patients and relatives on the basis of the amount of information needed to understand and process social-emotionally relevant information.
Raman spectroscopy: in vivo quick response code of skin physiological status
NASA Astrophysics Data System (ADS)
Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette
2014-11-01
Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.
Raman spectroscopy: in vivo quick response code of skin physiological status.
Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette
2014-01-01
Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.
Clark, Ian A; Vissel, Bryce
2015-01-01
Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.
Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu
2013-04-01
We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Neuromodulators: available agents, physiology, and anatomy.
Nettar, Kartik; Maas, Corey
2011-12-01
Neuromodulators have risen to the forefront of aesthetic medicine. By reversibly relaxing target muscles, neuromodulators exhibit their effect by softening hyperfunctional lines. An understanding of their physiology, relevant facial anatomy, and current agents is imperative for a successful aesthetic practice. © Thieme Medical Publishers.
NASA Astrophysics Data System (ADS)
Asano, Hirotoshi; Hiroshige, Satoru; Ide, Hideto
We propose the psychological research and physiological measurements. We used oxyHb as physiological measurements in order to evaluate the emotion of “pleasant-unpleasant”. Concretely, we evaluated the difference in the emotion of “pleasant-unpleasant” from oxyHb of the frontal lobe. The experiment showed that a relation between psychological amount and ⊿oxyHb. Based on the result, we presumed the psychological amount using the multiple regression analysis. As a result, it turned out that we can evaluate the emotion of “pleasant-unpleasant” by fNIRS.
Miceli, Stéphanie
2017-01-01
Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5–500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings. PMID:28197543
Miceli, Stéphanie; Ness, Torbjørn V; Einevoll, Gaute T; Schubert, Dirk
2017-01-01
Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings.
Outdoor thermal physiology along human pathways: a study using a wearable measurement system
NASA Astrophysics Data System (ADS)
Nakayoshi, Makoto; Kanda, Manabu; Shi, Rui; de Dear, Richard
2015-05-01
An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed ( U) and short/long-wave radiation ( S and L), along with some physio-psychological parameters: skin temperature ( T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.
Physiological Effects of Trace Elements and Chemicals in Water
ERIC Educational Resources Information Center
Varma, M. M.; And Others
1976-01-01
The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…
Paillard, Thierry
2011-12-01
The article by Del Vecchio, et al. (2011) provides relevant information to trainers about the effort-pause ratio during mixed martial arts matches. Taking into account the physiological profiles of fighters would increase interest in these findings.
Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda
2018-02-09
The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
A simple sensing mechanism for wireless, passive pressure sensors.
Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H
2016-08-01
We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.
Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel
2015-09-01
The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Controversial constitutive TSHR activity: patients, physiology, and in vitro characterization.
Huth, S; Jaeschke, H; Schaarschmidt, J; Paschke, R
2014-06-01
G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are "preliminary attempts" and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity. © Georg Thieme Verlag KG Stuttgart · New York.
Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.
Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T
2016-09-01
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saraydın, Dursun; Işıkver, Yasemin; Karadağ, Erdener; Sahiner, Nurettin; Güven, Olgun
2002-03-01
Acrylamide hydrogels, containing different amounts and types of crosslinkers, were synthesized via γ-irradiation technique. Their swellings in simulated body fluids, such as physiological saline (0.89% NaCl) isoosmotic phosphate buffer at pH 7.4, gastric fluid at pH 1.1 (glycine-HCl), protein (aqueous solution of bovine serum albumin), urine (aqueous solution of urea), glucose and distilled water, were studied. Equilibrium swellings of the hydrogels were changed in the range 27-85 depending upon the fluids, type and amount of crosslinkers. The diffusion exponents were found over half for all hydrogels.
Mitra, Rupshi; Sapolsky, Robert Morris; Vyas, Ajai
2013-01-01
SUMMARY Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity. PMID:23104989
Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N
2001-04-01
Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.
NASA Astrophysics Data System (ADS)
Budhwani, Karim Ismail
The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.
Trichomonas vaginalis Flavin Reductase 1 and its Role in Metronidazole Resistance
Leitsch, David; Janssen, Brian D.; Kolarich, Daniel; Johnson, Patricia J.; Duchêne, Michael
2015-01-01
Summary The enzyme flavin reductase 1 (FR1) from Trichomonas vaginalis, formerly known as NADPH oxidase, was isolated and identified. Flavin reductase is part of the antioxidative defense in T. vaginalis and indirectly reduces molecular oxygen to hydrogen peroxide via free flavins. Importantly, a reduced or absent flavin reductase activity has been reported in metronidazole-resistant T. vaginalis, resulting in elevated intracellular oxygen levels and futile cycling of metronidazole. Interestingly, FR1 has no close homologue in any other sequenced genome, but seven full-length and three truncated isoforms exist in the T. vaginalis genome. However, out of these, only FR1 has an affinity for flavins, i.e. FMN, FAD, and riboflavin, which is high enough to be of physiological relevance. Although there are no relevant changes in the gene sequence or any alterations of the predicted FR1-mRNA structure in any of the strains studied, FR1 is not expressed in highly metronidazole-resistant strains. Transfection of a metronidazole-resistant clinical isolate (B7268), which does not express any detectable amounts of FR, with a plasmid bearing a functional FR1 gene nearly completely restored metronidazole sensitivity. Our results indicate that FR1 has a significant role in the emergence of metronidazole resistance in T. vaginalis. PMID:24256032
Nardo, Davide; Console, Paola; Reverberi, Carlo; Macaluso, Emiliano
2016-01-01
In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of naturalistic videos. Nineteen healthy subjects underwent functional magnetic resonance imaging (fMRI) while viewing short video-clips of everyday life situations, without any explicit goal-directed task. Each video contained either a single semantically-relevant event on the left or right side (Lat-trials), or multiple distinctive events in both hemifields (Multi-trials). For each video, we computed a salience index to quantify the lateralization bias due to stimulus-driven signals, and a gaze index (based on eye-tracking data) to quantify the efficacy of the stimuli in capturing attention to either side. Behaviorally, our results showed that stimulus-driven salience influenced spatial orienting only in presence of multiple competing events (Multi-trials). fMRI results showed that the processing of competing events engaged the ventral attention network, including the right temporoparietal junction (R TPJ) and the right inferior frontal cortex. Salience was found to modulate activity in the visual cortex, but only in the presence of competing events; while the orienting efficacy of Multi-trials affected activity in both the visual cortex and posterior parietal cortex (PPC). We conclude that in presence of multiple competing events, the ventral attention system detects semantically-relevant events, while regions of the dorsal system make use of saliency signals to select relevant locations and guide spatial orienting. PMID:27445760
PROPOSED MODELS FOR ESTIMATING RELEVANT DOSE RESULTING FROM EXPOSURES BY THE GASTROINTESTINAL ROUTE
Simple first-order intestinal absorption commonly used in physiologically-based pharmacokinetic(PBPK) models can be made to fit many clinical administrations but may not provide relevant information to extrapolate to real-world exposure scenarios for risk assessment. Small hydr...
Anatomy and physiology of the aging neck.
Shadfar, Scott; Perkins, Stephen W
2014-05-01
This article discusses the surgically relevant anatomic and physiologic tenets of the aging neck. Procedures performed to rejuvenate and contour the aging neck can be challenging. A thorough understanding of the underlying neck anatomy, as well as the physiology associated with aging, is critical for surgical planning, execution, and achieving aesthetically pleasing outcomes. These topics are reviewed and used as the foundation for a discussion of various other techniques. Copyright © 2014 Elsevier Inc. All rights reserved.
How is physiology relevant to behavior analysis?
Reese, Hayne W.
1996-01-01
Physiology is an important biological science; but behavior analysis is not a biological science, and behavior analysts can safely ignore biological processes. However, ignoring products of biological processes might be a serious mistake. The important products include behavior, instinctive drift, behavior potentials, hunger, and many developmental milestones and events. Physiology deals with the sources of such products; behavior analysis can deal with how the products affect behavior, which can be understood without understanding their sources. PMID:22478240
ERIC Educational Resources Information Center
McGeown, J. Graham
2006-01-01
Capillary filtration is a key area in the understanding of cardiovascular function and has both physiological and pathophysiological relevance in nearly every organ system. This article describes how classic papers in the Legacy collection of American Physiological Society publications can be used in a teaching symposium exploring the evidence…
Birmingham, Wendy C; Holt-Lunstad, Julianne
2018-04-05
There is a rich literature on social support and physical health, but research has focused primarily on the protective effects of social relationship. The stress buffering model asserts that relationships may be protective by being a source of support when coping with stress, thereby blunting health relevant physiological responses. Research also indicates relationships can be a source of stress, also influencing health. In other words, the social buffering influence may have a counterpart, a social aggravating influence that has an opposite or opposing effect. Drawing upon existing conceptual models, we expand these to delineate how social relationships may influence stress processes and ultimately health. This review summarizes the existing literature that points to the potential deleterious physiological effects of our relationships when they are sources of stress or exacerbate stress. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanisms and disease relevance of neutrophil extracellular trap formation.
Van Avondt, Kristof; Hartl, Dominik
2018-03-15
While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.
Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S
2013-12-05
The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Harris, David E.; Hannum, Lynn; Gupta, Sat
2004-01-01
A study of students of a traditional two-semester Anatomy and Physiology class was made to determine factors that contributed to success in the coursework. The test established a co-relation between the amount of study in mathematics and science done previously in school and final grades in the subject.
AGING AND TOXIC RESPONSE: ISSUES RELEVANT TO RISK ASSESSMENT (FINAL)
EPA has released a final report entitled, Aging and Toxic Response: Issues Relevant to Risk Assessment. This document contributes to the Agency's efforts to better understand the physiology of aging in order to protect the health of older persons, and identifies several d...
In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...
Heritability of climate-relevant traits in a rainforest skink.
Martins, Felipe; Kruuk, Loeske; Llewelyn, John; Moritz, Craig; Phillips, Ben
2018-05-22
There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h 2 < 0.31), but significant and higher heritability of desiccation resistance (h 2 ~0.42). These values contrasted with uniformly higher heritabilities (h 2 > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
Reward-based hypertension control by a synthetic brain-dopamine interface.
Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2013-11-05
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
Truman, Penelope; Grounds, Peter; Brennan, Katharine A
2017-03-01
Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms and therapeutic effectiveness of lactobacilli
Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso
2016-01-01
The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541
Normal-tension glaucoma (Low-tension glaucoma)
Anderson, Douglas R
2011-01-01
Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042
Gutierrez, Enrique; García-Villaraco, Ana; Lucas, José A.; Gradillas, Ana; Gutierrez-Mañero, F. Javier; Ramos-Solano, Beatriz
2017-01-01
Blackberries (Rubus spp.) are among the high added value food products relevant for human health due to the increasing evidence of the beneficial effects of polyphenols, which are very abundant in these fruits. Interestingly, these compounds also play a role on plant physiology, being especially relevant their role in plant defense against biotic and abiotic stress. Hence, we hypothesize that since blackberry fruits have high amounts of flavonols and anthocyanins, leaves would also have high amounts of these compounds, and can be studied as a source of active molecules; furthermore, leaf synthesis would support their high contents in fruits. To explore this hypothesis, the present study reports a de novo transcriptome analysis on field grown blackberry leaves and fruits at the same time point, to establish the metabolic relationship of these compounds in both organs. Transcripts were aligned against Fragaria vesca genome, and genes were identified and annotated in different databases; tissue expression pattern showed 20,463 genes common to leaves and fruits, while 6,604 genes were significantly overexpressed only in fruits, while another 6,599 genes were significantly overexpressed in leaves, among which flavonol-anthocyanin transporter genes were present. Bioactives characterization indicated that total phenolics in leaves were three-fold, and flavonols were six-fold than in fruits, while concentration of anthocyanins was higher in fruits; HPLC-MS analysis indicated different composition in leaves and fruits, with cyanidin-3-glucoside as the only common compound identified. Next, RT-qPCR of the core genes in the flavonol anthocyanin pathway and regulatory MYB genes were carried out. Interestingly, genes in the flavonol-anthocyanin pathway and flavonol-transport families were overexpressed in leaves, consistent with the higher bioactive levels. On the other hand, transcription factors were overexpressed in fruits anticipating an active anthocyanin biosynthesis upon ripening. This suggests that, in addition to the biosynthesis taking place in the fruits during ripening, translocation of flavonols from leaves to fruits contributes to the high amounts of bioactives starting to accumulate in fruits. PMID:28428793
From Claude Bernard to the Batcave and Beyond: Using Batman as a Hook for Physiology Education
ERIC Educational Resources Information Center
Zehr, E. Paul
2011-01-01
Communicating physiology to the general public and popularizing science can be tremendously rewarding activities. Providing relevant and compelling points of linkage, however, between the scientific experiences and the interests of the general public can be challenging. One avenue for popularizing science is to link scientific concepts to images,…
The Emergent Coordination of Cognitive Function
ERIC Educational Resources Information Center
Kello, Christopher T.; Beltz, Brandon C.; Holden, John G.; Van Orden, Guy C.
2007-01-01
1/f scaling has been observed throughout human physiology and behavior, but its origins and meaning remain a matter of debate. Some argue that it is a byproduct of ongoing processes in the brain or body and therefore of limited relevance to psychological theory. Others argue that 1/f scaling reflects a fundamental aspect of all physiological and…
Challenges of physiological monitoring in a Navy operational setting
NASA Technical Reports Server (NTRS)
Banta, Guy R.
1988-01-01
Challenges to physiological monitoring in the Navy include environmental extremes, acceptance of use by test subjects, data transfer, data interpretation, and capability of relating collected data to valid operational relevant criterion measures. These problems are discussed with respect to diving, electrophysiological monitoring, in-flight monitoring, aircrew fatigue, in-flight cardiac stress, and in-flight monitoring devices.
Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.
Vogel, John S; Keating, Garrett A; Buchholz, Bruce A
2002-01-01
Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures. PMID:12634135
Standpoints of traditional Persian physicians on geriatric nutrition.
Emami, Morteza; Nazarinia, Mohammad Ali; Rezaeizadeh, Hussein; Zarshenas, Mohammad M
2014-10-01
The present article aimed to compile information on the nutritional management for geriatric people. Popular textbooks of Persian medicine from 10th to 18th century were studied to derive relative viewpoints and considerations. The temperament, which is defined as the combination of 4 main elements (fire, air, water, and soil) and 4 humors made subsequently (black bile, yellow bile, phlegm, and blood), changes during age periods. Imbalance in proportional amounts of humors in elderly should be corrected with food and medicaments having opposite nature to the current condition. Traditional foods included mostly well-cooked soups, pottages, and porridges containing fresh sheep or chicken meat. Mono-ingredient foods were also administered according to their medical properties. Nutritional recommendations were also concerned with geriatrics' physiological conditions such as constipation, sleep disorders, and memory deficits. Many of traditional geriatric nutritional requirements are relevant in the present day. However, there are still notes that may be beneficial for consideration. © The Author(s) 2014.
Functional modules, mutational load and human genetic disease.
Zaghloul, Norann A; Katsanis, Nicholas
2010-04-01
The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.
Functional modules, mutational load and human genetic disease
Zaghloul, Norann A.; Katsanis, Nicholas
2013-01-01
The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561
Metabolic effects of sleep disruption, links to obesity and diabetes.
Nedeltcheva, Arlet V; Scheer, Frank A J L
2014-08-01
To highlight the adverse metabolic effects of sleep disruption and to open ground for research aimed at preventive measures. This area of research is especially relevant given the increasing prevalence of voluntary sleep curtailment, sleep disorders, diabetes, and obesity. Epidemiological studies have established an association between decreased self-reported sleep duration and an increased incidence of type 2 diabetes (T2D), obesity, and cardiovascular disease. Experimental laboratory studies have demonstrated that decreasing either the amount or quality of sleep decreases insulin sensitivity and decreases glucose tolerance. Experimental sleep restriction also causes physiological and behavioral changes that promote a positive energy balance. Although sleep restriction increases energy expenditure because of increased wakefulness, it can lead to a disproportionate increase in food intake, decrease in physical activity, and weight gain. Sleep disruption has detrimental effects on metabolic health. These insights may help in the development of new preventive and therapeutic approaches against obesity and T2D based on increasing the quality and/or quantity of sleep.
The G protein-coupled receptor GPR34 - The past 20 years of a grownup.
Schöneberg, Torsten; Meister, Jaroslawna; Knierim, Alexander Bernd; Schulz, Angela
2018-04-22
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years. Copyright © 2018 Elsevier Inc. All rights reserved.
The response of sap flow to pulses of rain in a temperate Australian woodland
Melanie Zeppel; Catrioina M.O. Macinnis-Ng; Chelcy R. Ford; Derek Eamus
2008-01-01
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response...
USDA-ARS?s Scientific Manuscript database
Molybdenum (Mo) is an essential micronutrient required in very low amounts (0.1-1 µg g-1 dry weight) in plants. It acts as a co-factor of certain enzymes carrying out redox reactions and is required for various physiological, biochemical and metabolic processes. However, its accumulation in excess l...
Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease
Lowe, David E.; Glomski, Ian J.
2012-01-01
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667
Sykes, António V.; Almansa, Eduardo; Cooke, Gavan M.; Ponte, Giovanna; Andrews, Paul L. R.
2017-01-01
Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract. PMID:28769814
Stress Evaluation while Prolonged Driving Operation Using the Facial Skin Temperature
NASA Astrophysics Data System (ADS)
Asano, Hirotoshi; Muto, Takumi; Ide, Hideto
There is a relation to the accident of a car and the physiological and psychological state of a driver. The stress may lead to the fall of a fatigue or attentiveness. Therefore, it is an important subject from viewpoint such as accident prevention to evaluate the mental state of a driver. The study aimed at the development of a quantitative instrumentation technology of the stress when a subject is driving for a long time. First of all, we measured the physiological and psychological stress of a driver. The facial skin temperature and ventricular rate that was driver's physiological amount were measured and compared it with visual analog scale of the subjective amount. It was able to be obtaining of the high correlation in facial skin temperature and visual analog scale from the outcome of the experiment. Therefore, the possibility of appreciable of driver's stress at a facial skin temperature was shown. As a result of the experiment, we showed a possibility that facial skin temperature could evaluate long driving stress.
Lamb, Iain R; Novielli, Nicole M; Murrant, Coral L
2018-04-15
The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K + ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10 -7 m S-nitroso-N-acetylpenicillamine (SNAP), 10 -7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and ∼128.0% respectively and ADO significantly attenuated KCl- and SNAP-induced vasodilatations by ∼94.7% and ∼59.6%, respectively. NO significantly attenuated KCl vasodilatation by 93.8%. Further, during muscle contraction we found that inhibition of NO production using l-N G -nitroarginine methyl ester and inhibition of ADO receptors using xanthine amine congener was effective at inhibiting contraction-induced vasodilatation but only in the presence of K + release channel inhibition. Thus, only when the inhibiting vasodilator K + was blocked was the second vasodilator, NO or ADO, able to produce effective vasodilatation. Therefore, we show that there are inhibitory interactions between specific vasodilators at the level of the capillary. Further, these inhibitions can be observed during muscle contraction indicating that redundancies between vasodilators are physiologically relevant and influence vasodilatation during active hyperaemia. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Use of an electronic patient portal among the chronically ill: an observational study.
Riippa, Iiris; Linna, Miika; Rönkkö, Ilona; Kröger, Virpi
2014-12-08
Electronic patient portals may enhance effective interaction between the patient and the health care provider. To grasp the full potential of patient portals, health care providers need more knowledge on which patient groups prefer electronic services and how patients should be served through this channel. The objective of this study was to assess how chronically ill patients' state of health, comorbidities, and previous care are associated with their adoption and use of a patient portal. A total of 222 chronically ill patients, who were offered access to a patient portal with their health records and secure messaging with care professionals, were included in the study. Differences in the characteristics of non-users, viewers, and interactive users of the patient portal were analyzed before access to the portal. Patients' age, gender, diagnoses, levels of the relevant physiological measurements, health care contacts, and received physiological measurements were collected from the care provider's electronic health record. In addition, patient-reported health and patient activation were assessed by a survey. Despite the broad range of measures used to indicate the patients' state of health, the portal user groups differed only in their recorded diagnosis for hypertension, which was most common in the non-user group. However, there were significant differences in the amount of care received during the year before access to the portal. The non-user group had more nurse visits and more measurements of relevant physiological outcomes than viewers and interactive users. They also had fewer referrals to specialized care during the year before access to the portal than the two other groups. The viewers and the interactive users differed from each other significantly in the number of nurse calls received, the interactive users having more calls than the viewers. No significant differences in age, gender, or patient activation were detected between the user groups. Previous care received by the patient is an important predictor for the use of a patient portal. In a group of patients with a similar disease burden, demand for different types of health services and preferences related to the service channel seem to contribute to the choice to use the patient portal. Further research on patient portal functionalities and their potential to meet patient needs by complementing or substituting for traditional health care services is suggested.
ERIC Educational Resources Information Center
Evans, Brian R.
2012-01-01
Proper nutrition, adequate amounts of physical activity, and sufficient amounts of sleep are three important variables for healthy children. Alternative certification teachers quickly enter the classroom at the beginning of their programs and may encounter disengaged students who lack the energy needed for quality learning and achievement.…
Physiology undergraduate degree requirements in the U.S.
VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A
2017-12-01
Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.
Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.
2016-01-01
In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably. PMID:27611841
Kletting, Peter; Schuchardt, Christiane; Kulkarni, Harshad R; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P; Beer, Ambros J
2016-01-01
In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25-29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1-3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably.
ERIC Educational Resources Information Center
Haspel, Carol; Motoike, Howard K.; Lenchner, Erez
2014-01-01
After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty…
[Clinical, morphological and molecular biological characteristics of the aging eye].
Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P
2017-02-01
The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.
Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage.
Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E Sander; Kleinberg, Samantha
2016-01-01
High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology.
Chen, Yi; Chen, Wei; Lin, Ye-chun; Cheng, Jian-zhong; Pan, Wen-jie
2015-12-01
Biochar is one of the research hotspots in the field of the agroforestry waste utilization. A field experiment was carried out to investigate the effects of different amounts of tobacco stem biochar (0, 1, 10, 50 t · hm⁻²) on soil micro-ecology and physiological properties of flue-cured tobacco. The results showed that soil water content (SWC) increased at all tobacco growth stages as the amounts of biochar applications increased. There were significant differences of SWC between the treatment of 50 t · hm⁻² and other treatments at the period of tobacco vigorous growth. As the application of biochar increased, the total soil porosity and capillary porosity increased, while soil bacteria, actinomyces, fungi amount increased firstly and then decreased. The amount of soil bacteria, actinomyces, fungi reached the maximum at the treatment of 10 t · hm⁻². Soil respiration rate (SRR) at earlier stage increased with the increase of biochar application. Compared with the control, SSR under biochar treatments increased by 7.9%-36.9%, and there were significant differences of SRR between high biochar application treatments (50 t · hm⁻² and 10 t · hm⁻²) and the control. Biochar improved leaf water potential, carotenoid and chlorophyll contents. Meanwhile, the dry mass of root, shoot and total dry mass under biochar application were higher than that of the control. These results indicated that the biochar played active roles in improving tobacco-planting soil micro-ecology and regulating physiological properties of flue-cured tobacco.
Hunt, Kathleen E.; Moore, Michael J.; Rolland, Rosalind M.; Kellar, Nicholas M.; Hall, Ailsa J.; Kershaw, Joanna; Raverty, Stephen A.; Davis, Cristina E.; Yeates, Laura C.; Fauquier, Deborah A.; Rowles, Teresa K.; Kraus, Scott D.
2013-01-01
Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples (‘blow’), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures. PMID:27293590
Pizzi, Stefano Delli; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A.; Di Giulio, Camillo; Onofrj, Marco
2017-01-01
The amygdala–medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala–mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala–mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion. PMID:27566606
Delli Pizzi, Stefano; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A; Di Giulio, Camillo; Onofrj, Marco; Bonanni, Laura
2017-04-01
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala-mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala-mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1 H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Research on Infancy of Special Relevance for Mental Health. Matrix No. 11A.
ERIC Educational Resources Information Center
Provence, Sally
Research relevant to planning and practice in the area of infant mental health is discussed in this paper. First, three examples of research approaches that reflect current attitudes are given. The first example represents those studies in which there is an effort to closely coordinate physiological and behavioral studies. The second example…
Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness
NASA Technical Reports Server (NTRS)
Dement, W. C.; Barchas, J. D.
1972-01-01
An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.
Managing fatigue in operational settings. 1: Physiological considerations and countermeasures
NASA Technical Reports Server (NTRS)
Rosekind, M. R.; Gander, P. H.; Gregory, K. B.; Smith, R. M.; Miller, D. L.; Oyung, R.; Webbon, L. L.; Johnson, J. M.
1996-01-01
The authors consider three aspects of managing fatigue in the workplace. They provide a brief overview of important scientific findings related to sleep and circadian physiology that establish the psychobiological foundation of fatigue. Their major focus is on the relevance of these findings to operational settings. In addition, they provide examples to describe practical fatigue countermeasures that can be used in operational settings.
Heynen, Miriam; Kay, Lise M.M.; Dominici, Claudia Yvette; Khan, Warda; Ng, Wendy W.S.; Jones, Lyndon
2011-01-01
Purpose To characterize various properties of a physiologically-relevant artificial tear solution (ATS) containing a range of tear film components within a complex salt solution, and to measure contact lens parameters and lipid deposition of a variety of contact lens materials after incubation in this ATS. Methods A complex ATS was developed that contains a range of salts, proteins, lipids, mucin, and other tear film constituents in tear-film relevant concentrations. This ATS was tested to confirm that its pH, osmolality, surface tension, and homogeneity are similar to human tears and remain so throughout the material incubation process, for up to 4 weeks. To confirm that silicone hydrogel and conventional hydrogel contact lens materials do not alter in physical characteristics beyond what is allowed by the International Organization for Standardization (ISO) 18369–2. The diameter, center thickness, and calculated base curve were measured for five different lens materials directly out of the blister pack, after a rinse in saline and then following a two week incubation in the modified ATS. To test the ATS and the effect of its composition on lipid deposition, two lens materials were incubated in the ATS and a modified version for several time points. Both ATS solutions contained trace amounts of carbon-14 cholesterol and phosphatidylcholine, such that deposition of these specific lipids could be quantified using standard methods. Results This ATS is a complex mixture that remains stable at physiologically relevant pH (7.3–7.6), osmolality (304–306 mmol/kg), surface tension (40–46 dynes/cm) and homogeneity over an incubation period of three weeks or more. The physical parameters of the lenses tested showed no changes beyond that allowed by the ISO guidelines. Incubations with the ATS found that balafilcon A lenses deposit significantly more cholesterol and phosphatidylcholine than omafilcon A lenses (p<0.05) and that removing lactoferrin and immunoglobulin G from the ATS can significantly decrease the mass of lipid deposited. Conclusions This paper describes a novel complex artificial tear solution specially designed for in-vial incubation of contact lens materials. This solution was stable and did not adversely affect the physical parameters of the soft contact lenses incubated within it and showed that lipid deposition was responsive to changes in ATS composition. PMID:22219635
Age-Related Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience
Cooper, Rachel; Shardell, Michelle; Simonsick, Eleanor M.; Schrack, Jennifer A.; Kuh, Diana
2016-01-01
Mobility is the most studied and most relevant physical ability affecting quality of life with strong prognostic value for disability and survival. Natural selection has built the “engine” of mobility with great robustness, redundancy, and functional reserve. Efficient patterns of mobility can be acquired during development even by children affected by severe impairments. Analogously, age-associated impairments in mobility-related physiological systems are compensated and overt limitations of mobility only occur when the severity can no longer be compensated. Mobility loss in older persons usually results from multiple impairments in the central nervous system, muscles, joints, and energetic and sensory physiological systems. Early preclinical changes in these physiological systems that precede mobility loss have been poorly studied. Peak performance, rate of decline, compensatory behaviors, or subclinical deterioration of physiological resources may cumulatively influence both timing of mobility loss and chances of recovery, but their role as risk factors has not been adequately characterized. Understanding the natural history of these early changes and intervening on them would likely be the most effective strategy to reduce the burden of disability in the population. For example, young women with low bone peak mass could be counseled to start strength resistance exercise to reduce their high risk of developing osteoporosis and fracture later in life. Expanding this approach to other physiological domains requires collecting and interpreting data from life course epidemiological studies, establishing normative measures of mobility, physical function, and physical activity, and connecting them with life course trajectories of the mobility-relevant physiological domains. PMID:26975983
Higgins-Opitz, Susan B; Tufts, Mark
2014-06-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. Copyright © 2014 The American Physiological Society.
Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam
2013-01-01
The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782
An overview of the endocrine and metabolic changes in manned space flight
NASA Astrophysics Data System (ADS)
Leach, Carolyns.
In the years since the Skylab Program, endocrinology and metabolism have gone through stages of development that can be characterized as descriptive, both physiological and biochemical. At the present time, this area demonstrates a significant increase in knowledge of endocrine and metabolic function in physiology and pathology at the biochemical level. The development of sensitive techniques for the measurement of hormones, their precursors and metabolites and the increasing amount of information on integrated endocrine responses in various physiologic processes make it valuable for us to retrospectively consider our space flight findings especially in considering future work.
Hamilton, Marc T
2018-04-15
A shared goal of many researchers has been to discover how to improve health and prevent disease, through safely replacing a large amount of daily sedentary time with physical activity in everyone, regardless of age and current health status. This involves contrasting how different muscle contractile activity patterns regulate the underlying molecular and physiological responses impacting health-related processes. It also requires an equal attention to behavioural feasibility studies in extremely unfit and sedentary people. A sound scientific principle is that the body is constantly sensing and responding to changes in skeletal muscle metabolism induced by contractile activity. Because of that, the rapid time course of health-related responses to physical inactivity/activity patterns are caused in large part directly because of the variable amounts of muscle inactivity/activity throughout the day. However, traditional modes and doses of exercise fall far short of replacing most of the sedentary time in the modern lifestyle, because both the weekly frequency and the weekly duration of exercise time are an order of magnitude less than those for people sitting inactive. This can explain why high amounts of sedentary time produce distinct metabolic and cardiovascular responses through inactivity physiology that are not sufficiently prevented by low doses of exercise. For these reasons, we hypothesize that maintaining a high metabolic rate over the majority of the day, through safe and sustainable types of muscular activity, will be the optimal way to create a healthy active lifestyle over the whole lifespan. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations.
Starcke, Katrin; Antons, Stephanie; Trotzke, Patrick; Brand, Matthias
2018-05-23
Background and aims Recent research has applied cue-reactivity paradigms to behavioral addictions. The aim of the current meta-analysis is to systematically analyze the effects of learning-based cue-reactivity in behavioral addictions. Methods The current meta-analysis includes 18 studies (29 data sets, 510 participants) that have used a cue-reactivity paradigm in persons with gambling (eight studies), gaming (nine studies), or buying (one study) disorders. We compared subjective, peripheral physiological, electroencephal, and neural responses toward addiction-relevant cues in patients versus control participants and toward addiction-relevant cues versus control cues in patients. Results Persons with behavioral addictions showed higher cue-reactivity toward addiction-relevant cues compared with control participants: subjective cue-reactivity (d = 0.84, p = .01) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.61, p < .01). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, median cingulate cortex, subgenual cingulate, and precentral gyrus. Persons with gambling, gaming, or buying disorders also showed higher cue-reactivity toward addiction-relevant cues compared with control cues: subjective cue-reactivity (d = 0.39, p = .11) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.47, p = .05). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, angular gyrus, inferior network, and precuneus. Discussion and conclusions Cue-reactivity not only exists in substance-use disorders but also in gambling, gaming, and buying disorders. Future research should differentiate between cue-reactivity in addictive behaviors and cue-reactivity in functional excessive behaviors such as passions, hobbies, or professions.
Peterson, Zoë D.; Janssen, Erick; Goodrich, David; Heiman, Julia R.
2015-01-01
Men’s sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men’s salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men’s sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. PMID:24310818
Peterson, Zoë D; Janssen, Erick; Goodrich, David; Heiman, Julia R
2014-01-01
Men's sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men's salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men's sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. © 2013 Wiley Periodicals, Inc.
Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.
2012-03-12
Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase inmore » TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.« less
Olowo-Ofayoku, Anthony; Moxham, Bernard John
2014-10-01
Marked changes are occurring within both the medical and dental curricula and new ways of teaching the basic sciences have been devised and traditional methods (e.g., dissection for gross anatomy and of bench-based animal preparations for physiology) are increasingly no longer the norm. Although there is much anecdotal evidence that students are not in favor of such changes, there is little evidence for this based on quantitative analyses of students' attitudes. Using Thurstone and Chave attitude analyses, we assessed the attitudes of first year medical and dental students at Cardiff University toward gross anatomy and physiology in terms of their perceived clinical importance. In addition, we investigated the appropriateness ("fitness for purpose") of teaching methodologies used for anatomy and physiology. The hypotheses tested recognized the possibility that medical and dental students differed in their opinions, but that they had a preference to being taught gross anatomy through the use of dissection and had no preference for physiology teaching. It was found that both medical and dental students displayed positive attitudes toward the clinical relevance of gross anatomy and that they preferred to be taught by means of dissection. Although both medical and dental students displayed positives attitudes toward the clinical relevance of physiology, this was greater for the medical students. Both medical and dental students showed a preference for being taught physiology through didactic teaching in small groups but the medical students also appreciated being taught by means of practicals. Overall, this study highlights the expectations that students have for the basic science foundation teaching within their professional training and signals a preference for being taught experientially/practically. Differences were discerned between medical and dental students that might reflect the direct association between systems physiology and pathophysiology and the application of this knowledge within the medical field in comparison to the dental field, which is heavily skill-based. © 2014 Wiley Periodicals, Inc.
Peptidase inhibitors in tick physiology.
Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I
2018-06-01
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.
Magnesium degradation under physiological conditions - Best practice.
Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank
2018-06-01
This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.
Basson, Christine H; Clusella-Trullas, Susana
2015-01-01
Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
Kelly, Neil A; Hammond, Kelley G; Bickel, C Scott; Windham, Samuel T; Tuggle, S Craig; Bamman, Marcas M
2018-04-01
Aging muscle atrophy is in part a neurodegenerative process revealed by denervation/reinnervation events leading to motor unit remodeling (i.e., myofiber type grouping). However, this process and its physiological relevance are poorly understood, as is the wide-ranging heterogeneity among aging humans. Here, we attempted to address 1) the relation between myofiber type grouping and molecular regulators of neuromuscular junction (NMJ) stability; 2) the impact of motor unit remodeling on recruitment during submaximal contractions; 3) the prevalence and impact of motor unit remodeling in Parkinson's disease (PD), an age-related neurodegenerative disease; and 4) the influence of resistance exercise training (RT) on regulators of motor unit remodeling. We compared type I myofiber grouping, molecular regulators of NMJ stability, and the relative motor unit activation (MUA) requirement during a submaximal sit-to-stand task among untrained but otherwise healthy young (YA; 26 yr, n = 27) and older (OA; 66 yr, n = 91) adults and OA with PD (PD; 67 yr, n = 19). We tested the effects of RT on these outcomes in OA and PD. PD displayed more motor unit remodeling, alterations in NMJ stability regulation, and a higher relative MUA requirement than OA, suggesting PD-specific effects. The molecular and physiological outcomes tracked with the severity of type I myofiber grouping. Together these findings suggest that age-related motor unit remodeling, manifested by type I myofiber grouping, 1) reduces MUA efficiency to meet submaximal contraction demand, 2) is associated with disruptions in NMJ stability, 3) is further impacted by PD, and 4) may be improved by RT in severe cases. NEW & NOTEWORTHY Because the physiological consequences of varying amounts of myofiber type grouping are unknown, the current study aims to characterize the molecular and physiological correlates of motor unit remodeling. Furthermore, because exercise training has demonstrated neuromuscular benefits in aged humans and improved innervation status and neuromuscular junction integrity in animals, we provide an exploratory analysis of the effects of high-intensity resistance training on markers of neuromuscular degeneration in both Parkinson's disease (PD) and age-matched older adults.
Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David
2018-03-12
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.
Evaluation of a computer-based approach to teaching acid/base physiology.
Rawson, Richard E; Quinlan, Kathleen M
2002-12-01
Because acid/base physiology is a difficult subject for most medical and veterinary students, the first author designed a software program, Acid/Base Primer, that would help students with this topic. The Acid/Base Primer was designed and evaluated within a conceptual framework of basic educational principles. Seventy-five first-year veterinary students (of 81; 93% response rate) participated in this study. Students took both a pre- and posttest of content understanding. After completing the Acid/Base Primer in pairs, each student filled out a survey evaluating the features of the program and describing his/her use and experience of it. Four pairs of students participated in interviews that elaborated on the surveys. Scores improved from 53 +/- 2% on the pretest to 74 +/- 1% on an immediate posttest. On surveys and in interviews, students reported that the program helped them construct their own understanding of acid/base physiology and prompted discussions in pairs of students when individual understandings differed. The case-based format provided anchors and a high degree of relevance. Repetition of concepts helped students develop a more complex network of understanding. Questions in the program served to scaffold the learning process by providing direction, accentuating the relevant features of the cases, and provoking discussion. Guidelines for software development were generated on the basis of the findings and relevant educational literature.
A conceptual framework for homeostasis: development and validation.
McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold
2016-06-01
We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.
Entropy change of biological dynamics in COPD.
Jin, Yu; Chen, Chang; Cao, Zhixin; Sun, Baoqing; Lo, Iek Long; Liu, Tzu-Ming; Zheng, Jun; Sun, Shixue; Shi, Yan; Zhang, Xiaohua Douglas
2017-01-01
In this century, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of large amount of data in human physiological signals. Entropy is a key metric for quantifying the irregularity contained in physiological signals. In this review, we focus on how entropy changes in various physiological signals in COPD. Our review concludes that the entropy change relies on the types of physiological signals under investigation. For major physiological signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, the entropy of a patient with COPD is lower than that of a healthy person. However, in case of hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. This result should give valuable guidance for the use of entropy for physiological signals measured by wearable medical device as well as for further research on entropy in COPD.
A Laboratory Program for Bioinorganic Chemistry
ERIC Educational Resources Information Center
Ochiai, Ei-ichiro
1973-01-01
Outlines a laboratory course entitled Inorganic Chemistry for Biological Sciences'' which is designed primarily for juniors in biochemistry, physiology, and soil sciences. Inclusion of relevant environmental topics is indicated. (CC)
Electrical Impedance Tomography of Electrolysis
Meir, Arie; Rubinsky, Boris
2015-01-01
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686
Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.
Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R
1994-05-01
1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.
[Signaling mechanisms involved in resolution of inflammation].
Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel
2014-01-01
Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.
Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.
2017-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606
Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A
2016-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.
Microbial ecology and host-microbiota interactions during early life stages
Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar
2012-01-01
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759
Bio-integrated electronics and sensor systems
NASA Astrophysics Data System (ADS)
Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.
2013-05-01
Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.
Foster, Kenneth R; Glaser, Roland
2007-06-01
This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.
Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.
Sirowy, Scott; Givargis, Tony; Vahid, Frank
2009-01-01
Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.
Ephemeral Relevance and User Activities in a Search Session
ERIC Educational Resources Information Center
Jiang, Jiepu
2016-01-01
We study relevance judgment and user activities in a search session. We focus on ephemeral relevance--a contextual measurement regarding the amount of useful information a searcher acquired from a clicked result at a particular time--and two primary types of search activities--query reformulation and click. The purpose of the study is both…
Wang, Xiaoying; Liang, Wenju; Wen, Dazhong
2004-10-01
The ecological and physiological water requirement of rice was studied in a paddy field of north China, and the field experiment was conducted at Shenyang Experimental Station of Ecology, Chinese Academy of Sciences. Under continuous flooding irrigation (CSF) and intermittent irrigation (IT) conditions, the evapotranspiration and soil evaporation of paddy fields were measured by non-weighing lysimeters and micro-lysimeters, respectively. The results showed that compared with continuous flooding irrigation, the transpiration under intermittent irrigation condition was not significantly reduced, but 16% and 24% of water amounts were reduced by decreasing the water losses through soil water evaporation and percolation, respectively. The water use efficiency of intermittent irrigation was increased 10%, without any adverse effects on biomass and grain yield of rice. Although the amount of water requirement under IT treatment was reduced significantly compared with CSF treatment, about 60% of total water requirement was still lost through deep percolation. Based on the results obtained, the corresponding countermeasures to reduce the amounts of soil water evaporation and percolation and to increase the water use efficiency were put forward in this paper.
Cork Containing Barks - a review
NASA Astrophysics Data System (ADS)
Leite, Carla; Pereira, Helena
2016-12-01
Tree barks are among the less studied forest products notwithstanding their relevant physiological and protective role in tree functioning. The large diversity in structure and chemical composition of barks makes them a particularly interesting potential source of chemicals and bio-products, at present valued in the context of biorefineries. One of the valuable components of barks is cork (phellem in anatomy) due to a rather unique set of properties and composition. Cork from the cork oak (Quercus suber) has been extensively studied, mostly because of its economic importance and worldwide utilization of cork products. However, several other species have barks with substantial cork amounts that may constitute additional resources for cork-based bioproducts. This paper makes a review of the tree species that have barks with significant proportion of cork and on the available information regarding their bark structural and chemical characterization. A general integrative appraisal of the formation and types of barks and of cork development is also given. The knowledge gaps and the potential interesting research lines are identified and discussed, as well as the utilization perspectives.
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A
2018-05-02
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Rana, Jat; Missler, Stephen R; Persons, Kathryn; Han, Johnson; Li, Teric
2016-09-01
In recent years, the role of reactive nitrogen and oxygen species (RNOS) in human disease has been the subject of considerable study. This has led to research on the potential benefit of natural products as dietary antioxidants to mitigate oxidative stress caused by increased RNOS associated with tissue damage. Five physiologically relevant reactive species include peroxyl radical, hydroxyl radical, peroxynitrite anion, superoxide radical anion, and singlet oxygen. Excessive amounts of these species can lead to the degradation of important biomolecules in vivo, and dietary antioxidants have been shown to inhibit damage both in vitro and in vivo. In this investigation, we have discovered that an extract of the fruit from Nitraria tangutorum Bobr. (Tangut white thorn) demonstrates significant antioxidant capacity against all five reactive species. Rapid bioassay-directed fractionation was used to identify antioxidant phytochemicals by collecting fractions from HPLC effluent into 96 well microplates and testing for antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical. Two different classes of phytochemicals, anthocyanins and flavonoids, were associated with antioxidant activity. Active components were further characterized by UV-Vis spectroscopy and high-resolution MS.
Violent video game effects on children and adolescents. A review of the literature.
Gentile, D A; Stone, W
2005-12-01
Studies of violent video games on children and adolescents were reviewed to: 1) determine the multiple effects; 2) to offer critical observations about common strengths and weaknesses in the literature; 3) to provide a broader perspective to understand the research on the effects of video games. The review includes general theoretical and methodological considerations of media violence, and description of the general aggression model (GAM). The literature was evaluated in relation to the GAM. Published literature, including meta-analyses, are reviewed, as well as relevant unpublished material, such as conference papers and dissertations. Overall, the evidence supports hypotheses that violent video game play is related to aggressive affect, physiological arousal, aggressive cognitions, and aggressive behaviours. The effects of video game play on school performance are also evaluated, and the review concludes with a dimensional approach to video game effects. The dimensional approach evaluates video game effects in terms of amount, content, form, and mechanics, and appears to have many advantages for understanding and predicting the multiple types of effects demonstrated in the literature.
Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals
Briscoe, Natalie J.; Handasyde, Kathrine A.; Griffiths, Stephen R.; Porter, Warren P.; Krockenberger, Andrew; Kearney, Michael R.
2014-01-01
How climate impacts organisms depends not only on their physiology, but also whether they can buffer themselves against climate variability via their behaviour. One of the way species can withstand hot temperatures is by seeking out cool microclimates, but only if their habitat provides such refugia. Here, we describe a novel thermoregulatory strategy in an arboreal mammal, the koala Phascolarctos cinereus. During hot weather, koalas enhanced conductive heat loss by seeking out and resting against tree trunks that were substantially cooler than ambient air temperature. Using a biophysical model of heat exchange, we show that this behaviour greatly reduces the amount of heat that must be lost via evaporative cooling, potentially increasing koala survival during extreme heat events. While it has long been known that internal temperatures of trees differ from ambient air temperatures, the relevance of this for arboreal and semi-arboreal mammals has not previously been explored. Our results highlight the important role of tree trunks as aboveground ‘heat sinks’, providing cool local microenvironments not only for koalas, but also for all tree-dwelling species. PMID:24899683
Fosfomycin residues in colostrum: Impact on morpho-physiology and microbiology of suckling piglets.
Fernández Paggi, M B; Martínez, G; Diéguez, S N; Pérez Gaudio, D S; Decundo, J M; Riccio, M B; Amanto, F A; Tapia, M O; Soraci, A L
2018-06-01
Fosfomycin is a broad-spectrum bactericidal antibiotic widely used in pig farms for the treatment of a wide variety of bacterial infections. In this study, the elimination of disodium fosfomycin in colostrum/milk of the sow and the impact of this antibiotic on the microbiota and intestinal morpho-physiology of suckling piglets were analyzed. The average amount of fosfomycin eliminated in colostrum (after administration of 15 mg/kg IM) during the first 10 hr postpartum was 0.85 μg/ml, and the mean residual amount ingested by the piglets was 0.26 mg/kg. The elimination profile of fosfomycin concentrations in colostrum occurs at a time of profound changes in the morpho-physiology of the gastrointestinal tract of the piglet. However, the studied concentrations did not produce imbalances on the microbiota or on the morpho-physiology of the gastrointestinal tract of the piglet. Concentrations of fosfomycin were maintained in the mammary gland above the MIC for more than 8 hr for pathogenic bacteria of productive importance. This would indicate that fosfomycin may be considered safe for the specific treatment of bacterial infectious processes in sows during the peri- and postpartum period. This first study with disodium fosfomycin stimulates awareness in the proper use of antimicrobials at farrowing. © 2018 John Wiley & Sons Ltd.
Investigation on maternal physiological and psychological factors of cheilopalatognathus.
Ma, J; Zhao, W; Ma, R M; Li, X J; Wen, Z H; Liu, X F; Hu, W D; Zhang, C B
2013-01-01
Case-control study on mothers of cheilopalatognathus children was conducted, to investigate the maternal physiological and psychological factors for occurrence of cheilopalatognathus. One hundred ten mothers of cheilopalatognathus children who were scheduled for one-stage surgery were selected as a research group, and 110 mothers of normal children served as a normal control group at the same time. Trait Anxiety Inventory (T-AI), Life Events Scale (LES), Trait Coping Style Questionnaire (TCSQ), Type C Behavior Scale (CBS), adult Eysenck Personality Questionnaire (EPQ), and homemade general questionnaire survey were employed for the investigation. Compared with the control group, the scores for negative event tension value, anxiety, and depressive factors were higher in the study group (p < 0.05); while the scores for positive event tension value, intellect, optimism, and social support factors were lower (p < 0.05). Regression analysis found that physiological factors included were five: education, changes in body weight during pregnancy, the intake amount of milk and beans, and intake of healthcare products, and supplementary folic acid taken or not, while the psychological factors included were four: positive event stimulation, negative event stimulation, the amount of social support, as well as introvert and extrovert personalities. The study results suggest that pregnant women's physiological and psychological factors can cause changes in cheilopalatognathus incidence, which is expected to be guidance for healthcare during pregnancy, to prevent the occurrence of cheilopalatognathus.
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J
2015-09-01
Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.
I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.
Kofler, Walter
2007-01-01
There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.
Overview of exocrine pancreatic pathobiology.
Pandiri, Arun R
2014-01-01
Exocrine pancreas is a source of several enzymes that are essential for the digestive process. The exocrine pancreatic secretion is tightly regulated by the neuroendocrine system. The endocrine pancreas is tightly integrated anatomically and physiologically with the exocrine pancreas and modulates its function. Compound-induced pancreatitis is not a common event in toxicology or drug development, but it becomes a significant liability when encountered. Understanding the species-specific differences in physiology is essential to understand the underlying pathobiology of pancreatic disease in animal models and its relevance to human disease. This review will mainly focus on understanding the morphology and physiology of the pancreas, unique islet-exocrine interactions, and pancreatitis.
Murine epithelial cells: isolation and culture.
Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R
2004-08-01
We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.
Personalised fluid resuscitation in the ICU: still a fluid concept?
van Haren, Frank
2017-12-28
The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically heterogeneous intensive care unit population, accounting for the explicit assumption that treatment effects may be heterogeneous.
Perioperative abstinence from cigarettes: physiologic and clinical consequences.
Warner, David O
2006-02-01
Chronic exposure to cigarette smoke produces profound changes in physiology that may alter responses to perioperative interventions and contribute to perioperative morbidity. Because of smoke-free policies in healthcare facilities, all smokers undergoing surgery are abstinent from cigarettes for at least some period of time so that all are in various stages of recovery from the effects of smoke. Understanding this recovery process will help perioperative physicians better treat these patients. This review examines current knowledge regarding how both short-term (duration ranging from hours to weeks) and long-term smoking cessation affects selected physiology and pathophysiology of particular relevance to perioperative outcomes and how these changes affect perioperative risk. It will also consider current evidence regarding how nicotine replacement therapy, a valuable adjunct to help patients maintain abstinence, may affect perioperative physiology.
Physiology education in North American dental schools: the basic science survey series.
Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne
2014-06-01
As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.
Soh, Jun Hui; Lin, Yiyang; Rana, Subinoy; Ying, Jackie Y; Stevens, Molly M
2015-08-04
A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17β-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.
Nothing in medicine makes sense, except in the light of evolution.
Varki, Ajit
2012-05-01
The practice of medicine is a fruitful marriage of classic diagnostic and healing arts with modern advancements in many relevant sciences. The scientific aspects of medicine are rooted in understanding the biology of our species and those of other organisms that interact with us in health and disease. Thus, it is reasonable to paraphrase Dobzhansky, stating that, "nothing in the biological aspects of medicine makes sense except in the light of evolution." However, the art and science of medicine are also rooted in the unusual cognitive abilities of humans and the cultural evolutionary processes arising. This explains the rather bold and inclusive title of this essay. The near complete absence of evolution in medical school curricula is a historical anomaly that needs correction. Otherwise, we will continue to train generations of physicians who lack understanding of some fundamental principles that should guide both medical practice and research. I here recount my attempts to correct this deficiency at my own medical school and the lessons learned. I also attempt to summarize what I teach in the limited amount of time allowed for the purpose. Particular attention is given to the value of comparing human physiology and disease with those of other closely related species. There is a long way to go before the teaching of evolution can be placed in its rightful context within the medical curriculum. However, the trend is in the right direction. Let us aim for a day when an essay like this will no longer be relevant.
Schwarzl, Michael; Hamdani, Nazha; Seiler, Sebastian; Alogna, Alessio; Manninger, Martin; Reilly, Svetlana; Zirngast, Birgit; Kirsch, Alexander; Steendijk, Paul; Verderber, Jochen; Zweiker, David; Eller, Philipp; Höfler, Gerald; Schauer, Silvia; Eller, Kathrin; Maechler, Heinrich; Pieske, Burkert M; Linke, Wolfgang A; Casadei, Barbara; Post, Heiner
2015-11-01
Heart failure with preserved ejection fraction (HFPEF) evolves with the accumulation of risk factors. Relevant animal models to identify potential therapeutic targets and to test novel therapies for HFPEF are missing. We induced hypertension and hyperlipidemia in landrace pigs (n = 8) by deoxycorticosteroneacetate (DOCA, 100 mg/kg, 90-day-release subcutaneous depot) and a Western diet (WD) containing high amounts of salt, fat, cholesterol, and sugar for 12 wk. Compared with weight-matched controls (n = 8), DOCA/WD-treated pigs showed left ventricular (LV) concentric hypertrophy and left atrial dilatation in the absence of significant changes in LV ejection fraction or symptoms of heart failure at rest. The LV end-diastolic pressure-volume relationship was markedly shifted leftward. During simultaneous right atrial pacing and dobutamine infusion, cardiac output reserve and LV peak inflow velocities were lower in DOCA/WD-treated pigs at higher LV end-diastolic pressures. In LV biopsies, we observed myocyte hypertrophy, a shift toward the stiffer titin isoform N2B, and reduced total titin phosphorylation. LV superoxide production was increased, in part attributable to nitric oxide synthase (NOS) uncoupling, whereas AKT and NOS isoform expression and phosphorylation were unchanged. In conclusion, we developed a large-animal model in which loss of LV capacitance was associated with a titin isoform shift and dysfunctional NOS, in the presence of preserved LV ejection fraction. Our findings identify potential targets for the treatment of HFPEF in a relevant large-animal model. Copyright © 2015 the American Physiological Society.
Zhang, Yanqiong; Yang, Chunyuan; Wang, Shaochuang; Chen, Tao; Li, Mansheng; Wang, Xue; Li, Dongsheng; Wang, Kang; Ma, Jie; Wu, Songfeng; Zhang, Xueli; Zhu, Yunping; Wu, Jinsheng; He, Fuchu
2013-09-01
A large amount of liver-related physiological and pathological data exist in publicly available biological and bibliographic databases, which are usually far from comprehensive or integrated. Data collection, integration and mining processes pose a great challenge to scientific researchers and clinicians interested in the liver. To address these problems, we constructed LiverAtlas (http://liveratlas.hupo.org.cn), a comprehensive resource of biomedical knowledge related to the liver and various hepatic diseases by incorporating 53 databases. In the present version, LiverAtlas covers data on liver-related genomics, transcriptomics, proteomics, metabolomics and hepatic diseases. Additionally, LiverAtlas provides a wealth of manually curated information, relevant literature citations and cross-references to other databases. Importantly, an expert-confirmed Human Liver Disease Ontology, including relevant information for 227 types of hepatic disease, has been constructed and is used to annotate LiverAtlas data. Furthermore, we have demonstrated two examples of applying LiverAtlas data to identify candidate markers for hepatocellular carcinoma (HCC) at the systems level and to develop a systems biology-based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC differential diagnosis. LiverAtlas is the most comprehensive liver and hepatic disease resource, which helps biologists and clinicians to analyse their data at the systems level and will contribute much to the biomarker discovery and diagnostic performance enhancement for liver diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tufts, Mark
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify “at-risk” students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. PMID:24913452
Mammalian lipoxygenases and their biological relevance.
Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus
2015-04-01
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Copyright © 2014 Elsevier B.V. All rights reserved.
Rault, Aline; Bouix, Marielle; Béal, Catherine
2008-12-01
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.
2003-01-01
Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.
Deliberate practice theory: relevance, effort, and inherent enjoyment of music practice.
Hyllegard, Randy; Bories, Tamara L
2008-10-01
This study examined three assumptions of the theory of deliberate practice for practice playing music on an electronic keyboard. 40 undergraduate students, divided into two separate groups, practiced one of two music sequences and rated the relevance of practice for improving performance on the sequences, the amount of effort needed to learn the sequences, and the inherent enjoyment of practice sessions. Findings for each assumption were consistent with those suggested by theory but also showed that perceptions are affected by the amount of practice completed and performance of the skill.
TRI-Worthy Projects for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wotring, V. E.; Strangman, G. E.; Donoviel, D.
2018-02-01
Preparations for exploration will require exposure to the actual deep space environment. The new TRI for Space Health proposes innovative projects using real space radiation to make medically-relevant measurements affecting human physiology.
The relevance of phylogeny to studies of global change.
Edwards, Erika J; Still, Christopher J; Donoghue, Michael J
2007-05-01
Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.
Sex Differences in Androgen Regulation of Metabolism in Nonhuman Primates.
True, Cadence; Abbott, David H; Roberts, Charles T; Varlamov, Oleg
2017-01-01
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females. This review will also focus on the interaction between altered androgen levels and dietary restriction and excess, in particular the Western-style diet that underlies significant human pathophysiology.
SEX DIFFERENCES IN ANDROGEN REGULATION OF METABOLISM IN NONHUMAN PRIMATES
True, Cadence; Abbott, David H.; Roberts, Charles T.; Varlamov, Oleg
2018-01-01
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females, as well as the interaction between altered androgen levels and dietary restriction and excess, in particular the western-style diet that underlies significant human pathophysiology. PMID:29224110
Pathways of the Maillard reaction under physiological conditions.
Henning, Christian; Glomb, Marcus A
2016-08-01
Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.
Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan
2016-06-01
An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Understanding the Onset of Health Impacts Caused by Disturbances
2015-09-30
will define the PCoD Health stage in a way that we can start to integrate ecological and physiological PCoD research. OBJECTIVES In order to...for the first time assess the relevance of adipose transcriptomic and metabolomic biomarkers as measures relevant to PCoD in cetaceans. We aim to...individuals. APPROACH The Population Consequences of Disturbances ( PCoD ) paradigm provides a mean to link perturbations of individual phenotypic
Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments
NASA Astrophysics Data System (ADS)
Zhou, Juncen; Li, Qing; Zhang, Haixiao; Chen, Funan
2014-01-01
Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.
Geophysiology, Extended Organisms, and the Problem of Emergent Homeostasis
NASA Astrophysics Data System (ADS)
Turner, S.
2001-12-01
Physiology may be broadly defined as the managed flow of matter, energy and information. Central to this concept is the attendant phenomenon of homeostasis, doing physiological work to balance the thermodynamically driven flows of matter, energy or information that naturally attend to living things. Organisms in general exhibit what might be termed a "strong" homeostasis, in which well-regulated and complex physiological machines drive the physiological fluxes of matter, energy and information within the organism and at the organism's outermost integumentary boundary. Organisms also structure their environments to manage flows of matter, energy and information between themselves and their environment. In so doing, living things constitute a sort of extended organism, in which an organism's physiology reaches beyond the outermost boundary of the skin. Geophysiology's radical promise is that physiology can arise at levels of organization higher than the organism, ranging from social insect colonies through ecosystems, perhaps even to the biosphere itself. However, a simple demonstration that organisms affect the flows of matter, energy and information in their environments is not sufficient to qualify as physiology. That amounts to a demonstration that organisms do physiological work on their environments, which is neither a radical nor a new idea. To be truly physiological, geophysiology must exhibit physiology's most essential attribute, namely homeostasis. Finding homeostasis and explaining how it works in the extended organism is geophysiology's radical challenge.
Red wine and component flavonoids inhibit UGT2B17 in vitro
2012-01-01
Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on testosterone metabolism. Considering the variety of foodstuffs that contain flavonoids, it is feasible that diet can elevate levels of circulating testosterone through reduction in urinary excretion. These results warrant further investigation and extension to a human trial to delineate the health implications. PMID:22958586
The recovery time course of the endothelial-cell glycocalyx in vivo and its implications in vitro
Potter, Daniel R.; Jiang, John; Damiano, Edward R.
2009-01-01
Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, while inflammation causes shedding of the layer. To track the endogenous recovery of the glycocalyx in vivo, we used fluorescent micro-particle image velocimetry (µ-PIV) in mouse cremaster-muscle venules to estimate the hydrodynamically relevant glycocalyx thickness 1, 3, 5, and 7 days after enzymatic or cytokine-mediated degradation of the layer. Results indicate that after acute degradation of the glycocalyx, 5–7 days are required for the layer to endogenously restore itself to its native hydrodynamically relevant thickness in vivo. In light of these findings, and since demonstrable evidence has emerged that standard cell-culture conditions are not conducive to providing the environment and/or cellular conditions necessary to produce and maintain a physiologically relevant cell-surface glycocalyx in vitro, we sought to determine if merely the passage of time would be sufficient to promote the production of a hydrodynamically relevant glycocalyx on a confluent monolayer of human umbilical vein endothelial cells (HUVECs). Using µ-PIV, we found that the hydrodynamically relevant glycocalyx was substantially absent 7 days post-confluence on HUVEC-lined cylindrical collagen microchannels maintained under standard culture conditions. Thus it remains to be determined how a hydrodynamically relevant glycocalyx surface layer can be synthesized and maintained in culture before the endothelial-cell culture model can be used to elucidate glycocalyx-mediated mechanisms of endothelial-cell function. PMID:19443840
Growth and development of children with a special focus on sleep.
Danker-Hopfe, Heidi
2011-12-01
The first two decades of life are characterised complex biological processes involving growth and maturation as well as differentiation. The Central Nervous System (CNS) where among others internal and external stimuli are integrated and responses of the body are prepared starts to evolve quite early during ontogenesis. One of the complex behaviours, which are regulated by the brain, is the sleep-wake cycle. The discussion of age-related changes in sleep comprises changes at the physiological level (e.g. changes in the frequency and amplitude of EEG signal, as well as development and distribution of sleep stages), changes in the corresponding behaviour (e.g. changes in the absolute amount of sleep and its distribution in 24h perspective), and finally the subjective perception of sleep and sleep as a measure of well-being. Studies on the impact of a specific factor on sleep during childhood and adolescence have to consider chronological and biological age as well as sex as relevant biological parameters. Even when these factors are controlled for large interindividual differences persist, that is why prospective instead of cross-sectional approaches should be used whenever possible. Furthermore, it has to be distinguished between sleep assessed at the level of brain functioning (i.e. by polysomnography), which gives information on effects at the physiological level and at the level of self-assessment, which focuses on behaviour. Both, sleep at the subjective as well as at the objective level, can to a considerable degree be affected by life style factors, which hence have to be considered as potential confounders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kailing, Lyn L; Bertinetti, Daniela; Herberg, Friedrich W; Pavlidis, Ioannis V
2017-10-25
S-Adenosyl-l-homocysteine hydrolases (SAHases) are important metabolic enzymes and their dysregulation is associated with some severe diseases. In vivo they catalyze the hydrolysis of S-adenosyl-l-homocysteine (SAH), the by-product of methylation reactions in various organisms. SAH is a potent inhibitor of methyltransferases, thus its removal from the equilibrium is an important requirement for methylation reactions. SAH hydrolysis is also the first step in the cellular regeneration process of the methyl donor S-adenosyl-l-methionine (SAM). However, in vitro the equilibrium lies towards the synthetic direction. To enable characterization of SAHases in the physiologically relevant direction, we have developed a coupled photometric assay that shifts the equilibrium towards hydrolysis by removing the product adenosine, using a high affinity adenosine kinase (AK). This converts adenosine to AMP and thereby forms equimolar amounts of ADP, which is phosphorylated by a pyruvate kinase (PK), in turn releasing pyruvate. The readout of the assay is the consumption of NADH during the lactate dehydrogenase (LDH) catalyzed reduction of pyruvate to lactic acid. The applicability of the assay is showcased for the determination of the kinetic constants of an SAHase from Bradyrhizobium elkanii (K M,SAH 41±5μM, v max,SAH 25±1μM/min with 0.13mg/mL enzyme). This assay is a valuable tool for in vitro characterization of SAHases with biotechnological potential, and for monitoring SAHase activity in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Entropy change of biological dynamics in COPD
Cao, Zhixin; Sun, Baoqing; Lo, Iek Long; Liu, Tzu-Ming; Zheng, Jun; Sun, Shixue; Shi, Yan; Zhang, Xiaohua Douglas
2017-01-01
In this century, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of large amount of data in human physiological signals. Entropy is a key metric for quantifying the irregularity contained in physiological signals. In this review, we focus on how entropy changes in various physiological signals in COPD. Our review concludes that the entropy change relies on the types of physiological signals under investigation. For major physiological signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, the entropy of a patient with COPD is lower than that of a healthy person. However, in case of hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. This result should give valuable guidance for the use of entropy for physiological signals measured by wearable medical device as well as for further research on entropy in COPD. PMID:29066881
A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES
Reproductive toxicogenomic studies generate large amounts of toxicological and genomic data. On the toxicology side, a substantial quantity of data accumulates from conventional endpoints such as histology, reproductive physiology and biochemistry. The largest source of genomics...
Effects of elevated water temperature on physiological responses in adult freshwater mussels
Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.
2015-01-01
These data suggest that elevated temperatures can alter metabolic rates in native mussels and may decrease the amount of energy that is available for key biological processes, such as survival, growth and reproduction.
Wolkow, Alexander; Ferguson, Sally; Aisbett, Brad; Main, Luana
2015-01-01
Emergency work can expose personnel to sleep restriction. Inadequate amounts of sleep can negatively affect physiological and psychological stress responses. This review critiqued the emergency service literature (e.g., firefighting, police/law enforcement, defense forces, ambulance/paramedic personnel) that has investigated the effect of sleep restriction on hormonal, inflammatory and psychological responses. Furthermore, it investigated if a psycho-physiological approach can help contextualize the significance of such responses to assist emergency service agencies monitor the health of their personnel. The available literature suggests that sleep restriction across multiple work days can disrupt cytokine and cortisol levels, deteriorate mood and elicit simultaneous physiological and psychological responses. However, research concerning the interaction between such responses is limited and inconclusive. Therefore, it is unknown if a psycho-physiological relationship exists and as a result, it is currently not feasible for agencies to monitor sleep restriction related stress based on psycho- physiological interactions. Sleep restriction does however, appear to be a major stressor contributing to physiological and psychological responses and thus, warrants further investigation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Pardo, Jose E; Tomaz, Rafael Simões; Miasaki, Celso Tadao; Pardo-Giménez, Arturo
2017-01-01
Agaricus subrufescens Peck is a basidiomycete with immunomodulatory compounds and antitumor activities. This research evaluated the mycochemical composition of A. subrufescens, considering their morphological and physiological stage of maturity, with a particular focus on the development of a traceability process for the formulation of new nutritional products based on fungal foods. The stipes contained a high amount of dry matter (10.33%), total carbohydrate (69.56%), available carbohydrate (63.89%), and energy value (363.97 kcal 100 g−1 DM). The pilei contained a high amount of moisture (90.66%), nitrogen (7.75%), protein (33.96%), ash (8.24), crude fat (2.44%), acid detergent fiber (16.75 g kg−1), neutral detergent fiber (41.82 g kg−1), hemicellulose (25.07 g kg−1), and lignin (9.77 g kg−1). Stipes with mature physiological stage had higher values of dry matter (10.50%), crude fiber (5.94%), total carbohydrate (72.82%), AC (66.88%), and energy value (364.91 kcal 100 g−1 DM). Pilei of the mushrooms in the immature physiological stage had higher values of P (36.83%), N (8.41%), and A (8.44%). Due to the differences between the mycochemical compositions of the morphological parts of mushrooms linked to their physiological stage of maturity, such characteristics have immense potential to be considered for a traceability process. This study can be used for the purpose of providing the consumer with more product diversity, optimizing bioactivities of composts, and allowing farmers an efficient and profitable use of the mushroom biomass. PMID:29082241
What makes the learning of physiology in a PBL medical curriculum challenging? Student perceptions.
Tufts, Mark A; Higgins-Opitz, Susan B
2009-09-01
Physiology is an integral component of any medical curriculum. Traditionally, the learning of physiology has relied heavily on systems-based didactic lectures. In 2001, the Nelson R. Mandela School of Medicine (NRMSM; Durban, South Africa) embarked on a problem-based curriculum in which the learning of physiology was integrated with relevant clinical scenarios. Students are expected to gain an understanding of physiology through self-directed research with only certain aspects being covered in large-group resource sessions (LGRSs). It has gradually become evident that this approach has resulted in significant gaps in students' understanding of basic physiological concepts. A survey of student perceptions of needs for physiology was undertaken to gain a better understanding of their perceived problems and also to inform them of proposed curricular changes. Students were asked to what extent they thought physiology was essential for their understanding of pathology, interpretation of patients' clinical signs and presentation of symptoms, and analysis of laboratory results. Students were also invited to detail the difficulties they experienced in understanding in LGRSs on clinical and physiological topics. The results of the survey indicate that greater interaction of students with experts is needed. In particular, students felt that they lacked the basic conceptual foundations essential for the learning and understanding of physiology, since the difficulties that the students identified are mainly terminological and conceptual in nature.
NASA Technical Reports Server (NTRS)
Vernikos, J.
1996-01-01
The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.
Interpretation of physiological indicators of motivation: Caveats and recommendations.
Richter, Michael; Slade, Kate
2017-09-01
Motivation scientists employing physiological measures to gather information about motivation-related states are at risk of committing two fundamental errors: overstating the inferences that can be drawn from their physiological measures and circular reasoning. We critically discuss two complementary approaches, Cacioppo and colleagues' model of psychophysiological relations and construct validation theory, to highlight the conditions under which these errors are committed and provide guidance on how to avoid them. In particular, we demonstrate that the direct inference from changes in a physiological measure to changes in a motivation-related state requires the demonstration that the measure is not related to other relevant psychological states. We also point out that circular reasoning can be avoided by separating the definition of the motivation-related state from the hypotheses that are empirically tested. Copyright © 2017 Elsevier B.V. All rights reserved.
Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition
NASA Astrophysics Data System (ADS)
Kim, Jonghwa; André, Elisabeth
This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.
Bart's familiar quotations: the enduring biological wisdom of George A. Bartholomew.
Huey, Raymond B; Bennett, Albert F
2008-01-01
George A. Bartholomew was one of the most influential organismal biologists of the twentieth century. His insights and research were fundamental to the establishment and growth of physiological ecology and evolutionary physiology. In the process of fostering that area of science, he created a body of literature that is striking in the clarity of its thought and presentation. Here we present some of his most insightful and important quotations, group them thematically, and comment on their original context and their continuing relevance.
Role of Neuroactive Steroids in the Peripheral Nervous System
Melcangi, Roberto Cosimo; Giatti, Silvia; Pesaresi, Marzia; Calabrese, Donato; Mitro, Nico; Caruso, Donatella; Garcia-Segura, Luis Miguel
2011-01-01
Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy. PMID:22654839
A conceptual framework for homeostasis: development and validation
Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold
2016-01-01
We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740
Computational model of cerebral blood flow redistribution during cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.
2016-04-01
In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.
Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments
Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.
2015-01-01
Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731
Young, Kendra A; Fingerlin, Tasha E; Langefeld, Carl D; Lorenzo, Carlos; Haffner, Steven M; Wagenknecht, Lynne E; Norris, Jill M
2012-01-01
The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations. In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined. Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs. 28.35 kg/m2), VAT (126.3 vs. 105.5 cm2), and SAT (391.6 vs. 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI). Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences.
Reviewing the relevance of fluorescence in biological systems.
Lagorio, M Gabriela; Cordon, Gabriela B; Iriel, Analia
2015-09-26
Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature.
Personality, emotion, and individual differences in physiological responses.
Stemmler, Gerhard; Wacker, Jan
2010-07-01
A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. Copyright © 2009 Elsevier B.V. All rights reserved.
Paralikar, Swapnil; Shah, Chinmay
2015-01-01
Over the past several years, an opinion has emerged in India that the current practical curricula in medical schools fail to meet many of the objectives for which they were instituted. Hence, this study has assessed the perception of physiology faculty members regarding the current experimental physiology curriculum in one Indian state, Gujarat. The faculty were of the opinion that many of the topics currently taught in experimental physiology (amphibian nerve-muscle and heart muscle experiments) were outdated and clinically irrelevant: Therefore, the faculty advocated that duration of teaching time devoted to some of these topics should be reduced and topics with clinical relevance should be introduced at the undergraduate level. The faculty also felt that more emphasis should be laid on highlighting the clinical aspect related to each concept taught in experimental physiology . Moreover, a majority of faculty members were in favour of replacing the current practice in Gujarat of teaching experimental physiology only by explanation of graphs obtained from experiments conducted in the previous years, with computer assisted learning in small groups.
Physiological Responses to Cola Ingestion
ERIC Educational Resources Information Center
Van Handel, Peter J.; And Others
1977-01-01
Data from testing suggest that the ingestion of caffeine in the amount typically found in a single bottle of commercially available cola drink does not increase factors associated with coronary risk nor will it have an enhancing effect upon athletic performance. (MB)
Responses of switchgrass to precipitation changes: Nonlinear and asymmetric?
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: Climate changes, including chronic changes in precipitation amounts, will influence plant physiology, biomass and productivity, and soil respiration. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. Two preci...
QIVIVE Approaches to Evaluate Interindividual Toxicokinetic Variability
Toxicokinetic (TK) variability across life-stages and populations can significantly impact the amount of chemical available systemically to elicit an effect despite similar external exposures. This variability is driven by physiologic (e.g., liver weights, blood flow rates, etc.)...
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
Ingesting a small amount of beer reduces arterial stiffness in healthy humans.
Nishiwaki, Masato; Kora, Naoki; Matsumoto, Naoyuki
2017-08-01
Epidemiological studies reveal a J-shaped association between alcohol consumption and arterial stiffness, with arterial stiffening lower among mild-to-moderate drinkers than heavy drinkers or nondrinkers. This study aimed to examine the effects of ingesting a small amount of beer, corresponding to the amount consumed per day by a mild drinker, on arterial stiffness. Eleven men (20-22 years) participated, in random order and on different days, in four separate trials. The participants each drank 200 or 350 mL of alcohol-free beer (AFB200 and AFB350) or beer (B200 and B350), and were monitored for 90 min postingestion. There were no significant changes in arterial stiffness among trials that ingested AF200 or AF350. However, among trials ingesting B200 and B350, breath alcohol concentrations increased significantly, while indexes of arterial stiffness decreased significantly for approximately 60 min: carotid-femoral pulse wave velocity (B200: -0.6 ± 0.2 m/sec; B350: -0.6 ± 0.2 m/sec); brachial-ankle pulse wave velocity (B200: -53 ± 18 cm/sec; B350: -57 ± 19 cm/sec); and cardio-ankle vascular index (B200: -0.4 ± 0.1 unit; B350: -0.3 ± 0.1 unit). Furthermore, AFB showed no effect on arterial stiffness, regardless of whether or not it contained sugar, and no significant difference in antioxidant capacity was found between AFB and B. This is the first study to demonstrate that acute ingestion of relatively small amounts of beer reduces arterial stiffness (for approximately 60 min). Our data also suggest that the reduction in arterial stiffness induced by ingestion of beer is largely attributable to the effects of alcohol. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pajęcka, Kamilla, E-mail: kpaj@novonordisk.com; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus; Nielsen, Malik Nygaard
Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barriermore » function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.« less
Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs
Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva
2016-01-01
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections. PMID:26839750
Cooke, Steven J; Hinch, Scott G; Donaldson, Michael R; Clark, Timothy D; Eliason, Erika J; Crossin, Glenn T; Raby, Graham D; Jeffries, Ken M; Lapointe, Mike; Miller, Kristi; Patterson, David A; Farrell, Anthony P
2012-06-19
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.
Cooke, Steven J.; Hinch, Scott G.; Donaldson, Michael R.; Clark, Timothy D.; Eliason, Erika J.; Crossin, Glenn T.; Raby, Graham D.; Jeffries, Ken M.; Lapointe, Mike; Miller, Kristi; Patterson, David A.; Farrell, Anthony P.
2012-01-01
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. PMID:22566681
Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H
2009-04-01
Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.
Mesenchymal Stem Cells for Osteochondral Tissue Engineering
Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana
2017-01-01
Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
MicroRNAs and the metabolic hallmarks of aging.
Victoria, Berta; Nunez Lopez, Yury O; Masternak, Michal M
2017-11-05
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals. Copyright © 2016. Published by Elsevier B.V.
Mammalian lipoxygenases and their biological relevance
Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus
2015-01-01
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652
Biological role of bacterial inclusion bodies: a model for amyloid aggregation.
García-Fruitós, Elena; Sabate, Raimon; de Groot, Natalia S; Villaverde, Antonio; Ventura, Salvador
2011-07-01
Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background. © 2011 The Authors Journal compilation © 2011 FEBS.
Task relevance predicts gaze in videos of real moving scenes.
Howard, Christina J; Gilchrist, Iain D; Troscianko, Tom; Behera, Ardhendu; Hogg, David C
2011-09-01
Low-level stimulus salience and task relevance together determine the human fixation priority assigned to scene locations (Fecteau and Munoz in Trends Cogn Sci 10(8):382-390, 2006). However, surprisingly little is known about the contribution of task relevance to eye movements during real-world visual search where stimuli are in constant motion and where the 'target' for the visual search is abstract and semantic in nature. Here, we investigate this issue when participants continuously search an array of four closed-circuit television (CCTV) screens for suspicious events. We recorded eye movements whilst participants watched real CCTV footage and moved a joystick to continuously indicate perceived suspiciousness. We find that when multiple areas of a display compete for attention, gaze is allocated according to relative levels of reported suspiciousness. Furthermore, this measure of task relevance accounted for twice the amount of variance in gaze likelihood as the amount of low-level visual changes over time in the video stimuli.
SmartStuff: A case study of a smart water bottle.
Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E
2016-08-01
The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.
NASA Astrophysics Data System (ADS)
Höppe, P.
With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.
Behavioral neuroscience of emotion in aging.
Kaszniak, Alfred W; Menchola, Marisa
2012-01-01
Recent research on emotion and aging has revealed a stability of emotional experience from adulthood to older age, despite aging-related decrements in the perception and categorization of emotionally relevant stimuli. Research also shows that emotional expression remains intact with aging. In contrast, other studies provide evidence for an age-related decrease in autonomic nervous system physiological arousal, particularly in response to emotionally negative stimuli, and for shifts in central nervous system physiologic response to emotional stimuli, with increased prefrontal cortex activation and decreased amygdala activation in aging. Research on attention and memory for emotional information supports a decreased processing of negative emotional stimuli (i.e., a decrease in the negativity effect seen in younger adults), and a relative increase in the processing of emotionally positive stimuli (positivity effect). These physiological response and attentional/memory preference differences across increasingly older groups have been interpreted, within socioemotional selectivity theory, as reflecting greater motivation for emotion regulation with aging. According to this theory, as persons age, their perceived future time horizon shrinks, and a greater value is placed upon cultivating close, familiar, and meaningful relationships and other situations that give rise to positive emotional experience, and avoiding, or shifting attention from, those people and situations that are likely to elicit negative emotion. Even though there are central nervous system structural changes in emotion-relevant brain regions with aging, this shift in socioemotional selectivity, and perhaps the decreased autonomic nervous system physiological arousal of emotion with aging, facilitate enhanced emotion regulation with aging.
Bot, Cyborg and Automated Turing Test
NASA Astrophysics Data System (ADS)
Yan, Jeff
Ross Anderson: Bot tending might be an attractive activity for children, because children could receive the challenges on their mobile phones, to which they are almost physiologically attached these days, and they’re perhaps used to relatively smaller amounts of pocket money.
PHYSIOLOGICALLY BASED EXTRACTION PROCEDURE: COMPARISON OF FIVE FLUIDS
Traditionally, the performance of soil remediation technologies has been evaluated based on the total amount of extractable contaminants. However, some have argued that remedial treatments may alter the bioavailability as well as the mass of contaminants. For example, it has been...
Siebig, Sylvia; Kuhls, Silvia; Imhoff, Michael; Langgartner, Julia; Reng, Michael; Schölmerich, Jürgen; Gather, Ursula; Wrede, Christian E
2010-03-01
Monitoring of physiologic parameters in critically ill patients is currently performed by threshold alarm systems with high sensitivity but low specificity. As a consequence, a multitude of alarms are generated, leading to an impaired clinical value of these alarms due to reduced alertness of the intensive care unit (ICU) staff. To evaluate a new alarm procedure, we currently generate a database of physiologic data and clinical alarm annotations. Data collection is taking place at a 12-bed medical ICU. Patients with monitoring of at least heart rate, invasive arterial blood pressure, and oxygen saturation are included in the study. Numerical physiologic data at 1-second intervals, monitor alarms, and alarm settings are extracted from the surveillance network. Bedside video recordings are performed with network surveillance cameras. Based on the extracted data and the video recordings, alarms are clinically annotated by an experienced physician. The alarms are categorized according to their technical validity and clinical relevance by a taxonomy system that can be broadly applicable. Preliminary results showed that only 17% of the alarms were classified as relevant, and 44% were technically false. The presented system for collecting real-time bedside monitoring data in conjunction with video-assisted annotations of clinically relevant events is the first allowing the assessment of 24-hour periods and reduces the bias usually created by bedside observers in comparable studies. It constitutes the basis for the development and evaluation of "smart" alarm algorithms, which may help to reduce the number of alarms at the ICU, thereby improving patient safety. Copyright 2010 Elsevier Inc. All rights reserved.
1972-01-01
This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.
1973-01-01
This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.
Plant Ethylene Detection Using Laser-Based Photo-Acoustic Spectroscopy.
Van de Poel, Bram; Van Der Straeten, Dominique
2017-01-01
Analytical detection of the plant hormone ethylene is an important prerequisite in physiological studies. Real-time and super sensitive detection of trace amounts of ethylene gas is possible using laser-based photo-acoustic spectroscopy. This Chapter will provide some background on the technique, compare it with conventional gas chromatography, and provide a detailed user-friendly hand-out on how to operate the machine and the software. In addition, this Chapter provides some tips and tricks for designing and performing physiological experiments suited for ethylene detection with laser-based photo-acoustic spectroscopy.
Integrating physiological regulation with stem cell and tissue homeostasis
Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.
2015-01-01
Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826
Sommer, Felix; Bäckhed, Fredrik
2016-05-01
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.
Physiologic basis for understanding quantitative dehydration assessment.
Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N
2013-03-01
Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
DOT National Transportation Integrated Search
1978-04-01
Decongestants and antihistamines are known to produce effects capable of adversely modifying physiological function and psychomotor task performance. Because of relevance to safe pilot performance, the effects of single doses of two decongestant-anti...
van Ede, Freek
2017-01-01
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. PMID:28348136
Airaki, Morad; Sánchez-Moreno, Lourdes; Leterrier, Marina; Barroso, Juan B; Palma, José M; Corpas, Francisco J
2011-11-01
Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.
A link between eumelanism and calcium physiology in the barn owl
NASA Astrophysics Data System (ADS)
Roulin, Alexandre; Dauwe, Tom; Blust, Ronny; Eens, Marcel; Beaud, Michel
2006-09-01
In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium.
Physiological regulation and metabolic role of browning in white adipose tissue.
Jankovic, Aleksandra; Otasevic, Vesna; Stancic, Ana; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato
2017-09-01
Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.
Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W
2005-12-01
Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.
Physiological responses to daily light exposure
NASA Astrophysics Data System (ADS)
Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming
2016-04-01
Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.
Quantifying the physical demands of a musical performance and their effects on performance quality.
Drinkwater, Eric J; Klopper, Christopher J
2010-06-01
This study investigated the effects of fatigue on performance quality induced by a prolonged musical performance. Ten participants prepared 10 min of repertoire for their chosen wind instrument that they played three times consecutively. Prior to the performance and within short breaks between performances, researchers collected heart rate, respiratory rate, blood pressure, blood lactate concentration, rating of perceived exertion (RPE), and rating of anxiety. All performances were audio recorded and later analysed for performance errors. Reliability in assessing performance errors was assessed by typical error of measure (TEM) of 15 repeat performances. Results indicate all markers of physical stress significantly increased by a moderate to large amount (4.6 to 62.2%; d = 0.50 to 1.54) once the performance began, while heart rate, respirations, and RPE continued to rise by a small to large amount (4.9 to 23.5%; d = 0.28 to 0.93) with each performance. Observed changes in performance between performances were well in excess of the TEM of 7.4%. There was a significant small (21%, d = 0.43) decrease in errors after the first performance; after the second performance, there was a significant large increase (70.4%, d = 1.14). The initial increase in physiological stress with corresponding decrease in errors after the first performance likely indicates "warming up," while the continued increase in markers of physical stress with dramatic decrement in performance quality likely indicates fatigue. Musicians may consider the relevance of physical fitness to maintaining performance quality over the duration of a performance.
Coping with an Acute Psychosocial Challenge: Behavioral and Physiological Responses in Young Women
Villada, Carolina; Hidalgo, Vanesa; Almela, Mercedes; Mastorci, Francesca; Sgoifo, Andrea; Salvador, Alicia
2014-01-01
Despite the relevance of behavior in understanding individual differences in the strategies used to cope with stressors, behavioral responses and their relationships with psychobiological changes have received little attention. In this study on young women, we aimed at analyzing the associations among different components of the stress response and behavioral coping using a laboratory psychosocial stressor. The Ethological Coding System for Interviews, as well as neuroendocrine, autonomic and mood parameters, were used to measure the stress response in 34 young women (17 free-cycling women in their early follicular phase and 17 oral contraceptive users) subjected to the Trier Social Stress Test (TSST) and a control condition in a crossover design. No significant differences in cardiac autonomic, negative mood and anxiety responses to the stressor were observed between the two groups of women. However, women in the follicular phase showed a higher cortisol response and a larger decrease in positive mood during the social stress episode, as well as greater anxiety overall. Interestingly, the amount of displacement behavior exhibited during the speaking task of the TSST was positively related to anxiety levels preceding the test, but negatively related to baseline and stress response values of heart rate. Moreover, the amount of submissive behavior was negatively related to basal cortisol levels. Finally, eye contact and low-aggressiveness behaviors were associated with a worsening in mood. Overall, these findings emphasize the close relationship between coping behavior and psychobiological reactions, as well as the role of individual variations in the strategy of coping with a psychosocial stressor. PMID:25489730
Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam
2015-01-01
Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623
Estimating in vivo airway surface liquid concentration in trials of inhaled antibiotics.
Hasan, M A; Lange, C F
2007-01-01
Antibiotic drugs exhibit concentration dependence in their efficacy. Therefore, ensuring appropriate concentration of these drugs in the relevant body fluid is important for obtaining the desired therapeutic and physiological action. Until recently there had been no suitable method available to measure or estimate concentration of drugs in the human airways resulting from inhaled aerosols or to determine the amount of inhaled antibiotics required to ensure minimum inhibitory concentration of a drug in the airway surface liquid (ASL). In this paper a numerical method is used for estimating local concentration of inhaled pharmaceutical aerosols in different generations of the human tracheobronchial airways. The method utilizes a mathematical lung deposition model to estimate amounts of aerosols depositing in different lung generations, and a recent ASL model along with deposition results to assess the concentration of deposited drugs immediately following inhalation. Examples of concentration estimates for two case studies: one for the antibiotic tobramycin against Pseudomonas aeruginosa, and another for taurolidine against Burkholderia cepacia are presented. The aerosol characteristics, breathing pattern and properties of nebulized solutions were adopted from two recent clinical studies on efficacy of these drugs in cystic fibrosis (CF) patients and from other sources in the literature. While the clinically effective tobramycin showed a concentration higher than the required in vivo concentration, that for the ineffective taurolidine was found to be below the speculated required in vivo concentration. Results of this study thus show that the mathematical ASL model combined with the lung deposition model can be an effective tool for helping decide the optimum dosage of inhaled antibiotic drugs delivered during human clinical trials.
Palmer, Cara A; Alfano, Candice A
2017-01-01
It is increasingly clear that seminal sleep-affective relationships begin to take root in childhood, yet studies exploring how nighttime sleep characteristics relate to daytime affective symptoms, both in clinical and healthy populations of children, are lacking. The current study sought to explore these relationships by investigating whether trait-like and/or daily reports of affective and somatic symptoms of children with generalized anxiety disorder and matched controls relate to sleep architecture. Sixty-six children (ages 7-11; 54.4% female; 56.1% Caucasian; 18.2% biracial; 6.1% African American; 3% Asian; 16.7% Hispanic) participated including 29 with primary generalized anxiety disorder (without comorbid depression) and 37 healthy controls matched on age and race/ethnicity. Participants underwent structured diagnostic assessments including child-report measures and subsequently reported on their negative affect and somatic symptoms over the course of 1 week. Children also completed 1 night of polysomnography. Among children with generalized anxiety disorder only, greater amounts of slow wave sleep corresponded with less negative affect, and greater amounts of rapid eye movement sleep was related to more somatic complaints across the week. Similarly, for trait-like measures, more rapid eye movement sleep and shorter latency to rapid eye movement sleep were related to greater depressive symptoms in the anxious group only. The current findings suggest that physiologic sleep characteristics may contribute in direct ways to the symptom profiles of clinically anxious children. The functional relevance of such findings (e.g., how specific sleep characteristics serve to either increase or reduce long-term risk) is a vital direction for future research.
21 CFR 601.35 - Evaluation of safety.
Code of Federal Regulations, 2013 CFR
2013-04-01
... information, the following types of data: (A) Pharmacology data, (B) Toxicology data, (C) Clinical adverse event data, and (D) Radiation safety assessment. (2) The amount of new safety data required will depend... relevant to risk and will specify the amount and type of safety data that are appropriate for each category...
42 CFR 422.262 - Beneficiary premiums.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and Plan Approval § 422.262 Beneficiary premiums. (a) Determination of MA monthly basic beneficiary premium. (1) For an MA plan with an unadjusted statutory non-drug bid amount that is less than the relevant unadjusted non-drug benchmark amount, the basic beneficiary premium is zero. (2) For an MA plan...
42 CFR 422.262 - Beneficiary premiums.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Information and Plan Approval § 422.262 Beneficiary premiums. (a) Determination of MA monthly basic beneficiary premium. (1) For an MA plan with an unadjusted statutory non-drug bid amount that is less than the relevant unadjusted non-drug benchmark amount, the basic beneficiary premium is zero. (2) For an MA plan...
42 CFR 422.262 - Beneficiary premiums.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Information and Plan Approval § 422.262 Beneficiary premiums. (a) Determination of MA monthly basic beneficiary premium. (1) For an MA plan with an unadjusted statutory non-drug bid amount that is less than the relevant unadjusted non-drug benchmark amount, the basic beneficiary premium is zero. (2) For an MA plan...
42 CFR 422.262 - Beneficiary premiums.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Plan Approval § 422.262 Beneficiary premiums. (a) Determination of MA monthly basic beneficiary premium. (1) For an MA plan with an unadjusted statutory non-drug bid amount that is less than the relevant unadjusted non-drug benchmark amount, the basic beneficiary premium is zero. (2) For an MA plan...
42 CFR 422.262 - Beneficiary premiums.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Information and Plan Approval § 422.262 Beneficiary premiums. (a) Determination of MA monthly basic beneficiary premium. (1) For an MA plan with an unadjusted statutory non-drug bid amount that is less than the relevant unadjusted non-drug benchmark amount, the basic beneficiary premium is zero. (2) For an MA plan...
The conservation physiology toolbox: status and opportunities
Love, Oliver P; Hultine, Kevin R
2018-01-01
Abstract For over a century, physiological tools and techniques have been allowing researchers to characterize how organisms respond to changes in their natural environment and how they interact with human activities or infrastructure. Over time, many of these techniques have become part of the conservation physiology toolbox, which is used to monitor, predict, conserve, and restore plant and animal populations under threat. Here, we provide a summary of the tools that currently comprise the conservation physiology toolbox. By assessing patterns in articles that have been published in ‘Conservation Physiology’ over the past 5 years that focus on introducing, refining and validating tools, we provide an overview of where researchers are placing emphasis in terms of taxa and physiological sub-disciplines. Although there is certainly diversity across the toolbox, metrics of stress physiology (particularly glucocorticoids) and studies focusing on mammals have garnered the greatest attention, with both comprising the majority of publications (>45%). We also summarize the types of validations that are actively being completed, including those related to logistics (sample collection, storage and processing), interpretation of variation in physiological traits and relevance for conservation science. Finally, we provide recommendations for future tool refinement, with suggestions for: (i) improving our understanding of the applicability of glucocorticoid physiology; (ii) linking multiple physiological and non-physiological tools; (iii) establishing a framework for plant conservation physiology; (iv) assessing links between environmental disturbance, physiology and fitness; (v) appreciating opportunities for validations in under-represented taxa; and (vi) emphasizing tool validation as a core component of research programmes. Overall, we are confident that conservation physiology will continue to increase its applicability to more taxa, develop more non-invasive techniques, delineate where limitations exist, and identify the contexts necessary for interpretation in captivity and the wild. PMID:29942517
Dealing With Stress: A Challenge for Educators. Fastback 130.
ERIC Educational Resources Information Center
Miller, William C.
Sources of stress and hypertension are examined from the perspective of the professional educator and educational administrator. Physiological and psychological causes and effects of stressful lifestyles are explored, and suggestions are given for methods to deal with unhealthy amounts of stress. (LH)
Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta
2014-07-28
In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.
2015-01-01
Abstract Introduction Understanding the physiology of penile erection is important for all who work in the field of sexual medicine. Aim The aim of this study was to highlight and analyze historical aspects of the scientific understanding of penile erection. Methods (i) Review of the chapters on the physiology of erection out of the author's collection of books dealing with male sexual functioning published in the German, French, Dutch, and English language in between 1780 and 1940. (ii) Review of the topic “physiology of penile erection” of relevant chapters of C lassical writings on erectile dysfunction. A n annotated collection of original texts from three millennia, including the study of all relevant references mentioned in these books. Main Outcome Measure The main outcome measure used for the study was the scientific understanding of the physiology of penile erection. Results In Antiquity, Galen considered penile erection as the result the accumulation of air. His ideas so dominated medieval medicine that nearly everyone then alive was a Galenist. The beginning of the Renaissance shows meaningful examples of experimental scientific work on the penis. Da Vinci correctly concluded that erections were caused by blood, and in the 18th century, Von Haller from Switzerland was the first who explained that erections were under the control of the nervous system. In the 19th century, a mindset that emphasized on experimentation determined a new direction, namely experimental physiology. Animal studies clarified that stimulation of the nervi erigentes‐induced small muscle relaxation in the corpora cavernosa. Nearly all were published in the German language. That may be one of the reasons that the existence of the concept of smooth muscle relaxation remained controversial until the first World Congress on Impotence in 1984 in Paris. Conclusions As the Renaissance's innovative research defined neural and vascular physiologic phenomena responsible for penile erection. The concepts from animal experimentations in Europe in the 19th century significantly contributed to the current understanding of penile erection. van Driel MF. Physiology of penile erection—a brief history of the scientific understanding up till the eighties of the 20th century. Sex Med 2015;3:343–351. PMID:26797073
Vanderstraeten, Jacques; Gailly, Philippe; Malkemper, E. Pascal
2018-01-01
Various responses to static magnetic fields (MF) have been reported in plants, and it has been suggested that the geomagnetic field influences plant physiology. Accordingly, diverse mechanisms have been proposed to mediate MF effects in plants. The currently most probable sensor candidates are cryptochromes (Cry) which are sensitive to submillitesla MF. Here, we propose a quantitative approach of the MF effect on Cry depending on light intensity, and try to link it to a possible functional role for magnetic sensitivity in plants. Based on a theoretical evaluation and on a review of relevant data on Arabidopsis thaliana Cry 1, we point out that the MF effect on the signaling state of Cry, as well as the possible consequences of that effect on certain phenotypes (growth in particular) show parallel dependences on light intensity, being most prominent at low light levels. Based on these findings, we propose that Cry magnetosensitivity in plants could represent an ecological adaptation which regulates the amount of Cry signaling state under low light conditions. That hypothesis would preferentially be tested by studying sensitive and specific endpoints, such as the expression of clock proteins that are downregulated by Cry, but under light intensities lower than those used so far. Finally, we highlight that the low-light dependence of the MF effect described here could also apply to light-dependent functions of animal Cry, in particular magnetoreception which, from the present evaluation, would be based on the magnetic sensitivity of the photoreduction reaction, like in plants. PMID:29491873
Assessment, management and treatment of acute fingertip injuries.
Kearney, Anthony; Canty, Louise
2016-06-01
Fingertip injuries with nail bed trauma can require specialist hand surgery, depending on severity. However, most of these injuries can be managed in well-equipped emergency departments by emergency nurses with an in-depth knowledge and understanding of the anatomy and physiology of the fingernail and surrounding structures, assessment and examination, pain management and treatment. This article describes the surface and underlying anatomy and physiology of the nail, the most common mechanisms of injury, relevant diagnostic investigations, and initial assessment and management. It also discusses treatment options, referral pathways, and patient discharge advice.
DiVincenti, Louis; Westcott, Robin; Lee, Candice
2014-01-01
Because of its similarity to humans in important respects, sheep (Ovis aries) are a common animal model for translational research in cardiovascular surgery. However, some unique aspects of sheep anatomy and physiology present challenges to its use in these complicated experiments. In this review, we discuss relevant anatomy and physiology of sheep and discuss management before, during, and after procedures requiring cardiopulmonary bypass to provide a concise source of information for veterinarians, technicians, and researchers developing and implementing protocols with this model. PMID:25255065
Metabolomics from the Lab to the Field: Lessons Learned Along the Way
Use of metabolomics in laboratory studies for chemical toxicity evaluation is fast becoming an established technique in environmental science, displaying excellent sensitivity, physiological relevance, and providing valuable information regarding toxic mode(s)-of-action. These qu...
Trunk Muscle Attributes are Associated with Balance and Mobility in Older Adults: A Pilot Study
Suri, Pradeep; Kiely, Dan K.; Leveille, Suzanne G.; Frontera, Walter R.; Bean, Jonathan. F.
2010-01-01
Objective To determine if trunk muscle attributes are associated with balance and mobility performance among mobility-limited older adults. Design Cross-sectional analysis of data from a randomized clinical trial. Setting Outpatient rehabilitation research center. Participants Community-dwelling older adults (N=70; mean age 75.9 y) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Methods Independent variables included physiologic measures of trunk extension strength, trunk flexion strength, trunk extension endurance, trunk extension endurance and leg press strength. All measures were well tolerated by the study subjects without the occurrence of any associated injuries or adverse events. The association of each physiologic measure with each outcome was examined, using separate multivariate models to calculate the partial variance (R2) of each trunk and extremity measure. Main Outcome Measurements Balance measured by the Berg Balance Scale (BBS) and Unipedal Stance Test (UST), and mobility performance as measured by the SPPB. Results Trunk extension endurance (partial R2=.14, p=.02), and leg press strength (partial R2=.14, p=.003) accounted for the greatest amount of the variance in SPPB performance. Trunk extension endurance (partial R2=.17, p=.007), accounted for the greatest amount of the variance in BBS performance. Trunk extension strength (R2=.09, p=.03), accounted for the greatest amount of the variance in UST performance. The variance explained by trunk extension endurance equaled or exceeded the variance explained by limb strength across all three performance outcomes. Conclusions Trunk endurance and strength can be safely measured in mobility-limited older adults, and are associated with both balance and mobility performance. Trunk endurance and trunk strength are physiologic attributes worthy of targeting in the rehabilitative care of mobility-limited older adults. PMID:19854420
Trunk muscle attributes are associated with balance and mobility in older adults: a pilot study.
Suri, Pradeep; Kiely, Dan K; Leveille, Suzanne G; Frontera, Walter R; Bean, Jonathan F
2009-10-01
To determine whether trunk muscle attributes are associated with balance and mobility performance among mobility-limited older adults. Cross-sectional analysis of data from a randomized clinical trial. Outpatient rehabilitation research center. Community-dwelling older adults (N = 70; mean age 75.9 years) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Independent variables included physiologic measures of trunk extension strength, trunk flexion strength, trunk extension endurance, trunk extension endurance, and leg press strength. All measures were well tolerated by the study subjects without the occurrence of any associated injuries or adverse events. The association of each physiologic measure with each outcome was examined by the use of separate multivariate models to calculate the partial variance (R(2)) of each trunk and extremity measure. Balance measured by the Berg Balance Scale and Unipedal Stance Test and mobility performance as measured by the SPPB. Trunk extension endurance (partial R(2) = .14, P = .02), and leg press strength (partial R(2) = .14, P = .003) accounted for the greatest amount of the variance in SPPB performance. Trunk extension endurance (partial R(2) = .17, P = .007), accounted for the greatest amount of the variance in BBS performance. Trunk extension strength (R(2) = .09, P = .03), accounted for the greatest amount of the variance in UST performance. The variance explained by trunk extension endurance equaled or exceeded the variance explained by limb strength across all three performance outcomes. Trunk endurance and strength can be safely measured in mobility-limited older adults and are associated with both balance and mobility performance. Trunk endurance and trunk strength are physiologic attributes worthy of targeting in the rehabilitative care of mobility-limited older adults.
Balsiger, A; Clauss, M; Liesegang, A; Dobenecker, B; Hatt, J-M
2017-10-01
When offered diets with hay ad libitum, rabbits (Oryctolagus cuniculus) clearly prefer open dishes over nipple drinkers, but whether this preference also applies in guinea pigs (Cavia porcellus) is unsure. We tested the drinker preference of 10 guinea pigs when offered open dishes (OD) and nipple drinkers (ND) simultaneously and measured the amount of water consumed by each animal on four different diets (grass hay 100%, or as 10% of intake on diets of fresh parsley, seed mix or pelleted complete feed, respectively) on either of the drinking systems. All animals ingested the hay portion of the combined diets first. The amount of water consumed differed significantly between individual animals. Animals drank less water on parsley than on the other diets. Nine of 10 animals clearly preferred ND when having a choice, and eight of these drank more when on ND only. The difference between the drinking systems was not consistent across all diets: on hay, similar amounts of water were drunk when on OD or ND only. Differences in water intake were reflected in urine production. Because drinking from ND in guinea pigs involves jaw movements similar to those in chewing, the results could suggest that when motivation for oral processing behaviour is not satisfied by a diet, animals may respond in using ND beyond physiological water necessity. Whereas physiological water requirements are probably better investigated with other drinking systems due to a possible overestimation when using ND, offering ND to pet guinea pigs most likely offers a form of behavioural enrichment that at the same time may increase water intake and hence act as prophylaxis against urolithiasis. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Jones, Gareth P.; Lukashkina, Victoria A.; Russell, Ian J.; Elliott, Stephen J.; Lukashkin, Andrei N.
2015-12-01
The remarkable sensitivity, frequency selectivity, and dynamic range of the mammalian cochlea relies on longitudinal transmission of minuscule amounts of energy as passive, pressure-driven, basilar membrane (BM) traveling waves which are actively amplified at frequency-specific locations. Transmission of passive waves through viscous tissue situated in a viscous media is not an easy task. Here we describe mechanical properties of the tectorial membrane (TM) which facilitate this transmission. From mechanical measurements of isolated segments of the TM, we discovered that the stiffness of the TM is reduced when it is mechanically stimulated at physiologically relevant magnitudes and at frequencies below their frequency place in the cochlea. The reduction in stiffness functionally uncouples the TM from the organ of Corti, thereby minimizing energy losses during passive traveling wave propagation. Stiffening and decreased viscosity of the TM at high stimulus frequencies can potentially facilitate active amplification, especially in the high-frequency, basal turn, where energy loss due to internal friction within the TM is less than in the apex. This prediction is confirmed by neural recordings from several frequency regions of the cochlea.
Metabolic control of female puberty: potential therapeutic targets.
Castellano, Juan M; Tena-Sempere, Manuel
2016-10-01
The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.
Napping and the Selective Consolidation of Negative Aspects of Scenes
Payne, Jessica D.; Kensinger, Elizabeth A.; Wamsley, Erin; Spreng, R. Nathan; Alger, Sara; Gibler, Kyle; Schacter, Daniel L.; Stickgold, Robert
2018-01-01
After information is encoded into memory, it undergoes an offline period of consolidation that occurs optimally during sleep. The consolidation process not only solidifies memories, but also selectively preserves aspects of experience that are emotionally salient and relevant for future use. Here, we provide evidence that an afternoon nap is sufficient to trigger preferential memory for emotional information contained in complex scenes. Selective memory for negative emotional information was enhanced after a nap compared to wakefulness in two control conditions designed to carefully address interference and time-of-day confounds. Although prior evidence has connected negative emotional memory formation to rapid eye movement (REM) sleep physiology, we found that non-REM delta activity and the amount of slow wave sleep (SWS) in the nap were robustly related to the selective consolidation of negative information. These findings suggest that the mechanisms underlying memory consolidation benefits associated with napping and nighttime sleep are not always the same. Finally, we provide preliminary evidence that the magnitude of the emotional memory benefit conferred by sleep is equivalent following a nap and a full night of sleep, suggesting that selective emotional remembering can be economically achieved by taking a nap. PMID:25706830
Costa, Rosaria; De Grazia, Selenia; Grasso, Elisa; Trozzi, Alessandra
2015-01-01
Mushrooms are sources of food, medicines, and agricultural means. Not much is reported in the literature about wild species of the Mediterranean flora, although many of them are traditionally collected for human consumption. The knowledge of their chemical constituents could represent a valid tool for both taxonomic and physiological characterizations. In this work, a headspace-solid-phase microextraction (HS-SPME) method coupled with GC-MS and GC-FID was developed to evaluate the volatile profiles of ten wild mushroom species collected in South Italy. In addition, in order to evaluate the potential of this analytical methodology for true quantitation of volatiles, samples of the cultivated species Agaricus bisporus were analyzed. The choice of this mushroom was dictated by its ease of availability in the food market, due to the consistent amounts required for SPME method development. For calibration of the main volatile compounds, the standard addition method was chosen. Finally, the assessed volatile composition of A. bisporus was monitored in order to evaluate compositional changes occurring during storage, which represents a relevant issue for such a wide consumption edible product. PMID:25945282
NASA Astrophysics Data System (ADS)
Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto
2014-07-01
One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.
NASA Astrophysics Data System (ADS)
Solonenko, A. P.
2018-01-01
Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.
Oral contraceptives and changes in nutritional requirements.
Palmery, M; Saraceno, A; Vaiarelli, A; Carlomagno, G
2013-07-01
Oral contraceptives (OCs) are a major class of prescription drug, used by a large proportion of women starting from early adolescence. Much research has been conducted to investigate the physiological changes that occur in women who take OCs. These include changes in general health as well as in nutritional needs. In terms of nutrition, several studies investigated whether women on OCs need different amounts of some vitamins and minerals. In particular, a report from the World Health Organization (WHO) points out that the influence of OCs on nutrient requirements is a topic of high clinical relevance and should, therefore, receive great attention. It has been shown that the key nutrient depletions concern folic acid, vitamins B2, B6, B12, vitamin C and E and the minerals magnesium, selenium and zinc. Most research has focused on the levels of these vitamins and minerals in the blood of women who take OCs compared to women who do not. Since women who take OCs not always have adequate diet, may have unhealthy life style or may suffer from pathologies of malabsorption, the possibility to prevent vitamin and mineral deficiencies by taking appropriate dietary supplements should be considered a first-line approach by clinicians.
Antiapoptotic activity of argon and xenon
Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido
2013-01-01
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115
Metabolic microscopy of head and neck cancer organoids
NASA Astrophysics Data System (ADS)
Shah, Amy T.; Skala, Melissa C.
2016-03-01
Studies for head and neck cancer have primarily relied on cell lines or in vivo animal studies. However, a technique that combines the benefits of high-throughput in vitro studies with a complex, physiologically relevant microenvironment would be advantageous for understanding drug effects. Organoids provide a unique platform that fulfills these goals. Organoids are generated from excised and digested tumor tissue and are grown in culture. Fluorescence microscopy provides high-resolution images on a similar spatial scale as organoids. In particular, autofluorescence imaging of the metabolic cofactors NAD(P)H and FAD can provide insight into response to anti-cancer treatment. The optical redox ratio reflects relative amounts of NAD(P)H and FAD, and the fluorescence lifetime reflects enzyme activity of NAD(P)H and FAD. This study optimizes and characterizes the generation and culture of organoids grown from head and neck cancer tissue. Additionally, organoids were treated for 24 hours with a standard chemotherapy, and metabolic response in the organoids was measured using optical metabolic imaging. Ultimately, combining head and neck cancer organoids with optical metabolic imaging could be applied to test drug sensitivity for drug development studies as well as treatment planning for cancer patients.
Allemand, Denis; Furla, Paola
2018-04-09
Cnidarians (corals and sea anemones) harbouring photosynthetic microalgae derive several benefits from their association. To allow this association, numerous symbiotic-dependent adaptations in both partners, resulting from evolutionary pressures, have been selected. The dinoflagellate symbionts (zooxanthellae) are located inside a vesicle in the cnidarian host cell and are therefore exposed to a very different environment compared to the free-living state of these microalgae in terms of ion concentration and carbon content and speciation. In addition, this intracellular localization imposes that they rely completely upon the host for their nutrient supply (nitrogen, CO 2 ). Symbiotic-dependent adaptations imposed to the animal host by phototrophic symbiosis are more relevant to photosynthetic organisms than to metazoans: indeed, the cnidarian host often harbours diurnal changes of morphology to adapt itself to the amount of light and possesses carbon-concentrating mechanisms, antioxidative defences and UV sunscreens similar to that present in phototrophs. These adaptations and the contrasting fragility of the association are discussed from both ecological and evolutionary points of view. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Young, Kendra A.; Fingerlin, Tasha E.; Langefeld, Carl D.; Lorenzo, Carlos; Haffner, Steven M.; Wagenknecht, Lynne E.; Norris, Jill M.
2014-01-01
Objective The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations. Research Design and Methods In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined. Results Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs 28.35 kg/m2), VAT (126.3 vs 105.5 cm2), and SAT (391.6 vs 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI). Conclusion Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences. (Ethn Dis. 2012;22(1):65–71) PMID:22774311
Does bone cement in percutaneous vertebroplasty act as a stress riser?
Aquarius, René; van der Zijden, Astrid Maria; Homminga, Jasper; Verdonschot, Nico; Tanck, Esther
2013-11-15
An in vitro cadaveric study. To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae. It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures. The in vitro studies that demonstrated this relationship, however, use bigger volumes of bone cement used clinically. Ten fresh-frozen vertebrae were loaded until failure, while registering force and displacement as well as the pressure under the lower endplate. After failure, the vertebrae were augmented with clinically relevant amounts of bone cement and then again loaded until failure. The force, displacement, and pressure under the lower endplate were again registered. Stress peaks were not related to the location of the injected bone cement. Both failure load and stiffness were significantly lower after augmentation. On the basis of our findings, we conclude that vertebral augmentation with clinically relevant amounts of bone cement does not lead to stress peaks under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental stresses in the adjacent vertebrae, leading to new vertebral fractures. N/A.
Measuring dynamic kidney function in an undergraduate physiology laboratory.
Medler, Scott; Harrington, Frederick
2013-12-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.
Physiologically relevant organs on chips.
Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P
2014-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Personalized physiological medicine.
Ince, Can
2017-12-28
This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.
Thoma, M V; Scholz, U; Ehlert, U; Nater, U M
2012-01-01
Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.
[Physiology in the mirror of systematic catalogue of Russian Academy of Sciences Library].
Orlov, I V; Lazurkina, V B
2011-07-01
Representation of general human and animal physiology publications in the systematic catalogue of the Library of the Russian Academy of Sciences is considered. The organization of the catalogue as applied to the problems of physiology, built on the basis of library-bibliographic classification used in the Russian universal scientific libraries is described. The card files of the systematic catalogue of the Library contain about 8 million cards. Topics that reflect the problems of general physiology contain 39 headings. For the full range of sciences including physiology the tables of general types of divisions were developed. They have been marked by indexes using lower-case letters of the Russian alphabet. For further detalizations of these indexes decimal symbols are used. The indexes are attached directly to the field of knowledge index. With the current relatively easy availability of network resources value and relevance of any catalogue are reduced. However it concerns much more journal articles, rather than reference books, proceedings of various conferences, bibliographies, personalities, and especially the monographs contained in the systematic catalogue. The card systematic catalogue of the Library remains an important source of information on general physiology issues, as well as its magistral narrower sections.
Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco
2015-01-01
The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.
Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A
2016-04-01
In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL. © 2016 Authors; published by Portland Press Limited.
Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.
Sun, Yihua; De Vos, Paul; Heylen, Kim
2016-01-19
Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ.
Sorption of Pesticides to Natural and Synthetic Nanoparticles
NASA Astrophysics Data System (ADS)
Guluzada, Leyla; Luo, Leilei; Pattky, Martin; Anwander, Reiner; Huhn, Carolin; Haderlein, Stefan
2017-04-01
Many organic pollutants tend to associate with particles in environment. Such interactions with solid surfaces may not only alter the reactivity and bioavailability of pesticides, but also their uptake. This alteration may occur both in the way and in the amount the compound enters the organisms. In its turn this may change the overall effects of these compounds on organisms and ecosystems. The main goal of the work presented here is to provide mechanistic information on the sorbate-sorbent interactions between nanoparticles and a set of pesticides under environmentally relevant and physiological conditions. As such, the work is part of the interdisciplinary graduate research program EXPAND at the University of Tübingen investigating molecular interactions between pesticides and particles to elucidate how such interactions impact the toxicological effects. To this end, natural and synthetic nanoparticles covering a wide range of physicochemical properties and pesticides for different target organisms were used. Sorption experiments were carried out with insecticides (imidacloprid; thiacloprid), fungicides (hexaconazole; propiconazole) and herbicides (glyphosate with its metabolite AMPA; glufosinate). The choice of the pesticides was based on their environmental significance and their mode of action. Both engineered nanoparticles with tailored surface properties and nanoparticles of natural origin were characterized and applied to cover various modes of sorptive interactions with the pesticides. The impact of various geochemical and physiological conditions including pH, temperature, ionic strength, background electrolytes and DOM (dissolved organic matter) on the sorption of the pesticides to nanoparticles was studied. Sorption kinetics and sorption isotherms were determined and the results are discussed in terms of predominant sorption mechanisms and the suitability of certain nanoparticles for toxicological studies in the framework of the EXPAND project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.
Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less
NASA Astrophysics Data System (ADS)
González, Humberto E.; Daneri, Giovanni; Iriarte, José L.; Yannicelli, Beatriz; Menschel, Eduardo; Barría, Claudio; Pantoja, Silvio; Lizárraga, Lorena
2009-12-01
The information from 54 drifting sediment traps deployed between 1997 and 2006 along the Humboldt Current System off Chile (from 19.9°S to 42.2°S) was analyzed to contribute to unveiling the recurrent global-ocean issue of the lack of relationship between gross primary production (GPP) and particulate organic carbon (POC) export below 50 m depth. When the proportion of carbon that effectively sinks is relatively low compared to the carbon being fixed through GPP, a significant amount (average of 32%) of the sinking organic matter is composed of diatoms, regardless of GPP rates. Such a fraction seems to be affected by the physiological state of phytoplankton. In contrast, when the fraction of carbon sinking is high relative to GPP, most of sinking organic matter is composed of euphausid faecal strings. Such a situation occurs at relatively low values of GPP and chlorophyll-a. Most of these high sinking rates of pellets and low phytoplankton biomass occur during summer, when physical conditions favour the presence of phytoplankton blooms, and when the GPP/Biomass ratio indicates healthy phytoplankton physiological conditions. All this evidence supports the assessment of the relevance of euphausiids as key species in the Humboldt Current System pointing to (i) the top-down control that euphausiids are capable of exerting over primary producer biomass, and (ii) euphausiids‘ paramount role on total organic carbon flux over the Concepción continental shelf, regarding both POC export to the sediments and possibly the channelling of GPP directly to higher trophic levels.
Research on Hazardous States of Awareness and Physiological Factors in Aerospace Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III
2002-01-01
The technical memorandum describes research conducted to examine the etiologies and nature of hazardous states of awareness and the psychophysiological factors involved in their onset in aerospace operations. A considerable amount of research has been conducted at NASA that examines psychological and human factors issues that may play a role in aviation safety. The technical memorandum describes some of the research that was conducted between 1998 and 2001, both in-house and as cooperative agreements, which addressed some of these issues. The research was sponsored as part of the physiological factors subelement of the Aviation Operation Systems (AOS) program and Physiological / Psychological Stressors and Factors project. Dr. Lance Prinzel is the Level III subelement lead and can be contacted at l.j.prinzel@larc.nasa.gov.
NASA Astrophysics Data System (ADS)
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.
Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal
2016-01-01
Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.
Red Cell Physiology and Signaling Relevant to the Critical Care Setting
Said, Ahmed; Rogers, Stephen; Doctor, Allan
2015-01-01
Purpose of Review Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Recent Findings Flow (rather then content) is the focus of O2 delivery regulation: O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology influencing O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. Summary By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting. PMID:25888155
Red cell physiology and signaling relevant to the critical care setting.
Said, Ahmed; Rogers, Stephen; Doctor, Allan
2015-06-01
Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Flow (rather than content) is the focus of O2 delivery regulation. O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology that influences O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting.
Llewelyn, John; Macdonald, Stewart L; Moritz, Craig; Martins, Felipe; Hatcher, Amberlee; Phillips, Ben L
2018-01-09
The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialisation means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in seven physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (1) recently field-collected animals, (2) the same animals following laboratory acclimation, and (3) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little-to-no effect on most traits. These results suggest that, while specialised, tropical ectotherms may be capable of rapid shifts in climate-relevant traits. This article is protected by copyright. All rights reserved.
Artificial intelligence, physiological genomics, and precision medicine.
Williams, Anna Marie; Liu, Yong; Regner, Kevin R; Jotterand, Fabrice; Liu, Pengyuan; Liang, Mingyu
2018-04-01
Big data are a major driver in the development of precision medicine. Efficient analysis methods are needed to transform big data into clinically-actionable knowledge. To accomplish this, many researchers are turning toward machine learning (ML), an approach of artificial intelligence (AI) that utilizes modern algorithms to give computers the ability to learn. Much of the effort to advance ML for precision medicine has been focused on the development and implementation of algorithms and the generation of ever larger quantities of genomic sequence data and electronic health records. However, relevance and accuracy of the data are as important as quantity of data in the advancement of ML for precision medicine. For common diseases, physiological genomic readouts in disease-applicable tissues may be an effective surrogate to measure the effect of genetic and environmental factors and their interactions that underlie disease development and progression. Disease-applicable tissue may be difficult to obtain, but there are important exceptions such as kidney needle biopsy specimens. As AI continues to advance, new analytical approaches, including those that go beyond data correlation, need to be developed and ethical issues of AI need to be addressed. Physiological genomic readouts in disease-relevant tissues, combined with advanced AI, can be a powerful approach for precision medicine for common diseases.
USDA-ARS?s Scientific Manuscript database
Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots...
Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi
2014-01-01
We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.
Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi
2014-01-01
We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues. PMID:25429215
NASA Astrophysics Data System (ADS)
Marukhina, O. V.; Berestneva, O. G.; Emelyanova, Yu A.; Romanchukov, S. V.; Petrova, L.; Lombardo, C.; Kozlova, N. V.
2018-05-01
The healthcare computerization creates opportunities to the clinical decision support system development. In the course of diagnosis, doctor manipulates a considerable amount of data and makes a decision in the context of uncertainty basing upon the first-hand experience and knowledge. The situation is exacerbated by the fact that the knowledge scope in medicine is incrementally growing, but the decision-making time does not increase. The amount of medical malpractice is growing and it leads to various negative effects, even the mortality rate increase. IT-solution's development for clinical purposes is one of the most promising and efficient ways to prevent these effects. That is why the efforts of many IT specialists are directed to the doctor's heuristics simulating software or expert-based medical decision-making algorithms development. Thus, the objective of this study is to develop techniques and approaches for the body physiological system's informative value assessment index for the obesity degree evaluation based on the diagnostic findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, R.J.; Pastor, J.; Melillo, J.M.
1985-01-01
The responses of forest trees to atmospheric CO/sub 2/ enrichment will depend in part on carbon-nutrient linkages. Insights into the possible long-term ecological consequences of CO/sub 2/ enrichment can be gained from studying physiological responses in short-term experiments. One-year-old white oak (Quercus alba L.) seedlings were grown in an unfertilized forest soil for 40 weeks in controlled-environment chambers with ambient (362 ..mu..L.L/sup -1/) or elevated (690 ..mu..L.L/sup -1/) CO/sub 2/. Seedling dry weight was 85% greater in the elevated CO/sub 2/ environment, despite a severe nitrogen deficiency in all seedlings. The increase in growth occurred without a concomitant increase inmore » nitrogen uptake, indicating an increase in nitrogen-use efficiency in elevated CO/sub 2/. The weight of new buds was greater in elevated CO/sub 2/, suggesting that shoot growth in the next year would have been enhanced relative to that of seedlings in ambient CO/sub 2/. However, there was a lower amount of translocatable nitrogen in perennial woody tissue in elevated CO/sub 2/; thus, further increases in nitrogen-use efficiency may not be possible. The leaves that abscised from seedlings in elevated CO/sub 2/ contained higher amounts of soluble sugars and tannin and a lower amount of lignin compared with amounts in abscised leaves in ambient CO/sub 2/. Based on lignin to N and lignin to P ratios, the rates of litter decomposition might not be greatly affected by CO/sub 2/ enrichment, but the total amount of nitrogen returned to soil would be lower in elevated CO/sub 2/.« less
AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...
SPEECH--MAN'S NATURAL COMMUNICATION.
ERIC Educational Resources Information Center
DUDLEY, HOMER; AND OTHERS
SESSION 63 OF THE 1967 INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS INTERNATIONAL CONVENTION BROUGHT TOGETHER SEVEN DISTINGUISHED MEN WORKING IN FIELDS RELEVANT TO LANGUAGE. THEIR TOPICS INCLUDED ORIGIN AND EVOLUTION OF SPEECH AND LANGUAGE, LANGUAGE AND CULTURE, MAN'S PHYSIOLOGICAL MECHANISMS FOR SPEECH, LINGUISTICS, AND TECHNOLOGY AND…
Biomarkers and Environmental Stress: Relevance of Cellular Responses in Determining Adverse Outcomes
Biomarkers are measurable changes in a biological system indicative of an interaction with a chemical, physical, or biological agent. Such changes can be molecular, biochemical, physiological, or histological and can be reflective of either xenobiotic exposures or effects. Molecu...
Mitra, A; Fadda, H M
2014-08-04
The purpose of this study was to investigate the influence of gastric emptying patterns, surfactants, and dosage form on the supersaturation of a poorly soluble weakly basic drug, dipyridamole, using an in vitro model mimicking the dynamic environment of the upper gastrointestinal tract, and, furthermore, to evaluate the usefulness of this model in establishing correlations to in vivo bioavailability for drugs with solubility/dissolution limited absorption. A simulated stomach duodenum model comprising four compartments was used to assess supersaturation and precipitation kinetics as a function of time. It integrates physiologically relevant fluid volumes, fluid transfer rates, and pH changes of the upper GI tract. Monoexponential gastric emptying patterns simulating the fasted state were compared to linear gastric emptying patterns simulating the fed state. The effect of different surfactants commonly used in oral preparations, specifically, sodium lauryl sulfate (SLS), poloxamer-188, and polysorbate-80, on dipyridamole supersaturation was investigated while maintaining surface tension of the simulated gastric fluids at physiological levels and without obtaining artificial micellar solubilization of the drug. The supersaturation behavior of different dose strengths of dipyridamole was explored. Significant levels of dipyridamole supersaturation were observed in the duodenal compartment under all the different in vivo relevant conditions explored. Dipyridamole supersaturation ratios of up to 11-fold have been observed, and supersaturation has been maintained for up to 120 min. Lower duodenal concentrations of dipyridamole were observed under linear gastric emptying patterns compared to mononexponential gastric emptying. The mean duodenal area under concentration-time curves (AUC60min) for the dipyridamole concentration profile in the duodenal compartment is significantly different for all the surfactants explored (P < 0.05). Our investigations with the different surfactants and comparison of dosage form (solution versus suspension) on the precipitation of dipyridamole revealed that crystal growth, rather than nucleation, is the rate-limiting step for the precipitation of dipyridamole. A linear dose-response relationship was found for the mean in vitro duodenal area under concentration-time curves (AUC∞) in the dose range of 25 mg to 100 mg (R(2) = 0.886). This is in agreement with the pharmacokinetic data of dipyridamole reported in the literature. The simulated stomach duodenum model can provide a reliable and discriminative screening tool for exploring the effect of different physiological variables or formulations on the supersaturation/precipitation kinetics of weakly basic drugs with solubility limited absorption. The amount of drug in solution in the duodenal compartment of the SSD correlates to bioavailability for the weakly basic drug, dipyridamole, which has solubility limited absorption and undergoes supersaturation/precipitation.
Clarifying the Roles of Homeostasis and Allostasis in Physiological Regulation
Ramsay, Douglas S.; Woods, Stephen C.
2014-01-01
Homeostasis, the dominant explanatory framework for physiological regulation, has undergone significant revision in recent years, with contemporary models differing significantly from the original formulation. Allostasis, an alternative view of physiological regulation, goes beyond its homeostatic roots, offering novel insights relevant to our understanding and treatment of several chronic health conditions. Despite growing enthusiasm for allostasis, the concept remains diffuse, due in part to ambiguity as to how the term is understood and used, impeding meaningful translational and clinical research on allostasis. Here we provide a more focused understanding of homeostasis and allostasis by explaining how both play a role in physiological regulation, and a critical analysis of regulation suggests how homeostasis and allostasis can be distinguished. Rather than focusing on changes in the value of a regulated variable (e.g., body temperature, body adiposity, or reward), research investigating the activity and relationship among the multiple regulatory loops that influence the value of these regulated variables may be the key to distinguishing homeostasis and allostasis. The mechanisms underlying physiological regulation and dysregulation are likely to have important implications for health and disease. PMID:24730599
Moraska, Albert F.; Hickner, Robert C.; Kohrt, Wendy M.; Brewer, Alan
2012-01-01
Objective To demonstrate proof-of-principle measurement for physiological change within an active myofascial trigger point (MTrP) undergoing trigger point release (ischemic compression). Design Interstitial fluid was sampled continuously at a trigger point before and after intervention. Setting A biomedical research clinic at a university hospital. Participants Two subjects from a pain clinic presenting with chronic headache pain. Interventions A single microdialysis catheter was inserted into an active MTrP of the upper trapezius to allow for continuous sampling of interstitial fluid before and after application of trigger point therapy by a massage therapist. Main Outcome Measures Procedural success, pain tolerance, feasibility of intervention during sample collection, determination of physiologically relevant values for local blood flow, as well as glucose and lactate concentrations. Results Both patients tolerated the microdialysis probe insertion into the MTrP and treatment intervention without complication. Glucose and lactate concentrations were measured in the physiological range. Following intervention, a sustained increase in lactate was noted for both subjects. Conclusions Identifying physiological constituents of MTrP’s following intervention is an important step toward understanding pathophysiology and resolution of myofascial pain. The present study forwards that aim by showing proof-of-concept for collection of interstitial fluid from an MTrP before and after intervention can be accomplished using microdialysis, thus providing methodological insight toward treatment mechanism and pain resolution. Of the biomarkers measured in this study, lactate may be the most relevant for detection and treatment of abnormalities in the MTrP. PMID:22975226
Helmuth, Brian; Broitman, Bernardo R; Yamane, Lauren; Gilman, Sarah E; Mach, Katharine; Mislan, K A S; Denny, Mark W
2010-03-15
Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a 'climatology' of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales.
Poquet, Laure; Wooster, Tim J
2016-08-01
Lipids play an important role in the diet of preterm and term infants providing a key energy source and essential lipid components for development. While a lot is known about adult lipid digestion, our understanding of infant digestion physiology is still incomplete, the greatest gap being on the biochemistry of the small intestine, particularly the activity and relative importance of the various lipases active in the intestine. The literature has been reviewed to identify the characteristics of lipid digestion of preterm and term infants, but also to better understand the physiology of the infant gastrointestinal tract compared to adults that impacts the absorption of lipids. The main differences are a higher gastric pH, submicellar bile salt concentration, a far more important role of gastric lipases as well as differences at the level of the intestinal barrier. Importantly, the consequences of improper in vitro replication of gastric digestions conditions (pH and lipase specificity) are demonstrated using examples from the most recent of studies. It is true that some animal models could be adapted to study infant lipid digestion physiology, however the ethical relevance of such models is questionable, hence the development of accurate in vitro models is a must. In vitro models that combine up to date knowledge of digestion biochemistry with intestinal cells in culture are the best choice to replicate digestion and absorption in infant population, this would allow the adaptation of infant formula for a better digestion and absorption of dietary lipids by preterm and term infants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaufman, Milissa L; Kimble, Matthew O; Kaloupek, Danny G; McTeague, Lisa M; Bachrach, Peter; Forti, Allison M; Keane, Terence M
2002-03-01
A recent study found that female rape victims with acute posttraumatic stress disorder (PTSD) who received a high score on the Peritraumatic Dissociative Experiences Questionnaire exhibited suppression of physiological responses during exposure to trauma-related stimuli. The goal of our present study was to test whether the same relationship holds true for male Vietnam combat veterans with chronic PTSD, using secondary analyses applied to data derived from a Veteran's Affairs Cooperative Study. Vietnam combat veterans (N = 1238) completed measures to establish combat-related PTSD diagnostic status, extent of PTSD-related symptomatic distress, and presence of dissociative symptoms during their most stressful combat-related experiences. Extreme subgroups of veterans with current PTSD were classified as either low dissociators (N = 118) or high dissociators (N = 256) based on an abbreviated version of the Peritraumatic Dissociative Experiences Questionnaire. Dependent variables reflected subjective distress along with heart rate, skin conductance, electromyographic, and blood pressure data when responding to neutral and trauma-related audiovisual and imagery presentations. Veterans in the current PTSD group had significantly higher dissociation scores than did veterans in the lifetime and never PTSD groups. Among veterans with current PTSD, high dissociators reported greater PTSD-related symptomatic distress than did low dissociators, but the groups did not differ with respect to physiological reactivity to the trauma-related laboratory presentations. Our results replicate the previously reported relationship between peritraumatic dissociation and PTSD status in Vietnam combat veterans. However, we found no association between peritraumatic dissociation and the extent of physiological responding to trauma-relevant cues in male veterans with chronic combat-related PTSD.
The therapeutic use of the relaxation response in stress-related diseases.
Esch, Tobias; Fricchione, Gregory L; Stefano, George B
2003-02-01
The objective of this work was to investigate a possible (therapeutic) connection between the relaxation response (RR) and stress-related diseases. Further, common underlying molecular mechanisms and autoregulatory pathways were examined. For the question of (patho)physiology and significance of RR techniques in the treatment of stress-related diseases, we analyzed peer-reviewed references only. The RR has been shown to be an appropriate and relevant therapeutic tool to counteract several stress-related disease processes and certain health-restrictions, particularly in certain immunological, cardiovascular, and neurodegenerative diseases/mental disorders. Further, common underlying molecular mechanisms may exist that represent a connection between the stress response, pathophysiological findings in stress-related diseases, and physiological changes/autoregulatory pathways described in the RR. Here, constitutive or low-output nitric oxide (NO) production may be involved in a protective or ameliorating context, whereas inducible, high-output NO release may facilitate detrimental disease processes. In mild or early disease states, a high degree of biological and physiological flexibility may still be possible (dynamic balance). Here, the therapeutic use of RR techniques may be considered particularly relevant, and the observable (beneficial) effects may be exerted via activation of constitutive NO pathways. RR techniques, regularly part of professional stress management or mind/body medical settings, represent an important tool to be added to therapeutic strategies dealing with stress-related diseases. Moreover, as part of 'healthy' life-style modifications, they may serve primary (or secondary) prevention. Further studies are necessary to elucidate the complex physiology underlying the RR and its impact upon stress-related disease states.
Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph
2012-03-01
Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.
Pirfenidone for Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis
Venegas, Carmen; Arenas, Alex; Rada, Gabriel
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis. In the last decades pirfenidone an anti-inflammatory and anti-fibrotic agent has shown benefit in inhibit collagen production and has also demonstrated benefit in decline progression in IPF in physiological outcomes as Forced vital capacity (FVC), in clinical outcomes such as progression free survival (PFS) and a benefit in mortality but no in clinically relevant outcomes as exacerbations or worsening of IPF. Methods: We conducted a systematic review to evaluate the effectiveness of physiological and clinical outcomes of pirfenidone compared to placebo in IPF. We performed a search with no language restriction. Two researchers performed literature search, quality assessment, data extraction and analysis. And was performed a summary of findings table following the GRADE approach. Results: We included 5 RCTs (Randomized controlled trials) in analysis. The meta-analysis resulted in a decrease in all cause-mortality (RR 0.52 IC 0.32–0.88) and IPF related mortality (RR 0.32 IC 0.14–0.75); other outcomes evaluated were worsening of IPF (RR 0.64 IC 0.50–0.83) and acute exacerbation (RR: 0.72 IC 0.30–1.66 respectively). Also there was a decrease in progression free survival (PFS) (RR 0.83 IC 0.74–0.92) compared to placebo. Conclusions: We observed significant differences in physiologic and clinically relevant outcomes such as reduction in all-cause mortality, IPF related mortality, worsening and exacerbation of IPF and PFS. So pirfenidone treatment should be considered not only for its benefits in pulmonary function tests but also by its clinically relevant outcomes. PMID:26308723
Yoder, Kathleen M.; Vicario, David S.
2012-01-01
Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1. Local estradiol action within an auditory area is necessary for socially-relevant sounds to induce normal physiological responses in the brains of both sexes; 2. These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3. Estradiol action within the auditory forebrain enables behavioral discrimination among socially-relevant sounds in males; and 4. Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. Keywords: Estrogens, Songbird, Social Context, Auditory Perception PMID:22201281
Mori, Tomohisa; Hayashi, Teruo
2012-01-01
The endoplasmic reticulum (ER) chaperone σ-1 receptor (Sig-1R) is cytoprotective against ER stress-induced apoptosis. The level of Sig-1Rs in the brain was reported to be lower in early parkinsonian patients. Because dopamine (DA) toxicity is well known to be involved in the etiology of Parkinson's disease, we tested in this study whether a relationship might exist between Sig-1Rs and DA-induced cytotoxicity in a cellular model by using Chinese hamster ovary (CHO) cells. DA in physiological concentrations (e.g., lower than 10 μM) does not cause apoptosis. However, the same concentrations of DA cause apoptosis in Sig-1R knockdown CHO cells. In search of a mechanistic explanation, we found that unfolded protein response is not involved. Rather, the level of protective protein Bcl-2 is critically involved in this DA/Sig-1R knockdown-induced apoptosis. Specifically, the DA/Sig-1R knockdown causes a synergistic proteasomal conversion of nuclear factor κB (NF-κB) p105 to the active form of p50, which is known to down-regulate the transcription of Bcl-2. It is noteworthy that the DA/Sig-1R knockdown-induced apoptosis is blocked by the overexpression of Bcl-2. Our results therefore indicate that DA is involved in the activation of NF-κB and suggest that endogenous Sig-1Rs are tonically inhibiting the proteasomal conversion/activation of NF-κB caused by physiologically relevant concentrations of DA that would otherwise cause apoptosis. Thus, Sig-1Rs and associated ligands may represent new therapeutic targets for the treatment of parkinsonism. PMID:22399814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Dian; Shukla, Anil K.; Chen, Baowei
2013-04-01
S-nitrosylation (SNO) is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. While many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge due to the low-abundance and labile nature of the modification. Herein we present further improvement and optimization of the recently reported, resin-assisted cysteinyl peptide enrichment protocol for SNO identification and the extension of this application to mouse skeletal muscle to identify specific sites sensitive to S-nitrosylation by quantitative reactivity profiling. The results of our data indicate that the protein- andmore » peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione (GSNO), an NO donor, at two different physiologically relevant concentrations (i.e., 10 μM and 100 μM). The reactivity profiling experiments overall identified 489 SNO-modified cysteine sites from 197 proteins with the specificity of 95.2% at the unique-peptide-level based on the percentage of Cys-peptides. Among these sites, 260 sites from 135 proteins were observed with relatively high reactivity to S-nitrosylation; such SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are preferentially localized in mitochondria, contractile fiber and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, the SNO-sensitive proteins seem to be primarily involved in metabolic pathways, including TCA cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.« less
Metabolic Activity - Skylab Experiment M171
NASA Technical Reports Server (NTRS)
1972-01-01
This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.
Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer
NASA Technical Reports Server (NTRS)
1973-01-01
This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.
Burleson, Kathryn M; Olimpo, Jeffrey T
2016-06-01
The sheer amount of terminology and conceptual knowledge required for anatomy and physiology can be overwhelming for students. Educational games are one approach to reinforce such knowledge. In this activity, students worked collaboratively to review anatomy and physiology concepts by creating arrays of descriptive tiles to define a term. Once guessed, students located the structure or process within diagrams of the body. The game challenged students to think about course vocabulary in novel ways and to use their collective knowledge to get their classmates to guess the terms. Comparison of pretest/posttest/delayed posttest data revealed that students achieved statistically significant learning gains for each unit after playing the game, and a survey of student perceptions demonstrated that the game was helpful for learning vocabulary as well as fun to play. The game is easily adaptable for a variety of lower- and upper-division courses. Copyright © 2016 The American Physiological Society.
Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.
ERIC Educational Resources Information Center
Aide, Michael; Terry, Danny
1996-01-01
Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…
Levin, Roy J; Both, Stephanie; Georgiadis, Janniko; Kukkonen, Tuuli; Park, Kwangsung; Yang, Claire C
2016-05-01
The article consists of six sections written by separate authors that review female genital anatomy, the physiology of female sexual function, and the pathophysiology of female sexual dysfunction but excluding hormonal aspects. To review the physiology of female sexual function and the pathophysiology of female sexual dysfunction especially since 2010 and to make specific recommendations according to the Oxford Centre for evidence based medicine (2009) "levels of evidence" wherever relevant. Recommendations were made for particular studies to be undertaken especially in controversial aspects in all six sections of the reviewed topics. Despite numerous laboratory assessments of female sexual function, genital assessments alone appear insufficient to characterise fully the complete sexual response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
[Development of opened instrument for generating and measuring physiological signal].
Chen, Longcong; Hu, Guohu; Gao, Bin
2004-12-01
An opened instrument with liquid crystal display (LCD) for generating and measuring physiological signal is introduced in this paper. Based on a single-chip microcomputer. the instrument uses the technique of LCD screen to display signal wave and information, and it realizes man-machine interaction by keyboard. This instrument can produce not only defined signal in common use by utilizing important saved data and relevant arithmetic, but also user-defined signal. Therefore, it is open to produce signal. In addition, this instrument has strong extension because of its modularized design as computer, which has much function such as displaying, measuring and saving physiological signal, and many features such as low power consumption, small volume, low cost and portability. Hence this instrument is convenient for experiment teaching, clinic examining, maintaining of medical instrument.
Ouedraogo, Zangbéwendé Guy; Fouache, Allan; Trousson, Amalia; Baron, Silvère; Lobaccaro, Jean-Marc A
2017-10-01
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives
Sánchez-Sánchez, Julia; Arévalo, Juan Carlos
2017-01-01
Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance. PMID:28335430
Stress Counter-Response Training Via Physiological Self-Regulation During Flight Simulation
NASA Technical Reports Server (NTRS)
Palsson, Olafur S.
2000-01-01
This study provided the first evaluation of a new training concept and technology aimed at training pilots to maintain physiological equilibrium during circumstances in an airplane cockpit. Thirty healthy subjects (16 males and 14 females) between the ages of 18 and 35 were randomized into two study groups, A and B. Subjects participated individually in a sequence of four study sessions. In the first visit, subjects were taught to operate a desktop fighter jet flight simulation program. In the three sessions that followed, subjects in group A were trained to minimize their autonomic deviation from baseline values while operating the desktop flight simulation. This was done by making their skin conductance and hand temperature deviations from baseline impair the functionality of the aircraft controls. Subjects also received auditory and visual cues about their autonomic deviation, and were instructed to keep these within pre-set limits to retain full control of the aircraft. Subjects in group B were subjected to periods of impaired aircraft functionality independent of their physiologic activity, and thus served as a control group. No statistically significant group differences were found in the flight performance scores from the three training sessions, and post-training flight performance scores of the two groups were not different. We conclude that this study did not provide clear support for this training methodology in optimizing pilot performance. However, a number of shortcomings in the current status of this training methodology may account for the lack of demonstrable training benefit to the experimental group. Suggested future modifications for research on this training methodology include: Limiting the amount of instrument impairment resulting from physiological deviations; conducting a greater number of physiological training sessions per subject; using pre-post training performance tests which invoke a greater amount of stress in subjects; and developing a more detailed performance scoring system.
Outevsky, David; Martin, Blake Cw
2015-12-01
Dancesport, the competitive branch of ballroom dancing, places high physiological and psychological demands on its practitioners, but pedagogical resources in these areas for this dance form are limited. Dancesport competitors could benefit from strategies used in other aesthetic sports. In this review, we identify conditioning methodologies from gymnastics, figure skating, and contemporary, modern, and ballet dance forms that could have relevance and suitability for dancesport training, and propose several strategies for inclusion in the current dancesport curriculum. We reviewed articles derived from Google Scholar, PubMed, ScienceDirect, Taylor & Francis Online, and Web of Science search engines and databases, with publication dates from 1979 to 2013. The keywords included MeSH terms: dancing, gymnastics, physiology, energy metabolism, physical endurance, and range of motion. Out of 47 papers examined, 41 papers met the inclusion criteria (validity of scientific methods, topic relevance, transferability to dancesport, publication date). Quality and validity of the data were assessed by examining the methodologies in each study and comparing studies on similar populations as well as across time using the PRISMA 2009 checklist and flowchart. The relevant research suggests that macro-cycle periodization planning, aerobic and anaerobic conditioning, range of motion and muscular endurance training, and performance psychology methods have potential for adaptation for dancesport training. Dancesport coaches may help their students fulfill their ambitions as competitive athletes and dance artists by adapting the relevant performance enhancement strategies from gymnastics, figure skating, and concert dance forms presented in this paper.
Robison, Lisa S; Popescu, Dominique L; Anderson, Maria E; Beigelman, Steven I; Fitzgerald, Shannon M; Kuzmina, Antonina E; Lituma, David A; Subzwari, Sarima; Michaelos, Michalis; Anderson, Brenda J; Van Nostrand, William E; Robinson, John K
2018-06-04
Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits. Copyright © 2018. Published by Elsevier Inc.
Response of Vibrio fischeri to repeated exposures over time in an Online Toxicity Monitor
Online Toxicity Monitors have been developed to provide continuous, time-relevant information regarding water quality. These systems measure a physiological or behavioral response of a sentinel organism to changes water quality. One such system, the Microlan Toxcontrol, is base...
Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum
USDA-ARS?s Scientific Manuscript database
Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense...
Allergenic properties and differential response of walnut subjected to processing treatments
USDA-ARS?s Scientific Manuscript database
Walnut is one of the most frequently involved foods in anaphylactic reactions. We investigated changes in walnut allergenicity after physical treatments by in vitro techniques and physiologically relevant assays. Changes in the allergenicity of walnut subjected to high pressure and thermal/pressur...
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-01-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process. PMID:23676762
NASA Astrophysics Data System (ADS)
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-05-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-01-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
Benito, Itziar; Casañas, Juan José; Montesinos, María Luz
2018-06-19
Several proteomic analyses have been performed on synaptic fractions isolated from cortex or even total brain, resulting in preparations with a high synaptic heterogeneity and complexity. Synaptoneurosomes (SNs) are subcellular membranous elements that contain sealed pre- and post-synaptic components. They are obtained by subcellular fractionation of brain homogenates and serve as a suitable model to study many aspects of the synapse physiology. Here we report the proteomic content of SNs isolated from hippocampus of adult mice, a brain region involved in memory that presents lower synaptic heterogeneity than cortex. Interestingly, in addition to pre- and post-synaptic proteins, we found that proteins involved in RNA binding and translation were overrepresented in our preparation. These results validate the protocol we previously reported for SNs isolation, and, as reported by other authors, highlight the relevance of local synaptic translation for hippocampal physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care.
Maji, Debnath; Suster, Michael A; Kucukal, Erdem; Gurkan, Umut A; Stavrou, Evi X; Mohseni, Pedram
2016-08-01
This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.
Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Valderrama, Raquel; Mata-Pérez, Capilla; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.
2016-01-01
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance. PMID:26909095
Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L
2016-02-01
Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen.
Versluis, Iris; Papies, Esther K.
2016-01-01
People typically eat more from large portions of food than from small portions. An explanation that has often been given for this so-called portion size effect is that the portion size acts as a social norm and as such communicates how much is appropriate to eat. In this paper, we tested this explanation by examining whether manipulating the relevance of the portion size as a social norm changes the portion size effect, as assessed by prospective consumption decisions. We conducted one pilot experiment and one full experiment in which participants respectively indicated how much they would eat or serve themselves from a given amount of different foods. In the pilot (N = 63), we manipulated normative relevance by allegedly basing the portion size on the behavior of either students of the own university (in-group) or of another university (out-group). In the main experiment (N = 321), we told participants that either a minority or majority of people similar to them approved of the portion size. Results show that in both experiments, participants expected to serve themselves and to eat more from larger than from smaller portions. As expected, however, the portion size effect was less pronounced when the reference portions were allegedly based on the behavior of an out-group (pilot) or approved only by a minority (main experiment). These findings suggest that the portion size indeed provides normative information, because participants were less influenced by it if it communicated the behaviors or values of a less relevant social group. In addition, in the main experiment, the relation between portion size and the expected amount served was partially mediated by the amount that was considered appropriate, suggesting that concerns about eating an appropriate amount indeed play a role in the portion size effect. However, since the portion size effect was weakened but not eliminated by the normative relevance manipulations and since mediation was only partial, other mechanisms may also play a role. PMID:27303324
Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.
2016-01-01
In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663
NASA Astrophysics Data System (ADS)
Wallace, Tess E.; Manavaki, Roido; Graves, Martin J.; Patterson, Andrew J.; Gilbert, Fiona J.
2017-01-01
Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ( Δ R\\text{adj}2 = 3.3 ± 2.1%) and improved the detection of BOLD activation (P = 0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P < 0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.
Hou, Liping; Xu, Hongyan; Ying, Guangguo; Yang, Yang; Shu, Hu; Zhao, Jianliang; Cheng, Xuemei
2017-11-01
Progesterone (P4) is a natural and synthetic steroid, widely distributed in the aquatic environments. It can lead to adverse effects on the endocrine system in aquatic organisms. This study investigated the toxicological effects of exposure to environmentally relevant concentrations (4, 44, and 410ng/L) of progesterone for 42 d on adult female mosquitofish, Gambusia affinis. We performed morphological and histological analyses on gonads, anal fins, liver, and gills after the exposure of mosquito fish to P4. The expression levels of genes (vtg, er, and ar isoforms) related to fish reproduction and detoxification (cyp1a) in the liver were quantified by quantitative real-time polymerase chain reaction. The results showed that the progesterone exposure induced slight masculinization in female mosquitofish, influenced the oocyte maturation as revealed by histology of the ovaries, and caused severe damages to the liver and gills of adult female mosquitofish. It also suppressed the mRNAs expression of vtg, er, cyp1a, and significantly enhanced the expression of ar mRNA in the liver. This study reveals the molecular and physiological effects of progesterone at environmentally relevant concentrations, which might further be translated to alterations in the reproduction of mosquitofish. Copyright © 2017 Elsevier B.V. All rights reserved.
Gunderson, Alex R; Armstrong, Eric J; Stillman, Jonathon H
2016-01-01
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A
2016-02-01
This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.
NASA Astrophysics Data System (ADS)
Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian
2004-03-01
Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.
Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon
2015-01-01
Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864
Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas
2016-01-01
In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.
USDA-ARS?s Scientific Manuscript database
Throughout the developing world, the long-term consequences of insufficient amounts of essential micronutrients in the human diet can be more devastating than low energy intake. Micronutrients are involved in all aspects of development, growth, and physiology of the human body (including from early ...
Transcendental Meditation and Progressive Relaxation: Their Physiological Effects.
ERIC Educational Resources Information Center
Throll, D. A.
1982-01-01
Measured oxygen consumption, subjects' respiration rate, heart rate, and blood pressure before and after learned Transcendental Meditation (TM) or Jacobson's Progressive Relaxation. Found TM group displayed more significant decreases during meditation and activity, explained primarily in terms of greater amount of time the TM group spent on their…
26 CFR 1.985-5 - Adjustments required upon change in functional currency.
Code of Federal Regulations, 2011 CFR
2011-04-01
... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...
26 CFR 1.985-5 - Adjustments required upon change in functional currency.
Code of Federal Regulations, 2013 CFR
2013-04-01
... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...
26 CFR 1.985-5 - Adjustments required upon change in functional currency.
Code of Federal Regulations, 2010 CFR
2010-04-01
... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...
26 CFR 1.985-5 - Adjustments required upon change in functional currency.
Code of Federal Regulations, 2012 CFR
2012-04-01
... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...
26 CFR 1.985-5 - Adjustments required upon change in functional currency.
Code of Federal Regulations, 2014 CFR
2014-04-01
... property and the new functional currency amount of liabilities and any other relevant items (e.g., items... adjusted basis or amount multiplied by the new functional currency/old functional currency spot exchange rate on the last day of the taxable year ending before the year of change (spot rate). (d) Step 3A...
NASA Johnson Space Center Biomedical Research Resources
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1999-01-01
Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.
Mechanics of the Unusual Basilar Membrane in Gerbil
NASA Astrophysics Data System (ADS)
Kapuria, Santosh; Steele, Charles R.; Puria, Sunil
2011-11-01
The basilar membrane in gerbil differs from most other mammals, since its width and thickness show little variation from base to apex, and tympanic fiber layer in the pectinate zone forms a pronounced arch. Measurements indicate a quadratically increasing stiffness under point loading, which is contrary to the expected behavior of an arch. The plateau value has been considered to be the physiologically relevant stiffness, but it only occurs after 10-25 μm of deflection, whereas the normal physiological deflection is in the submicron range. The present work aims to resolve these contradictions by considering the mechanics of the geometric configuration.
The energy expenditure of normal and pathologic gait.
Waters, R L; Mulroy, S
1999-07-01
Physiological energy expenditure measurement has proven to be a reliable method of quantitatively assessing the penalties imposed by gait disability. The purpose of this review is to outline the basic principles of exercise physiology relevant to human locomotion; detail the energy expenditure of normal walking; and summarize the results of energy expenditure studies performed in patients with specific neurologic and orthopedic disabilities. The magnitude of the disabilities and the patients' capacity to tolerate the increased energy requirements are compared. This paper also will examine the effectiveness of rehabilitation interventions at mitigating the energetic penalties of disability during ambulation.
Coutant, Thomas; Vergneau-Grosset, Claire; Langlois, Isabelle
2018-05-01
Drug delivery to exotic animals may be extrapolated from domestic animals, but some physiologic and anatomic differences complicate treatment administration. Knowing these differences enables one to choose optimal routes for drug delivery. This review provides practitioners with a detailed review of the currently reported methods used for drug delivery of various medications in the most common exotic animal species. Exotic animal peculiarities that are relevant for drug administration are discussed in the text and outlined in tables and boxes to help the reader easily find targeted information. Copyright © 2018 Elsevier Inc. All rights reserved.
Roberts, John K; Hargett, Charles W; Nagler, Alisa; Jakoi, Emma; Lehrich, Ruediger W
2015-09-01
Medical education reform is underway, but the optimal course for change has yet to be seen. While planning for the redesign of a renal physiology course at the Duke School of Medicine, the authors used a Q-sort survey to assess students' attitudes and learning preferences to inform curricular change. The authors invited first-year medical students at the Duke School of Medicine to take a Q-sort survey on the first day of renal physiology. Students prioritized statements related to their understanding of renal physiology, learning preferences, preferred course characteristics, perceived clinical relevance of renal physiology, and interest in nephrology as a career. By-person factor analysis was performed using the centroid method. Three dominant factors were strongly defined by learning preferences: "readers" prefer using notes, a textbook, and avoid lectures; "social-auditory learners" prefer attending lectures, interactivity, and working with peers; and "visual learners" prefer studying images, diagrams, and viewing materials online. A smaller, fourth factor represented a small group of students with a strong predisposition against renal physiology and nephrology. In conclusion, the Q-sort survey identified and then described in detail the dominant viewpoints of our students. Learning style preferences better classified first-year students rather than any of the other domains. A more individualized curriculum would simultaneously cater to the different types of learners in the classroom. Copyright © 2015 The American Physiological Society.
Flint, Richard; Windsor, John A
2004-04-01
The physiological response to treatment is a better predictor of outcome in acute pancreatitis than are traditional static measures. Retrospective diagnostic test study. The criterion standard was Organ Failure Score (OFS) and Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of hospital admission. Intensive care unit of a tertiary referral center, Auckland City Hospital, Auckland, New Zealand. Consecutive sample of 92 patients (60 male, 32 female; median age, 61 years; range, 24-79 years) with severe acute pancreatitis. Twenty patients were not included because of incomplete data. The cause of pancreatitis was gallstones (42%), alcohol use (27%), or other (31%). At hospital admission, the mean +/- SD OFS was 8.1 +/- 6.1, and the mean +/- SD APACHE II score was 19.9 +/- 8.2. All cases were managed according to a standardized protocol. There was no randomization or testing of any individual interventions. Survival and death. There were 32 deaths (pretest probability of dying was 35%). The physiological response to treatment was more accurate in predicting the outcome than was OFS or APACHE II score at hospital admission. For example, 17 patients had an initial OFS of 7-8 (posttest probability of dying was 58%); after 48 hours, 7 had responded to treatment (posttest probability of dying was 28%), and 10 did not respond (posttest probability of dying was 82%). The effect of the change in OFS and APACHE II score was graphically depicted by using a series of logistic regression equations. The resultant sigmoid curve suggests that there is a midrange of scores (the steep portion of the graph) within which the probability of death is most affected by the response to intensive care treatment. Measuring the initial severity of pancreatitis combined with the physiological response to intensive care treatment is a practical and clinically relevant approach to predicting death in patients with severe acute pancreatitis.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
The emerging relevance of the gut microbiome in cardiometabolic health
USDA-ARS?s Scientific Manuscript database
Host metabolic pathways and physiological responses are regulated by signals linking the host to the gut microbial community or microbiome. Here, we draw a spotlight on lipid and bile acid metabolism and inflammatory response as they pertain to cardiometabolic dysfunction. Gut microbial dysbiosis al...
META-ANALYSIS OF THE LIFE STYLE FACTORS RELEVANT TO ENVIRONMENTAL HAZARDS FOR THE AGING POPULATION
The goal of this U.S. Environmental Protection Agency (EPA) study is to characterize activity patterns, physiological changes, and environmental exposures for the aging population. Meta analysis was performed on more than 2000 reviewed articles to evaluate the lifestyle factors ...
Research Update: Sport and Physical Activity for People with Physical Disabilities.
ERIC Educational Resources Information Center
Smith, Ralph W.
1993-01-01
Examines research on sport and physical activity for individuals with physical disabilities, focusing on psychosocial characteristics of participants, physiological impacts of participation, and performance enhancement. With the advent of the Americans with Disabilities Act (1990), such research has relevance for all recreation professionals. (SM)
Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J
2017-04-26
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition induced by tACS and the magnitude of GABA A inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. Copyright © 2017 Nowak et al.
Identification of resilient individuals and those at risk for performance deficits under stress.
Winslow, Brent D; Carroll, Meredith B; Martin, Jonathan W; Surpris, Glenn; Chadderdon, George L
2015-01-01
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.
Identification of resilient individuals and those at risk for performance deficits under stress
Winslow, Brent D.; Carroll, Meredith B.; Martin, Jonathan W.; Surpris, Glenn; Chadderdon, George L.
2015-01-01
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress. PMID:26441503
Andrews, Russel D; Enstipp, Manfred R
2016-12-01
To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.
Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).
Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A
2013-10-01
Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper. © 2013 Scandinavian Plant Physiology Society.
Decision fatigue: A conceptual analysis.
Pignatiello, Grant A; Martin, Richard J; Hickman, Ronald L
2018-03-01
Decision fatigue is an applicable concept to healthcare psychology. Due to a lack of conceptual clarity, we present a concept analysis of decision fatigue. A search of the term "decision fatigue" was conducted across seven research databases, which yielded 17 relevant articles. The authors identified three antecedent themes (decisional, self-regulatory, and situational) and three attributional themes (behavioral, cognitive, and physiological) of decision fatigue. However, the extant literature failed to adequately describe consequences of decision fatigue. This concept analysis provides needed conceptual clarity for decision fatigue, a concept possessing relevance to nursing and allied health sciences.
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Freese, Johanna; Pricop-Jeckstadt, Mihaela; Heuer, Thorsten; Clemens, Matthias; Boeing, Heiner; Knüppel, Sven; Nöthlings, Ute
2016-01-01
Next to the information on frequency of food consumption, information on consumption-day amounts is important to estimate usual dietary intake in epidemiological studies. Our objective was to identify determinants of consumption-day amounts to derive person-specific standard consumption-day amounts applicable for the estimation of usual dietary intake using separate sources to assesss information on consumption probability and amount consumed. 24-h Dietary recall data from the German National Nutrition Survey II ( n = 8522; aged 20-80 years) conducted between 2005 and 2007 were analysed for determinants of consumption-day amounts of thirty-eight food and beverage groups using LASSO variable selection for linear mixed-effects models. Determinants included sex, age, BMI, smoking status, years of education, household net income, living status and employment status. Most often, sex, age and smoking status were selected as predictors for consumption-day amounts across thirty-eight food groups. In contrast, living with a partner, employment status and household net income were less frequently chosen. Overall, different determinants were of relevance for different food groups. The number of selected determinants ranged from eight for coffee and juice to zero for cabbage, tea, root vegetables, leafy vegetables, fruit vegetables, legumes, offal, vegetable oils, and other fats. For the estimation of usual dietary intake in a combined approach with a 24-h food list, person-specific standard consumption-day amounts could be used. Sex, age and smoking status were shown to be the most relevant predictors in our analysis. Their impact on the estimation of usual dietary intake needs to be evaluated in future studies.
Magnesium degradation observed in situ under flow by synchrotron radiation based microtomography
NASA Astrophysics Data System (ADS)
Feyerabend, Frank; Dose, Thomas; Xu, Yuling; Beckmann, Felix; Stekker, Michael; Willumeit-Römer, Regine; Schreyer, Andreas; Wilde, Fabian; Hammel, Jörg U.
2016-10-01
The use of degradable magnesium based implants is becoming clinically relevant, e.g. for the use as bone screws. Still there is a lack of analyzing techniques to characterize the in vitro degradation behavior of implant prototypes. The aim of this study was to design an in situ environment to continuously monitor the degradation processes under physiological conditions by time-lapse SRμCT. The use of physiological conditions was chosen to get a better approach to the in vivo situation, as it could be shown by many studies, that these conditions change on the one hand the degradation rate and on the other hand also the formed degradation products. The resulting in situ environment contains a closed bioreactor system to control and monitor the relevant parameters (37°C, 5 % O2, 20 % CO2) and to grant sterility of the setup. A flow cell was designed and manufactured from polyether etherketone (PEEK), which was chosen because of the good mechanical properties, high thermal and chemical resistance and radiographic translucency. Sterilization of the system including the sample was reached by a transient flush with 70 % ethanol and subsequent replacement by physiological medium (Modified Eagle Medium alpha). As proof of principle it could be shown that the system remained sterile during a beamtime of several days and that the continuous SRμCT imaging was feasible.
McClusky, Leon Mendel
2012-01-01
The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
Capon, Hannah; Hall, Wayne; Fry, Craig; Carter, Adrian
2016-10-01
Smartphone technologies and mHealth applications (or apps) promise unprecedented scope for data collection, treatment intervention, and relapse prevention when used in the field of substance abuse and addiction. This potential also raises new ethical challenges that researchers, clinicians, and software developers must address. This paper aims to identify ethical issues in the current uses of smartphones in addiction research and treatment. A search of three databases (PubMed, Web of Science and PsycInfo) identified 33 studies involving smartphones or mHealth applications for use in the research and treatment of substance abuse and addiction. A content analysis was conducted to identify how smartphones are being used in these fields and to highlight the ethical issues raised by these studies. Smartphones are being used to collect large amounts of sensitive information, including personal information, geo-location, physiological activity, self-reports of mood and cravings, and the consumption of illicit drugs, alcohol and nicotine. Given that detailed information is being collected about potentially illegal behaviour, we identified the following ethical considerations: protecting user privacy, maximising equity in access, ensuring informed consent, providing participants with adequate clinical resources, communicating clinically relevant results to individuals, and the urgent need to demonstrate evidence of safety and efficacy of the technologies. mHealth technology offers the possibility to collect large amounts of valuable personal information that may enhance research and treatment of substance abuse and addiction. To realise this potential researchers, clinicians and app-developers must address these ethical concerns to maximise the benefits and minimise risks of harm to users. Copyright © 2016 Elsevier B.V. All rights reserved.
Cerumen: A fundamental but neglected problem by pediatricians.
Marchisio, Paola; Pipolo, Carlotta; Landi, Massimo; Consonni, Dario; Mansi, Nicola; Di Mauro, Giuseppe; Salvatici, Elisabetta; Di Pietro, Pasquale; Esposito, Susanna; Felisati, Giovanni; Principi, Nicola
2016-08-01
Under physiological conditions, cerumen (Ce) is regularly extruded from the ear canal by a self-cleaning mechanism. Failure of this mechanism leads to excessive accumulation or impaction of Ce. Limited data are available concerning the prevalence of cerumen in healthy and sick infants and children. We assessed the prevalence of Ce in a large population of infants and children and compared the Ce removal attitudes of paediatricians (PEDs) and otorhinolaryngologists (ENTs). Children seen in November 2014 for acute respiratory infections, including suspected acute otitis media, or well-being visits, were enrolled. The following data were recorded: presence, laterality, and amount of Ce; presenting complaints and final diagnosis; attempt to remove Ce during the visit; and type of physician. Among 819 children aged 1 month to 12 years, Ce was present in 594 (72.5%), of whom 478 (80.5%) had bilateral Ce, and 261 (43.9%) had Ce in a relevant amount (cerumen obstructing at least 50% of the ear canal). Presence of Ce was more common in younger and in African or Asian children. PEDs were less likely to remove cerumen than ENTs (28.8% vs 91.0%, p < 0.001) irrespective of age, gender, race and reason for visit. Ce was removed by PEDs in less than one-third of sick children with a final diagnosis of acute otitis media (AOM) (31.6%) compared with almost all the children by ENTs (95.6%, p < 0.001). Ce is highly prevalent in healthy and sick children but is quite neglected by PEDs. Educational programs to reinforce the importance of Ce removal and to improve the techniques for removal in case of suspected AOM should be implemented and rigorously evaluated in order to avoid incorrect diagnosis and erroneous treatments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chang, Chien-Hsing; Wang, Yang; Gupta, Pankaj; Goldenberg, David M
2015-01-01
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.
Chang, Chien-Hsing; Wang, Yang; Gupta, Pankaj; Goldenberg, David M
2015-01-01
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium. PMID:25484043
Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu
2017-01-01
ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583
Conclusions: environmental change, wildlife conservation and reproduction.
Holt, William V; Brown, Janine L; Comizzoli, Pierre
2014-01-01
Our intention when planning this book was to explore the diverse ways that reproductive science is inextricably tied to many aspects of biodiversity conservation, using the opportunity to present a vast amount of specialised information in a way that forms a coherent and important body of work. Some of the chapters were therefore concerned with understanding how taxonomic groups and species are being affected by globally important environmental changes, mostly caused through anthropogenic influences. Others were more focused on monitoring and understanding the physiology of wild species, with the aim of better understanding mechanisms underlying responses to captive conditions and environmental change, in both wild and captive animals. We also wanted to review advances in technological measures that are being actively developed to support the breeding and management of wildlife. In a few cases we have presented specific case studies that highlight the amount of effort required for the successful development of assisted reproductive technologies for wild species. Viewed overall, the outcome is spectacular; the last decade has seen enormous progress in many aspects of the sciences and technologies relevant to the topic. It is also clear that the boundaries between different scientific disciplines are becoming ever more blurred, and it is no longer easy or even possible to remain focused on a highly specialized topic in reproduction or conservation, without having at least some understanding of allied subjects. Here we present a few concluding comments about what we have learnt, and how the various topics interact with each other. We also emphasize that, as far as we know, no similarly comprehensive consideration of the contribution of reproductive science to wildlife conservation has been published within the last decade.
Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander
2016-09-01
Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Biotransformation rates (Vmax) extrapolated from in vitro data are used increasingly in human physiologically based pharmacokinetic (PBPK) models. Extrapolation of Vmax from in vitro data requires use of scaling factors, including mg of microsomal protein/g liver (MPPGL), nmol of...
77 FR 72975 - Zeta Cypermethrin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... confidential pursuant to 40 CFR part 2 may be disclosed publicly by EPA without prior notice. Submit the non... physiological differences between abraded and non-abraded animals, further undermining the relevance of these... classified as a Group C ``Possible human carcinogen,'' based on an increased incidence of lung adenomas and...
H+-PPase AVP1 is necessary for phloem development in Arabidopsis
USDA-ARS?s Scientific Manuscript database
The presence of a plasma membrane (PM) localized type I H+-PPase in sieve elements of Ricinus communis was documented years ago. Unfortunately, the physiological and developmental relevance of these findings remained obscure due to the lack of genetic and molecular reagents to study Ricinus communis...
Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways
Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...
Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...
Early-life effects on adult physical activity: Concepts, relevance, and experimental approaches
USDA-ARS?s Scientific Manuscript database
Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of...
Making Theory Relevant: The Gender Attitude and Belief Inventory
ERIC Educational Resources Information Center
McCabe, Janice
2013-01-01
This article describes and evaluates the Gender Attitude and Belief Inventory (GABI), a teaching tool designed to aid students in (a) realizing how sociological theory links to their personal beliefs and (b) exploring any combination of 11 frequently used theoretical perspectives on gender, including both conservative theories (physiological,…
Abstract: In toxicology, as in pharmacology, the fundamental paradigm used to describe chemical interactions with biological systems is the dose-response relationship. Depending on the chemical mode of action, however, the relevant expression of dose may any one of several metri...
The goal of this U.S. Environmental Protection Agency (EPA) Aging Initiative study is to characterize activity patterns, physiological changes, and environmental exposures for the aging population. Meta-analysis was performed on more than 2000 reviewed articles to evaluate the l...
Obesity, a Disease of Adaptation to Environmental & Physiological Stressors
ERIC Educational Resources Information Center
Bijaoui, Nadia Judith
2012-01-01
Background: The educational intervention of this Applied Dissertation consisted of a presentation during which self-selected volunteers were introduced to relevant literature focusing on less known factors causing the disease of obesity and contrasting from behavior. Purpose: The workshop was structured to address the problem statement:…
ERIC Educational Resources Information Center
La Place, John
This book examines comprehensively all the major health topics covered in an introductory health course and may be used in courses with a science orientation as well as in those oriented toward behavioral and social issues. The book is designed so that each chapter is a complete, independent unit. Relevant physiological facts are presented in the…
Children and Exercise: Appropriate Practices for Grades K-6
ERIC Educational Resources Information Center
Fisher, Michele
2009-01-01
Growth and development have a profound effect on physical fitness, response to exercise, and exercise programming in children. This article reviews the essential pediatric exercise physiology concepts relevant to physical education programs for K-6 children. Indices of physical fitness such as cardiorespiratory endurance, muscular strength, and…
A Physiological Approach to the Study of Human Information Processing.
ERIC Educational Resources Information Center
Fletcher, James E.
Soviet neuropsychologist Sokolov's notions of tonic and phasic orienting responses and of defense responses are examined for relevance to individual information processing. The phasic orienting response provides an index to attention and to information demands generated by the cerebral cortex. The sum of orienting responses elicted by a message…
Wu, James T.; Kral, John G.
2004-01-01
Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat different disease entities including those related to the over-nutrition of obesity and the catabolic response to surgical trauma. PMID:15024307
Alternative functional in vitro models of human intestinal epithelia
Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534
Alternative functional in vitro models of human intestinal epithelia.
Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
Low Vitamin D Levels Do Not Predict Hyperglycemia in Elderly Endurance Athletes (but in Controls).
Haslacher, Helmuth; Nistler, Sonja; Batmyagmar, Delgerdalai; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Scherzer, Thomas M; Kundi, Michael; Endler, Georg; Ratzinger, Franz; Pilger, Alexander; Wagner, Oswald F; Winker, Robert
2016-01-01
Recent studies revealed a link between hypovitaminosis D3 and the risk for hyperglycemia. Further mechanistic and interventional investigations suggested a common reason for both conditions rather than a causal relationship. Exposure to sunlight is the most relevant source of vitamin D3 (25(OH)D), whereas adipose tissue is able to store relevant amounts of the lipophilic vitamin. Since running/bicycling leads to increased out-door time and alters physiological response mechanisms, it can be hypothesized that the correlation between hypovitaminosis D3 and hyperglycemia might be disturbed in outdoor athletes. 47 elderly marathoners/bicyclists and 47 age/sex matched controls were studied in a longitudinal setting at baseline and after three years. HbA1c as a surrogate for (pre-)diabetic states was quantified via HPLC, 25(OH)D levels were measured by means of chemiluminescent assays. Physical performance was assessed by ergometry. When adjusted for seasonal variations, 25(OH)D was significantly higher in athletes than in controls. 25(OH)D levels inversely correlated with triglycerides in both groups, whereas only in controls an association between high BMI or low physical performance with hypovitaminosis D3 had been found. Likewise, the presence of hypovitaminosis D3 at baseline successfully predicted hyperglycemia at the follow up examinations within the control group (AUC = 0.85, 95% CI [0.74, 0.96], p < .001, statistically independent from BMI), but not in athletes. Our data suggest that mechanisms of HbA1c elevation might differ between athletes and controls. Thus, intense physical activity must be taken into account as a potential pre-analytic confounder when it is aimed to predict metabolic risk by vitamin D3 levels.
Low Vitamin D Levels Do Not Predict Hyperglycemia in Elderly Endurance Athletes (but in Controls)
Nistler, Sonja; Batmyagmar, Delgerdalai; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Scherzer, Thomas M.; Kundi, Michael; Endler, Georg; Ratzinger, Franz; Pilger, Alexander; Wagner, Oswald F.; Winker, Robert
2016-01-01
Background and Aim Recent studies revealed a link between hypovitaminosis D3 and the risk for hyperglycemia. Further mechanistic and interventional investigations suggested a common reason for both conditions rather than a causal relationship. Exposure to sunlight is the most relevant source of vitamin D3 (25(OH)D), whereas adipose tissue is able to store relevant amounts of the lipophilic vitamin. Since running/bicycling leads to increased out-door time and alters physiological response mechanisms, it can be hypothesized that the correlation between hypovitaminosis D3 and hyperglycemia might be disturbed in outdoor athletes. Methods 47 elderly marathoners/bicyclists and 47 age/sex matched controls were studied in a longitudinal setting at baseline and after three years. HbA1c as a surrogate for (pre-)diabetic states was quantified via HPLC, 25(OH)D levels were measured by means of chemiluminescent assays. Physical performance was assessed by ergometry. Results When adjusted for seasonal variations, 25(OH)D was significantly higher in athletes than in controls. 25(OH)D levels inversely correlated with triglycerides in both groups, whereas only in controls an association between high BMI or low physical performance with hypovitaminosis D3 had been found. Likewise, the presence of hypovitaminosis D3 at baseline successfully predicted hyperglycemia at the follow up examinations within the control group (AUC = 0.85, 95% CI [0.74, 0.96], p < .001, statistically independent from BMI), but not in athletes. Conclusion Our data suggest that mechanisms of HbA1c elevation might differ between athletes and controls. Thus, intense physical activity must be taken into account as a potential pre-analytic confounder when it is aimed to predict metabolic risk by vitamin D3 levels. PMID:27304888
Tisch, Doris; Pomraning, Kyle R.; Collett, James R.; ...
2017-09-15
Here, the filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostlymore » QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tisch, Doris; Pomraning, Kyle R.; Collett, James R.
Here, the filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostlymore » QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.« less
Oestrogens and spermatogenesis
Carreau, Serge; Hess, Rex A.
2010-01-01
The role of oestrogens in male reproductive tract physiology has for a long time been a subject of debate. The testis produces significant amounts of oestrogenic hormones, via aromatase, and oestrogen receptors (ERs)α (ESR1) and ERβ (ESR2) are selectively expressed in cells of the testis as well as the epididymal epithelium, depending upon species. This review summarizes the current knowledge concerning the presence and activity of aromatase and ERs in testis and sperm and the potential roles that oestrogens may have in mammalian spermatogenesis. Data show that physiology of the male gonad is in part under the control of a balance of androgens and oestrogens, with aromatase serving as a modulator. PMID:20403867
Hemodynamic and Thermal Responses to Head and Neck Cooling in Men and Women
NASA Technical Reports Server (NTRS)
Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Carbo, Jorge E.; Webbon, Bruce W.
1995-01-01
Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. Configurations of these systems include passive ice vests and circulating liquid cooling garments (LCGs) in the forms of vests, cooling caps and combined head and neck cooling systems. However, little information is available oil the amount or heat that can be extracted from the body with these systems or the physiologic changes produced by routine operation of these systems. The objective of this study was to determine the operating characteristics and the physiologic change, produced by short term use of one commercially available thermal control system.
Stream computing for biomedical signal processing: A QRS complex detection case-study.
Murphy, B M; O'Driscoll, C; Boylan, G B; Lightbody, G; Marnane, W P
2015-01-01
Recent developments in "Big Data" have brought significant gains in the ability to process large amounts of data on commodity server hardware. Stream computing is a relatively new paradigm in this area, addressing the need to process data in real time with very low latency. While this approach has been developed for dealing with large scale data from the world of business, security and finance, there is a natural overlap with clinical needs for physiological signal processing. In this work we present a case study of streams processing applied to a typical physiological signal processing problem: QRS detection from ECG data.
Biological properties of extracellular vesicles and their physiological functions
Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier
2015-01-01
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354
Biological properties of extracellular vesicles and their physiological functions.
Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier
2015-01-01
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
Papas, Rebecca K; Sidle, John E; Wamalwa, Emmanuel S; Okumu, Thomas O; Bryant, Kendall L; Goulet, Joseph L; Maisto, Stephen A; Braithwaite, R Scott; Justice, Amy C
2010-08-01
Traditional homemade brew is believed to represent the highest proportion of alcohol use in sub-Saharan Africa. In Eldoret, Kenya, two types of brew are common: chang'aa, spirits, and busaa, maize beer. Local residents refer to the amount of brew consumed by the amount of money spent, suggesting a culturally relevant estimation method. The purposes of this study were to analyze ethanol content of chang'aa and busaa; and to compare two methods of alcohol estimation: use by cost, and use by volume, the latter the current international standard. Laboratory results showed mean ethanol content was 34% (SD = 14%) for chang'aa and 4% (SD = 1%) for busaa. Standard drink unit equivalents for chang'aa and busaa, respectively, were 2 and 1.3 (US) and 3.5 and 2.3 (Great Britain). Using a computational approach, both methods demonstrated comparable results. We conclude that cost estimation of alcohol content is more culturally relevant and does not differ in accuracy from the international standard.
Physiological Parameter Response to Variation of Mental Workload.
Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P
2018-02-01
To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation ( R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers.
Timmons, Adela C.; Margolin, Gayla; Saxbe, Darby E.
2015-01-01
Do partners’ levels of physiological arousal become linked in close relationships? The term “physiological linkage” describes covariation between people in their moment-to-moment physiological states. The current review presents a conceptual framework to guide research on linkage in romantic relationships and discusses the potential implications of being “linked.” Evidence of linkage was found across a broad range of physiological indices and in a variety of contexts, including during laboratory-based conflict and in daily life. Four hypotheses regarding how linkage relates to individual and interpersonal functioning are evaluated: (1) co-activation of the sympathetic nervous system or hypothalamic-pituitary adrenal axis is “bad,” (2) moderate physiological linkage is “just right,” (3) physiological linkage is problematic if the individual or couple is overloaded, and (4) the implications of physiological linkage depend on the emotional context. We found partial support for the first hypothesis and determined that more research is needed to evaluate the remaining hypotheses. Linkage in cortisol was negatively associated with relationship satisfaction; but at the same time, linkage in multiple systems was positively associated with indices of relationship connectedness, such as the amount of time spent together and the ability to identify the emotions of one’s partner. These results suggest that linkage may confer benefits but also may put couples at risk if they become entrenched in patterns of conflict or stress. With research in this area burgeoning in recent years, this review indicates that linkage is a promising construct with applications for interventions targeting individual health and couple functioning. PMID:26147932
A brief history of bacterial growth physiology.
Schaechter, Moselio
2015-01-01
Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid-19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism. Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the "Copenhagen School." During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell. Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.
Predicting musically induced emotions from physiological inputs: linear and neural network models.
Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M
2013-01-01
Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
ERIC Educational Resources Information Center
Hamilton, Nancy Jo
2012-01-01
Reading is a process that requires the enactment of many cognitive processes. Each of these processes uses a certain amount of working memory resources, which are severely constrained by biology. More efficiency in the function of working memory may mediate the biological limits of same. Reading relevancy instructions may be one such method to…
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...
The creation of Physiologically Based Pharmacokinetic (PBPK) models for a new chemical requires the selection of an appropriate model structure and the collection of a large amount of data for parameterization. Commonly, a large proportion of the needed information is collected ...
Heartwood formation in living stumps of douglas-fir
Richard W. Hemingway; W.E. Hillis
1970-01-01
An anatomical and chemical examination was made of living stumps of Douglas-fir. Changes in heartwood and extractives formation are not significant under the conditions of severe physiological stress that exisred unless cell morphology was also altered. It is proposcd that the factors controlling the amount and composition of heartwood extractives are incorporated...
Heartwood formation in four black walnut plantations
Keith Woeste; Brian Beheler
2003-01-01
The amount of heartwood in black walnut (Juglans nigra L.) logs can vary widely, even among trees of the same age growing at the same location. There is little published data on the genetics, physiology, and development of heartwood in hardwoods, even though the volume of heartwood in a log can significantly influence its value.
Habituation as a Determinant of Human Food Intake
ERIC Educational Resources Information Center
Epstein, Leonard H.; Temple, Jennifer L.; Roemmich, James N.; Bouton, Mark E.
2009-01-01
Research has shown that animals and humans habituate on a variety of behavioral and physiological responses to repeated presentations of food cues, and habituation is related to amount of food consumed and cessation of eating. The purpose of this article is to provide an overview of experimental paradigms used to study habituation, integrate a…
Brain Matters: Translating Research into Classroom Practice.
ERIC Educational Resources Information Center
Wolfe, Patricia
Maintaining that educators need a functional understanding of the brain and how it operates in order to teach effectively and to critically analyze the vast amount of neuroscientific information being published, this book provides information on brain-imaging techniques and the anatomy and physiology of the brain. The book also introduces a model…
Physiological responses of root-less epiphytic plants to acid rain.
Kováčik, Jozef; Klejdus, Bořivoj; Bačkor, Martin; Stork, František; Hedbavny, Josef
2011-03-01
Selected physiological responses of Tillandsia albida (Bromeliaceae) and two lichens (Hypogymnia physodes and Xanthoria parietina) exposed to simulated acid rain (AR) over 3 months were studied. Pigments were depressed in all species being affected the most in Tillandsia. Amounts of hydrogen peroxide and superoxide were elevated and soluble proteins decreased only in AR-exposed Hypogymnia. Free amino acids were slightly affected among species and only glutamate sharply decreased in AR-exposed Xanthoria. Slight increase in soluble phenols but decrease in flavonoids in almost all species suggests that the latter are not essential for tolerance to AR. Almost all phenolic acids in Tillandsia leaves decreased in response to AR and activities of selected enzymes (phenylalanine ammonia-lyase, polyphenol oxidase, ascorbate- and guaiacol-peroxidase) were enhanced by AR. In lichens, considerable increase in metabolites (physodalic acid, atranorin and parietin) in response to AR was found but amount of ergosterol was unchanged. Macronutrients (K, Ca, Mg) decreased more pronouncedly in comparison with micronutrients in all species. Xanthoria showed higher tolerance in comparison with Hypogymnia, suggesting that could be useful for long-term biomonitoring.
Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance.
Dinis-Oliveira, Ricardo Jorge
2017-02-01
Psilocybin and psilocin are controlled substances in many countries. These are the two main hallucinogenic compounds of the "magic mushrooms" and both act as agonists or partial agonists at 5-hydroxytryptamine (5-HT) 2A subtype receptors. During the last few years, psilocybin and psilocin have gained therapeutic relevance but considerable physiological variability between individuals that can influence dose-response and toxicological profile has been reported. This review aims to discuss metabolism of psilocybin and psilocin, by presenting all major and minor psychoactive metabolites. Psilocybin is primarily a pro-drug that is dephosphorylated by alkaline phosphatase to active metabolite psilocin. This last is then further metabolized, psilocin-O-glucuronide being the main urinary metabolite with clinical and forensic relevance in diagnosis.
Ferner, Robin E; Aronson, Jeffrey K
2016-01-01
We have traced the historical link between the Law of Mass Action and clinical pharmacology. The Law evolved from the work of the French chemist Claude Louis Berthollet, was first formulated by Cato Guldberg and Peter Waage in 1864 and later clarified by the Dutch chemist Jacobus van 't Hoff in 1877. It has profoundly influenced our qualitative and quantitative understanding of a number of physiological and pharmacological phenomena. According to the Law of Mass Action, the velocity of a chemical reaction depends on the concentrations of the reactants. At equilibrium the concentrations of the chemicals involved bear a constant relation to each other, described by the equilibrium constant, K. The Law of Mass Action is relevant to various physiological and pharmacological concepts, including concentration-effect curves, dose-response curves, and ligand-receptor binding curves, all of which are important in describing the pharmacological actions of medications, the Langmuir adsorption isotherm, which describes the binding of medications to proteins, activation curves for transmembrane ion transport, enzyme inhibition and the Henderson-Hasselbalch equation, which describes the relation between pH, as a measure of acidity and the concentrations of the contributory acids and bases. Guldberg and Waage recognized the importance of dynamic equilibrium, while others failed to do so. Their ideas, over 150 years old, are embedded in and still relevant to clinical pharmacology. Here we explain the ideas and in a subsequent paper show how they are relevant to understanding adverse drug reactions. © 2015 The British Pharmacological Society.
Mintram, Kate S; Brown, A Ross; Maynard, Samuel K; Thorbek, Pernille; Tyler, Charles R
2018-02-01
Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.
Astrocytic glycogen metabolism in the healthy and diseased brain.
Bak, Lasse K; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S
2018-05-11
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K + and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, De-Mei; Yu, Zhen-Wen
2008-09-01
Field experiment was conducted in 2005 -2007 to study the effects of irrigation amount and stage on the water consumption characteristics, grain yield, and water use efficiency of wheat. The results showed that the variation coefficient of the proportion of soil water consumption amount to total water consumption amount was significantly higher than that of precipitation to total water consumption amount, suggesting the relatively wide regulation range of soil water use efficiency. The proportions of irrigation amount, precipitation, and soil water consumption amount to total water consumption amount were 31.0%, 38.9%, and 30.1% in treatment W3 (irrigated at jointing and flowering stages, with total irrigation amount of 120 mm), and 51.7%, 32.4%, and 15.9% in treatment W5 (irrigated before winter and at jointing, flowering and grain-filling stages, with total irrigation amount of 240 mm), respectively, indicating that treatment W3 had a significantly higher proportion of soil water consumption amount to total water consumption amount than treatment W5. Though treatments W2 (irrigated before winter and at jointing stage) and W3 (irrigated at jointing and flowering stages) had the same irrigation amount (120 mm), the water consumption amount during the period from flowering to maturing was significantly higher in W3 than in W2, while the water consumption amount before jointing was significantly lower in W3 than in W2. The water consumption pattern in treatment W3 was in agreement with the water requirement pattern of wheat, which was the physiological basis of high water use efficiency.
Porta, C; Maiolo, A; Tua, A; Grignani, G
2000-08-01
Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production, which suggests that NO release by activated platelets was involved in the inhibitory effect of amifostine. Amifostine proved to be an effective inhibitor of platelet activation induced in vitro by physiologic inducers. This previously unrecognized effect was more evident with the weak agonist ADP and was related to reduced NO consumption by free radicals generated during platelet activation. Amifostine proved to be not only a powerful cytoprotectant, but, more generally, a therapeutic agent endowed with several relevant, though largely unknown, biological effects. Finally, our data once again support the concept that oxidative balance is of crucial importance in regulating platelet reactivity in both health and disease.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Ravichandran, Naresh Kumar; Shirazi, Muhammad Faizan; Moon, Byungin; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-04-01
The pathological and physiological defects in various types of fruits lead to large amounts of economical waste. It is well recognized that internal fruit defects due to pathological infections and physiological disorders can be effectively visualized at an initial stage of the disease using a well-known bio-photonic detection method called optical coherence tomography (OCT). This work investigates the use of OCT for identifying the morphological variations of anthracnose (bitter rot) disease infected and physiologically disordered Diospyros kaki (Asian Persimmon) fruits. An experiment was conducted using fruit samples that were carefully selected from persimmon orchards. Depth-resolved images with a high axial resolution were acquired using 850-nm-based spectral-domain OCT (SD-OCT) system. The obtained exemplary high-resolution two-dimensional and volumetric three-dimensional images revealed complementary morphological differences between healthy and defected samples. Moreover, the obtained depth-profile analysis results confirmed the disappearance of the healthy cell layers among the healthy-infected boundary regions. Thus, the proposed method has the potential to increase the diagnostic accuracy of the OCT technique used in agricultural plantations.
Physiomodel - an integrative physiology in Modelica.
Matejak, Marek; Kofranek, Jiri
2015-08-01
Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.
Physiological variables explain mineral intake in Iberian red deer.
Ceacero, Francisco; Landete-Castillejos, Tomás; García, Andrés J; Estévez, José A; Gallego, Laureano
2010-05-11
Foraging theory predicts that animals should be able to assess nutrient content of food sources and adjust their diet according to needs. As many minerals are essential nutrients, animals should be able to discriminate and consume the amount needed for each mineral. Although this has been proved for sodium and phosphorus, it is not clear if animals can discriminate among other essential minerals, and if they do so based on physiological needs. Requirements depend on sex, age, and physiological status, and thus usually vary greatly among individuals. Thus, if animals behave as optimal foragers of minerals, factors affecting individual physiological needs should also affect intake behaviour of each mineral. We tested this prediction in Iberian red deer. During two lactation periods a series of containers with different minerals, most of them diluted in salt, were offered to 59 adult hinds and their calves while consumption behaviour was recorded. Study animals were monitored weekly and milk production was assessed during the experiment. All the lactation variables influenced mineral consumption, and the effect differed for each mineral. Models explained a higher proportion of variability in calf than hind behaviour, reflecting probably a greater constraint as a result of growth needs. Thus, results show that deer can select mineral content in their diet and that selection is shaped by physiological effort as expected if consumption is driven by physiological needs. Copyright 2010 Elsevier Inc. All rights reserved.
Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco
2016-02-01
The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.
Jeng, Yow-Jiun; Watson, Cheryl S.
2011-01-01
Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566
Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph
2017-01-01
Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.
The human cerebellum: a review of physiologic neuroanatomy.
Roostaei, Tina; Nazeri, Arash; Sahraian, Mohammad Ali; Minagar, Alireza
2014-11-01
The cerebellum resides in the posterior cranial fossa dorsal to the brainstem and has diverse connections to the cerebrum, brain stem, and spinal cord. It is anatomically and physiologically divided into distinct functional compartments and is composed of highly regular arrays of neuronal units, each sharing the same basic cerebellar microcircuitry. Its circuitry is critically involved in motor control and motor learning, and its role in nonmotor cognitive and affective functions is becoming increasingly recognized. This article describes the cerebellar gross and histologic neuroanatomy in relation to its function, and the relevance of cerebellar circuitry and firing patterns to motor learning. Copyright © 2014 Elsevier Inc. All rights reserved.
The concept of function in modern physiology.
Roux, Etienne
2014-06-01
An overview of the scientific literature shows that the concept of function is central in physiology. However, the concept itself is not defined by physiologists. On the other hand, the teleological, namely, the 'goal-directed' dimension of function, and its subsequent explanatory relevance, is a philosophical problem. Intuitively, the function of a trait in a system explains why this trait is present, but, in the early 1960s, Ernest Nagel and Carl Hempel have shown that this inference cannot be logically founded. However, they showed that self-regulated systems are teleological. According to the selectionist theories, the function of an item is its effect that has been selected by natural selection, a process that explains its presence. As they restrict the functional attribution of a trait to its past selective value and not its current properties, these theories are inconsistent with the concept of function in physiology. A more adequate one is the causal role theory, for which a function of a trait in a system is its causal contribution to the functional capacity of the system. However, this leaves unsolved the question of the 'surplus meaning' of the teleological dimension of function. The significance of considering organisms as 'purpose-like' (teleological) systems may reside not in its explanatory power but in its methodological fruitfulness in physiology. In this view, the teleological dimension of physiological functions is convergent to but not imported from, the teleological dimension of evolutionary biology. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Kuniecki, Michał; Wołoszyn, Kinga; Domagalik, Aleksandra; Pilarczyk, Joanna
2018-05-01
Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.
Vidyasagar, Rishma; Greyling, Arno; Draijer, Richard; Corfield, Douglas R; Parkes, Laura M
2013-01-01
Black tea consumption has been shown to improve peripheral vascular function. Its effect on brain vasculature is unknown, though tea contains small amounts of caffeine, a psychoactive substance known to influence cerebral blood flow (CBF). We investigated the effects on CBF due to the intake of tea components in 20 healthy men in a double-blinded, randomized, placebo-controlled study. On separate days, subjects received a single dose of 184 mg caffeine (equivalent to one strong espresso coffee), 2,820 mg black tea solids containing 184 mg caffeine (equivalent to 6 cups of tea), 2,820 mg decaffeinated black tea solids, or placebo. The CBF and cerebrovascular reactivity (CVR) to hypercapnia were measured with arterial spin labeled magnetic resonance imaging (MRI) before and 2 hours after administration. We found a significant global reduction with caffeine (20%) and tea (21%) in gray matter CBF, with no effect of decaffeinated tea, suggesting that only caffeine influences CBF acutely. Voxelwise analysis revealed the effect of caffeine to be regionally specific. None of the interventions had an effect on CVR. Additional research is required to conclude on the physiologic relevance of these findings and the chronic effects of caffeine and tea intake on CBF. PMID:23486295
α-dystroglycan is a potential target of matrix metalloproteinase MMP-2.
Sbardella, Diego; Sciandra, Francesca; Gioia, Magda; Marini, Stefano; Gori, Alessandro; Giardina, Bruno; Tarantino, Umberto; Coletta, Massimo; Brancaccio, Andrea; Bozzi, Manuela
2015-01-01
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes. Copyright © 2014. Published by Elsevier B.V.
Photosynthesis sensitivity to climate change in land surface models
NASA Astrophysics Data System (ADS)
Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo
2016-04-01
Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.
Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study.
Ruge, Christian A; Bohr, Adam; Beck-Broichsitter, Moritz; Nicolas, Valérie; Tsapis, Nicolas; Fattal, Elias
2016-03-01
The conversion of colloidal drug carriers/polymeric nanoparticles into dry microparticulate powders (e.g., by spray-drying) is a prominent approach to overcome the aerodynamic limitations of these formulations for delivery via inhalation. However, to what extent such nano-embedded microparticles disintegrate into individual/intact nanoparticles after contacting relevant physiological media has so far not been addressed. Polymeric nanoparticles were spray-dried into nano-embedded microparticles (NEMs) using different amounts of trehalose as embedding matrix excipient. Formulations were characterized and then evaluated for their disintegration behavior after aerosolization onto model mucus. Although a rapid and complete aqueous redispersion was observed for specific excipient/nanoparticle weight ratios (i.e., greater than 1/1), the same formulations revealed no disintegration after deposition onto a static mucus layer. Double-labeled NEMs powders (i.e., dual color staining of polymeric nanoparticles and trehalose) demonstrated rapid matrix dissolution, while the nanoparticle aggregates persisted. When deposited onto agitated mucus, however, sufficient disintegration of NEMs into individual polymeric nanoparticles was observed. These findings indicate that mechanical forces are necessary to overcome the attraction between individual nanoparticles found within the NEMs. Thus, it remains questionable whether the lung mechanics (e.g., breathing, mucociliary clearance) acting on these formulations will contribute to the overall disintegration process. Copyright © 2015 Elsevier B.V. All rights reserved.
Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.
2016-01-01
Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531
A method for analyzing temporal patterns of variability of a time series from Poincare plots.
Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E
2012-07-01
The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.
Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure.
Comasco, E; Rangmar, J; Eriksson, U J; Oreland, L
2018-01-01
Several explanations for the diverse results in research on foetal alcohol spectrum disorders or alcohol-related neurodevelopmental disorder might be at hand: timing, amount and patterns of alcohol exposure, as well as complex epigenetic responses. The genetic background of the offspring and its interaction with other prenatal and post-natal environmental cues are likely also of importance. In the present report, key findings about the possible effects of low and moderate doses of maternal alcohol intake on the neuropsychological development of the offspring are reviewed and plausible mechanisms discussed. Special focus is put on the serotonergic system within developmental and gene-environment frameworks. The review also suggests guidelines for future studies and also summarizes some of to-be-answered questions of relevance to clinical practice. Contradictory findings and paucity of studies on the effects of exposure to low alcohol levels during foetal life for the offspring's neuropsychological development call for large prospective studies, as well as for studies including neuroimaging and multi-omics analyses to dissect the neurobiological underpinnings of alcohol exposure-related phenotypes and to identify biomarkers. Finally, it remains to be investigated whether any safe threshold of alcohol drinking during pregnancy can be identified. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Kolch, Walter; Kholodenko, Boris N.; Ambrosi, Cristina De; Barla, Annalisa; Biganzoli, Elia M.; Nencioni, Alessio; Patrone, Franco; Ballestrero, Alberto; Zoppoli, Gabriele; Verri, Alessandro; Parodi, Silvio
2015-01-01
The interconnected network of pathways downstream of the TGFβ, WNT and EGF-families of receptor ligands play an important role in colorectal cancer pathogenesis. We studied and implemented dynamic simulations of multiple downstream pathways and described the section of the signaling network considered as a Molecular Interaction Map (MIM). Our simulations used Ordinary Differential Equations (ODEs), which involved 447 reactants and their interactions. Starting from an initial “physiologic condition”, the model can be adapted to simulate individual pathologic cancer conditions implementing alterations/mutations in relevant onco-proteins. We verified some salient model predictions using the mutated colorectal cancer lines HCT116 and HT29. We measured the amount of MYC and CCND1 mRNAs and AKT and ERK phosphorylated proteins, in response to individual or combination onco-protein inhibitor treatments. Experimental and simulation results were well correlated. Recent independently published results were also predicted by our model. Even in the presence of an approximate and incomplete signaling network information, a predictive dynamic modeling seems already possible. An important long term road seems to be open and can be pursued further, by incremental steps, toward even larger and better parameterized MIMs. Personalized treatment strategies with rational associations of signaling-proteins inhibitors, could become a realistic goal. PMID:25671297
[Hydrolyzable tannins; biochemistry, nutritional & analytical aspects and health effects].
Olivas-Aguirre, Francisco Javier; Wall-Medrano, Abraham; González-Aguilar, Gustavo A; López-Díaz, Jose Alberto; Álvarez-Parrilla, Emilio; de la Rosa, Laura A; Ramos-Jimenez, Arnulfo
2014-11-01
Hydrolysable tannins (HT) have been of scientific interest because of their nutraceutical potential. Both gallotannins (GT) and ellagitannins (ET) show different biochemical properties that result in various health benefits (eg anti-diabetic, anti-mutagenic, anti-microbial) for consumers, all associated with their antioxidant capacity (AOXc). To analyze the most relevant aspects (biochemical, nutritional/analytical and health effects) of HT reported in the scientific literature. A systematic search was conducted in several databases (PubMed, Cochrane, ScienceDirect) and free-access repositories (Google Scholar) on HT, GT and ET. This information was further sub-classified into biochemical, nutritional and analytical aspects (narrative review) and health effects (systematic review). The high molecular complexity and amount of hydroxyl groups (-OH) in both ET and GT, are responsible not only for a plethora of methods for extraction and purification but also for the several pro-and anti-physiological effects of them such as enzyme inhibitions, protein excretion stimulation, AOXc and anti-proliferative effects. The association of ET/GT with several macromolecules present in foodstuffs and the digestive tract, counteract the AOXc of these compounds but conversely allow the differential distribution of GT and ET to different target organs in such way that their health effects seems to be different. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
The Meditative Mind: A Comprehensive Meta-Analysis of MRI Studies
2015-01-01
Over the past decade mind and body practices, such as yoga and meditation, have raised interest in different scientific fields; in particular, the physiological mechanisms underlying the beneficial effects observed in meditators have been investigated. Neuroimaging studies have studied the effects of meditation on brain structure and function and findings have helped clarify the biological underpinnings of the positive effects of meditation practice and the possible integration of this technique in standard therapy. The large amount of data collected thus far allows drawing some conclusions about the neural effects of meditation practice. In the present study we used activation likelihood estimation (ALE) analysis to make a coordinate-based meta-analysis of neuroimaging data on the effects of meditation on brain structure and function. Results indicate that meditation leads to activation in brain areas involved in processing self-relevant information, self-regulation, focused problem-solving, adaptive behavior, and interoception. Results also show that meditation practice induces functional and structural brain modifications in expert meditators, especially in areas involved in self-referential processes such as self-awareness and self-regulation. These results demonstrate that a biological substrate underlies the positive pervasive effect of meditation practice and suggest that meditation techniques could be adopted in clinical populations and to prevent disease. PMID:26146618
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
Effects of light attenuation on the sponge holobiont- implications for dredging management
Pineda, Mari-Carmen; Strehlow, Brian; Duckworth, Alan; Doyle, Jason; Jones, Ross; Webster, Nicole S.
2016-01-01
Dredging and natural sediment resuspension events can cause high levels of turbidity, reducing the amount of light available for photosynthetic benthic biota. To determine how marine sponges respond to light attenuation, five species were experimentally exposed to a range of light treatments. Tolerance thresholds and capacity for recovery varied markedly amongst species. Whilst light attenuation had no effect on the heterotrophic species Stylissa flabelliformis and Ianthella basta, the phototrophic species Cliona orientalis and Carteriospongia foliascens discoloured (bleached) over a 28 day exposure period to very low light (<0.8 mol photons m−2 d−1). In darkness, both species discoloured within a few days, concomitant with reduced fluorescence yields, chlorophyll concentrations and shifts in their associated microbiomes. The phototrophic species Cymbastela coralliophila was less impacted by light reduction. C. orientalis and C. coralliophila exhibited full recovery under normal light conditions, whilst C. foliascens did not recover and showed high levels of mortality. The light treatments used in the study are directly relevant to conditions that can occur in situ during dredging projects, indicating that light attenuation poses a risk to photosynthetic marine sponges. Examining benthic light levels over temporal scales would enable dredging proponents to be aware of conditions that could impact on sponge physiology. PMID:27958345
Jevtuševskaja, Jekaterina; Krõlov, Katrin; Tulp, Indrek; Langel, Ülo
2017-04-01
The use of rapid amplification methods to detect pathogens in biological samples is mainly limited by the amount of pathogens present in the sample and the presence of inhibiting substances. Inhibitors can affect the amplification efficiency by either binding to the polymerase, interacting with the DNA, or interacting with the polymerase during primer extension. Amplification is performed using DNA polymerase enzymes and even small changes in their activity can influence the sensitivity and robustness of molecular assays Methods: The main purpose of this research was to examine which compounds present in urine inhibit polymerases with strand displacement activity. To quantify the inhibition, we employed quantitative loop-mediated isothermal amplification Results: The authors found that the presence of BSA, Mg 2+, and urea at physiologically relevant concentrations, as well as acidic or alkaline conditions did not affect the activity of any of the tested polymerases. However, addition of salt significantly affected the activity of the tested polymerases. These findings may aid in the development of more sensitive, robust, cost effective isothermal amplification based molecular assays suitable for both point-of-care testing and on-site screening of pathogens directly from unprocessed urine which avoid the need for long and tedious DNA purification steps prior to amplification.
Huang, Jun; Hirji, Rozina; Adam, Luc; Rozwadowski, Kevin L.; Hammerlindl, Joe K.; Keller, Wilf A.; Selvaraj, Gopalan
2000-01-01
Glycinebetaine (betaine) affords osmoprotection in bacteria, plants and animals, and protects cell components against harsh conditions in vitro. This and a compelling body of other evidence have encouraged the engineering of betaine production in plants lacking it. We have installed the metabolic step for oxidation of choline, a ubiquitous substance, to betaine in three diverse species, Arabidopsis, Brassica napus, and tobacco (Nicotiana tabacum), by constitutive expression of a bacterial choline oxidase gene. The highest levels of betaine in independent transgenics were 18.6, 12.8, and 13 μmol g−1 dry weight, respectively, values 10- to 20-fold lower than the levels found in natural betaine producers. However, choline-fed transgenic plants synthesized substantially more betaine. Increasing the choline supplementation further enhanced betaine synthesis, up to 613 μmol g−1 dry weight in Arabidopsis, 250 μmol g−1 dry weight in B. napus, and 80 μmol g−1 dry weight in tobacco. These studies demonstrate the need to enhance the endogenous choline supply to support accumulation of physiologically relevant amounts of betaine. A moderate stress tolerance was noted in some but not all betaine-producing transgenic lines based on relative shoot growth. Furthermore, the responses to stresses such as salinity, drought, and freezing were variable among the three species. PMID:10712538
Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.
Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J
2007-11-01
The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.
Effects of light attenuation on the sponge holobiont- implications for dredging management.
Pineda, Mari-Carmen; Strehlow, Brian; Duckworth, Alan; Doyle, Jason; Jones, Ross; Webster, Nicole S
2016-12-13
Dredging and natural sediment resuspension events can cause high levels of turbidity, reducing the amount of light available for photosynthetic benthic biota. To determine how marine sponges respond to light attenuation, five species were experimentally exposed to a range of light treatments. Tolerance thresholds and capacity for recovery varied markedly amongst species. Whilst light attenuation had no effect on the heterotrophic species Stylissa flabelliformis and Ianthella basta, the phototrophic species Cliona orientalis and Carteriospongia foliascens discoloured (bleached) over a 28 day exposure period to very low light (<0.8 mol photons m -2 d -1 ). In darkness, both species discoloured within a few days, concomitant with reduced fluorescence yields, chlorophyll concentrations and shifts in their associated microbiomes. The phototrophic species Cymbastela coralliophila was less impacted by light reduction. C. orientalis and C. coralliophila exhibited full recovery under normal light conditions, whilst C. foliascens did not recover and showed high levels of mortality. The light treatments used in the study are directly relevant to conditions that can occur in situ during dredging projects, indicating that light attenuation poses a risk to photosynthetic marine sponges. Examining benthic light levels over temporal scales would enable dredging proponents to be aware of conditions that could impact on sponge physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, K.M.; Boehme, M.; Inbar, O.
Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8more » endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.« less
Albumin transcytosis from the pleural space.
Agostoni, Emilio; Bodega, Francesca; Zocchi, Luciano
2002-11-01
Occurrence of transcytosis in pleural mesothelium was verified by measuring removal of labeled macromolecules from pleural liquid in experiments without and with nocodazole. To this end, we injected 0.3 ml of Ringer-albumin with 750 microg of albumin-Texas red or with 600 microg of dextran 70-Texas red in the right pleural space of anesthetized rabbits, and after 3 h we measured pleural liquid volume, labeled macromolecule concentration, and, hence, labeled macromolecule quantity in the liquid of this space. Labeled albumin left was 318 +/- 28 microg in control and 419 +/- 17 microg in nocodazole experiments (means +/- SE); hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. Labeled dextran left was 283 +/- 10 microg in control and 381 +/- 21 microg in nocodazole experiments; hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. These findings indicate occurrence of transcytosis from the pleural space. Liquid removed by transcytosis was 0.05 ml/h. This amount times unlabeled albumin concentration under physiological conditions (10 mg/ml) times lumen-vesicle partition coefficient for albumin (0.78) provides fluid-phase albumin transcytosis: approximately 203 microg. h(-1) kg(-2/3). Transcytosis might contribute a relevant part of protein and liquid removal from the pleural space.
Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle.
Reyes-Darias, Jose Antonio; García, Vanina; Rico-Jiménez, Miriam; Corral-Lugo, Andrés; Lesouhaitier, Olivier; Juárez-Hernández, Dalia; Yang, Yiling; Bi, Shuangyu; Feuilloley, Marc; Muñoz-Rojas, Jesús; Sourjik, Victor; Krell, Tino
2015-08-01
The PctC chemoreceptor of Pseudomonas aeruginosa mediates chemotaxis with high specificity to gamma-aminobutyric acid (GABA). This compound is present everywhere in nature and has multiple functions, including being a human neurotransmitter or plant signaling compound. Because P. aeruginosa is ubiquitously distributed in nature and able to infect and colonize different hosts, the physiological relevance of GABA taxis is unclear, but it has been suggested that bacterial attraction to neurotransmitters may enhance virulence. We report the identification of McpG as a specific GABA chemoreceptor in non-pathogenic Pseudomonas putida KT2440. As with PctC, GABA was found to bind McpG tightly. The analysis of chimeras comprising the PctC and McpG ligand-binding domains fused to the Tar signaling domain showed very high GABA sensitivities. We also show that PctC inactivation does not alter virulence in Caenorhabditis elegans. Significant amounts of GABA were detected in tomato root exudates, and deletion of mcpG reduced root colonization that requires chemotaxis through agar. The C. elegans data and the detection of a GABA receptor in non-pathogenic species indicate that GABA taxis may not be related to virulence in animal systems but may be of importance in the context of colonization and infection of plant roots by soil-dwelling pseudomonads. © 2015 John Wiley & Sons Ltd.
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants
NASA Astrophysics Data System (ADS)
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
Subsurface phytoplankton layers in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Tremblay, J. E.
2016-02-01
Recent observations underscored the near-ubiquitous presence of subsurface chlorophyll maxima (SCM) and their potential importance for total primary production (PP) and pelagic food webs in perennially stratified waters of the Arctic Ocean. The contribution of SCM layers to annual PP is particularly important in oligotrophic areas, where modest nutrient supply to the upper euphotic zone results in weak or short-lived phytoplankton blooms near the surface. The large amount of nutrients present in the Pacific halocline relative to comparable depths in the Atlantic sector of the Arctic may also foster particularly productive SCM along the path of Pacific water. The association between strongly stratified conditions and the SCM in today's Arctic Ocean has broad relevance in providing a glimpse into the future of other oceans whose vertical stratification progressively rises with water temperature and freshwater content. In this regard, there is much to learn on the photosynthetic and nutritive ecology of SCM layers, whose biogeochemical significance depends on the extent to which they rely on allochthonous nitrogen (new production), their contribution to carbon biomass and their ability to influence air-sea CO2 exchange. Here we report on several years of eco-physiological investigations of SCM across the Arctic Ocean, with an aim to provide a basis of comparison with the ecology of SCM in other ocean areas.
Zinc delivery from non-woven fibres within a therapeutic nipple shield.
Maier, Theresa; Scheuerle, Rebekah L; Markl, Daniel; Bruggraber, Sylvaine; Zeitler, Axel; Fruk, Ljiljana; Slater, Nigel K H
2018-02-15
A Therapeutic Nipple Shield (TNS) was previously developed to respond to the global need for new infant therapeutic delivery technologies. However, the release efficiency for the same Active Pharmaceutical Ingredient (API) from different therapeutic matrices within the TNS formulation has not yet been investigated. To address this, in-vitro release of elemental zinc into human milk from two types of Texel non-woven fibre mats of varying thickness and different gram per square meter values, placed inside the TNS was explored and compared to the release from zinc-containing rapidly disintegrating tablets. In-vitro delivery was performed by means of a breastfeeding simulation apparatus, with human milk flow rates and suction pressure adjusted to physiologically relevant values, and release was quantified using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). It was found that a total recovery of 62-64 % elemental zinc was obtained after the human milk had passed through the fibre insert, amounting to a 20-48% increase compared to previous zinc delivery studies using rapidly disintegrating tablets within the TNS. This indicates that non-woven Texel fibre mats were identified as the superior dosage form for oral zinc delivery into human milk using a TNS. Copyright © 2018 Elsevier B.V. All rights reserved.
De Buck, Emmy; Borra, Vere; De Weerdt, Elfi; Vande Veegaete, Axel; Vandekerckhove, Philippe
2015-01-01
Background In order to improve the effectiveness and efficiency of humanitarian efforts, minimum standards for humanitarian assistance and key indicators, showing whether a standard has been attained, have been developed. However, many of these standards and indicators are based on a consensus on best practices and experiences in humanitarian response, because relevant evidence on the impact of humanitarian interventions is often lacking. Objectives One important example of a standard in humanitarian aid in a disaster setting is “water quantity.” The accompanying indicator states how many litres of water are needed per person per day in a disaster setting. It was our objective to determine the evidence base behind this indicator, in order to improve health outcomes such as morbidity (e.g., diarrhoea) and mortality. Methods A systematic review was performed searching The Cochrane Library, Medline and Embase. We included studies performed during disasters and in refugee camps that reported a specific water amount and health-related outcomes related to water shortages, including diarrhoea, cholera, and mortality. We used GRADE to determine the quality of evidence. Results Out of 3,630 articles, 111 references relevant to our question were selected. Based on our selection criteria, we finally retained 6 observational studies, including 1 study that was performed during the disaster and 5 studies in a post-disaster phase. From two studies there is conclusive evidence on the relationship between the amount of water received and diarrhoea or mortality rates in refugee camps. However, overall, these studies do not contain enough data with relevance to a specific amount of water, and the level of evidence is very low. Conclusions More primary research on water amounts in a disaster setting is necessary, so that the humanitarian sector can further professionalise its water-related standards, indicators and interventions. PMID:25961720
Girondé, Alexandra; Poret, Marine; Etienne, Philippe; Trouverie, Jacques; Bouchereau, Alain; Le Cahérec, Françoise; Leport, Laurent; Niogret, Marie-Françoise; Avice, Jean-Christophe
2015-01-01
Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding. PMID:27135221
Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for Studies in Females
Giles, Erin D.; Jackman, Matthew R.; MacLean, Paul S.
2016-01-01
Obesity is a worldwide epidemic, and the comorbidities associated with obesity are numerous. Over the last two decades, we and others have employed an outbred rat model to study the development and persistence of obesity, as well as the metabolic complications that accompany excess weight. In this review, we summarize the strengths and limitations of this model and how it has been applied to further our understanding of human physiology in the context of weight loss and weight regain. We also discuss how the approach has been adapted over time for studies in females and female-specific physiological conditions, such as menopause and breast cancer. As excess weight and the accompanying metabolic complications have become common place in our society, we expect that this model will continue to provide a valuable translational tool to establish physiologically relevant connections to the basic science studies of obesity and body weight regulation. PMID:27933296
Optical imaging of localized chemical events using programmable diamond quantum nanosensors
NASA Astrophysics Data System (ADS)
Rendler, Torsten; Neburkova, Jitka; Zemek, Ondrej; Kotek, Jan; Zappe, Andrea; Chu, Zhiqin; Cigler, Petr; Wrachtrup, Jörg
2017-03-01
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid nanoscale sensor that can be adjusted to directly monitor physiological species through a proposed sensing scheme based on NV spin relaxometry. We adopt a single-step method to measure spin relaxation rates enabling time-dependent measurements on changes in pH or redox potential at a submicrometre-length scale in a microfluidic channel that mimics cellular environments. Our experimental data are reproduced by numerical simulations of the NV spin interaction with gadolinium complexes covering the NDs. Considering the versatile engineering options provided by polymer chemistry, the underlying mechanism can be expanded to detect a variety of physiologically relevant species and variables.
A model for the solution structure of the rod arrestin tetramer.
Hanson, Susan M; Dawson, Eric S; Francis, Derek J; Van Eps, Ned; Klug, Candice S; Hubbell, Wayne L; Meiler, Jens; Gurevich, Vsevolod V
2008-06-01
Visual rod arrestin has the ability to self-associate at physiological concentrations. We previously demonstrated that only monomeric arrestin can bind the receptor and that the arrestin tetramer in solution differs from that in the crystal. We employed the Rosetta docking software to generate molecular models of the physiologically relevant solution tetramer based on the monomeric arrestin crystal structure. The resulting models were filtered using the Rosetta energy function, experimental intersubunit distances measured with DEER spectroscopy, and intersubunit contact sites identified by mutagenesis and site-directed spin labeling. This resulted in a unique model for subsequent evaluation. The validity of the model is strongly supported by model-directed crosslinking and targeted mutagenesis that yields arrestin variants deficient in self-association. The structure of the solution tetramer explains its inability to bind rhodopsin and paves the way for experimental studies of the physiological role of rod arrestin self-association.
Hedner, Charlotta; Sundgren, Pia C; Kelly, Aine Marie
2013-09-01
The purpose of this study was to assess if the presence of information including the pretest probability (Wells score), other known risk factors, and symptoms given on referrals for computed tomography (CT) pulmonary angiography correlated with prevalence rates for pulmonary embolism (PE). Also, to evaluate for differences between a university and a regional hospital setting regarding patient characteristics, amount of relevant information provided on referrals, and prevalence rates for pulmonary embolism. Retrospective review of all consecutive referrals (emergency room, inpatient, and outpatient) for CT performed on children and adults for suspected PE from two sites: a tertiary (university) hospital (site 1) and a secondary (regional) hospital (site 2) over a 5-year period. The overall prevalence rate was 510/3641 or 14% of all referrals. Significantly higher number of males had a positive CT compared to women (18% versus 12%, P < .001). Although no statistically significant relationship between a greater amount of relevant information on the referral and the probability for positive finding existed, a slight trend was noted (P = .09). In two categories, "hypoxia" and "signs of deep vein thrombosis," the presence of this information conferred a higher probability for pulmonary embolism, P < .001. In the categories, "chest pain," "malaise," and "smoker/chronic obstructive pulmonary disease", the absence of information conferred a higher probability for pulmonary embolism. The amount of relevant clinical information on the request did not correlate with prevalence rates, which may reflect a lack of documentation on the part of emergency physicians who may use a "gestalt" approach. Request forms likely did not capture all relevant patient risks and many factors may interact with each other, both positively and negatively. Pretest probability estimations were rarely performed, despite their inclusion in major society guidelines. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Long-term urethral catheterisation.
Turner, Bruce; Dickens, Nicola
This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.
ERIC Educational Resources Information Center
Hurtt, Barbekka; Bryant, Jennifer
2016-01-01
We describe changes in an undergraduate anatomy and physiology (A&P) curriculum designed to address educational goals at a private, comprehensive university. Educational goals included making course material more relevant to students' future career interests, exposing students to professionals in their careers of interest, and incorporating…
Leydig cells (LCs) are the cells of the testis that have as their primary function the production of testosterone. LCs are a common target of compounds tested in rodent carcinogenicity bioassays. The number of reviews on Leydig cell tumors (LCTs) has increased in recent years bec...
ERIC Educational Resources Information Center
Lovell, B.; Moss, M.; Wetherell, M. A.
2015-01-01
Background: The positive relationship between problem behaviours of children with additional complex needs and psychological distress in their caregivers has been widely evidenced. Fewer studies, however, have assessed the relationship between care recipients' problem behaviours and key physiological processes, relevant for the physical…