Sample records for physiologically relevant doses

  1. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  2. PROPOSED MODELS FOR ESTIMATING RELEVANT DOSE RESULTING FROM EXPOSURES BY THE GASTROINTESTINAL ROUTE

    EPA Science Inventory

    Simple first-order intestinal absorption commonly used in physiologically-based pharmacokinetic(PBPK) models can be made to fit many clinical administrations but may not provide relevant information to extrapolate to real-world exposure scenarios for risk assessment. Small hydr...

  3. Development of physiologically based toxicokinetic (PBTK) models for fish: Confessions of a former fish physiologist

    EPA Science Inventory

    Abstract: In toxicology, as in pharmacology, the fundamental paradigm used to describe chemical interactions with biological systems is the dose-response relationship. Depending on the chemical mode of action, however, the relevant expression of dose may any one of several metri...

  4. Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling.

    PubMed

    Verheijen, Marcha; Schrooders, Yannick; Gmuender, Hans; Nudischer, Ramona; Clayton, Olivia; Hynes, James; Niederer, Steven; Cordes, Henrik; Kuepfer, Lars; Kleinjans, Jos; Caiment, Florian

    2018-05-24

    Doxorubicin (DOX) is a chemotherapeutic agent of which the medical use is limited due to cardiotoxicity. While acute cardiotoxicity is reversible, chronic cardiotoxicity is persistent or progressive, dose-dependent and irreversible. While DOX mechanisms of action are not fully understood yet, 3 toxicity processes are known to occur in vivo: cardiomyocyte dysfunction, mitochondrial dysfunction and cell death. We present an in vitro experimental design aimed at detecting DOX-induced cardiotoxicity by obtaining a global view of the induced molecular mechanisms through RNA-sequencing. To better reflect the in vivo situation, human 3D cardiac microtissues were exposed to physiologically-based pharmacokinetic (PBPK) relevant doses of DOX for 2 weeks. We analysed a therapeutic and a toxic dosing profile. Transcriptomics analysis revealed significant gene expression changes in pathways related to "striated muscle contraction" and "respiratory electron transport", thus suggesting mitochondrial dysfunction as an underlying mechanism for cardiotoxicity. Furthermore, expression changes in mitochondrial processes differed significantly between the doses. Therapeutic dose reflects processes resembling the phenotype of delayed chronic cardiotoxicity, while toxic doses resembled acute cardiotoxicity. Overall, these results demonstrate the capability of our innovative in vitro approach to detect the three known mechanisms of DOX leading to toxicity, thus suggesting its potential relevance for reflecting the patient situation. Our study also demonstrated the importance of applying physiologically relevant doses during toxicological research, since mechanisms of acute and chronic toxicity differ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    PubMed

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cardiorespiratory assessment of decongestant-antihistamine effects of altitude, +Gz, and fatigue tolerances.

    DOT National Transportation Integrated Search

    1978-04-01

    Decongestants and antihistamines are known to produce effects capable of adversely modifying physiological function and psychomotor task performance. Because of relevance to safe pilot performance, the effects of single doses of two decongestant-anti...

  7. Genistein genotoxicity: Critical considerations of in vitro exposure dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Catherine B.; King, Audrey A.

    The potential health benefits of soy-derived phytoestrogens include their reported utility as anticarcinogens, cardioprotectants and as hormone replacement alternatives in menopause. Although there is increasing popularity of dietary phytoestrogen supplementation and of vegetarian and vegan diets among adolescents and adults, concerns about potential detrimental or other genotoxic effects persist. While a variety of genotoxic effects of phytoestrogens have been reported in vitro, the concentrations at which such effects occurred were often much higher than the physiologically relevant doses achievable by dietary or pharmacologic intake of soy foods or supplements. This review focuses on in vitro studies of the most abundantmore » soy phytoestrogen, genistein, critically examining dose as a crucial determinant of cellular effects. In consideration of levels of dietary genistein uptake and bioavailability we have defined in vitro concentrations of genistein > 5 {mu}M as non-physiological, and thus 'high' doses, in contrast to much of the previous literature. In doing so, many of the often-cited genotoxic effects of genistein, including apoptosis, cell growth inhibition, topoisomerase inhibition and others become less obvious. Recent cellular, epigenetic and microarray studies are beginning to decipher genistein effects that occur at dietarily relevant low concentrations. In toxicology, the well accepted principle of 'the dose defines the poison' applies to many toxicants and can be invoked, as herein, to distinguish genotoxic versus potentially beneficial in vitro effects of natural dietary products such as genistein.« less

  8. Dosing antibiotics in neonates: review of the pharmacokinetic data.

    PubMed

    Rivera-Chaparro, Nazario D; Cohen-Wolkowiez, Michael; Greenberg, Rachel G

    2017-09-01

    Antibiotics are often used in neonates despite the absence of relevant dosing information in drug labels. For neonatal dosing, clinicians must extrapolate data from studies for adults and older children, who have strikingly different physiologies. As a result, dosing extrapolation can lead to increased toxicity or efficacy failures in neonates. Driven by these differences and recent legislation mandating the study of drugs in children and neonates, an increasing number of pharmacokinetic studies of antibiotics are being performed in neonates. These studies have led to new dosing recommendations with particular consideration for neonate body size and maturation. Herein, we highlight the available pharmacokinetic data for commonly used systemic antibiotics in neonates.

  9. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters.

    PubMed

    Smit, Cornelis; De Hoogd, Sjoerd; Brüggemann, Roger J M; Knibbe, Catherijne A J

    2018-03-01

    The rising prevalence of obesity confronts clinicians with dosing problems in the (extreme) overweight population. Obesity has a great impact on key organs that play a role in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, however the ultimate impact of these changes on how to adapt the dose may not always be known. Areas covered: In this review, physiological changes associated with obesity are discussed. An overview is provided on the alterations in absorption, distribution, drug metabolism and clearance in (morbid) obesity focusing on general principles that can be extracted from pharmacokinetic studies. Also, relevant pharmacodynamic considerations in obesity are discussed. Expert opinion: Over the last two decades, increased knowledge is generated on PK and PD in obesity. Future research should focus on filling in the knowledge gaps that remain, especially in connecting obesity-related physiological changes with changes in PK and/or PD and vice versa. Ultimately, this knowledge can be used to develop physiologically based PK and PD models on the basis of quantitative systems pharmacology principles. Moreover, efforts should focus on thorough prospective evaluation of developed model-based doses with subsequent implementation of these dosing recommendations in clinical practice.

  10. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.

    PubMed

    Kiwamoto, R; Ploeg, D; Rietjens, I M C M; Punt, A

    2016-03-01

    Genotoxicity of α,β-unsaturated aldehydes shown in vitro raises a concern for the use of the aldehydes as food flavourings, while at low dose exposures the formation of DNA adducts may be prevented by detoxification. Unlike many α,β-unsaturated aldehydes for which in vivo data are absent, cinnamaldehyde was shown to be not genotoxic or carcinogenic in vivo. The present study aimed at comparing dose-dependent DNA adduct formation by cinnamaldehyde and 18 acyclic food-borne α,β-unsaturated aldehydes using physiologically based kinetic/dynamic (PBK/D) modelling. In rats, cinnamaldehyde was predicted to induce higher DNA adducts levels than 6 out of the 18 α,β-unsaturated aldehydes, indicating that these 6 aldehydes may also test negative in vivo. At the highest cinnamaldehyde dose that tested negative in vivo, cinnamaldehyde was predicted to form at least three orders of magnitude higher levels of DNA adducts than the 18 aldehydes at their respective estimated daily intake. These results suggest that for all the 18 α,β-unsaturated aldehydes DNA adduct formation at doses relevant for human dietary exposure may not raise a concern. The present study illustrates a possible use of physiologically based in silico modelling to facilitate a science-based comparison and read-across on the possible risks posed by DNA reactive agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pharmacokinetics of drugs in pregnancy.

    PubMed

    Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve

    2015-11-01

    Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control.

    PubMed

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-Ming; Nishimura, Ichiro

    2013-12-05

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering.

  13. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control

    PubMed Central

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-ming; Nishimura, Ichiro

    2013-01-01

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering. PMID:24305548

  14. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  15. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses.

    PubMed

    Parashar, Abhinav; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2018-01-01

    Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term "murburn" is abstracted from " mur ed burn ing " or " m ild u n r estricted burn ing " and connotes a novel " m olecule- u nbound ion- r adical " interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a "reactivity outside the active-site" perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between "additive-influenced redox catalysis" and "unusual dose responses" in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in "maverick" concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.

  16. The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury.

    PubMed

    Kobayashi, Tetsuo; Uehara, Kenji; Ota, Shusuke; Tobita, Kimimasa; Ambrosio, Fabrisia; Cummins, James H; Terada, Satoshi; Fu, Freddie H; Huard, Johnny

    2013-01-15

    Losartan (Los) is a Food and Drug Administration-approved antihypertensive medication that has a well-tolerated side effect profile. We have demonstrated that treatment with Los immediately after injury was effective at promoting muscle healing and inducing an antifibrotic effect in a murine model of skeletal muscle injury. We initially investigated the minimum effective dose of Los administration immediately after injury and subsequently determined whether the timing of administering a clinically relevant dose of Los would influence its effectiveness at improving muscle healing after muscle injury. In the first part of this study, mice were administered 3, 10, 30, or 300 mg·kg(-1)·day(-1) of Los immediately after injury, and the healing process was evaluated histologically and physiologically 4 wk after injury. In the second study, the clinically relevant dose of 10 mg·kg(-1)·day(-1) was administered immediately or started at 3 or 7 days postinjury. The administration of 300 mg·kg(-1)·day(-1) immediately following injury led to a significant increase in muscle regeneration, a significant decrease in fibrosis, and an improvement in muscle function. Moreover, we observed a significant decrease in fibrosis and a significant increase in muscle regeneration at 4 wk postinjury, when the clinically relevant dose of 10 mg·kg(-1)·day(-1) was administered at 3 or 7 days postinjury. Functional evaluation also demonstrated a significant improvement compared with the injured untreated control when Los treatment was initiated 3 days after injury. Our study revealed accelerated muscle healing when the 300 mg·kg(-1)·day(-1) of Los was administered immediately after injury and a clinically relevant dose of 10 mg·kg(-1)·day(-1) of Los was administered at 3 or 7 days postinjury.

  17. Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xiaoyun; Mi Lixin; Liu Jin

    2011-08-15

    Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We reportmore » that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae. - Graphical abstract: Display Omitted Research Highlights: > SFN protected against MC-LR-induced liver damage and animal death in BALB/c mice. > The dose of SFN is at a nontoxic and physiologically relevant dose. > The protection included activities of anti-oxidation, anti-inflammation, and anti-apoptosis. > SFN may protect mice against MC-induced hepatotoxicity.« less

  18. Epigenetic Programming of Breast Cancer and Nutrition Prevention

    DTIC Science & Technology

    2011-05-01

    is to test the role of xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin -like and...tumor promoter 2,3,7,8 tetrachlorobenzo-p- dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE...phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonizes at physiologically relevant doses (1  mol /L) the TCDD-induced

  19. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    PubMed

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance.

    PubMed

    Dinis-Oliveira, Ricardo Jorge

    2017-02-01

    Psilocybin and psilocin are controlled substances in many countries. These are the two main hallucinogenic compounds of the "magic mushrooms" and both act as agonists or partial agonists at 5-hydroxytryptamine (5-HT) 2A subtype receptors. During the last few years, psilocybin and psilocin have gained therapeutic relevance but considerable physiological variability between individuals that can influence dose-response and toxicological profile has been reported. This review aims to discuss metabolism of psilocybin and psilocin, by presenting all major and minor psychoactive metabolites. Psilocybin is primarily a pro-drug that is dephosphorylated by alkaline phosphatase to active metabolite psilocin. This last is then further metabolized, psilocin-O-glucuronide being the main urinary metabolite with clinical and forensic relevance in diagnosis.

  1. Effect of Direct-Fed Microbial Dosage on the Fecal Concentrations of Enterohemorrhagic Escherichia coli in Feedlot Cattle.

    PubMed

    Luedtke, Brandon E; Bosilevac, Joseph M; Harhay, Dayna M; Arthur, Terrance M

    2016-04-01

    Contamination of beef products by Shiga toxin-producing Escherichia coli is a concern for food safety with a particular subset, the enterohemorrhagic E. coli (EHEC), being the most relevant to human disease. To mitigate food safety risks, preharvest intervention strategies have been implemented with the aim to reduce EHEC in cattle. One class of interventions that has been widely used in feedlots is direct-fed microbials (DFMs), which can contain various dosing rates of probiotic bacteria. Here we compare the use of two different doses of a commercially available DFM on total EHEC load in a commercial feedlot setting. The DFMs used were the standard 10(9) Propionibacterium freudenreichii and 10(6) Lactobacillus acidophilus colony forming units (CFUs)/head/day dose of Bovamine(®) (Nutrition Physiology Company, Guymon, OK) and the higher dose, Bovamine Defend™ (Nutrition Physiology Company), which is dosed at 10(9) P. freudenreichii and 10(9) Lactobacillus acidophilus CFUs/head/day. To analyze the total EHEC fecal concentration, 2200 head of cattle were assigned a DFM feed regimen lasting approximately 5 months. At harvest, 480 head of cattle were sampled using rectoanal mucosal swabs. A quantitative polymerase chain reaction assay targeting ecf1 was used to enumerate the total EHEC fecal concentration for 240 head fed the low-dose DFM and 240 head fed the high-dose DFM. No significant difference (p > 0.05) in the fecal concentration of total EHEC was observed between the two doses. This suggests that using an increased dosage provides no additional reduction in the total EHEC fecal concentration of feedlot cattle compared to the standard dosage.

  2. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-04

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  3. Pharmacokinetics and physiologic effects of alprazolam after a single oral dose in healthy mares.

    PubMed

    Wong, D M; Davis, J L; Alcott, C J; Hepworth-Warren, K L; Galow-Kersh, N L; Rice, S; Coetzee, J F

    2015-06-01

    The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α-hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one-compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single-dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0-∞ ) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1-12 h). Alpha-hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted. © 2014 John Wiley & Sons Ltd.

  4. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.

    PubMed

    Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco

    2015-01-01

    The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.

  5. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    PubMed

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.

  6. Physiological relevance of LL-37 induced bladder inflammation and mast cells.

    PubMed

    Oottamasathien, Siam; Jia, Wanjian; Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D

    2013-10-01

    We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm(2). Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Physiological Relevance of LL-37 Induced Bladder Inflammation and Mast Cells

    PubMed Central

    Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A. Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D.

    2014-01-01

    Purpose We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. Materials and Methods To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm2. Results Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Conclusions Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. PMID:23313203

  8. Prenatal cigarette smoke exposure: Pregnancy outcome and gestational changes in plasma nicotine concentration, hematocrit, and carboxyhemoglobin in a newly standardized rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Svetlana; Hussein, Jabeen; Ariano, Robert E.

    Epidemiological studies support an association between perinatal cigarette smoke (CS) exposure and a number of severe pre- and postnatal complications. However, the mechanisms through which CS enhances such risks largely remain unknown. One of the reasons for our inability to discover such mechanisms has been the unavailability of a clinically relevant and physiologically concordant animal model. A number of studies have previously used nicotine (Nic) as surrogate for CS. We sought to (1) establish the amount of CS exposure to achieve plasma Nic concentrations observed among moderate to heavy smokers (20-60 ng/ml) (2) investigate the temporal changes in plasma Nicmore » concentrations, carboxyhemoglobin, and hematocrit with advancing pregnancy, and (3) elucidate the effects of CS exposure on pregnancy outcome. Pregnant Sprague-Dawley rats were exposed to various doses of CS or room air (Sham) from days 6 to 21 of gestation. Exposure to 6000 ml/day of CS led to very high plasma Nic concentrations and increased maternal and fetal mortality (P < 0.001). The plasma Nic concentrations remained higher than those observed in moderate smokers until the CS dose was reduced to 1000 ml/day and showed dose-dependent temporal changes with advancing gestational age. Significant increases in carboxyhemoglobin and hematocrit were observed in the CS group as compared with the Sham group (P < 0.001). In addition, prenatally CS exposed fetuses had lower birth weight as compared with the Sham group (P = 0.04). Our current study establishes a newly standardized and physiologically relevant model to investigate the mechanisms of CS-mediated adverse effects during the critical period of fetal development.« less

  9. Effects of Chronic Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants on the Reproductive and Thyroid System in Adult Male Rats

    PubMed Central

    Ernest, Sheila R.; Wade, Michael G.; Lalancette, Claudia; Ma, Yi-Qian; Berger, Robert G.; Robaire, Bernard; Hales, Barbara F.

    2012-01-01

    Brominated flame retardants (BFRs) are incorporated into a wide variety of consumer products, are readily released into home and work environments, and are present in house dust. Studies using animal models have revealed that exposure to polybrominated diphenyl ethers (PBDEs) may impair adult male reproductive function and thyroid hormone physiology. Such studies have generally characterized the outcome of acute or chronic exposure to a single BFR technical mixture or congener but not the impact of environmentally relevant BFR mixtures. We tested whether exposure to the BFRs found in house dust would have an adverse impact on the adult male rat reproductive system and thyroid function. Adult male Sprague Dawley rats were exposed to a complex BFR mixture composed of three commercial brominated diphenyl ethers (52.1% DE-71, 0.4% DE-79, and 44.2% decaBDE-209) and hexabromocyclododecane (3.3%), formulated to mimic the relative congener levels in house dust. BFRs were delivered in the diet at target doses of 0, 0.02, 0.2, 2, or 20 mg/kg/day for 70 days. Compared with controls, males exposed to the highest dose of BFRs displayed a significant increase in the weights of the kidneys and liver, which was accompanied by induction of CYP1A and CYP2B P450 hepatic drug–metabolizing enzymes. BFR exposure did not affect reproductive organ weights, serum testosterone levels, testicular function, or sperm DNA integrity. The highest dose caused thyroid toxicity as indicated by decreased serum thyroxine (T4) and hypertrophy of the thyroid gland epithelium. At lower doses, the thickness of the thyroid gland epithelium was reduced, but no changes in hormone levels (T4 and thyroid-stimulating hormone) were observed. Thus, exposure to BFRs affected liver and thyroid physiology but not male reproductive parameters. PMID:22387749

  10. A Novel, Ecologically Relevant, Highly Preferred, and Non-invasive Means of Oral Substance Administration for Rodents

    PubMed Central

    Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.

    2017-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606

  11. A novel, ecologically relevant, highly preferred, and non-invasive means of oral substance administration for rodents.

    PubMed

    Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A

    2016-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.

  12. Separate and combined impact of acute naltrexone and alprazolam on subjective and physiological effects of oral d-amphetamine in stimulant users

    PubMed Central

    Marks, Katherine R.; Lile, Joshua A.; Stoops, William W.

    2014-01-01

    Rationale Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. Objectives The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Methods Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Results Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. Conclusions The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration. PMID:24464531

  13. Separate and combined impact of acute naltrexone and alprazolam on subjective and physiological effects of oral d-amphetamine in stimulant users.

    PubMed

    Marks, Katherine R; Lile, Joshua A; Stoops, William W; Rush, Craig R

    2014-07-01

    Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration.

  14. Is physiological glucocorticoid replacement important in children?

    PubMed Central

    Porter, John; Blair, Joanne; Ross, Richard J

    2017-01-01

    Cortisol has a distinct circadian rhythm with low concentrations at night, rising in the early hours of the morning, peaking on waking and declining over the day to low concentrations in the evening. Loss of this circadian rhythm, as seen in jetlag and shift work, is associated with fatigue in the short term and diabetes and obesity in the medium to long term. Patients with adrenal insufficiency on current glucocorticoid replacement with hydrocortisone have unphysiological cortisol concentrations being low on waking and high after each dose of hydrocortisone. Patients with adrenal insufficiency complain of fatigue, a poor quality of life and there is evidence of poor health outcomes including obesity potentially related to glucocorticoid replacement. New technologies are being developed that deliver more physiological glucocorticoid replacement including hydrocortisone by subcutaneous pump, Plenadren, a once-daily modified-release hydrocortisone and Chronocort, a delayed and sustained absorption hydrocortisone formulation that replicates the overnight profile of cortisol. In this review, we summarise the evidence regarding physiological glucocorticoid replacement with a focus on relevance to paediatrics. PMID:27582458

  15. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    PubMed

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2017-05-01

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.

  16. Anesthesia in Experimental Stroke Research

    PubMed Central

    Hoffmann, Ulrike; Sheng, Huaxin; Ayata, Cenk; Warner, David S.

    2016-01-01

    Anesthetics have enabled major advances in development of experimental models of human stroke. Yet their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have drug and dose-specific effects on cerebral blood flow and metabolism, neurovascular coupling, autoregulation, ischemic depolarizations, excitotoxicity, inflammation, neural networks, and numerous molecular pathways relevant for stroke outcome. Both pre- and post-conditioning properties have been described. Anesthetics also modulate systemic arterial blood pressure, lung ventilation, and thermoregulation, all of which may interact with the ischemic insult as well as the therapeutic interventions. These confounds present a dilemma. Here, we provide an overview of the anesthetic mechanisms of action and molecular and physiologic effects on factors relevant to stroke outcomes that can guide the choice and optimization of the anesthetic regimen in experimental stroke. PMID:27534542

  17. Systemic effects of intranasal steroids: an endocrinologist's perspective.

    PubMed

    Allen, D B

    2000-10-01

    Intranasal steroids (INSs) are established as first-line treatment for allergic rhinitis. Extensive use of INSs with few reported adverse events supports the safety of these medications. Nevertheless, the prescription of more potent INSs for consistent and more prolonged use to younger and older patients, often in combination with inhaled corticosteroids, justifies the careful examination of their potential adverse systemic effects. Systemic bioavailability of INSs, by way of nasal and intestinal absorption, can be substantial; but current INSs vary significantly in their degree of first-pass hepatic inactivation and clearance from the body of the swallowed drug. For safety studies of INSs, distinguishing detectable physiologic perturbations from important adverse events is aided by an understanding of normal endocrine physiology and the methods used to test these systems. A review of available information indicates that (1) sensitive tests can measure the effects of INSs on biologic feedback systems, but they do not accurately predict clinically relevant adverse effects; (2) the primary factors that influence the relationship between therapeutic and adverse systemic effects of INSs are dosing frequency and efficiency of hepatic inactivation of swallowed drug; (3) INS treatment in recommended doses does not cause clinically significant hypothalamic-pituitary-adrenal axis suppression; (4) growth suppression can occur with twice-daily administration of certain INSs but does not appear to occur with once-daily dosing or with agents with more complete first-pass hepatic inactivation; (5) harmful effects of INSs on bone metabolism have not yet been adequately studied but would not be expected with the use of an INS dose and dosing frequency that do not suppress basal hypothalamic-pituitary-adrenal axis function or growth; and (6) these conclusions apply to INS treatment alone and in recommended doses-the risk of adverse effects in individual patients who are treated with INSs is increased by excessive dosing or concomitant inhaled corticosteroid or other topical corticosteroid therapy.

  18. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph

    2012-03-01

    Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.

  19. Costs and benefits of sublethal Drosophila C virus infection.

    PubMed

    Gupta, V; Stewart, C O; Rund, S S C; Monteith, K; Vale, P F

    2017-07-01

    Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Developing better mouse models to study cisplatin-induced kidney injury.

    PubMed

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  1. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses.

    PubMed

    Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N

    2017-01-01

    This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Cato Guldberg and Peter Waage, the history of the Law of Mass Action, and its relevance to clinical pharmacology.

    PubMed

    Ferner, Robin E; Aronson, Jeffrey K

    2016-01-01

    We have traced the historical link between the Law of Mass Action and clinical pharmacology. The Law evolved from the work of the French chemist Claude Louis Berthollet, was first formulated by Cato Guldberg and Peter Waage in 1864 and later clarified by the Dutch chemist Jacobus van 't Hoff in 1877. It has profoundly influenced our qualitative and quantitative understanding of a number of physiological and pharmacological phenomena. According to the Law of Mass Action, the velocity of a chemical reaction depends on the concentrations of the reactants. At equilibrium the concentrations of the chemicals involved bear a constant relation to each other, described by the equilibrium constant, K. The Law of Mass Action is relevant to various physiological and pharmacological concepts, including concentration-effect curves, dose-response curves, and ligand-receptor binding curves, all of which are important in describing the pharmacological actions of medications, the Langmuir adsorption isotherm, which describes the binding of medications to proteins, activation curves for transmembrane ion transport, enzyme inhibition and the Henderson-Hasselbalch equation, which describes the relation between pH, as a measure of acidity and the concentrations of the contributory acids and bases. Guldberg and Waage recognized the importance of dynamic equilibrium, while others failed to do so. Their ideas, over 150 years old, are embedded in and still relevant to clinical pharmacology. Here we explain the ideas and in a subsequent paper show how they are relevant to understanding adverse drug reactions. © 2015 The British Pharmacological Society.

  3. The efficacy of alfaxalone for immersion anesthesia in koi carp (Cyprinus carpio).

    PubMed

    Minter, Larry J; Bailey, Kate M; Harms, Craig A; Lewbart, Gregory A; Posner, Lysa P

    2014-07-01

    To characterize the physiologic and behavioral effects of a single induction dose and two maintenance doses of alfaxalone delivered by water immersion in the anesthesia of koi (Cyprinus carpio). Prospective, within-subject complete crossover design. Six adult koi (Cyprinus carpio) with a median body weight of 344.5 g (range 292.0-405.0 g). Koi were immersed in water containing 10 mg L(-1) alfaxalone until immobile and then maintained with alfaxalone at either 1 or 2.5 mg L(-1) via a recirculating water system. Times for anesthetic induction and recovery periods were recorded. Physiologic and blood gas parameters were evaluated before, during and after the anesthetic trial. Response to noxious stimuli was also assessed. Median anesthesia induction time for all fish was 5.4 minutes. Median recovery time was 11.8 and 26.4 minutes in the 1.0 and 2.5 mg L(-1) doses, respectively, which were significantly different (p = 0.04). Cessation of opercular movement occurred in 0/6 and 4/6 fish exposed to 1.0 and 2.5 mg L(-1) dose respectively. No difference was observed in median heart rate over the duration of the anesthetic events. Response to noxious stimulation was 4/6 and 0/6 in the 1.0 and 2.5 mg L(-1) doses respectively. Oxygenation and ventilation did not change during the experiment, but there was a significant decrease in blood pH along with an increase in blood lactate concentration. Administration of alfaxalone, via water immersion, as an induction and maintenance anesthesia agent provided rapid and reliable anesthesia of koi with no mortality. The maintenance dose of 2.5 mg L(-1) was sufficient to prevent response to noxious stimuli but was associated with a clinically relevant depression in opercular rate. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  4. Evidence against Resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR

    PubMed Central

    Jai, Ying; Shah, Kalpit; Bridges, Robert J.; Bradbury, Neil A.

    2015-01-01

    BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. PMID:26342647

  5. The effects of two different doses of hydrocortisone on cognition in patients with secondary adrenal insufficiency--results from a randomized controlled trial.

    PubMed

    Werumeus Buning, Jorien; Brummelman, Pauline; Koerts, Janneke; Dullaart, Robin P F; van den Berg, Gerrit; van der Klauw, Melanie M; Tucha, Oliver; Wolffenbuttel, Bruce H R; van Beek, André P

    2015-05-01

    A wide variety in hydrocortisone (HC) substitution dose-regimens are considered physiological for patients with secondary adrenal insufficiency (SAI). However, it is likely that cognition is negatively influenced by higher cortisol exposure to the brain. To examine the effects of a high physiological HC dose in comparison to a low physiological HC dose on cognition. This study was a randomized double blind cross-over study at the University Medical Center Groningen. This study is registered with ClinicalTrials.gov, number NCT01546922. Forty-seven patients (29 males, 18 females; mean [SD] age, 51 [14] years, range 19-73) with SAI participated. Patients randomly received first a low dose of HC (0.2-0.3 mg/kg body weight/day) during 10 weeks followed by a high dose (0.4-0.6 mg/kg body weight/day) for another 10 weeks, or vice versa. HC substitution was given in three divided doses with the highest dose in the morning. Cognitive performance (memory, attention, executive functioning and social cognition) of patients was measured at baseline and after each treatment period using a battery of 12 standardized cognitive tests. The higher dose of HC resulted in significantly higher systemic cortisol exposure for example measured at 1h after first dose ingestion (mean [SD], low dose: 653 [281] nmol/L; high dose: 930 [148] nmol/L; P<0.001). No differences in cognitive performance were found between the two dose regimens. No negative influence on memory, attention, executive functioning and social cognition was observed after 10 weeks of treatment with a higher physiological dose of HC in patients with SAI when compared to a lower dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Even High Doses of Oral Cannabidiol Do Not Cause THC-Like Effects in Humans: Comment on Merrick et al. Cannabis and Cannabinoid Research 2016;1(1):102–112; DOI: 10.1089/can.2015.0004

    PubMed Central

    Grotenhermen, Franjo; Russo, Ethan; Zuardi, Antonio Waldo

    2017-01-01

    Abstract This short communication examines the question whether the experimental data presented in a study by Merrick et al. are of clinical relevance. These authors found that cannabidiol (CBD), a major cannabinoid of the cannabis plant devoid of psychotropic effects and of great interest for therapeutic use in several medical conditions, may be converted in gastric fluid into the psychoactive cannabinoids delta-8-THC and delta-9-THC to a relevant degree. They concluded that “the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a positive physiological response.” They issued a warning concerning oral use of CBD and recommend the development of other delivery methods. However, the available clinical data do not support this conclusion and recommendation, since even high doses of oral CBD do not cause psychological, psychomotor, cognitive, or physical effects that are characteristic for THC or cannabis rich in THC. On the contrary, in the past decades and by several groups, high doses of oral CBD were consistently shown to cause opposite effects to those of THC in clinical studies. In addition, administration of CBD did not result in detectable THC blood concentrations. Thus, there is no reason to avoid oral use of CBD, which has been demonstrated to be a safe means of administration of CBD, even at very high doses. PMID:28861499

  7. Even High Doses of Oral Cannabidol Do Not Cause THC-Like Effects in Humans: Comment on Merrick et al. Cannabis and Cannabinoid Research 2016;1(1):102-112; DOI: 10.1089/can.2015.0004.

    PubMed

    Grotenhermen, Franjo; Russo, Ethan; Zuardi, Antonio Waldo

    2017-01-01

    This short communication examines the question whether the experimental data presented in a study by Merrick et al. are of clinical relevance. These authors found that cannabidiol (CBD), a major cannabinoid of the cannabis plant devoid of psychotropic effects and of great interest for therapeutic use in several medical conditions, may be converted in gastric fluid into the psychoactive cannabinoids delta-8-THC and delta-9-THC to a relevant degree. They concluded that "the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a positive physiological response." They issued a warning concerning oral use of CBD and recommend the development of other delivery methods. However, the available clinical data do not support this conclusion and recommendation, since even high doses of oral CBD do not cause psychological, psychomotor, cognitive, or physical effects that are characteristic for THC or cannabis rich in THC. On the contrary, in the past decades and by several groups, high doses of oral CBD were consistently shown to cause opposite effects to those of THC in clinical studies. In addition, administration of CBD did not result in detectable THC blood concentrations. Thus, there is no reason to avoid oral use of CBD, which has been demonstrated to be a safe means of administration of CBD, even at very high doses.

  8. Dosing antibiotic prophylaxis during cardiopulmonary bypass-a higher level of complexity? A structured review.

    PubMed

    Paruk, Fathima; Sime, Fekade B; Lipman, Jeffrey; Roberts, Jason A

    2017-04-01

    In highly invasive procedures such as open heart surgery, the risk of post-operative infection is particularly high due to exposure of the surgical field to multiple foreign devices. Adequate antibiotic prophylaxis is an essential intervention to minimise post-operative morbidity and mortality. However, there is a lack of clear understanding on the adequacy of traditional prophylactic dosing regimens, which are rarely supported by data. The aim of this structured review is to describe the relevant pharmacokinetic/pharmacodynamic (PK/PD) considerations for optimal antibiotic prophylaxis for major cardiac surgery including cardiopulmonary bypass (CPB). A structured review of the relevant published literature was performed and 45 relevant studies describing antibiotic pharmacokinetics in patients receiving extracorporeal CPB as part of major cardiac surgery were identified. Some of the studies suggested marked PK alterations in the peri-operative period with increases in volume of distribution (V d ) by up to 58% and altered drug clearances of up to 20%. Mechanisms proposed as causing the PK changes included haemodilution, hypothermia, retention of the antibiotic within the extracorporeal circuit, altered physiology related to a systemic inflammatory response, and maldistribution of blood flow. Of note, some studies reported no or minimal impact of the CPB procedure on antibiotic pharmacokinetics. Given the inconsistent data, ongoing research should focus on clarifying the influence of CPB procedure and related clinical covariates on the pharmacokinetics of different antibiotics during cardiac surgery. Traditional prophylactic dosing regimens may need to be re-assessed to ensure sufficient drug exposures that will minimise the risk of surgical site infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Salicylate toxicity model of tinnitus

    PubMed Central

    Stolzberg, Daniel; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ∼14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed. PMID:22557950

  10. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.

    PubMed

    Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B

    2017-12-01

    This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  11. Evidence based selection of probiotic strains to promote astronaut health or alleviate symptoms of illness on long duration spaceflight missions.

    PubMed

    Douglas, G L; Voorhies, A A

    2017-10-13

    Spaceflight impacts multiple aspects of human physiology, which will require non-invasive countermeasures as mission length and distance from Earth increases and the capability for external medical intervention decreases. Studies on Earth have shown that probiotics have the potential to improve some of the conditions that have manifested during spaceflight, such as gastrointestinal distress, dermatitis, and respiratory infections. The constraints and risks of spaceflight make it imperative that probiotics are carefully selected based on their strain-specific benefits, doses, delivery mechanisms, and relevance to likely crew conditions prior to evaluation in astronauts. This review focuses on probiotics that have been incorporated into healthy human gastrointestinal microbiomes and associated clinically with improvements in inflammatory state or alleviation of symptoms of crew-relevant illness. These studies provide an evidence base for probiotic selection with the greatest potential to support crew health and well-being in spaceflight.

  12. Temporal changes in physiology and haematology in response to high- and micro-doses of recombinant human erythropoietin.

    PubMed

    Clark, Brad; Woolford, Sarah M; Eastwood, Annette; Sharpe, Ken; Barnes, Peter G; Gore, Christopher J

    2017-10-01

    There is evidence to suggest athletes have adopted recombinant human erythropoietin (rHuEPO) dosing regimens that diminish the likelihood of being caught by direct detection techniques. However, the temporal response in physiology, performance, and Athlete Biological Passport (ABP) parameters to such regimens is not clearly understood. Participants were assigned to a high-dose only group (HIGH, n = 8, six rHuEPO doses of 250 IU/kg over two weeks), a combined high micro-dose group (COMB, n = 8, high-dose plus nine rHuEPO micro-doses over a further three weeks), or one of two placebo control groups who received saline in the same pattern as the HIGH (HIGH-PLACEBO, n = 4) or COMB (COMB-PLACEBO, n = 4) groups. Temporal changes in physiology and performance were tracked by graded exercise test (GXT) and haemoglobin mass assessment at baseline, after high dose, after micro-dose (COMB and COMB-PLACEBO only) and after a four-week washout. Venous blood samples were collected throughout the baseline, rHuEPO administration, and washout periods to determine the haematological and ABP response to each dosing regimen. Physiological adaptations induced by a two-week rHuEPO high-dose were maintained by rHuEPO micro-dosing for at least three weeks. However, all participants administered rHuEPO registered at least one suspicious ABP value during the administration or washout periods. These results indicate there is sufficient sensitivity in the ABP to detect use of high rHuEPO doping regimens in athletic populations and they provide important empirical examples for use by anti-doping experts. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. The impact of variation in scaling factors on the estimation of ...

    EPA Pesticide Factsheets

    Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impacts of adult human variation in MPPGL and FVL on estimates of internal dose were assessed using a human PBPK model for BDCM for several internal dose metrics for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under plausible (5 micrograms/L) and high level (20 micrograms/L) water concentrations. For both concentrations, all internal dose metrics were changed less than 5% for the showering scenario (combined inhalation and dermal exposure). In contrast, a 27-fold variation in area under the curve for BDCM in venous blood was observed at both oral exposure concentrations, whereas total amount of BDCM metabolized in liver was relatively unchanged. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) for metabolic rate parameters can have a significant route-dependent impact on estimates of internal dose under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. Sca

  14. Integration of drug dosing data with physiological data streams using a cloud computing paradigm.

    PubMed

    Bressan, Nadja; James, Andrew; McGregor, Carolyn

    2013-01-01

    Many drugs are used during the provision of intensive care for the preterm newborn infant. Recommendations for drug dosing in newborns depend upon data from population based pharmacokinetic research. There is a need to be able to modify drug dosing in response to the preterm infant's response to the standard dosing recommendations. The real-time integration of physiological data with drug dosing data would facilitate individualised drug dosing for these immature infants. This paper proposes the use of a novel computational framework that employs real-time, temporal data analysis for this task. Deployment of the framework within the cloud computing paradigm will enable widespread distribution of individualized drug dosing for newborn infants.

  15. Effects of alfaxalone administered intravenously to healthy yearling loggerhead sea turtles (Caretta caretta) at three different doses.

    PubMed

    Phillips, Brianne E; Posner, Lysa P; Lewbart, Gregory A; Christiansen, Emily F; Harms, Craig A

    2017-04-15

    OBJECTIVE To compare physiologic and anesthetic effects of alfaxalone administered IV to yearling loggerhead sea turtles (Caretta caretta) at 3 different doses. DESIGN Randomized crossover study. ANIMALS 9 healthy yearling loggerhead sea turtles. PROCEDURES Animals received each of 3 doses of alfaxalone (3 mg/kg [1.4 mg/lb], 5 mg/kg [2.3 mg/lb], or 10 mg/kg [4.5 mg/lb]) administered IV in randomly assigned order, with a minimum 7-day washout period between doses. Endotracheal intubation was attempted following anesthetic induction, and heart rate, sedation depth, cloacal temperature, and respirations were monitored. Times to first effect, induction, first voluntary muscle movement, first respiration, and recovery were recorded. Venous blood gas analysis was performed at 0 and 30 minutes. Assisted ventilation was performed if apnea persisted 30 minutes following induction. RESULTS Median anesthetic induction time for all 3 doses was 2 minutes. Endotracheal intubation was accomplished in all turtles following induction. Heart rate significantly increased after the 3- and 5-mg/kg doses were administered. Median intervals from alfaxalone administration to first spontaneous respiration were 16, 22, and 54 minutes for the 3-, 5-, and 10-mg/kg doses, respectively, and median intervals to recovery were 28, 46, and 90 minutes, respectively. Assisted ventilation was required for 1 turtle after receiving the 5-mg/kg dose and for 5 turtles after receiving the 10-mg/kg dose. The 10-mg/kg dose resulted in respiratory acidosis and marked hypoxemia at 30 minutes. CONCLUSIONS AND CLINICAL RELEVANCE IV alfaxalone administration to loggerhead sea turtles resulted in a rapid anesthetic induction and dose-dependent duration of sedation. Assisted ventilation is recommended if the 10 mg/kg dose is administered.

  16. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, J M; Hartzler, L K

    2013-02-01

    The locus coeruleus (LC) in the brainstem senses alterations in CO(2)/pH and influences ventilatory adjustments that restore blood gas values to starting levels in bullfrogs (Lithobates catesbeianus). We hypothesized that neurons of the bullfrog LC are sensitive to changes in CO(2)/pH and that chemosensitive responses are intrinsic to individual neurons. In addition, we hypothesized putative respiratory control neurons of the bullfrog LC would be stimulated by hypercapnic acidosis within physiological ranges of P(CO(2))/pH. 84% of LC neurons depolarized and increased firing rates during exposure to hypercapnic acidosis (HA). A pH dose response curve shows LC neurons from bullfrogs increase firing rates during physiologically relevant CO(2)/pH changes. With chemical synapses blocked, half of chemosensitive neurons lost sensitivity to HA; however, gap junction blockade did not alter chemosensitive responses. Intrinsically chemosensitive neurons increased input resistance during HA. These data demonstrate that majority of neurons within the bullfrog LC elicit robust firing responses during physiological ΔCO(2)/pH, likely enabling adjustment of acid-base balance through breathing. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Flavan-3-ols, theobromine, and the effects of cocoa and chocolate on cardiometabolic risk factors.

    PubMed

    Berends, Lindsey M; van der Velpen, Vera; Cassidy, Aedin

    2015-02-01

    Although there is growing interest surrounding the potential health benefits of cocoa and chocolate, the relative contribution of bioactive constituents for these effects remains unclear. This review summarizes the recent research on the cardiometabolic effects of cocoa and chocolate with a focus on two key constituents: flavan-3-ols and theobromine. Recent meta-analyses suggest beneficial cardiometabolic effects of chocolate following short-term intake, including improvements in flow-mediated dilatation, blood pressure, lipoprotein levels and biomarkers of insulin resistance. Flavan-3-ols may play a role, but it is currently unclear which specific compounds or metabolites are key. Theobromine has also been shown to improve lipoprotein levels in trials, although these findings need verification at habitual intake levels. Longer term dose-response randomized controlled trials are required to determine the sustainability of the short-term effects and the optimal dose. Quantifying levels of bioactives in intervention products and their metabolites in biological samples will facilitate the assessment of their relative impact and the underlying mechanisms of action. Promising data support the beneficial cardiometabolic effects of cocoa and chocolate intake, with significant interest in the flavan-3-ol and theobromine content. Validated biomarkers of intake together with more relevant mechanistic insights from experimental models using physiologically relevant concentrations and metabolites will continue to inform this research field.

  19. Phrenic Nerve Palsy and Regional Anesthesia for Shoulder Surgery: Anatomical, Physiologic, and Clinical Considerations.

    PubMed

    El-Boghdadly, Kariem; Chin, Ki Jinn; Chan, Vincent W S

    2017-07-01

    Regional anesthesia has an established role in providing perioperative analgesia for shoulder surgery. However, phrenic nerve palsy is a significant complication that potentially limits the use of regional anesthesia, particularly in high-risk patients. The authors describe the anatomical, physiologic, and clinical principles relevant to phrenic nerve palsy in this context. They also present a comprehensive review of the strategies for reducing phrenic nerve palsy and its clinical impact while ensuring adequate analgesia for shoulder surgery. The most important of these include limiting local anesthetic dose and injection volume and performing the injection further away from the C5-C6 nerve roots. Targeting peripheral nerves supplying the shoulder, such as the suprascapular and axillary nerves, may be an effective alternative to brachial plexus blockade in selected patients. The optimal regional anesthetic approach in shoulder surgery should be tailored to individual patients based on comorbidities, type of surgery, and the principles described in this article.

  20. Memory-updating abrogates extinction of learned immunosuppression.

    PubMed

    Hadamitzky, Martin; Bösche, Katharina; Wirth, Timo; Buck, Benjamin; Beetz, Oliver; Christians, Uwe; Schniedewind, Björn; Lückemann, Laura; Güntürkün, Onur; Engler, Harald; Schedlowski, Manfred

    2016-02-01

    When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.

    PubMed

    Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B

    2017-04-01

    4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.

  2. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.

    PubMed

    Disma, Nicola; Mondardini, Maria C; Terrando, Niccolò; Absalom, Anthony R; Bilotta, Federico

    2016-01-01

    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science. © 2015 John Wiley & Sons Ltd.

  3. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation.

    PubMed

    Nielsen, Torben K; Højgaard, Martin; Andersen, Jon T; Poulsen, Henrik E; Lykkesfeldt, Jens; Mikines, Kári J

    2015-04-01

    Treatment with high-dose intravenous (IV) ascorbic acid (AA) is used in complementary and alternative medicine for various conditions including cancer. Cytotoxicity to cancer cell lines has been observed with millimolar concentrations of AA. Little is known about the pharmacokinetics of high-dose IV AA. The purpose of this study was to assess the basic kinetic variables in human beings over a relevant AA dosing interval for proper design of future clinical trials. Ten patients with metastatic prostate cancer were treated for 4 weeks with fixed AA doses of 5, 30 and 60 g. AA was measured consecutively in plasma and indicated first-order elimination kinetics throughout the dosing range with supra-physiological concentrations. The target dose of 60 g AA IV produced a peak plasma AA concentration of 20.3 mM. Elimination half-life was 1.87 hr (mean, S.D. ± 0.40), volume of distribution 0.19 L/kg (S.D. ±0.05) and clearance rate 6.02 L/hr (100 mL/min). No differences in pharmacokinetic parameters were observed between weeks/doses. A relatively fast first-order elimination with half-life of about 2 hr makes it impossible to maintain AA concentrations in the potential cytotoxic range after infusion stop in prostate cancer patients with normal kidney function. We propose a regimen with a bolus loading followed by a maintenance infusion based on the calculated clearance. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  4. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines.

    PubMed

    Woode, Denzel R; Aiyer, Harini S; Sie, Nicole; Zwart, Alan L; Li, Liya; Seeram, Navindra P; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1-100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses.

  5. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines

    PubMed Central

    Woode, Denzel R.; Aiyer, Harini S.; Sie, Nicole; Zwart, Alan L.; Li, Liya; Seeram, Navindra P.; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1–100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses. PMID:23346406

  6. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Singhal, Sunil; Glatstein, Eli; Cengel, Keith A.; Zhu, Timothy C.

    2018-01-01

    Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.

  7. Effects of hydroxocobalamin on carboxyhemoglobin measured under physiologic and pathologic conditions.

    PubMed

    Pace, R; Bon Homme, M; Hoffman, R S; Lugassy, D

    2014-08-01

    Pre-hospital administration of hydroxocobalamin (B12a) is used for empiric treatment of cyanide poisoning because cyanide poisoning is difficult to identify and requires immediate treatment. B12a interferes with the accuracy of several blood laboratory tests. This study aimed to explore how B12a affects carboxyhemoglobin (COHb) measurements in human blood at both physiologic and pathologic COHb levels. Several clinically relevant concentrations of B12a were added to human blood samples containing physiologic (∼ 3%) and pathologic (30% and 50%) COHb levels. We then measured the COHb levels of the samples using two different co-oximeters, the Radiometer ABL 700 and the Rapidpoint 500, and compared to their actual baseline COHb levels. B12a had minimal effects on the COHb measured at both physiologic and pathologic levels when measured on the Radiometer. In contrast, the Rapidpoint B12a caused a dose-dependent decrease in the COHb measured, especially of pathologic COHb levels (∼ 30 and 50%). The magnitude of B12a interference on measured COHb is dependent upon the specific co-oximeter used, the actual COHb level and the serum B12a concentration. These errors may potentially influence clinical decision making and thus affect patient outcomes. Our findings emphasize the importance of measuring COHb levels on blood samples collected prior to B12a administration.

  8. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less

  9. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  10. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  11. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  12. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability.

    PubMed

    Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F

    2017-09-01

    The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations. Published by Elsevier Ltd.

  13. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems

    PubMed Central

    Arnold, Kathryn E.; Brown, A. Ross; Ankley, Gerald T.; Sumpter, John P.

    2014-01-01

    Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment. PMID:25405959

  14. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.

    PubMed Central

    Vogel, John S; Keating, Garrett A; Buchholz, Bruce A

    2002-01-01

    Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures. PMID:12634135

  15. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less

  16. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    PubMed

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  17. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than ismore » DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.« less

  18. Hydrocortisone as an Intervention for Dexamethasone-Induced Adverse Effects in Pediatric Patients With Acute Lymphoblastic Leukemia: Results of a Double-Blind, Randomized Controlled Trial.

    PubMed

    Warris, Lidewij T; van den Heuvel-Eibrink, Marry M; Aarsen, Femke K; Pluijm, Saskia M F; Bierings, Marc B; van den Bos, Cor; Zwaan, Christian M; Thygesen, Helene H; Tissing, Wim J E; Veening, Margreet A; Pieters, Rob; van den Akker, Erica L T

    2016-07-01

    Dexamethasone is a key component in the treatment of pediatric acute lymphoblastic leukemia (ALL), but can induce serious adverse effects. Recent studies have led to the hypothesis that neuropsychological adverse effects may be a result of cortisol depletion of the cerebral mineralocorticoid receptors. We examined whether including a physiologic dose of hydrocortisone in dexamethasone treatment can reduce neuropsychologic and metabolic adverse effects in children with ALL. We performed a multicenter, double-blind, randomized controlled trial with a crossover design. Of 116 potentially eligible patients (age 3 to 16 years), 50 were enrolled and were treated with two consecutive courses of dexamethasone in accordance with Dutch Childhood Oncology Group ALL protocols. Patients were randomly assigned to receive either hydrocortisone or placebo in a circadian rhythm (10 mg/m(2)/d) during both dexamethasone courses. Primary outcome measure was parent-reported Strength and Difficulties Questionnaire in Dutch, which assesses psychosocial problems. Other end points included questionnaires, neuropsychological tests, and metabolic parameters. Of 48 patients who completed both courses, hydrocortisone had no significant effect on outcome; however, a more detailed analysis revealed that in 16 patients who developed clinically relevant psychosocial adverse effects, addition of hydrocortisone substantially reduced their Strength and Difficulties Questionnaire in Dutch scores in the following domains: total difficulties, emotional symptoms, conduct problems, and impact of difficulties. Moreover, in nine patients who developed clinically relevant, sleep-related difficulties, addition of hydrocortisone reduced total sleeping problems and disorders of initiating and maintaining sleep. In contrast, hydrocortisone had no effect on metabolic parameters. Our results suggest that adding a physiologic dose of hydrocortisone to dexamethasone treatment can reduce the occurrence of serious neuropsychological adverse effects and sleep-related difficulties in pediatric patients with ALL. © 2016 by American Society of Clinical Oncology.

  19. Toxic effects of orally ingested oil from the Deepwater Horizon spill on laughing gulls.

    PubMed

    Horak, K E; Bursian, S J; Ellis, C K; Dean, K M; Link, J E; Hanson-Dorr, K C; Cunningham, F L; Harr, K E; Pritsos, C A; Pritsos, K L; Healy, K A; Cacela, D; Shriner, S A

    2017-12-01

    The explosion of the Deepwater Horizon oil rig released, millions of gallons of oil into the environment, subsequently exposing wildlife, including numerous bird species. To determine the effects of MC252 oil to species relevant to the Gulf of Mexico, studies were done examining multiple exposure scenarios and doses. In this study, laughing gulls (Leucophaeus atricilla, LAGU) were offered fish injected with MC252 oil at target doses of 5 or 10mL/kg bw per day. Dosing continued for 27 days. Of the adult, mixed-sex LAGUs used in the present study, ten of 20 oil exposed LAGUs survived to the end of the study; a total of 10 of the oil exposed LAGUs died or were euthanized within 20 days of initiation of the study. Endpoints associated with oxidative stress, hepatic total glutathione (tGSH), oxidized glutathione (GSSG) and reduced glutathione (rGSH) significantly increased as mean dose of oil increased, while the rGSH:GSSG ratio showed a non-significant negative trend with oil dose. A significant increase in 3-methyl histidine was found in oil exposed birds when compared to controls indicative of muscle wastage and may have been associated with the gross observation of diminished structural integrity in cardiac tissue. Consistent with previous oil dosing studies in birds, significant changes in liver, spleen, and kidney weight when normalized to body weight were observed. These studies indicate that mortality in response to oil dosing is relatively common and the mortality exhibited by the gulls is consistent with previous studies examining oil toxicity. Whether survival effects in the gull study were associated with weight loss, physiologic effects of oil toxicity, or a behavioral response that led the birds to reject the dosed fish is unknown. Published by Elsevier Inc.

  20. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  1. Effect of surfactants, gastric emptying, and dosage form on supersaturation of dipyridamole in an in vitro model simulating the stomach and duodenum.

    PubMed

    Mitra, A; Fadda, H M

    2014-08-04

    The purpose of this study was to investigate the influence of gastric emptying patterns, surfactants, and dosage form on the supersaturation of a poorly soluble weakly basic drug, dipyridamole, using an in vitro model mimicking the dynamic environment of the upper gastrointestinal tract, and, furthermore, to evaluate the usefulness of this model in establishing correlations to in vivo bioavailability for drugs with solubility/dissolution limited absorption. A simulated stomach duodenum model comprising four compartments was used to assess supersaturation and precipitation kinetics as a function of time. It integrates physiologically relevant fluid volumes, fluid transfer rates, and pH changes of the upper GI tract. Monoexponential gastric emptying patterns simulating the fasted state were compared to linear gastric emptying patterns simulating the fed state. The effect of different surfactants commonly used in oral preparations, specifically, sodium lauryl sulfate (SLS), poloxamer-188, and polysorbate-80, on dipyridamole supersaturation was investigated while maintaining surface tension of the simulated gastric fluids at physiological levels and without obtaining artificial micellar solubilization of the drug. The supersaturation behavior of different dose strengths of dipyridamole was explored. Significant levels of dipyridamole supersaturation were observed in the duodenal compartment under all the different in vivo relevant conditions explored. Dipyridamole supersaturation ratios of up to 11-fold have been observed, and supersaturation has been maintained for up to 120 min. Lower duodenal concentrations of dipyridamole were observed under linear gastric emptying patterns compared to mononexponential gastric emptying. The mean duodenal area under concentration-time curves (AUC60min) for the dipyridamole concentration profile in the duodenal compartment is significantly different for all the surfactants explored (P < 0.05). Our investigations with the different surfactants and comparison of dosage form (solution versus suspension) on the precipitation of dipyridamole revealed that crystal growth, rather than nucleation, is the rate-limiting step for the precipitation of dipyridamole. A linear dose-response relationship was found for the mean in vitro duodenal area under concentration-time curves (AUC∞) in the dose range of 25 mg to 100 mg (R(2) = 0.886). This is in agreement with the pharmacokinetic data of dipyridamole reported in the literature. The simulated stomach duodenum model can provide a reliable and discriminative screening tool for exploring the effect of different physiological variables or formulations on the supersaturation/precipitation kinetics of weakly basic drugs with solubility limited absorption. The amount of drug in solution in the duodenal compartment of the SSD correlates to bioavailability for the weakly basic drug, dipyridamole, which has solubility limited absorption and undergoes supersaturation/precipitation.

  2. Influence of two different doses of infectious bovine rhinotracheitis virus (IBRV) on immune and physiological parameters in steers

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effects different doses of IBRV and the impact they have on immunological and physiological parameters of cattle, 18 Holstein steers (450.11 ± 75.70 kg) were randomly assigned to either a control group or 1 of 2 IBRV challenged groups. Prior to the challenge, steers were fitted with ...

  3. Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees

    DTIC Science & Technology

    2016-10-01

    upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the

  4. Knowledge Retention of Exercise Physiology Content between Athletes and Nonathletes

    ERIC Educational Resources Information Center

    Clark, Brian; Webster, Collin; Druger, Marvin

    2006-01-01

    Based on the idea that learning is linked to personal relevance, this study examined knowledge retention of exercise physiology content between college athletes and nonathletes. No differences were observed between the groups. These findings have implications on understanding the relationship between personal relevance and memory. (Contains 1…

  5. Constitutive nitric oxide synthase activation is a significant route for nitroglycerin-mediated vasodilation

    PubMed Central

    Bonini, Marcelo G.; Stadler, Krisztian; de Oliveira Silva, Sueli; Corbett, Jean; Dore, Michael; Petranka, John; Fernandes, Denise C.; Tanaka, Leonardo Y.; Duma, Danielle; Laurindo, Francisco R. M.; Mason, Ronald P.

    2008-01-01

    The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major source of NO responsible for low-dose (1–10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals. PMID:18562300

  6. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.

    PubMed

    Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine

    2016-11-03

    Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that exposure of cells at the air-liquid interface represents a valid and sensitive method to assess the toxicity of several poorly soluble nanomaterials. We underlined the importance of the cellular model used and offer the possibility to deal with low deposition doses by using more sensitive and physiologic cellular models. This brings perspectives towards the use of relevant in vitro methods of exposure to assess nanomaterial toxicity.

  7. High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals

    EPA Science Inventory

    Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...

  8. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response.

    PubMed

    Adin, Christopher A; VanGundy, Zachary C; Papenfuss, Tracey L; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A

    2017-01-24

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.

  9. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response

    PubMed Central

    Adin, Christopher A.; Vangundy, Zachary C.; Papenfuss, Tracey L.; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A.

    2017-01-01

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation. PMID:27393133

  10. Multicenter field trial on possible health effects of toluene. II. Cross-sectional evaluation of acute low-level exposure.

    PubMed

    Neubert, D; Gericke, C; Hanke, B; Beckmann, G; Baltes, M M; Kühl, K P; Bochert, G; Hartmann, J

    2001-11-15

    Data on possible acute effects of today's relevant low-level exposure to toluene are contradictory, and information on possible effects of exposure under occupational conditions is largely lacking. In a controlled, multi-center, blinded field trial, effects possibly associated with acute toluene exposure were evaluated in workers of 12 German rotogravure factories. Medical examinations (inquiries on subjective symptoms, and standard tests of psycho-physiological and psycho-motor functions) were performed on almost 1500 volunteers, of whom 1290 were toluene-exposed (1178 men and 112 women), and about 200 participants served as references (157 men and 37 women), but the main aim of the trial was to reveal dose-response relationships. All volunteers were of the morning work-shift (6 h exposure). Both individual ambient air concentrations (time-weighted average) during the work-shift, as well as blood toluene concentrations after the work-shift were measured. Therefore, the medical data could for the first time be correlated with the actual individual body burden (blood toluene level) at the time of testing. In order to largely exclude confounding by chronic toluene exposure, kinetic measurements as well as the psycho-physiological and psycho-motoric tests were performed before and after the work-shift. Except for minor statistical deviations, neither convincing dose-dependent acute effects could be demonstrated with regression analyses in male volunteers at the exposure levels evaluated, nor were significant differences found when applying group statistics (highly toluene-exposed group versus volunteers with negligible exposure). Due to the rather large number of participants, the predictive power of the study is high, especially when compared with previous publications. In two psycho-physiological tests, a few more female volunteers with quite low toluene body burdens (<340 microg/l blood) showed relatively low scores when compared with participants of the reference group. Although evidence for a medical relevance is meager, the small numbers of participants, in both the exposure and the reference groups, hamper a reliable interpretation of the results concerning exposure levels above 85 microg toluene/l blood, and it is difficult to take confounding factors adequately into account. For the end points evaluated and under occupational conditions, neither blood toluene levels of 850 to 1700 microg/l (in the highest exposure group [EXPO-IV] with 56 participants), as measured 1/2 (+/-1/2) h after the work-shift, nor ambient air concentrations (time-weighted average over 6 h) between 50 and 100 ppm (188-375 mg/m(3)) were convincingly associated with alterations in psycho-physiological and psycho-motoric performances or increased the frequency of subjective complaints in male volunteers. For higher dose ranges of toluene exposure (i.e. >1700 microg toluene/l blood [or >100 ppm in ambient air]), our data set is too small for far reaching conclusions. Our data are insufficient for conclusions on a possibly higher susceptibility to toluene of some female workers. Results of kinetic studies and possible effects of long-term exposure are discussed in two accompanying publications (Neubert et al., 2001; Gericke et al., 2001).

  11. Human exposure and internal dose assessments of acrylamide in food.

    PubMed

    Dybing, E; Farmer, P B; Andersen, M; Fennell, T R; Lalljie, S P D; Müller, D J G; Olin, S; Petersen, B J; Schlatter, J; Scholz, G; Scimeca, J A; Slimani, N; Törnqvist, M; Tuijtelaars, S; Verger, P

    2005-03-01

    This review provides a framework contributing to the risk assessment of acrylamide in food. It is based on the outcome of the ILSI Europe FOSIE process, a risk assessment framework for chemicals in foods and adds to the overall framework by focusing especially on exposure assessment and internal dose assessment of acrylamide in food. Since the finding that acrylamide is formed in food during heat processing and preparation of food, much effort has been (and still is being) put into understanding its mechanism of formation, on developing analytical methods and determination of levels in food, and on evaluation of its toxicity and potential toxicity and potential human health consequences. Although several exposure estimations have been proposed, a systematic review of key information relevant to exposure assessment is currently lacking. The European and North American branches of the International Life Sciences Institute, ILSI, discussed critical aspects of exposure assessment, parameters influencing the outcome of exposure assessment and summarised data relevant to the acrylamide exposure assessment to aid the risk characterisation process. This paper reviews the data on acrylamide levels in food including its formation and analytical methods, the determination of human consumption patterns, dietary intake of the general population, estimation of maximum intake levels and identification of groups of potentially high intakes. Possible options and consequences of mitigation efforts to reduce exposure are discussed. Furthermore the association of intake levels with biomarkers of exposure and internal dose, considering aspects of bioavailability, is reviewed, and a physiologically-based toxicokinetic (PBTK) model is described that provides a good description of the kinetics of acrylamide in the rat. Each of the sections concludes with a summary of remaining gaps and uncertainties.

  12. Can gamma irradiation during radiotherapy influence the metal release process for biomedical CoCrMo and 316L alloys?

    PubMed

    Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2018-02-09

    The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  13. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems.

    PubMed

    Arnold, Kathryn E; Brown, A Ross; Ankley, Gerald T; Sumpter, John P

    2014-11-19

    Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    NASA Astrophysics Data System (ADS)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  15. Biphasic effect of Syzygium aromaticum flower bud on reproductive physiology of male mice.

    PubMed

    Mishra, R K; Singh, S K

    2016-11-01

    The flower buds of Syzygium aromaticum (clove) have been used for the treatment of male sexual disorders in indigenous medicines of Indian subcontinent. Therefore to evaluate the efficacy of Syzygium aromaticum on the male reproductive health, chronic oral exposure of aqueous extract of flower buds of Syzygium in three doses (15 mg, 30 mg and 60 mg kg -1 BW) were studied for a single spermatogenic cycle (35 days) in Parkes (P) strain mice. Lower dose (15 mg) of Syzygium aromaticum flower buds increased serum testosterone level and testicular hydroxysteroid dehydrogenase (HSD) activities and improved sperm motility, sperm morphology, secretory activity of epididymis and seminal vesicle, and number of litters per female. On the other hand, higher doses (30 and 60 mg) of the treatment adversely affected above parameters. Further, higher doses of the extract also had adverse effects on daily sperm production, 1C cell population and on histology of testis. In conclusion, Syzygium aromaticum flower buds extract exhibits biphasic effect on reproductive physiology of male mice. Lower dose of Syzygium aromaticum flower bud extract is androgenic in nature and may have a viable future as an indigenous sexual rejuvenator, while higher doses adversely affected functional physiology of reproductive organs. © 2016 Blackwell Verlag GmbH.

  16. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  17. USE OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL (PBPK) FOR RATS TO STUDY THE INFLUENCE OF BODY FAT MASS AND INDUCTION OF CYP1A2 ON THE PHARMACOKINETICS OF TCDD

    EPA Science Inventory

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly lipophilic chemical which distributes into adipose tissue, especially at low doses. However, at high doses TCDD sequesters in liver because it induces CYP1A2 that binds TCDD. A physiologically based pharmacokinetic (PBPK) mod...

  18. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  19. Conservation physiology across scales: insights from the marine realm

    PubMed Central

    Cooke, Steven J.; Killen, Shaun S.; Metcalfe, Julian D.; McKenzie, David J.; Mouillot, David; Jørgensen, Christian; Peck, Myron A.

    2014-01-01

    As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology—both the challenges and the opportunities that it creates—will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored. PMID:27293645

  20. Physiological and performance effects of pyridostigmine bromide in healthy volunteers: a dose-response study.

    PubMed

    Cook, Mary R; Graham, Charles; Sastre, Antonio; Gerkovich, Mary M

    2002-07-01

    Questions have been raised about the role pyridostigmine bromide (PB) plays in the etiology of Gulf War veterans' illnesses. There is a need to understand better the physiological and behavioral effects of this drug, particularly at the 30-mg/8-h regimen recommended by the US Military. OBJECTIVE. To perform a double-blind, cross-over, dose-response study of PB in 67 healthy, young volunteers (31 women, 36 men). Volunteers were initially trained on a standardized test battery. Supervised administration of placebo (PL) and PB (every 8 h/5 days) occurred in each of two dosing weeks, separated by a non-dosing week. One group received 30 mg PB and PL, and the other 60 mg PB and PL. In each dosing week, the battery was performed after the first pill and again when steady-state plasma PB levels were achieved. PB was associated with an overall improvement in reaction time on tests of memory and attention, and with a reduction in RMS error on a tracking task. PB slowed heart rate and decreased the high frequency component of heart rate variability (HF HRV). Dose-response effects were found only for HF HRV, and RMS error. The extent of cholinesterase inhibition was directly related to the magnitude of the HF HRV decrease, and was predicted by the weight-normalized PB dose. Cholinesterase inhibition was not related to the extent or severity of reported drug side effects. PB does not appear to have detrimental physiological or performance consequences at the recommended 30-mg dose, or at twice that dose, when evaluated under non-stressful laboratory conditions.

  1. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    ERIC Educational Resources Information Center

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  2. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    PubMed

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  3. An Organotypic Liver System for Tumor Progression

    DTIC Science & Technology

    2006-04-01

    a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association

  4. Weight-based dosing in medication use: what should we know?

    PubMed Central

    Pan, Sheng-dong; Zhu, Ling-ling; Chen, Meng; Xia, Ping; Zhou, Quan

    2016-01-01

    Background Weight-based dosing strategy is still challenging due to poor awareness and adherence. It is necessary to let clinicians know of the latest developments in this respect and the correct circumstances in which weight-based dosing is of clinical relevance. Methods A literature search was conducted using PubMed. Results Clinical indications, physiological factors, and types of medication may determine the applicability of weight-based dosing. In some cases, the weight effect may be minimal or the proper dosage can only be determined when weight is combined with other factors. Medications within similar therapeutic or structural class (eg, anticoagulants, antitumor necrosis factor medications, P2Y12-receptor antagonists, and anti-epidermal growth factor receptor antibodies) may exhibit differences in requirements on weight-based dosing. In some cases, weight-based dosing is superior to currently recommended fixed-dose regimen in adult patients (eg, hydrocortisone, vancomycin, linezolid, and aprotinin). On the contrary, fixed dosing is noninferior to or even better than currently recommended weight-based regimen in adult patients in some cases (eg, cyclosporine microemulsion, recombinant activated Factor VII, and epoetin α). Ideal body-weight-based dosing may be superior to the currently recommended total body-weight-based regimen (eg, atracurium and rocuronium). For dosing in pediatrics, whether weight-based dosing is better than body surface-area-based dosing is dependent on the particular medication (eg, methotrexate, prednisone, prednisolone, zidovudine, didanosine, growth hormone, and 13-cis-retinoic acid). Age-based dosing strategy is better than weight-based dosing in some cases (eg, intravenous busulfan and dalteparin). Dosing guided by pharmacogenetic testing did not show pharmacoeconomic advantage over weight-adjusted dosing of 6-mercaptopurine. The common viewpoint (ie, pediatric patients should be dosed on the basis of body weight) is not always correct. Effective weight-based dosing interventions include standardization of weight estimation, documentation and dosing determination, dosing chart, dosing protocol, order set, pharmacist participation, technological information, and educational measures. Conclusion Although dosing methods are specified in prescribing information for each drug and there are no principal pros and cons to be elaborated, this review of weight-based dosing strategy will enrich the knowledge of medication administration from the perspectives of safety, efficacy, and pharmacoeconomics, and will also provide research opportunities in clinical practice. Clinicians should be familiar with dosage and administration of the medication to be prescribed as well as the latest developments. PMID:27110105

  5. Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics.

    PubMed

    Santhanam, Navaneetha; Kumanchik, Lee; Guo, Xiufang; Sommerhage, Frank; Cai, Yunqing; Jackson, Max; Martin, Candace; Saad, George; McAleer, Christopher W; Wang, Ying; Lavado, Andrea; Long, Christopher J; Hickman, James J

    2018-06-01

    There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX ® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons.

    PubMed

    Berry, Bonnie J; Smith, Alec S T; Long, Christopher J; Martin, Candace C; Hickman, James J

    2018-05-22

    Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-β (Aβ) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aβ to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aβ oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.

  7. Low, but not high, dose caffeine is a readily available probe for adenosine actions.

    PubMed

    Fredholm, Bertil B; Yang, Jiangning; Wang, Yingqing

    2017-06-01

    Caffeine is very widely used and knowledge of its mode of action can be used to gain an understanding of basal physiological regulation. This review makes the point that caffeine is - in low doses - an antagonist of adenosine acting at A 1 , A 2A and A 2B receptors. We use published and unpublished data to make the point that high dose effects of caffeine are not only qualitatively different but have a different underlying mechanism. Therefore one must be careful in only using epidemiological or experimental data where rather low doses of caffeine are used to draw conclusions about the physiology and pathophysiology of adenosine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Antioxidants in Translational Medicine.

    PubMed

    Schmidt, Harald H H W; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis; Daiber, Andreas; Cuadrado, Antonio

    2015-11-10

    It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.

  9. Serotonin enhances the impact of health information on food choice.

    PubMed

    Vlaev, Ivo; Crockett, Molly J; Clark, Luke; Müller, Ulrich; Robbins, Trevor W

    2017-06-01

    Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.

  10. PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
    Dose-response analysis requires quantitatively linking infor...

  11. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  12. Balancing ESA and iron therapy in a prospective payment environment.

    PubMed

    Aronoff, George R; Gaweda, Adam E

    2014-02-01

    Ever since the introduction of EPO, ESAs and iron dosing have been driven by financial incentives. When ESAs were a profit center for providers, large doses were used. With ESAs becoming a cost center, a new trend has appeared, gradually replacing their use with iron to achieve the same therapeutic effect at lower cost. This financially driven approach, treating ESAs and iron as alternatives, is not consistent with human physiology where these agents act in a complementary manner. It is likely that we are still giving unnecessarily large doses of ESAs and iron, relative to what our patients' true needs are. Although we have highlighted the economic drivers of this outcome, many other factors play a role. These include our lack of understanding of the complex interplay of the anemia of chronic disease, inflammation, poor nutrition, blood loss through dialysis, ESAs and iron deficiency. We propose that physiology-driven modeling may provide some insight into the interactions between erythropoiesis and ferrokinetics. This insight can then be used to derive new, physiologically compatible dosing guidelines for ESAs and iron.

  13. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates

    PubMed Central

    Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E

    2018-01-01

    Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579

  14. The Constraints, Construction, and Verification of a Strain-Specific Physiologically Based Pharmacokinetic Rat Model.

    PubMed

    Musther, Helen; Harwood, Matthew D; Yang, Jiansong; Turner, David B; Rostami-Hodjegan, Amin; Jamei, Masoud

    2017-09-01

    The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CL iv ) or in vitro hepatocyte intrinsic clearance (CL int ) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Comparative Analysis of Zearalenone Effects on Thyroid Receptor Alpha (TRα) and Beta (TRβ) Expression in Rat Primary Cerebellar Cell Cultures.

    PubMed

    Kiss, David Sandor; Ioja, Eniko; Toth, Istvan; Barany, Zoltan; Jocsak, Gergely; Bartha, Tibor; Horvath, Tamas L; Zsarnovszky, Attila

    2018-05-11

    Thyroid receptors play an important role in postnatal brain development. Zearalenone (ZEN), a major mycotoxin of Fusarium fungi, is well known to cause serious health problems in animals and humans through various mechanisms, including the physiological pathways of thyroid hormone (TH). In the present study, we aimed to investigate the expression of thyroid receptors α (TRα) and β (TRβ) in primary cerebellar neurons in the presence or absence of glia and following ZEN treatment, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Primary cerebellar granule cells were treated with low doses of ZEN (0.1 nM) in combination with physiologically relevant concentrations of l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3) and 17β-estradiol (E2). Expression levels of TRα and TRβ at mRNA and protein levels were slightly modified by ZEN administered alone; however, along with thyroid and steroid hormones, modelling the physiological conditions, expression levels of TRs varied highly depending on the given treatment. Gene expression levels were also highly modulated by the presence or absence of glial cells, with mostly contrasting effects. Our results demonstrate divergent transcriptional and translational mechanisms involved in the expression of TRs implied by ZEN and hormonal milieu, as well as culturing conditions.

  16. Randomised, double blind trial of two loading dose regimens of diamorphine in ventilated newborn infants.

    PubMed

    Barker, D P; Simpson, J; Pawula, M; Barrett, D A; Shaw, P N; Rutter, N

    1995-07-01

    To compare the safety and efficacy of two loading doses of diamorphine in 27 ventilated newborn infants in a randomised double blind trial. Fifty or 200 mcg/kg were infused intravenously over 30 minutes, followed by a 15 mcg/kg/hour continuous infusion. Serial measurements were made of physiology, behaviour, and stress hormones. Both loading doses produced small but significant falls in blood pressure. The 200 mcg/kg dose produced greater respiratory depression, and two infants deteriorated clinically, requiring resuscitation. Loading reduced respiratory effort in most of the infants, but had little effect on behavioural activity. Stress hormone concentrations were reduced at six hours in both dosage groups; differences between loading doses were not significant. Morphine, morphine-3-glucuronide, and morphine-6-glucuronide were detected in the plasma of all patients. No significant differences in concentrations between loading doses were found. Diamorphine reduces the stress response in ventilated newborn infants. A high loading dose confers no benefit, and may produce undesirable physiological effects. A 50 mcg/kg loading dose seems to be safe and effective.

  17. Randomised, double blind trial of two loading dose regimens of diamorphine in ventilated newborn infants.

    PubMed Central

    Barker, D. P.; Simpson, J.; Pawula, M.; Barrett, D. A.; Shaw, P. N.; Rutter, N.

    1995-01-01

    AIMS--To compare the safety and efficacy of two loading doses of diamorphine in 27 ventilated newborn infants in a randomised double blind trial. METHODS--Fifty or 200 mcg/kg were infused intravenously over 30 minutes, followed by a 15 mcg/kg/hour continuous infusion. Serial measurements were made of physiology, behaviour, and stress hormones. RESULTS--Both loading doses produced small but significant falls in blood pressure. The 200 mcg/kg dose produced greater respiratory depression, and two infants deteriorated clinically, requiring resuscitation. Loading reduced respiratory effort in most of the infants, but had little effect on behavioural activity. Stress hormone concentrations were reduced at six hours in both dosage groups; differences between loading doses were not significant. Morphine, morphine-3-glucuronide, and morphine-6-glucuronide were detected in the plasma of all patients. No significant differences in concentrations between loading doses were found. CONCLUSIONS--Diamorphine reduces the stress response in ventilated newborn infants. A high loading dose confers no benefit, and may produce undesirable physiological effects. A 50 mcg/kg loading dose seems to be safe and effective. PMID:7552591

  18. Physiologically-Based Toxicokinetic Modeling of Zearalenone and Its Metabolites: Application to the Jersey Girl Study

    PubMed Central

    Mukherjee, Dwaipayan; Royce, Steven G.; Alexander, Jocelyn A.; Buckley, Brian; Isukapalli, Sastry S.; Bandera, Elisa V.; Zarbl, Helmut; Georgopoulos, Panos G.

    2014-01-01

    Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements, including a systematic characterization of uncertainties in exposure and dose estimation for a vulnerable population. PMID:25474635

  19. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  20. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.

  1. In-cell thermodynamics and a new role for protein surfaces.

    PubMed

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  2. Comparative and integrative metabolomics reveal that S-nitrosation inhibits physiologically relevant metabolic enzymes.

    PubMed

    Bruegger, Joel J; Smith, Brian C; Wynia-Smith, Sarah L; Marletta, Michael A

    2018-04-27

    Cysteine S -nitrosation is a reversible post-translational modification mediated by nitric oxide ( • NO)-derived agents. S -Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical • NO-signaling pathway, little is understood about how much S -nitrosation affects protein function. Moreover, identifying physiologically relevant targets of S -nitrosation is difficult because of the dynamics of transnitrosation and a limited understanding of the physiological mechanisms leading to selective protein S -nitrosation. To identify proteins whose activities are modulated by S -nitrosation, we performed a metabolomics study comparing WT and endothelial nitric-oxide synthase knockout mice. We integrated our results with those of a previous proteomics study that identified physiologically relevant S -nitrosated cysteines, and we found that the activity of at least 21 metabolic enzymes might be regulated by S -nitrosation. We cloned, expressed, and purified four of these enzymes and observed that S -nitrosation inhibits the metabolic enzymes 6-phosphogluconate dehydrogenase, Δ1-pyrroline-5-carboxylate dehydrogenase, catechol- O -methyltransferase, and d-3-phosphoglycerate dehydrogenase. Furthermore, using site-directed mutagenesis, we identified the predominant cysteine residue influencing the observed activity changes in each enzyme. In summary, using an integrated metabolomics approach, we have identified several physiologically relevant S -nitrosation targets, including metabolic enzymes, which are inhibited by this modification, and we have found the cysteines modified by S -nitrosation in each enzyme. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    PubMed

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop.

    PubMed

    Peters, Harry P F; Schrauwen, Patrick; Verhoef, Petra; Byrne, Christopher D; Mela, David J; Pfeiffer, Andreas F H; Risérus, Ulf; Rosendaal, Frits R; Schrauwen-Hinderling, Vera

    2017-01-01

    Currently it is estimated that about 1 billion people globally have non-alcoholic fatty liver disease (NAFLD), a condition in which liver fat exceeds 5 % of liver weight in the absence of significant alcohol intake. Due to the central role of the liver in metabolism, the prevalence of NAFLD is increasing in parallel with the prevalence of obesity, insulin resistance and other risk factors of metabolic diseases. However, the contribution of liver fat to the risk of type 2 diabetes mellitus and CVD, relative to other ectopic fat depots and to other risk markers, is unclear. Various studies have suggested that the accumulation of liver fat can be reduced or prevented via dietary changes. However, the amount of liver fat reduction that would be physiologically relevant, and the timeframes and dose-effect relationships for achieving this through different diet-based approaches, are unclear. Also, it is still uncertain whether the changes in liver fat per se or the associated metabolic changes are relevant. Furthermore, the methods available to measure liver fat, or even individual fatty acids, differ in sensitivity and reliability. The present report summarises key messages of presentations from different experts and related discussions from a workshop intended to capture current views and research gaps relating to the points above.

  5. Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.

    PubMed

    Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K

    2011-01-01

    Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.

  6. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action.

    PubMed

    Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa

    2017-07-01

    The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha -1 . The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y II , and F v /F m ) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity.

    PubMed

    Inbar, Shelly; Neeman, Elad; Avraham, Roi; Benish, Marganit; Rosenne, Ella; Ben-Eliyahu, Shamgar

    2011-04-29

    In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E(2) or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac) also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition.

  8. Estradiol modulates the anorexic response to central glucagon-like peptide 1.

    PubMed

    Maske, Calyn B; Jackson, Christine M; Terrill, Sarah J; Eckel, Lisa A; Williams, Diana L

    2017-07-01

    Estrogens suppress feeding in part by enhancing the response to satiation signals. Glucagon-like peptide 1 (GLP-1) acts on receptor populations both peripherally and centrally to affect food intake. We hypothesized that modulation of the central GLP-1 system is one of the mechanisms underlying the effects of estrogens on feeding. We assessed the anorexic effect of 0, 1, and 10μg doses of GLP-1 administered into the lateral ventricle of bilaterally ovariectomized (OVX) female rats on a cyclic regimen of either 2μg β-estradiol-3-benzoate (EB) or oil vehicle 30min prior to dark onset on the day following hormone treatment. Central GLP-1 treatment significantly suppressed food intake in EB-treated rats at both doses compared to vehicle, whereas only the 10μg GLP-1 dose was effective in oil-treated rats. To follow up, we examined whether physiologic-dose cyclic estradiol treatment influences GLP-1-induced c-Fos in feeding-relevant brain areas of OVX females. GLP-1 significantly increased c-Fos expression in the area postrema (AP) and nucleus of the solitary tract (NTS), and the presence of estrogens may be required for this effect in the paraventricular nucleus of the hypothalamus (PVN). Together, these data suggest that modulation of the central GLP-1 system may be one of the mechanisms by which estrogens suppress food intake, and highlight the PVN as a region of interest for future investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Attention modifies sound level detection in young children.

    PubMed

    Sussman, Elyse S; Steinschneider, Mitchell

    2011-07-01

    Have you ever shouted your child's name from the kitchen while they were watching television in the living room to no avail, so you shout their name again, only louder? Yet, still no response. The current study provides evidence that young children process loudness changes differently than pitch changes when they are engaged in another task such as watching a video. Intensity level changes were physiologically detected only when they were behaviorally relevant, but frequency level changes were physiologically detected without task relevance in younger children. This suggests that changes in pitch rather than changes in volume may be more effective in evoking a response when sounds are unexpected. Further, even though behavioral ability may appear to be similar in younger and older children, attention-based physiologic responses differ from automatic physiologic processes in children. Results indicate that 1) the automatic auditory processes leading to more efficient higher-level skills continue to become refined through childhood; and 2) there are different time courses for the maturation of physiological processes encoding the distinct acoustic attributes of sound pitch and sound intensity. The relevance of these findings to sound perception in real-world environments is discussed.

  10. Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy

    PubMed Central

    Kane, Andrew D; Hansell, Jeremy A; Herrera, Emilio A; Allison, Beth J; Niu, Youguo; Brain, Kirsty L; Kaandorp, Joepe J; Derks, Jan B; Giussani, Dino A

    2014-01-01

    Hypoxia is a common challenge to the fetus, promoting a physiological defence to redistribute blood flow towards the brain and away from peripheral circulations. During acute hypoxia, reactive oxygen species (ROS) interact with nitric oxide (NO) to provide an oxidant tone. This contributes to the mechanisms redistributing the fetal cardiac output, although the source of ROS is unknown. Here, we investigated whether ROS derived from xanthine oxidase (XO) contribute to the fetal peripheral vasoconstrictor response to hypoxia via interaction with NO-dependent mechanisms. Pregnant ewes and their fetuses were surgically prepared for long-term recording at 118 days of gestation (term approximately 145 days). After 5 days of recovery, mothers were infused i.v. for 30 min with either vehicle (n = 11), low dose (30 mg kg−1, n = 5) or high dose (150 mg kg−1, n = 9) allopurinol, or high dose allopurinol with fetal NO blockade (n = 6). Following allopurinol treatment, fetal hypoxia was induced by reducing maternal inspired O2 such that fetal basal decreased approximately by 50% for 30 min. Allopurinol inhibited the increase in fetal plasma uric acid and suppressed the fetal femoral vasoconstrictor, glycaemic and lactate acidaemic responses during hypoxia (all P < 0.05), effects that were restored to control levels with fetal NO blockade. The data provide evidence for the activation of fetal XO in vivo during hypoxia and for XO-derived ROS in contributing to the fetal peripheral vasoconstriction, part of the fetal defence to hypoxia. The data are of significance to the understanding of the physiological control of the fetal cardiovascular system during hypoxic stress. The findings are also of clinical relevance in the context of obstetric trials in which allopurinol is being administered to pregnant women when the fetus shows signs of hypoxic distress. PMID:24247986

  11. Proposed mechanistic description of dose-dependent BDE-47 urinary elimination in mice using a physiologically based pharmacokinetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emond, Claude, E-mail: claude.emond@umontreal.ca; Departments of Environmental and Occupational Health, Medicine Faculty, University of Montreal, Montreal, Quebec; Sanders, J. Michael, E-mail: sander10@mail.nih.gov

    2013-12-01

    Polybrominated diphenyl ethers (PBDEs) have been used in a wide variety of consumer applications as additive flame retardants. In North America, scientists have noted continuing increases in the levels of PBDE congeners measured in human serum. Some recent studies have found that PBDEs are associated with adverse health effects in humans, in experimental animals, and wildlife. This laboratory previously demonstrated that urinary elimination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is saturable at high doses in mice; however, this dose-dependent urinary elimination has not been observed in adult rats or immature mice. Thus, the primary objective of this study was to examine themore » mechanism of urinary elimination of BDE-47 in adult mice using a physiologically based pharmacokinetic (PBPK) model. To support this objective, additional laboratory data were collected to evaluate the predictions of the PBPK model using novel information from adult multi-drug resistance 1a/b knockout mice. Using the PBPK model, the roles of mouse major urinary protein (a blood protein carrier) and P-glycoprotein (an apical membrane transporter in proximal tubule cells in the kidneys, brain, intestines, and liver) were investigated in BDE-47 elimination. The resulting model and new data supported the major role of m-MUP in excretion of BDE-47 in the urine of adult mice, and a lesser role of P-gp as a transporter of BDE-47 in mice. This work expands the knowledge of BDE-47 kinetics between species and provides information for determining the relevancy of these data for human risk assessment purposes. - Highlights: • We report the first study on PBPK model on flame retardant in mice for BDE-47. • We examine mechanism of urinary elimination of BDE-47 in mice using a PBPK model. • We investigated roles of m-MUP and P-gp as transporters in urinary elimination.« less

  12. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods.

    PubMed

    Cassidy, Aedin; Brown, Jonathan E; Hawdon, Anne; Faughnan, Marian S; King, Laurence J; Millward, Joe; Zimmer-Nechemias, Linda; Wolfe, Brian; Setchell, Kenneth D R

    2006-01-01

    The precise role that isoflavones play in the health-related effects of soy foods, and their potential for adverse effects are controversial. This may be due in part to a lack of basic knowledge regarding their bioavailability and metabolism, particularly as it relates to the soy source. To date, there is little information concerning possible differences in the bioavailability of isoflavones derived from natural soy foods consumed at physiologically relevant intakes and whether age- or gender-related differences influence that bioavailability. In the current study of healthy adults [premenopausal (n = 21) and postmenopausal (n = 17) women and a group of men (n = 21)], we examined the effect of age, gender, and the food matrix on the bioavailability of isoflavones for both the aglycon and glucoside forms that are naturally present in 3 different soy foods, soy milk, textured vegetable protein, and tempeh. The study was designed as a random crossover trial so that all individuals received each of the 3 foods. The dose of isoflavones administered to each individual as a single bolus dose was 0.44 mg/kg body weight. Pharmacokinetic parameters were normalized to mg of each isoflavone ingested per kilogram body weight to account for differences in daidzein and genistein content between the diets. Serum isoflavone concentrations in all individuals and groups increased rapidly after the ingestion of each soy food; as expected, genistein concentrations exceeded daidzein concentrations in serum. In this small study, gender differences in peak concentrations of daidzein were observed, with higher levels attained in women. Consumption of tempeh (mainly isoflavone aglycon) resulted in higher serum peak levels of both daidzein (P < 0.001) and genistein (P < 0.01) and the associated area under the curve (P < 0.001 and P < 0.03, respectively) compared with textured vegetable protein (predominantly isoflavone glucosides). However, soy milk was absorbed faster and peak levels of isoflavones were attained earlier than with the other soy foods. Only 30% of the subjects were equol producers and no differences in equol production with age or gender were observed.

  13. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  14. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation

    PubMed Central

    Gong, Yuanying; Ma, Yufang; Sinyuk, Maksim; Loganathan, Sudan; Thompson, Reid C.; Sarkaria, Jann N.; Chen, Wenbiao; Lathia, Justin D.; Mobley, Bret C.; Clark, Stephen W.; Wang, Jialiang

    2016-01-01

    Background Metabolic complications such as obesity, hyperglycemia, and type 2 diabetes are associated with poor outcomes in patients with glioblastoma. To control peritumoral edema, use of chronic high-dose steroids in glioblastoma patients is common, which can result in de novo diabetic symptoms. These metabolic complications may affect tumors via profound mechanisms, including activation of insulin receptor (InsR) and the related insulin-like growth factor 1 receptor (IGF1R) in malignant cells. Methods In the present study, we assessed expression of InsR in glioblastoma surgical specimens and glioblastoma response to insulin at physiologically relevant concentrations. We further determined whether genetic or pharmacological targeting of InsR affected oncogenic functions of glioblastoma in vitro and in vivo. Results We showed that InsR was commonly expressed in glioblastoma surgical specimens and xenograft tumor lines, with mitogenic isoform-A predominating. Insulin at physiologically relevant concentrations promoted glioblastoma cell growth and survival, potentially via Akt activation. Depletion of InsR impaired cellular functions and repressed orthotopic tumor growth. The absence of InsR compromised downstream Akt activity, but yet stimulated IGF1R expression. Targeting both InsR and IGF1R with dual kinase inhibitors resulted in effective blockade of downstream signaling, loss of cell viability, and repression of xenograft tumor growth. Conclusions Taken together, our work suggests that glioblastoma is sensitive to the mitogenic functions of insulin, thus significant insulin exposure imposes risks to glioblastoma patients. Additionally, dual inhibition of InsR and IGF1R exhibits promise for treating glioblastoma. PMID:26136493

  15. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine

    PubMed Central

    Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.

    2017-01-01

    Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308

  16. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant.

    PubMed

    Vignet, Caroline; Joassard, Lucette; Lyphout, Laura; Guionnet, Tiphaine; Goubeau, Manon; Le Menach, Karyn; Brion, François; Kah, Olivier; Chung, Bon-Chu; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier

    2015-11-01

    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.

  17. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them?

    PubMed

    Groothuis, Ton G G; Schwabl, Hubert

    2008-05-12

    Over the past decade, birds have proven to be excellent models to study hormone-mediated maternal effects in an evolutionary framework. Almost all these studies focus on the function of maternal steroid hormones for offspring development, but lack of knowledge about the underlying mechanisms hampers further progress. We discuss several hypotheses concerning these mechanisms, point out their relevance for ecological and evolutionary interpretations, and review the relevant data. We first examine whether maternal hormones can accumulate in the egg independently of changes in hormone concentrations in the maternal circulation. This is important for Darwinian selection and female physiological trade-offs, and possible mechanisms for hormone accumulation in the egg, which may differ among hormones, are reviewed. Although independent regulation of plasma and yolk concentrations of hormones is conceivable, the data are as yet inconclusive for ovarian hormones. Next, we discuss embryonic utilization of maternal steroids, since enzyme and receptor systems in the embryo may have coevolved with maternal effect mechanisms in the mother. We consider dose-response relationships and action pathways of androgens and argue that these considerations may help to explain the apparent lack of interference of maternal steroids with sexual differentiation. Finally, we discuss mechanisms underlying the pleiotropic actions of maternal steroids, since linked effects may influence the coevolution of parent and offspring traits, owing to their role in the mediation of physiological trade-offs. Possible mechanisms here are interactions with other hormonal systems in the embryo. We urge endocrinologists to embark on suggested mechanistic studies and behavioural ecologists to adjust their interpretations to accommodate the current knowledge of mechanisms.

  18. Effect of the psychoactive metabolite of marijuana, delta 9-tetrahydrocannabinol (THC), on the synthesis of tumor necrosis factor by human large granular lymphocytes.

    PubMed

    Kusher, D I; Dawson, L O; Taylor, A C; Djeu, J Y

    1994-03-01

    The natural killer cell (NK)/3polymorphonuclear neutrophil axis has recently been identified to be important in early defense against the opportunistic fungi, Candida albicans. Repression of this system is therefore likely to contribute to susceptibility to opportunistic infections. delta 9-Tetrahydrocannabinol (THC), an active constituent of marijuana, has been reported to be immunosuppressive at concentrations that exceed attainable plasma levels. In this report, we examine the possibility that human large granular lymphocytes (LGL) can be immunosuppressed by exposure to THC at physiologically relevant concentrations and probed two functions associated with LGL, i.e., cytokine production and tumoricidal activity. We find that these low levels of THC inhibit tumor necrosis factor-alpha (TNF) induction from LGL by C. albicans and are dependent upon THC dose (0.005-5.0 micrograms/ml) and length of exposure (0.05-3.0 hr). Northern blot analysis indicates that the downregulation of TNF production from LGL by THC resides at the mRNA level. Moreover, exposure of LGL to physiological THC concentrations (0.01-2.0 micrograms/ml) diminishes their cytolytic activity against K562 tumor cells.

  19. Plasma, salivary and urinary cortisol levels following physiological and stress doses of hydrocortisone in normal volunteers.

    PubMed

    Jung, Caroline; Greco, Santo; Nguyen, Hanh H T; Ho, Jui T; Lewis, John G; Torpy, David J; Inder, Warrick J

    2014-11-26

    Glucocorticoid replacement is essential in patients with primary and secondary adrenal insufficiency, but many patients remain on higher than recommended dose regimens. There is no uniformly accepted method to monitor the dose in individual patients. We have compared cortisol concentrations in plasma, saliva and urine achieved following "physiological" and "stress" doses of hydrocortisone as potential methods for monitoring glucocorticoid replacement. Cortisol profiles were measured in plasma, saliva and urine following "physiological" (20 mg oral) or "stress" (50 mg intravenous) doses of hydrocortisone in dexamethasone-suppressed healthy subjects (8 in each group), compared to endogenous cortisol levels (12 subjects). Total plasma cortisol was measured half-hourly, and salivary cortisol and urinary cortisol:creatinine ratio were measured hourly from time 0 (between 0830 and 0900) to 5 h. Endogenous plasma corticosteroid-binding globulin (CBG) levels were measured at time 0 and 5 h, and hourly from time 0 to 5 h following administration of oral or intravenous hydrocortisone. Plasma free cortisol was calculated using Coolens' equation. Plasma, salivary and urine cortisol at 2 h after oral hydrocortisone gave a good indication of peak cortisol concentrations, which were uniformly supraphysiological. Intravenous hydrocortisone administration achieved very high 30 minute cortisol concentrations. Total plasma cortisol correlated significantly with both saliva and urine cortisol after oral and intravenous hydrocortisone (P <0.0001, correlation coefficient between 0.61 and 0.94). There was no difference in CBG levels across the sampling period. An oral dose of hydrocortisone 20 mg is supraphysiological for routine maintenance, while stress doses above 50 mg 6-hourly would rarely be necessary in managing acute illness. Salivary cortisol and urinary cortisol:creatinine ratio may provide useful alternatives to plasma cortisol measurements to monitor replacement doses in hypoadrenal patients.

  20. Visual presentation of a medical physiology seminar modifies dental students' perception of its clinical significance.

    PubMed

    Vuletic, L; Spalj, S; Peros, K

    2016-02-01

    The primary objective of this study was to assess whether exposing dental students to visual stimuli related to dental profession during the medical physiology seminar could affect their perception of the clinical relevance of the topic. A self-administered questionnaire on attitudes towards medical physiology was conducted amongst 105 students of the School of Dental Medicine in Zagreb, Croatia, aged 19-24 years (80% females) following a seminar on respiratory system physiology. Power-point presentation accompanying the seminar for a total of 52 students (study group) was enriched with pictures related to dental practice in order to assess whether these pictures could make the topic appear more clinically relevant for a future dentist. The results of the survey indicated that dental students in the study group perceived the topic of the seminar as more important for them as future dentists when compared to the perception of the control group (P = 0.025). The results of this survey encourage physiology lecturers to present medical physiology as clinically relevant for dental students whenever possible as this could increase students' interest in the subject and their motivation for learning. Such an approach could be particularly beneficial if there is a significant time gap between basic courses and involvement of students into clinical training for it could promote meaningful learning. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pair Comparison Study of the Relevance of Nine Basic Science Courses

    ERIC Educational Resources Information Center

    Spilman, Edra L.; Spilman, Helen W.

    1975-01-01

    Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…

  2. USE OF EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) TO CONSTRUCT A PBPK /MODEL FOR CARBOFURAN WITH THE REPORTED EXPERIMENTAL DATA IN THE RAT

    EPA Science Inventory

    To better understand the relationships among carbofuran exposure, dose, and effects, a physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed for the rat using the Exposure Related Dose Estimating Model (ERDEM) framework.

  3. Teaching Stress Physiology Using Zebrafish ("Danio Rerio")

    ERIC Educational Resources Information Center

    Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed

    2009-01-01

    A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…

  4. Phun Week: Understanding Physiology

    ERIC Educational Resources Information Center

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  5. Salmonella infections in the absence of the major histocompatibility complex II

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Beharka, A. A.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    We examined the pathogenesis of the facultative intracellular bacterium, Salmonella typhimurium in MHCII-/-, C2D knock-out mice, and wild-type C57BL/6J mice. The MHCII knock-out shortened the kinetics of animal death and reduced the dose of S. typhimurium needed to kill mice. We measured the physiological and cytokine responses of both mouse strains after S. typhimurium injection. Animal weight loss, spleen weights, liver weights, thymus weights, and serum corticosterone concentrations were comparable after injection with several doses of bacteria. The only physiological differences observed between the two strains were observed 3 days after injection of the highest dose of bacteria tested. Serum concentrations of tumor necrosis factor alpha, interleukin-2, and interleukin-6 increased in a dose-dependent fashion irrespective of mouse MHCII expression. Therefore, even in the absence of MHCII, mice are able to mount relatively normal physiological and immunological responses. Consistent with these normal responses, an increased percentage of MHCII-/- mice, primed with a low dose of bacteria 13 days earlier, were able to survive a lethal challenge of Salmonella compared with unprimed controls. Lastly, C2D mice had significantly higher serum interleukin-10 concentrations than C57BL/6J mice 48 h after infection with all doses of S. typhimurium. C2D macrophages also secreted significantly more IL-10 and less NO and O2- after lipopolysaccharide or phorbol ester stimulation in vitro than wild-type macrophages.

  6. Physiological model for the pharmacokinetics of methyl mercury in the growing rat.

    PubMed

    Farris, F F; Dedrick, R L; Allen, P V; Smith, J C

    1993-03-01

    We describe a physiological pharmacokinetic model for methyl mercury and its metabolite mercuric mercury in the growing rat. Demethylation appears to occur in both host tissues and gastrointestinal flora with elimination dominated by biliary secretion of inorganic mercury and by transport of methyl mercury into the gut lumen followed by substantial bacterial metabolism. Biliary transport of both organic and inorganic mercury is modeled in terms of the known secretion of glutathione from the hepatic pool. At 98 days following an oral tracer dose of 203Hg-labeled methyl mercury chloride, 65% of the administered dose had been recovered in the feces as inorganic mercury and 15% as organic mercury. Urinary excretion is a minor elimination route, accounting for less than 4% of the dose as methyl mercury and 1% of the dose as inorganic mercury. Irreversible incorporation of the mercurials into hair is a significant route of elimination. Ten percent of the administered dose was contained in the hair shed during the 98 days and over 12% of the dose (almost 90% of the body burden) remained in the hair at the end of that time period. Apparent ingestion of hair by the rats during grooming represents a novel form of toxin recirculation. Transport of both chemical species between blood and tissues is bidirectional and symmetric with relatively slow movement into and out of the brain. Transport mechanisms for both mercurial species are discussed in the context of capillary transport physiology and the blood-brain barrier to small molecules and proteins.

  7. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    PubMed

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  8. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: a time related study.

    PubMed

    Haleem, Darakhshan Jabeen; Inam, Qurrat-ul-Aen; Haleem, Muhammad Abdul

    2015-03-15

    The psychostimulant methylphenidate (MPD) is a first-line drug for the treatment of attention deficit hyperactivity disorder (ADHD). Despite acceptable therapeutic efficacy, there is limited data regarding the long-term consequences of MPD exposure over extended periods. The present study concerns effects of clinically relevant doses of MPD, administered orally to rats for an extended period, on spatial memory, behavioral sensitization and habituation to an open field. Water maze test was used to monitor memory acquisition (2 h after training), retention (day next to training), extinction (1 week after training) and reconsolidation (weekly for 4 weeks). Administration of MPD at doses of 0.25-1.0 mg/kg improved memory acquisition, retention, reconsolidation and impaired memory extinction. Treatment with 0.25 and 0.5 mg/kg MPD for 6 weeks produced a sustained increase in motor activity but higher dose (1.0 mg/kg) elicited behavioral sensitization. High as well as low doses MPD impaired open field habituation. We conclude that clinically relevant doses of MPD enhance memory even if used for extended period. It is suggested that higher (1.0 mg/kg) clinically relevant doses of MPD, if used for extended period, may exacerbate hyperactivity and impulsivity associated with the disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. TEMPORAL NEUROTRANSMITTER CONDITIONING RESTORES THE FUNCTIONAL ACTIVITY OF ADULT SPINAL-CORD NEURONS IN LONG-TERM CULTURE

    PubMed Central

    Das, Mainak; Bhargava, Neelima; Bhalkikar, Abhijeet; Kang, Jung Fong; Hickman, James J

    2008-01-01

    The ability to culture functional adult mammalian spinal-cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride leads to the full electrophysiological functional recovery of adult mammalian spinal-cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials. PMID:18005959

  10. The role of hypnotherapy in dentistry.

    PubMed

    Facco, Enrico; Zanette, Gastone; Casiglia, Edoardo

    2014-01-01

    Dental fear is a universal phenomenon justifying the increasing relevance of psychology and the behavioural sciences to dental training and clinical practice. Pharmacological sedation has been used more and more over the past two decades, in order to relieve dental anxiety and phobia and let the patient face oral surgery safely. Hypnosis is a still underused but powerful non-pharmacological tool in dentistry. It provides an effective sedation whilst maintaining patient collaboration, but it also may help patients recovering from dental anxiety and phobia as well as those with a severe gag reflex. While pharmacological sedation affords a temporary respite and helps the patient to cope with a single procedure, hypnosis can effectively allow for both an excellent sedation in a physiological way and the treatment of patients' anxiety, or substantially decrease the doses used for sedative and analgesic drugs when these are needed.

  11. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    PubMed

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers. Copyright © 2015 the American Physiological Society.

  12. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    PubMed

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  13. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    NASA Astrophysics Data System (ADS)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  14. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    PubMed Central

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  15. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    PubMed

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  16. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhijie

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  17. Developmental neurotoxicity of Propylthiouracil (PTU) in rats: Relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation daymore » (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T{sub 4}) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T{sub 4} during development. This supports the hypothesis that decreased T{sub 4} may be a relevant predictor for long-lasting developmental neurotoxicity.« less

  18. Extracellular vesicles have variable dose-dependent effects on cultured draining cells in the eye.

    PubMed

    Tabak, Saray; Schreiber-Avissar, Sofia; Beit-Yannai, Elie

    2018-03-01

    The role of extracellular vesicles (EVs) as signal mediators has been described in many biological fields. How many EVs are needed to deliver the desired physiological signal is yet unclear. Using a normal trabecular meshwork (NTM) cell culture exposed to non-pigmented ciliary epithelium (NPCE)-derived EVs, a relevant model for studying the human ocular drainage system, we addressed the EVs dose-response effects on the Wnt signaling. The objective of the study was to investigate the dosing effects of NPCE-derived EVs on TM Wnt signaling. EVs were isolated by PEG 8000 method from NPCE and RPE cells (used as controls) conditioned media. Concentrations were determined by Tunable Resistive Pulse Sensing method. Various exosomes concentration were incubated with TM cells, for the determination of mRNA (β-Catenin, Axin2 and LEF1) and protein (β-Catenin, GSK-3β) expression using real-time quantitative PCR and Western blot, respectively. Exposure of NTM cells for 8 hrs to low EVs concentrations was associated with a significant decreased expression of β-Catenin, GSK-3β, as opposed to exposure to high exosomal concentrations. Pro-MMP9 and MMP9 activities were significantly enhanced in NTM cells treated with high EV concentrations of (X10) as compared to low EV concentrations of either NPCE- or RPE-derived EVs and to untreated control. Our data support the concept that EVs biological effects are concentration-dependent at their target site. Specifically in the present study, we described a general dose-response at the gene and MMPs activity and a different dose-response regarding key canonical Wnt proteins expression. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: Mathematical modelling guides dose optimisation to minimise neutropenia.

    PubMed

    Craig, Morgan; Humphries, Antony R; Nekka, Fahima; Bélair, Jacques; Li, Jun; Mackey, Michael C

    2015-11-21

    The choice of chemotherapy regimens is often constrained by the patient's tolerance to the side effects of chemotherapeutic agents. This dose-limiting issue is a major concern in dose regimen design, which is typically focused on maximising drug benefits. Chemotherapy-induced neutropenia is one of the most prevalent toxic effects patients experience and frequently threatens the efficient use of chemotherapy. In response, granulocyte colony-stimulating factor (G-CSF) is co-administered during chemotherapy to stimulate neutrophil production, increase neutrophil counts, and hopefully avoid neutropenia. Its clinical use is, however, largely dictated by trial and error processes. Based on up-to-date knowledge and rational considerations, we develop a physiologically realistic model to mathematically characterise the neutrophil production in the bone marrow which we then integrate with pharmacokinetic and pharmacodynamic (PKPD) models of a chemotherapeutic agent and an exogenous form of G-CSF (recombinant human G-CSF, or rhG-CSF). In this work, model parameters represent the average values for a general patient and are extracted from the literature or estimated from available data. The dose effect predicted by the model is confirmed through previously published data. Using our model, we were able to determine clinically relevant dosing regimens that advantageously reduce the number of rhG-CSF administrations compared to original studies while significantly improving the neutropenia status. More particularly, we determine that it could be beneficial to delay the first administration of rhG-CSF to day seven post-chemotherapy and reduce the number of administrations from ten to three or four for a patient undergoing 14-day periodic chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Developmental neurotoxicity of propylthiouracil (PTU) in rats: relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes.

    PubMed

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie; Bonnichsen, Mia; Nellemann, Christine; Lund, Søren Peter; Hougaard, Karin Sørig; Hass, Ulla

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation day (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T(4)) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T(4) during development. This supports the hypothesis that decreased T(4) may be a relevant predictor for long-lasting developmental neurotoxicity.

  1. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21.

    PubMed

    He, Zhen; Paule, Merle G; Ferguson, Sherry A

    2012-01-01

    Perinatal treatment with relatively high doses of bisphenol A (BPA) appears to have little effect on volume of the rodent sexually dimorphic nucleus of the preoptic area (SDN-POA). However, doses more relevant to human exposures have not been examined. Here, effects of pre- and post-natal treatment with low BPA doses on SDN-POA volume of postnatal day (PND) 21 Sprague-Dawley rats were evaluated. Pregnant rats were orally gavaged with vehicle, 2.5 or 25.0 μg/kg BPA, or 5.0 or 10.0 μg/kg ethinyl estradiol (EE₂) on gestational days 6-21. Beginning on the day after birth, offspring were orally treated with the same dose their dam had received. On PND 21, offspring (n=10-15/sex/group; 1/sex/litter) were perfused and volume evaluation was conducted blind to treatment. SDN-POA outline was delineated using calbindin D28K immunoreactivity. Pairwise comparisons of the significant treatment by sex interaction indicated that neither BPA dose affected female volume. However, females treated with 5.0 or 10.0 μg/kg EE₂ exhibited volumes that were larger than same-sex controls, respectively (p<0.001). Males treated with either BPA dose or 10.0 μg/kg/day EE₂ had larger volumes than same-sex controls (p<0.006). These data indicate that BPA can have sex-specific effects on SDN-POA volume and that these effects manifest as larger volumes in males. Sensitivity of the methodology as well as the treatment paradigm was confirmed by the expected EE₂-induced increase in female volume. These treatment effects might lead to organizational changes within sexually dimorphic neuroendocrine pathways which, if persistent, could theoretically alter adult reproductive physiology and socio-sexual behavior in rats. Published by Elsevier Inc.

  2. Bilateral femoral head avascular necrosis with a very low dose of oral corticosteroid used for panhypopituitarism

    PubMed Central

    Dharmshaktu, Pramila; Aggarwal, Anshita; Dutta, Deep; Kulshreshtha, Bindu

    2016-01-01

    Avascular necrosis (AVN) of the femoral head is a rare complication related to glucocorticoid administration and traditionally has been associated with high doses and/or prolonged therapy. Occurrence of osteonecrosis with a physiological replacement dose of glucocorticoids has not been reported previously. We report a 38-year-old man with non-secreting pituitary adenoma who developed bilateral AVN while on a very small dose of oral prednisolone for secondary adrenal insufficiency after surgery for pituitary adenoma. The patient was switched to hydrocortisone. Zolindronic acid was administered and the patient underwent bilateral core decompressive surgery resulting in a reduction of hip pain and improvement. When last evaluated, 2 years after diagnosis of AVN, the patient was functionally independent, and was able to do his routine activities with mild pain. The report intends to highlight the occurrence of AVN of the femur even with a very small dose of prednisolone used for treatment of panhypopituitarism. Glucocorticoids may have to be continued in the lowest possible dose using the most physiological preparation such as hydrocortisone when stoppage is not possible. PMID:26762348

  3. Bilateral femoral head avascular necrosis with a very low dose of oral corticosteroid used for panhypopituitarism.

    PubMed

    Dharmshaktu, Pramila; Aggarwal, Anshita; Dutta, Deep; Kulshreshtha, Bindu

    2016-01-13

    Avascular necrosis (AVN) of the femoral head is a rare complication related to glucocorticoid administration and traditionally has been associated with high doses and/or prolonged therapy. Occurrence of osteonecrosis with a physiological replacement dose of glucocorticoids has not been reported previously. We report a 38-year-old man with non-secreting pituitary adenoma who developed bilateral AVN while on a very small dose of oral prednisolone for secondary adrenal insufficiency after surgery for pituitary adenoma. The patient was switched to hydrocortisone. Zolindronic acid was administered and the patient underwent bilateral core decompressive surgery resulting in a reduction of hip pain and improvement. When last evaluated, 2 years after diagnosis of AVN, the patient was functionally independent, and was able to do his routine activities with mild pain. The report intends to highlight the occurrence of AVN of the femur even with a very small dose of prednisolone used for treatment of panhypopituitarism. Glucocorticoids may have to be continued in the lowest possible dose using the most physiological preparation such as hydrocortisone when stoppage is not possible. 2016 BMJ Publishing Group Ltd.

  4. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations.

    PubMed

    Kay, Katherine; Shah, Dhaval K; Rohan, Lisa; Bies, Robert

    2018-05-01

    A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l -1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l -1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  5. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade.

    PubMed

    Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M

    2015-01-01

    Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.

  6. HUMAN BIOMONITORING TO LINK ENVIRONMENTAL EXPOSURE TO BIOLOGICALLY RELEVANT DOSE

    EPA Science Inventory

    The abstract and presentation on Human Biomonitoring to Link Environmental Exposure to Biologically Relevant Dose describes the use of biomarkers of exposure, biomarkers of current health state, and biomarker measurements. The abstract and presentation focuses on how biomarkers ...

  7. Photo-Oxidation Products of Skin Surface Squalene Mediate Metabolic and Inflammatory Responses to Solar UV in Human Keratinocytes

    PubMed Central

    Kostyuk, Vladimir; Potapovich, Alla; Stancato, Andrea; De Luca, Chiara; Lulli, Daniela; Pastore, Saveria; Korkina, Liudmila

    2012-01-01

    The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A). Conclusions/Significance Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin. PMID:22952984

  8. Critical review of public health regulations of titanium dioxide, a human food additive.

    PubMed

    Jovanović, Boris

    2015-01-01

    From 1916 to 2011, an estimated total of 165050000 metric tons of titanium dioxide (TiO2 ) pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This article compiles new research results to provide fresh data for potential risk reassessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, because dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific articles have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. © 2014 The Author. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  9. Modeling population exposures to silver nanoparticles present in consumer products

    NASA Astrophysics Data System (ADS)

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-11-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.

  10. Cadmium exposure inhibits branching morphogenesis and causes alterations consistent with HIF-1α inhibition in human primary breast organoids.

    PubMed

    Rocco, Sabrina A; Koneva, Lada; Middleton, Lauren Y M; Thong, Tasha; Solanki, Sumeet; Karram, Sarah; Nambunmee, Kowit; Harris, Craig; Rozek, Laura S; Sartor, Maureen A; Shah, Yatrik M; Colacino, Justin A

    2018-05-07

    Developmental cadmium exposure in vivo disrupts mammary gland differentiation, while exposure of breast cell lines to cadmium causes invasion consistent with the epithelial-mesenchymal transition (EMT). The effects of cadmium on normal human breast stem cells have not been measured. Here, we quantified the effects of cadmium exposure on reduction mammoplasty patient-derived breast stem cell proliferation and differentiation. Using the mammosphere assay and organoid formation in 3D hydrogels, we tested two physiologically relevant doses of cadmium, 0.25μM and 2.5μM, and tested for molecular alterations using RNA-seq. We functionally validated our RNA-seq findings with a HIF-1α activity reporter line and pharmaceutical inhibition of HIF-1α in organoid formation assays. 2.5μM cadmium reduced primary mammosphere formation and branching structure organoid formation rates by 33% and 87%, respectively. Despite no changes in mammosphere formation, 0.25μM cadmium inhibited branching organoid formation in hydrogels by 73%. RNA-seq revealed cadmium downregulated genes associated with extracellular matrix formation and EMT, while upregulating genes associated with metal response including metallothioneins and zinc transporters. In the RNA-seq data, cadmium downregulated HIF-1α target genes including LOXL2, ZEB1, and VIM. Cadmium significantly inhibited HIF-1α activity in a luciferase assay, and the HIF-1α inhibitor acriflavine ablated mammosphere and organoid formation. These findings show that cadmium, at doses relevant to human exposure, inhibited human mammary stem cell proliferation and differentiation, potentially through disruption of HIF-1α activity.

  11. Antioxidants in Translational Medicine

    PubMed Central

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  12. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  13. Application of Physiologically-Based Pharmacokinetic Modeling for the Prediction of Tofacitinib Exposure in Japanese.

    PubMed

    Suzuki, Misaki; Tse, Susanna; Hirai, Midori; Kurebayashi, Yoichi

    2017-05-09

    Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population.

  14. Application of Physiologically-Based Pharmacokinetic Modeling for the Prediction of Tofacitinib Exposure in Japanese

    PubMed Central

    SUZUKI, MISAKI; TSE, SUSANNA; HIRAI, MIDORI; KUREBAYASHI, YOICHI

    2016-01-01

    Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population. PMID:28490712

  15. Frontiers in the Teaching of Physiology. Computer Literacy and Simulation.

    ERIC Educational Resources Information Center

    Tidball, Charles S., Ed.; Shelesnyak, M. C., Ed.

    Provided is a collection of papers on computer literacy and simulation originally published in The Physiology Teacher, supplemented by additional papers and a glossary of terms relevant to the field. The 12 papers are presented in five sections. An affirmation of conventional physiology laboratory exercises, coping with computer terminology, and…

  16. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts

    PubMed Central

    Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian

    2017-01-01

    Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571

  17. Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected.

    PubMed

    Gagliano, Humberto; Ortega-Sanchez, Juan Antonio; Nadal, Roser; Armario, Antonio

    2017-10-01

    We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.

  18. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    PubMed

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Animal Models of transcranial Direct Current Stimulation: Methods and Mechanisms

    PubMed Central

    Jackson, Mark P.; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C.; Bikson, Marom

    2016-01-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: 1) transcranial stimulation; 2) direct cortical stimulation in vivo and 3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching “quasi-uniform” assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding “functional targeting” suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. PMID:27693941

  20. Pharmacokinetics and selected pharmacodynamics of trazodone following intravenous and oral administration to horses undergoing fitness training.

    PubMed

    Knych, Heather K; Mama, Khursheed R; Steffey, Eugene P; Stanley, Scott D; Kass, Philip H

    2017-10-01

    OBJECTIVE To measure concentrations of trazodone and its major metabolite in plasma and urine after administration to healthy horses and concurrently assess selected physiologic and behavioral effects of the drug. ANIMALS 11 Thoroughbred horses enrolled in a fitness training program. PROCEDURES In a pilot investigation, 4 horses received trazodone IV (n = 2) or orally (2) to select a dose for the full study; 1 horse received a vehicle control treatment IV. For the full study, trazodone was initially administered IV (1.5 mg/kg) to 6 horses and subsequently given orally (4 mg/kg), with a 5-week washout period between treatments. Blood and urine samples were collected prior to drug administration and at multiple time points up to 48 hours afterward. Samples were analyzed for trazodone and metabolite concentrations, and pharmacokinetic parameters were determined; plasma drug concentrations following IV administration best fit a 3-compartment model. Behavioral and physiologic effects were assessed. RESULTS After IV administration, total clearance of trazodone was 6.85 ± 2.80 mL/min/kg, volume of distribution at steady state was 1.06 ± 0.07 L/kg, and elimination half-life was 8.58 ± 1.88 hours. Terminal phase half-life was 7.11 ± 1.70 hours after oral administration. Horses had signs of aggression and excitation, tremors, and ataxia at the highest IV dose (2 mg/kg) in the pilot investigation. After IV drug administration in the full study (1.5 mg/kg), horses were ataxic and had tremors; sedation was evident after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE Administration of trazodone to horses elicited a wide range of effects. Additional study is warranted before clinical use of trazodone in horses can be recommended.

  1. When pain and hunger collide; psychological influences on differences in brain activity during physiological and non-physiological gastric distension.

    PubMed

    Coen, S J

    2011-06-01

    Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.

  2. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.

    PubMed

    Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W

    2015-06-01

    What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  3. A physiological pharmacokinetic model describing the disposition of lycopene in healthy men.

    PubMed

    Diwadkar-Navsariwala, Veda; Novotny, Janet A; Gustin, David M; Sosman, Jeffery A; Rodvold, Keith A; Crowell, James A; Stacewicz-Sapuntzakis, Maria; Bowen, Phyllis E

    2003-10-01

    A physiological pharmacokinetic model was developed to describe the disposition of lycopene, delivered as a tomato beverage formulation in five graded doses (10, 30, 60, 90, or 120 mg), for a phase I study in healthy male subjects (five per dose). Blood was collected before dose administration (0 h) and at scheduled intervals until 672 h. Serum concentrations of carotenoids and vitamins were measured by high performance liquid chromatography analysis. The model was comprised of seven compartments: gastrointestinal tract, enterocytes, chylomicrons, plasma lipoproteins, fast-turnover liver, slow-turnover tissues, and a delay compartment before the enterocytes. As predicted, the percent absorption at the 10 mg dose (33.9 +/- 8.1%) was significantly greater than at the higher doses; however, the amount of lycopene absorbed (mg) was not statistically different (mean: 4.69 +/- 0.55 mg) between doses, suggesting a possible saturation of absorptive mechanisms. The slow-turnover tissue compartment served as a slow-depleting reservoir for lycopene, and the liver represented the fast-turnover pool. Independent of dose, 80% of the subjects absorbed less than 6 mg of lycopene. This may have important implications for planning clinical trials with pharmacological doses of lycopene in cancer control and prevention if absorption saturation occurs at levels that are already being consumed in the population.

  4. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Combined use of alcohol and energy drinks: Dose relationship with self-reported physiological stimulation and sedation side effects.

    PubMed

    Droste, Nicolas; Peacock, Amy; Bruno, Raimondo; Pennay, Amy; Zinkiewicz, Lucy; Lubman, Dan I; Miller, Peter

    2017-08-01

    Negative physiological stimulation and sedation side effects are experienced by a significant proportion of consumers who consume alcohol mixed with energy drinks (AmED). Few studies have compared the frequency of side effects between sessions of AmED and sessions of alcohol only within-subject, and none have explored a dose relationship. Explore the occurrence of self-reported physiological stimulant and sedative side effects between sessions of AmED and alcohol only, and at varying ED dosage levels within AmED sessions. A convenience sample of 2953 residents of New South Wales, Australia completed an online survey. N=731 AmED users reported daily caffeine intake, typical alcohol and AmED consumption, and past 12-month experience of physiological stimulation and sedation side effects during AmED and alcohol only sessions. Within-subject analyses compared occurrence of side effects between session types. Hierarchical binary logistic regression analyses explored the association of ED dose during AmED sessions with the experience of physiological side effects. There were greater odds of most stimulant side effects, and lower odds of sedation side effects, during AmED sessions compared to alcohol only sessions. Compared to one ED, consumption of three or more EDs was significantly associated with the majority of both stimulant and alcohol intoxication side effects after controlling for demographics and consumption covariates. AmED is associated with perceived changes in physiological stimulant and sedation side effects of alcohol. Experience of side effects is positively associated with ED dosage. Future research should account for varying ED dosage, and reflect real world consumption levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  7. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  8. Towards improved quantification of post-fire conifer mortality and recovery: Impacts of fire radiative flux on seedling and mature tree mortality, physiology, and growth

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Kolden, C.; Smith, A. M.

    2016-12-01

    Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.

  9. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  10. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.

    PubMed

    Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise

    2017-08-01

    The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Women and Women's Issues in Industrial and Physiological Psychology.

    ERIC Educational Resources Information Center

    Knight, Patrick A.; And Others

    In the area of industrial/organizational (I/O) psychology and physiological psychology, issues of gender have only begun to be addressed. An examination of the recent literatures in I/O and physiological psychology was undertaken to document the extent to which women are used as research subjects, to determine whether or not research relevant to…

  12. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  13. Medical student attitudes toward kidney physiology and nephrology: a qualitative study.

    PubMed

    Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W

    2016-11-01

    Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.

  14. DOSE-RATE DEPENDENCE OF INSTANTANEOUS PHYSIOLOGICAL RADIATION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hug, O.

    Nastic movements in Mimosa pudica were induced by x radiation. Using short radiation impulses of 10 to 30 sec and doses up to 120 kr/min, the leaflets were observed to close and the stem to bend in the main joint during the first minute. After irradiation of parts of the leaflet, the reaction spreads along the physiological pathways as in any other stimulus. When the action potential is completed, slow depolarization continues and reaches a maximum, finally returning to the initial value in about two hr. The effect was found to be dose- dependent. It is hypothesized that either amore » direct physicochemical change of the cell membrane or a damage of substances which influence the function of the cell membrane is induced by the irradiation. (H.M.G.)« less

  15. The Research on the Impact of Green Beans Sports Drinks on Relieving Fatigue in Sports Training.

    PubMed

    Qi, Li; Ying, Liu

    2015-01-01

    For researching the function of relieving fatigue of green beans sports drinks, this paper selected 60 mice as subjects. They were randomly divided into four groups (low dose group, middle dose group, high dose group and physiological saline group). Each time they were respectively feed 10g 20g/L, 40g/L, 80 g/L green beans sports drinks and 15ml/(kg.d) physiological saline. The experiment lasted for a month. We recorded weight of mice, swimming time and blood urea nitrogen indicators. The results show that green beans sports drinks can significantly prolong swimming time of mice (p <0.05). For serum urea the results show no effect. So green beans sports drinks have a certain function of relieving physical fatigue.

  16. Advances in bioresponsive closed-loop drug delivery systems.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Yan, Junjie; Kahkoska, Anna R; Gu, Zhen

    2017-11-27

    Controlled drug delivery systems are able to improve efficacy and safety of therapeutics by optimizing the duration and kinetics of release. Among them, closed-loop delivery strategies, also known as self-regulated administration, have proven to be a practical tool for homeostatic regulation, by tuning drug release as a function of biosignals relevant to physiological and pathological processes. A typical example is glucose-responsive insulin delivery system, which can mimic the pancreatic beta cells to release insulin with a proper dose at a proper time point by responding to plasma glucose levels. Similar self-regulated systems are also important in the treatment of other diseases including thrombosis and bacterial infection. In this review, we survey the recent advances in bioresponsive closed-loop drug delivery systems, including glucose-responsive, enzyme-activated, and other biosignal-mediated delivery systems. We also discuss the future opportunities and challenges in this field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of physiological versus pharmacological beta-carotene supplementation on cell proliferation and histopathological changes in the lungs of cigarette smoke-exposed ferrets.

    PubMed

    Liu, C; Wang, X D; Bronson, R T; Smith, D E; Krinsky, N I; Russell, R M

    2000-12-01

    There remains a remarkable discordance between the results of observational epidemiological studies and intervention trials using beta-carotene as a potential chemopreventive agent. One question that needs to be examined is whether the adverse outcomes of human beta-carotene trials are related to the large doses of beta-carotene that were administered. In the present study, ferrets were given a physiological (low) dose or a pharmacological (high) dose of beta-carotene supplementation (0.43 mg versus 2.4 mg/kg body wt/day, which is equivalent to 6 mg versus 30 mg/day in humans) and exposed to cigarette smoke for 6 months. We investigated the effects of these doses of beta-carotene on retinoid concentrations, expression of retinoic acid receptors (RARs), activator protein 1 (AP-1; c-Jun and c-Fos), cyclin D1, proliferating cellular nuclear antigen (PCNA), and histopathological changes in the lungs of both normal and cigarette smoke-exposed ferrets. Thirty-six male ferrets were treated in six groups-control, smoke-exposed (SM), low-dose beta-carotene (LBC), high-dose beta-carotene (HBC), low-dose beta-carotene plus smoke exposure (LBC+SM) or high-dose beta-carotene plus smoke exposure (HBC+SM)-for 6 months. Retinoic acid concentration and RAR beta gene expression, but not expression of RAR alpha and RAR gamma, was reduced in the lung tissue of HBC+SM, HBC, SM and LBC+SM ferrets, but not in that of LBC ferrets, as compared with the control group. Expression of AP-1 and PCNA was greater in HBC+SM, HBC, SM and LBC+SM ferrets, but not in the LBC ferrets, as compared with the control group. Increased amounts of cyclin D1 and keratinized squamous metaplasia were observed in the lung tissue of HBC+SM, HBC and SM groups but not in that of the LBC+SM, LBC or control groups. These data suggest that, in contrast with a pharmacological dose of beta-carotene, a physiological dose of beta-carotene in smoke-exposed ferrets has no potentially detrimental effects and may afford weak protection against lung damage induced by cigarette smoke.

  18. Lung dosimetry for inhaled radon progeny in smokers.

    PubMed

    Baias, Paul F; Hofmann, Werner; Winkler-Heil, Renate; Cosma, Constantin; Duliu, Octavian G

    2010-02-01

    Cigarette smoking may change the morphological and physiological parameters of the lung. Thus the primary objective of the present study was to investigate to what extent these smoke-induced changes can modify deposition, clearance and resulting doses of inhaled radon progeny relative to healthy non-smokers (NSs). Doses to sensitive bronchial target cells were computed for four categories of smokers: (1) Light, short-term (LST) smokers, (2) light, long-term (LLT) smokers, (3) heavy, short-term (HST) smokers and (4) heavy, long-term (HLT) smokers. Because of only small changes of morphological and physiological parameters, doses for the LST smokers hardly differed from those for NSs. For LLT and HST smokers, even a protective effect could be observed, caused by a thicker mucus layer and increased mucus velocities. Only in the case of HLT smokers were doses higher by about a factor of 2 than those for NSs, caused primarily by impaired mucociliary clearance, higher breathing frequency, reduced lung volume and airway obstructions. These higher doses suggest that the contribution of inhaled radon progeny to the risk of lung cancer in smokers may be higher than currently assumed on the basis of NS doses.

  19. The effects of volume versus intensity of long-term voluntary exercise on physiology and behavior in C57/Bl6 mice.

    PubMed

    Robison, Lisa S; Popescu, Dominique L; Anderson, Maria E; Beigelman, Steven I; Fitzgerald, Shannon M; Kuzmina, Antonina E; Lituma, David A; Subzwari, Sarima; Michaelos, Michalis; Anderson, Brenda J; Van Nostrand, William E; Robinson, John K

    2018-06-04

    Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits. Copyright © 2018. Published by Elsevier Inc.

  20. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  1. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  2. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  3. Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.

    PubMed

    Thrasher, Cat; LoBue, Vanessa

    2016-02-01

    In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A novel approach for estimating ingested dose associated with paracetamol overdose.

    PubMed

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  6. Primary Care Management of Chronic Constipation in Asia: The ANMA Chronic Constipation Tool

    PubMed Central

    Ghoshal, Uday C; Gonlachanvit, Sutep; Chua, Andrew Seng Boon; Myung, Seung-Jae; Rajindrajith, Shaman; Patcharatrakul, Tanisa; Choi, Myung-Gyu; Wu, Justin C Y; Chen, Min-Hu; Gong, Xiao-Rong; Lu, Ching-Liang; Chen, Chien-Lin; Pratap, Nitesh; Abraham, Philip; Hou, Xiao-Hua; Ke, Meiyun; Ricaforte-Campos, Jane D; Syam, Ari Fahrial; Abdullah, Murdani

    2013-01-01

    Chronic constipation (CC) may impact on quality of life. There is substantial patient dissatisfaction; possible reasons are failure to recognize underlying constipation, inappropriate dietary advice and inadequate treatment. The aim of these practical guidelines intended for primary care physicians, and which are based on Asian perspectives, is to provide an approach to CC that is relevant to the existing health-care infrastructure. Physicians should not rely on infrequent bowel movements to diagnose CC as many patients have one or more bowel movement a day. More commonly, patients present with hard stool, straining, incomplete feeling, bloating and other dyspeptic symptoms. Physicians should consider CC in these situations and when patients are found to use laxative containing supplements. In the absence of alarm features physicians may start with a 2-4 week therapeutic trial of available pharmacological agents including osmotic, stimulant and enterokinetic agents. Where safe to do so, physicians should consider regular (as opposed to on demand dosing), combination treatment and continuous treatment for at least 4 weeks. If patients do not achieve satisfactory response, they should be referred to tertiary centers for physiological evaluation of colonic transit and pelvic floor function. Surgical referral is a last resort, which should be considered only after a thorough physiological and psychological evaluation. PMID:23667746

  7. Hydrogen sulfide therapy in brain diseases: from bench to bedside

    PubMed Central

    Zhang, Ju-yi; Ding, Yi-ping; Wang, Zhong; Kong, Yan; Gao, Rong; Chen, Gang

    2017-01-01

    Hydrogen sulfide (H2S) has been recognized and studied for nearly 300 years, but past researches mainly focus on its toxicity effect. During the past two decades, the majority of researches have reported that H2S is a novel endogenous gaseous signal molecule in organisms, and play an important role in various systems and diseases. H2S is mainly produced by three enzymes, including cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. H2S had been firstly reported as a neuromodulator in the brain, because of its essential role in the facilitating hippocampal long-term potentiation at physiological concentration. It is subsequently reported that H2S may have relevance to neurologic disorders through antioxidative, anti-inflammatory, anti-apoptotic and additional effects. Recent basic medical studies and preclinical studies on neurologic diseases have demonstrated that the administration of H2S at physiological or pharmacological levels attenuates brain injury. However, the neuroprotective effect of H2S is concentration-dependent, only a comparatively low dose of H2S can provide beneficial effect. Herein, we review the neuroprotevtive role of H2S therapy in brain diseases from its mechanism to clinical application in animal and human subjects, and therefore provide the potential strategies for further clinical treatment. PMID:28744364

  8. The Effect of Ingested Glucose Dose on the Suppression of Endogenous Glucose Production in Humans.

    PubMed

    Kowalski, Greg M; Moore, Samantha M; Hamley, Steven; Selathurai, Ahrathy; Bruce, Clinton R

    2017-09-01

    Insulin clamp studies have shown that the suppressive actions of insulin on endogenous glucose production (EGP) are markedly more sensitive than for stimulating glucose disposal ( R d ). However, clamp conditions do not adequately mimic postprandial physiological responses. Here, using the variable infusion dual-tracer approach, we used a threefold range of ingested glucose doses (25, 50, and 75 g) to investigate how physiological changes in plasma insulin influence EGP in healthy subjects. Remarkably, the glucose responses were similar for all doses tested, yet there was a dose-dependent increase in insulin secretion and plasma insulin levels. Nonetheless, EGP was suppressed with the same rapidity and magnitude (∼55%) across all doses. The progressive hyperinsulinemia, however, caused a dose-dependent increase in the estimated rates of R d , which likely accounts for the lack of a dose effect on plasma glucose excursions. This suggests that after glucose ingestion, the body preferentially permits a transient and optimal degree of postprandial hyperglycemia to efficiently enhance insulin-induced changes in glucose fluxes, thereby minimizing the demand for insulin secretion. This may represent an evolutionarily conserved mechanism that not only reduces the secretory burden on β-cells but also avoids the potential negative consequences of excessive insulin release into the systemic arterial circulation. © 2017 by the American Diabetes Association.

  9. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  10. Oral Exposure and Absorption of Toxicants

    EPA Science Inventory

    This chapter provides an overview of the toxicokinetics of orally absorbed xenobiotics. This includes a description of the basic anatomy and physiology of the digestive tract most relevant to the absorption process. In addition, differences in anatomy and physiology between human...

  11. Determining a threshold sub-acute dose leading to minimal physiological alterations following prolonged exposure to the nerve agent VX in rats.

    PubMed

    Bloch-Shilderman, E; Rabinovitz, I; Egoz, I; Yacov, G; Allon, N; Nili, U

    2018-02-01

    VX, a potent inhibitor of cholinesterase (ChE), is considered as one of the most toxic, persistent and least volatile nerve agents. VX is absorbed in various environmental surfaces and is gradually released long after its initial dispersal. Its toxicity is mainly caused by disrupting central and peripheral cholinergic nervous system activity, leading to potential long-term detrimental effects on health. The primary objective of the present study was to assess the threshold VX dose leading to minimal physiological alterations following prolonged VX exposure. Characterization of such a threshold is crucial for dealing with unresolved operative dilemmas such as when it is safe enough to resettle a population that has been evacuated from a VX-contaminated area. Rats, continuously exposed to various doses of VX (0.225-45 µg/kg/day) for 4 weeks via implanted mini-osmotic pumps, showed a dose-dependent and continuous decrease in ChE activity in whole blood, brain and muscles, ranging between 20 and 100%. Exposure to 13.5 µg/kg/day led to a stable low ChE activity level (~ 20%), accompanied by transient and negligible electrocorticogram spectral power transformations, especially in the theta and alpha brain wave frequencies, and a significant decrease in total brain M2 receptor density. These changes were neither accompanied by observable signs of intoxication nor by changes in motor function, circadian rhythm or TSPO level (a reliable marker of brain damage). Following exposure to lower doses of 2.25 and 0.225 µg/kg/day, the only change measured was a reduction in ChE activity of 60 and 20%, respectively. Based on these results, we delineate ChE inhibition as the physiological measure most susceptible to alterations following prolonged VX exposure, and determine for the first time the threshold sub-acute VX dose for minimal physiological effects (up to 20% reduction in ChE activity) in the rat as 0.225 µg/kg/day.

  12. PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC (PBPK/PD) MODEL FOR PREDICTING THE DERMAL DOSE AND DISPOSITION OF ORGANOPHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Physiologically-based pharmacokinetic/ pharmacodynamic (PBPK/PD) models are particularly suited for interpretation of cumulative risk via the dermal route for which aggregate exposure must be assessed for chemicals having a common mechanism of toxicity. To this end, a quantita...

  13. Important Physiological Parameters and Physical Activity Data for Evaluating Exposure Modeling Performance: a Synthesis

    EPA Science Inventory

    The purpose of this report is to develop a database of physiological parameters needed for understanding and evaluating performance of the APEX and SHEDS exposure/intake dose rate model used by the Environmental Protection Agency (EPA) as part of its regulatory activities. The A...

  14. Digestive and physiological effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal

    USDA-ARS?s Scientific Manuscript database

    We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. This double-blind, randomized, controlled, crossover trial evaluated the effects o...

  15. "Thinking ethics": a novel, pilot, proof-of-concept program of integrating ethics into the Physiology curriculum in South India.

    PubMed

    D, Savitha; Vaz, Manjulika; Vaz, Mario

    2017-06-01

    Integrating medical ethics into the physiology teaching-learning program has been largely unexplored in India. The objective of this exercise was to introduce an interactive and integrated ethics program into the Physiology course of first-year medical students and to evaluate their perceptions. Sixty medical students (30 men, 30 women) underwent 11 sessions over a 7-mo period. Two of the Physiology faculty conducted these sessions (20-30 min each) during the routine physiology (theory/practicals) classes that were of shorter duration and could, therefore, accommodate the discussion of related ethical issues. This exercise was in addition to the separate ethics classes conducted by the Medical Ethics department. The sessions were open ended, student centered, and designed to stimulate critical thinking. The students' perceptions were obtained through a semistructured questionnaire and focused group discussions. The students found the program unique, thought provoking, fully integrated, and relevant. It seldom interfered with the physiology teaching. They felt that the program sensitized them about ethical issues and prepared them for their clinical years, to be "ethical doctors." Neutral observers who evaluated each session felt that the integrated program was relevant to the preclinical year and that the program was appropriate in its content, delivery, and student involvement. An ethics course taught in integration with Physiology curriculum was found to be beneficial, feasible, and compatible with Physiology by students as well as neutral observers. Copyright © 2017 the American Physiological Society.

  16. RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

  17. MODEL DEVELOPMENT AND APPLICATION FOR ASSESSING HUMAN EXPOSURE AND DOSE TO TOXIC CHEMICALS AND POLLUTANTS

    EPA Science Inventory

    This project aims to strengthen the general scientific foundation of EPA's exposure and risk assessment processes by developing state-of-the-art exposure to dose computational models. This research will produce physiologically-based pharmacokinetic (PBPK) and pharmacodynamic (PD)...

  18. Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr.

    PubMed

    Vannini, Andrea; Guarnieri, Massimo; Bačkor, Martin; Bilová, Ivana; Loppi, Stefano

    2015-12-01

    This study investigated if treatment of the lichen Xanthoria parietina (L.) Th. Fr. with glyphosate caused uptake of this herbicide as well as physiological alterations. Samples were treated with Glifene SL®, a common commercial glyphosate-based herbicide, at the lowest recommended doses (3.6g/L) as well as with doses slightly higher than the highest suggested (36 g/L). The results clearly showed glyphosate uptake in X. parietina proportionally to the dose provided. Adverse physiological effects were evident on the photosynthetic apparatus (photosynthetic efficiency, chlorophyll a content, chlorophyll degradation) as well as on the fungal respiration rates and cell membrane integrity (ergosterol content, dehydrogenase activity) already after 24h from treatment, also at the low application dose. It is concluded that lichens are suitable organisms for monitoring unwanted biological effects from the application of glyphosate-based herbicides, as well as for detecting the accumulation of this compound in the biota, thus screening for its environmental fate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Increased Hair Cortisol Concentrations and BMI in Patients With Pituitary-Adrenal Disease on Hydrocortisone Replacement.

    PubMed

    Staufenbiel, Sabine M; Andela, Cornelie D; Manenschijn, Laura; Pereira, Alberto M; van Rossum, Elisabeth F C; Biermasz, Nienke R

    2015-06-01

    Intrinsic imperfections and lack of reliable biomarkers preclude optimal individual dosing of hydrocortisone replacement in adrenal insufficiency (AI). However, the clinical relevance of optimal dosing is exemplified by frequently occurring side effects of overreplacement and the dangers of underreplacement. Cortisol in scalp hair has been identified as a retrospective biomarker for long-term cortisol exposure. We compared hair cortisol concentrations (CORT(hair)) of patients with primary or secondary AI on replacement therapy with those of patient controls with a pituitary disease without AI (PCs) and of healthy controls (HCs). In this cross-sectional study, hair samples and anthropometric data were collected in 132 AI patients (52 males), 42 PCs (11 males), and 195 HCs (90 males). The proximal 3 cm of hair were used. CORT(hair) were measured using an ELISA. CORT(hair) were higher in AI patients than in HCs and PCs (P < .001), and hydrocortisone dose correlated with CORT(hair) (P = .04). Male AI patients demonstrated higher CORT(hair) than female patients (P < .001). AI patients had higher body mass index (BMI) than HCs (P < .001), and BMI correlated with CORT(hair) in the whole sample (P < .001). Physiological hydrocortisone replacement is associated with increased CORT(hair). The association between CORT(hair) and BMI could suggest a mild overtreatment that may lead to adverse anthropomorphic side effects, especially in males. CORT(hair) measurements may be a promising additional tool to monitor cumulative hydrocortisone replacement in AI.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Bloodmore » flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.« less

  1. Relevance of human anatomy in daily clinical practice.

    PubMed

    Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón

    2010-12-20

    the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.

  2. Yohimbine use for physical enhancement and its potential toxicity.

    PubMed

    Cimolai, Nevio; Cimolai, Tomas

    2011-12-01

    Yohimbine is a naturally sourced pharmacological agent, which produces hyperadrenergic physiological effects. In excess doses, it may typically cause agitation, anxiety, hypertension, and tachycardia. There is no conclusive evidence for this drug to be of benefit in bodybuilding, exercise tolerance, physical performance, or desirable alterations of body mass. Although tolerated generally well in low doses, the potential for dose-dependent toxicity should be recognized.

  3. Is there a role for estrogen activity assays? Recombinant cell bioassay for estrogen: Development and applications.

    PubMed

    Klein, Karen Oerter

    2015-07-01

    There are many questions which cannot be answered without a very sensitive estradiol assay. A recombinant cell bioassay (RCBA) for estradiol was developed in 1994. The sensitivity of the bioassay is 0.02-0.2 pg/ml (0.07-0.7 pmol/L), more than 20 times more sensitive than commercial RIAs and 10 times more sensitive than newer mass spectrometry assays. The RCBA for estradiol opened the door to study low levels of estradiol equivalents (EE) across the physiological spectrum of life from prepubertal children through menopause and across the spectrum from normal physiology, in boys as well as girls, to pathology, including: premature thelarche; estradiol suppression in children treated with GnRH analogues for precocious puberty; aromatase inhibition in boys with growth hormone deficiency; the differences between oral and transdermal routes of estrogen administration in girls with Turner's syndrome; women with breast cancer treated with aromatase inhibitors; and women with urogenital atrophy treated with low dose vaginal estrogen. A bioassay also allows study of endocrine disruptors, like phytoestrogens and other environmental compounds, which are relevant to public health and alternative medicine options. This paper reviews the assay and the last 20 years of applications. A bioassay for estrogen has a role because measuring biological effect is theoretically useful, increasing the understanding of physiology in addition to biochemical levels, giving different information than other assays, and opening the door to measure very low levels of estrogen activity in both humans and the environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells.

    PubMed

    McMillan, Catherine R; Sharma, Rohita; Ottenhof, Tom; Niles, Lennard P

    2007-06-04

    We have previously reported in vivo preservation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, following treatment with physiological doses of melatonin, in a 6-hydroxydopamine model of Parkinson's disease. Based on these findings, we postulated that melatonin would similarly modulate the expression of TH in vitro. Therefore, using human SH-SY5Y neuroblastoma cells which can differentiate into dopaminergic neurons following treatment with retinoic acid, we first examined whether these cells express melatonin receptors. Subsequently, the physiological dose-dependent effects of melatonin on TH expression were examined in both undifferentiated and differentiated cells. The novel detection of the G protein-coupled melatonin MT(1) receptor in SH-SY5Y cells by RT-PCR was confirmed by sequencing and Western blotting. In addition, following treatment of SH-SY5Y cells with melatonin (0.1-100 nM) for 24h, Western analysis revealed a significant increase in TH protein levels. A biphasic response, with significant increases in TH protein at 0.5 and 1 nM melatonin and a reversal at higher doses was seen in undifferentiated cells; whereas in differentiated cells, melatonin was effective at doses of 1 and 100 nM. These findings suggest a physiological role for melatonin in modulating TH expression, possibly via the MT(1) receptor.

  5. What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms.

    PubMed

    Breaux, Jennifer A; Schumacher, Molly K; Juliano, Steven A

    2014-07-07

    For organisms with complex life cycles, larval environments can modify adult phenotypes. For mosquitoes and other vectors, when physiological impacts of stressors acting on larvae carry over into the adult stage they may interact with infectious dose of a vector-borne pathogen, producing a range of phenotypes for vector potential. Investigation of impacts of a common source of stress, larval crowding and intraspecific competition, on adult vector interactions with pathogens may increase our understanding of the dynamics of pathogen transmission by mosquito vectors. Using Aedes aegypti and the nematode parasite Brugia pahangi, we demonstrate dose dependency of fitness effects of B. pahangi infection on the mosquito, as well as interactions between competitive stress among larvae and infectious dose for resulting adults that affect the physiological and functional ability of mosquitoes to act as vectors. Contrary to results from studies on mosquito-arbovirus interactions, our results suggest that adults from crowded larvae may limit infection better than do adults from uncrowded controls, and that mosquitoes from high-quality larval environments are more physiologically and functionally capable vectors of B. pahangi. Our results provide another example of how the larval environment can have profound effects on vector potential of resulting adults. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Probiotic mitigates the toxic effects of potassium dichromate in preclinical study: a randomized controlled trial.

    PubMed

    Younan, Soraia; Sakita, Gabriel Zanuto; Younan Coluna, João Gabriel; Rufino, Marcos Natal; Keller, Rogéria; Bremer-Neto, Hermann

    2018-05-30

    The objective of this study was to evaluate the nutritional, physiological, and biochemical effects of dietary supplementation of an association of probiotic bacteria in rats intoxicated with chromium (VI). Ninety-six male rats, recently weaned, were randomly divided into 8 groups (n=12): Control, DK12, DK24, and DK36 (0, 0.12, 0.24, and 0.36 g.kg -1 of K 2 Cr 2 O 7 incorporated in the basal feed, respectively) and groups Prob, DK12+Prob, DK24+Prob, and DK36+Prob received a progressive dose of 0, 0.12, 0.24 and 0.36 g.kg -1 of K 2 Cr 2 O 7 incorporated in the basal feed and supplemented with 0.02 g.Kg -1 of the association of probiotic bacteria (Lactobacillus acidophilus, Enterococcus faecium, Bifidobacterium thermophilum, and Bifidobacterium longum). After 90 days we observed significant (p<0.05) and dose dependent alterations from incorporation of increasing doses of chromium (VI) related to nutritional, physiological and biochemical parameters. These changes were attenuated (p<0.05) with probiotic supplementation. Supplementation with probiotics in the diet beneficially modified the nutritional and physiological parameters, as well as hepatic, renal, glycemic and lipid profiles of animals intoxicated with increasing doses of K 2 Cr 2 O 7 . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling—The importance of homeostatic control for an essential metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, P. Robinan, E-mail: rgentry@ramboll.com

    A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposuresmore » into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue concentrations of manganese. • An MOS approach also considered target tissue concentrations for ambient exposures. • Relationships between ambient Mn exposures and dose-to-target tissue are not linear.« less

  8. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish, E-mail: harish.shankaran@pnnl.gov; Adeshina, Femi; Teeguarden, Justin G.

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the modelmore » using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 < 1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (t90 ∼ 300 min); the absorption of intranasal Fentanyl was relatively rapid (t90 ∼ 20–40 min); and the various oral transmucosal routes had intermediate absorption rates (t90 ∼ 160–300 min). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs. - Highlights: • We develop a Fentanyl PBPK model for relating external dose to internal levels. • We calibrate the model to oral and inhalation exposures using > 50 human datasets. • Model predictions are in good agreement with the available pharmacokinetic data. • The model can be used for extrapolating across routes, doses and exposure durations. • We illustrate how the model can be used for developing Provisional Advisory Levels.« less

  9. All half-lives are wrong, but some half-lives are useful.

    PubMed

    Wright, J G; Boddy, A V

    2001-01-01

    The half-life of a drug, which expresses a change in concentration in units of time, is perhaps the most easily understood pharmacokinetic parameter and provides a succinct description of many concentration-time profiles. The calculation of a half-life implies a linear, first-order, time-invariant process. No drug perfectly obeys such assumptions, although in practise this is often a valid approximation and provides invaluable quantitative information. Nevertheless, the physiological processes underlying half-life should not be forgotten. The concept of clearance facilitates the interpretation of factors affecting drug elimination, such as enzyme inhibition or renal impairment. Relating clearance to the observed concentration-time profile is not as naturally intuitive as is the case with half-life. As such, these 2 approaches to parameterising a linear pharmacokinetic model should be viewed as complementary rather than alternatives. The interpretation of pharmacokinetic parameters when there are multiple disposition phases is more challenging. Indeed, in any pharmacokinetic model, the half-lives are only one component of the parameters required to specify the concentration-time profile. Furthermore, pharmacokinetic parameters are of little use without a dose history. Other factors influencing the relevance of each disposition phase to clinical end-points must also be considered. In summarising the pharmacokinetics of a drug, statistical aspects of the estimation of a half-life are often overlooked. Half-lives are rarely reported with confidence intervals or measures of variability in the population, and some approaches to this problem are suggested. Half-life is an important summary statistic in pharmacokinetics, but care must be taken to employ it appropriately in the context of dose history and clinically relevant pharmacodynamic end-points.

  10. Protein Turnover Measurements in Human Serum by Serial Immunoaffinity LC-MS/MS.

    PubMed

    Farrokhi, Vahid; Chen, Xiaoying; Neubert, Hendrik

    2018-02-01

    The half-life of target proteins is frequently an important parameter in mechanistic pharmacokinetic and pharmacodynamic (PK/PD) modeling of biotherapeutics. Clinical studies for accurate measurement of physiologically relevant protein turnover can reduce the uncertainty in PK/PD model-based predictions, for example, of the therapeutic dose and dosing regimen in first-in-human clinical trials. We used a targeted mass spectrometry work flow based on serial immunoaffinity enrichment ofmultiple human serum proteins from a [5,5,5- 2 H 3 ]-L-leucine tracer pulse-chase study in healthy volunteers. To confirm the reproducibility of turnover measurements from serial immunoaffinity enrichment, multiple aliquots from the same sample set were subjected to protein turnover analysis in varying order. Tracer incorporation was measured by multiple-reaction-monitoring mass spectrometry and target turnover was calculated using a four-compartment pharmacokinetic model. Five proteins of clinical or therapeutic relevance including soluble tumor necrosis factor receptor superfamily member 12A, tissue factor pathway inhibitor, soluble interleukin 1 receptor like 1, soluble mucosal addressin cell adhesion molecule 1, and muscle-specific creatine kinase were sequentially subjected to turnover analysis from the same human serum sample. Calculated half-lives ranged from 5-15 h; however, no tracer incorporation was observed for mucosal addressin cell adhesion molecule 1. The utility of clinical pulse-chase studies to investigate protein turnover can be extended by serial immunoaffinity enrichment of target proteins. Turnover analysis from serum and subsequently from remaining supernatants provided analytical sensitivity and reproducibility for multiple human target proteins in the same sample set, irrespective of the order of analysis. © 2017 American Association for Clinical Chemistry.

  11. Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive

    PubMed Central

    Jovanović, Boris

    2015-01-01

    From 1916 to 2011, an estimated total of 165 050 000 metric tons of titanium dioxide (TiO2) pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This article compiles new research results to provide fresh data for potential risk reassessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, because dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific articles have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. Integr Environ Assess Manag 2015;11:10–20. © 2014 The Author. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:25091211

  12. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.

    PubMed

    Wikesjö, Ulf M E; Xiropaidis, Andreas V; Qahash, Mohammed; Lim, Won Hee; Sorensen, Rachel G; Rohrer, Michael D; Wozney, John M; Hall, Jan

    2008-11-01

    Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. TPO implants coated with rhBMP-2 exhibited dose-dependent bone remodelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3+/-10.8%versus 71.7+/-7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4+/-10.6%versus 68.2+/-11.0%, p<0.03]. rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

  13. Extraction of CT dose information from DICOM metadata: automated Matlab-based approach.

    PubMed

    Dave, Jaydev K; Gingold, Eric L

    2013-01-01

    The purpose of this study was to extract exposure parameters and dose-relevant indexes of CT examinations from information embedded in DICOM metadata. DICOM dose report files were identified and retrieved from a PACS. An automated software program was used to extract from these files information from the structured elements in the DICOM metadata relevant to exposure. Extracting information from DICOM metadata eliminated potential errors inherent in techniques based on optical character recognition, yielding 100% accuracy.

  14. Behavioural effect of low-dose BPA on male zebrafish: Tuning of male mating competition and female mating preference during courtship process.

    PubMed

    Li, Xiang; Guo, Jia-Yu; Li, Xu; Zhou, Hai-Jun; Zhang, Shu-Hui; Liu, Xiao-Dong; Chen, Dong-Yan; Fang, Yong-Chun; Feng, Xi-Zeng

    2017-02-01

    The ubiquity of environmental pollution by endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) is progressively considered as a major threat to aquatic ecosystems worldwide. Numerous toxicological studies have proved that BPA are hazardous to aquatic environment, along with alterations in the development and physiology of aquatic vertebrates. However, generally, there is a paucity in knowledge of behavioural and physiological effects of BPA with low concentration, for example, 0.22 nM (50 ng/L) and 2.2 nM (500 ng/L). Here we show that treatment of adult male zebrafish (Danio rerio) with 7 weeks low-dose (0.22 nM-2.2 nM) BPA, resulted in alteration in histological structure of testis tissue and abnormality in expression levels of genes involved in testicular steroidogenesis. Furthermore, low-dose BPA treatment decreased the male locomotion during courtship; and was associated with less courtship behaviours to female but more aggressive behaviours to mating competitor. Interestingly, during the courtship test, we observed that female preferred control male to male under low-dose BPA exposure. Subsequently, we found that the ability of female to chose optimal mating male through socially mutual interaction and dynamics of male zebrafish, which was based on visual discrimination. In sum, our results shed light on the potential behavioural and physiological effect of low-dose BPA exposure on courtship behaviours of zebrafish, which could exert profound consequences on natural zebrafish populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nociception-specific blink reflex: pharmacology in healthy volunteers.

    PubMed

    Marin, J C A; Gantenbein, A R; Paemeleire, K; Kaube, H; Goadsby, P J

    2015-01-01

    The physiology and pharmacology of activation or perception of activation of pain-coding trigeminovascular afferents in humans is fundamental to understanding the biology of headache and developing new treatments. The blink reflex was elicited using a concentric electrode and recorded in four separate sessions, at baseline and two minutes after administration of ramped doses of diazepam (final dose 0.07 mg/kg), fentanyl (final dose 1.11 μg/kg), ketamine (final dose 0.084 mg/kg) and 0.9 % saline solution. The AUC (area under the curve, μV*ms) and the latency (ms) of the ipsi- and contralateral R2 component of the blink reflex were calculated by PC-based offline analysis. Immediately after each block of blink reflex recordings certain psychometric parameters were assessed. There was an effect due to DRUG on the ipsilateral (F 3,60 = 7.3, P < 0.001) AUC as well as on the contralateral (F 3,60 = 6.02, P < 0.001) AUC across the study. A significant decrement in comparison to placebo was observed only for diazepam, affecting the ipsilateral AUC. The scores of alertness, calmness, contentedness, reaction time and precision were not affected by the DRUG across the sessions. Previous studies suggest central, rather than peripheral changes in nociceptive trigeminal transmission in migraine. This study demonstrates a robust effect of benzodiazepine receptor modulation of the nociception specific blink reflex (nBR) without any μ-opiate or glutamate NMDA receptor component. The nociception specific blink reflex offers a reproducible, quantifiable method of assessment of trigeminal nociceptive system in humans that can be used to dissect pharmacology relevant to primary headache disorders.

  16. Neuromodulators: available agents, physiology, and anatomy.

    PubMed

    Nettar, Kartik; Maas, Corey

    2011-12-01

    Neuromodulators have risen to the forefront of aesthetic medicine. By reversibly relaxing target muscles, neuromodulators exhibit their effect by softening hyperfunctional lines. An understanding of their physiology, relevant facial anatomy, and current agents is imperative for a successful aesthetic practice. © Thieme Medical Publishers.

  17. Effect of Ar Ion Beam Implantation on Morphological and Physiological Characteristics of Liquorice (Glycyrrhiza uralensis Fisch) Under Short-Term Artificial Drought Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang

    2007-04-01

    Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.

  18. Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.

    PubMed

    Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A

    2018-03-28

    Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

  19. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action.

    PubMed

    Bell, Lynne; Lamport, Daniel J; Butler, Laurie T; Williams, Claire M

    2015-12-09

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0-6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base.

  20. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  1. EVALUATION OF ALTERED SENSITIVITY OF OLDER ADULTS TO ENVIRONMENTAL AGENTS USING PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING

    EPA Science Inventory

    The population of older Americans is increasing due to the aging of the Baby Boomers as well as an increase in the average life span. A number of physiological and biochemical changes occur during aging that could influence the relationship between exposure, dose, and response to...

  2. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    PubMed

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Psychomotor Functioning: Comparison of Patients Recovering From General Anesthesia With Remifentanil and a Volatile Anesthetic Versus Fentanyl and a Volatile Anesthetic

    DTIC Science & Technology

    1998-10-01

    remifentanil appears to be more potent. The ED100 dose for loss of righting with remifentanil is 0.020mg/kg/min. 14 and for fentanyl the dose is 0.035 mg/kg...and 1/4600th the potency of remifentanil in dogs (Westmoreland, et al., 1993a). 16 Fentanyl has a t1/2 of 3 to 3.65 hours at clinically relevant doses ...This prolonged t1/2 reflects fentanyl’s lipophilicity (Murphy, et al., 1983). Remifentanil has a t1/2 of 10 minutes at clinically relevant doses

  4. High Throughput Determination of Critical Human Dosing ...

    EPA Pesticide Factsheets

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data into predicted human equivalent doses that can be linked with biologically relevant exposure scenarios. Thus, HTTK provides essential data for risk prioritization for thousands of chemicals that lack TK data. One critical HTTK parameter that can be measured in vitro is the unbound fraction of a chemical in plasma (Fub). However, for chemicals that bind strongly to plasma, Fub is below the limits of detection (LOD) for high throughput analytical chemistry, and therefore cannot be quantified. A novel method for quantifying Fub was implemented for 85 strategically selected chemicals: measurement of Fub was attempted at 10%, 30%, and 100% of physiological plasma concentrations using rapid equilibrium dialysis assays. Varying plasma concentrations instead of chemical concentrations makes high throughput analytical methodology more likely to be successful. Assays at 100% plasma concentration were unsuccessful for 34 chemicals. For 12 of these 34 chemicals, Fub could be quantified at 10% and/or 30% plasma concentrations; these results imply that the assay failure at 100% plasma concentration was caused by plasma protein binding for these chemicals. Assay failure for the remaining 22 chemicals may

  5. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat.

    PubMed

    Selvam, Anjan Panneer; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-21

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  6. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice.

    PubMed

    Wang, Shih-Yi; Huang, Wen-Ching; Liu, Chieh-Chung; Wang, Ming-Fu; Ho, Chin-Shan; Huang, Wen-Pei; Hou, Chia-Chung; Chuang, Hsiao-Li; Huang, Chi-Chang

    2012-10-09

    Pumpkin (Cucurbita moschata) is a popular and nutritious vegetable consumed worldwide. The overall purpose of this study was to evaluate the effects of C. moschata fruit extract (CME) on anti-fatigue and ergogenic functions following physiological challenges. Male ICR mice from four groups designated vehicle, CME-50, CME-100 and CME-250, respectively (n = 8 per group in each test) were orally administered CME for 14 days at 0, 50, 100 and 250 mg/kg/day. The anti-fatigue activity and exercise performance were evaluated using exhaustive swimming time, forelimb grip strength, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. The resting muscular and hepatic glycogen was also analyzed after 14-day supplementation with CME. Trend analysis revealed that CME treatments increased grip strength. CME dose-dependently increased 5% body weight loaded swimming time, blood glucose, and muscular and hepatic glycogen levels. CME dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity after a 15-min swimming test. The mechanism was relevant to the increase in energy storage (as glycogen) and release (as blood glucose), and the decrease of plasma levels of lactate, ammonia, and creatine kinase. Therefore, CME may be potential for the pharmacological effect of anti-fatigue.

  7. Liver function and DNA integrity in hepatocytes of rats evaluated after treatments with strawberry tree (Arbutus unedo L.) water leaf extract and arbutin.

    PubMed

    Jurica, Karlo; Benković, Vesna; Sikirić, Sunčana; Kopjar, Nevenka; Brčić Karačonji, Irena

    2018-06-07

    Due to their beneficial health effects, strawberry tree (Arbutus unedo L.) leaves have for decades been used as herbal remedy in countries of the Mediterranean region. This pilot study is the first to investigate the liver function and DNA integrity in rat hepatocytes evaluated after 14 and 28 day treatments with strawberry tree water leaf extract and arbutin, administered per os to Lewis rats of both genders at a daily dose 200 mg/kg b.w. We focused on two types of biomarkers: enzyme serum markers of liver function (AST, ALT, and LDH), and primary DNA damage in the liver cells, which was estimated using the alkaline comet assay. At the tested dose, strawberry tree water leaf extract showed acceptable biocompatibility with liver tissue both in male and female rats, especially after shorter exposure. Our results also suggest that oral administration of single arbutin to rats was not associated with significant impairments either in the liver function or DNA integrity in hepatocytes. Considering that prolonged exposure to the tested compounds revealed minor changes in the studied biomarkers, future in vivo studies have to further clarify the biological and physiological relevance of these findings.

  8. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    PubMed

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  9. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis.

    PubMed

    Isaak, Cara K; Petkau, Jay C; Blewett, Heather; O, Karmin; Siow, Yaw L

    2017-08-01

    Lingonberry grown in northern Manitoba, Canada, contains exceptionally high levels of anthocyanins and other polyphenols. Previous studies from our lab have shown that lingonberry anthocyanins can protect H9c2 cells from ischemia-reperfusion injury and anthocyanin-rich diets have been shown to be associated with decreased cardiovascular disease and mortality. Oxidative stress can impair function and trigger apoptosis in cardiomyocytes. This study investigated the protective effects of physiologically relevant doses of lingonberry extracts and pure anthocyanins against hydrogen-peroxide-induced cell death. Apoptosis and necrosis were detected in H9c2 cells after hydrogen peroxide treatment via flow cytometry using FLICA 660 caspase 3/7 combined with YO-PRO-1 and then confirmed with Hoechst staining and fluorescence microscopy. Each of the 3 major anthocyanins found in lingonberry (cyanidin-3-galactoside, cyanidin-3-glucoside, and cyanidin-3-arabinoside) was protective against hydrogen-peroxide-induced apoptosis in H9c2 cells at 10 ng·mL -1 (20 nmol·L -1 ) and restored the number of viable cells to match the control group. A combination of the 3 anthocyanins was also protective and a lingonberry extract tested at 3 concentrations produced a dose-dependent protective effect. Lingonberry anthocyanins protected cardiac cells from oxidative-stress-induced apoptosis and may have cardioprotective effects as a dietary modification.

  10. An evaluation of behavioural endpoints: The pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus).

    PubMed

    McCallum, Erin S; Bose, Aneesh P H; Warriner, Theresa R; Balshine, Sigal

    2017-05-01

    Fluoxetine (Prozac™) is designed to alter human behaviour; however, because many physiological pathways are conserved across vertebrates, this drug may affect the behaviour of fish living in fluoxetine-polluted environments. Although a number of studies have used behaviour to document the sub-lethal effects of fluoxetine, the repeatability of these effects across experiments, across behavioural contexts, and over different exposure durations are rarely considered. Here, we conducted two experiments and assessed how fluoxetine exposure affected a range of fitness-related behaviours in wild round goby (Neogobius melanostomus). We found that fluoxetine impacts round goby behaviour at high (40 μg/l) doses, but not at environmentally relevant low doses (1 μg/l). In both experiments, an acute 3-day exposure to fluoxetine reduced round goby aggression in multiple behavioural contexts, but had no detectable effect on overall activity or social affiliative behaviour. While a chronic 28-day exposure to fluoxetine exposure still reduced aggression, this reduction was only detectable in one behavioural context. Our findings demonstrate the importance of repeated behavioural testing (both between and within experiments) and contribute to a growing body of literature evaluating the effects of fluoxetine and other pharmaceuticals on animal behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  12. The effects of levetiracetam on neural tube development in the early stage of chick embryos.

    PubMed

    Guvenc, Yahya; Dalgic, Ali; Billur, Deniz; Karaoglu, Derya; Aydin, Sevim; Daglioglu, Ergun; Ozdol, Cagatay; Nacar, Osman Arikan; Yildirim, Ali Erdem; Belen, Deniz

    2013-01-01

    This study aimed to investigate the effects of a new generation antiepileptic agent, levetiracetam, on the neural tube development in a chick embryo model that corresponds to the first month of vertebral development in mammals. Forty-five Atabey® breed fertilized chicken eggs with no specific pathogens were randomly divided into 5 groups. All of the eggs were incubated at 37.8±2°C and 60±5 % relative humidity in an incubator. Group A was control group. The other eggs were applied physiological saline and drugs at a volume of 10 μL by the in ovo method at the 28th hour of the incubation period. Group B was given distilled water; Group C, physiological saline; Group D, Levetiracetam (L8668) at a dose equivalent to the treatment dose for humans (10 mg/ kg), and Group E, Levetiracetam (L8668) at a dose of 10 times the treatment dose. The embryos in all of the groups were removed from the shells at the 48th hour and morphologically and histologically evaluated. Of the 45 embryos incubated, neural tubes of 41 were closed and the embryos displayed normal development. Levetiracetam, at a dose equivalent to human treatment dose and 10 times the treatment dose, was shown not to cause neural tube defects in chick embryos.

  13. Ibrutinib Dosing Strategies Based on Interaction Potential of CYP3A4 Perpetrators Using Physiologically Based Pharmacokinetic Modeling.

    PubMed

    de Zwart, L; Snoeys, J; De Jong, J; Sukbuntherng, J; Mannaert, E; Monshouwer, M

    2016-11-01

    Based on ibrutinib pharmacokinetics and potential sensitivity towards CYP3A4-mediated drug-drug interactions (DDIs), a physiologically based pharmacokinetic approach was developed to mechanistically describe DDI with various CYP3A4 perpetrators in healthy men under fasting conditions. These models were verified using clinical data for ketoconazole (strong CYP3A4 inhibitor) and used to prospectively predict and confirm the inducing effect of rifampin (strong CYP3A4 inducer); DDIs with mild (fluvoxamine, azithromycin) and moderate inhibitors (diltiazem, voriconazole, clarithromycin, itraconazole, erythromycin), and moderate (efavirenz) and strong CYP3A4 inducers (carbamazepine), were also predicted. Ketoconazole increased ibrutinib area under the curve (AUC) by 24-fold, while rifampin decreased ibrutinib AUC by 10-fold; coadministration of ibrutinib with strong inhibitors or inducers should be avoided. The ibrutinib dose should be reduced to 140 mg (quarter of maximal prescribed dose) when coadministered with moderate CYP3A4 inhibitors so that exposures remain within observed ranges at therapeutic doses. Thus, dose recommendations for CYP3A4 perpetrator use during ibrutinib treatment were developed and approved for labeling. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  14. Photobiomodulation Therapy on Physiological and Performance Parameters During Running Tests: Dose-Response Effects.

    PubMed

    Dellagrana, Rodolfo André; Rossato, Mateus; Sakugawa, Raphael Luiz; Baroni, Bruno Mafredini; Diefenthaeler, Fernando

    2018-02-22

    This study was aimed at verifying effects of photobiomodulation therapy (PBMT) with different energy doses (15, 30, and 60 J per site) on physiological and performance parameters during running tests. Fifteen male recreational runners participated in a crossover, randomised, double-blind, and placebo-controlled trial. They performed testing protocol in 5 sessions with different treatments: control, placebo, and PBMT with 15, 30 or 60 J per site (14 sites in each lower limb). Physiological and performance variables were assessed during submaximal (at 8 km·h-1 and 9 km·h-1) and maximal running tests. PBMT with 30 J significantly (p<0.05) improved running economy (RE) at 8 and 9 km·h-1 (3.01% and 3.03%, respectively), rate of perceived exertion (RPE) at 8 km·h-1 (7.86%), velocity at VO2MAX (3.07%), peak of velocity (PV) (1.49%), and total time to exhaustion (TTE) (3.41%) compared to placebo. PBMT with 15 J improved RE at 9 km·h-1 (2.98%), RPE at 8 km·h-1 (4.80%), PV (1.33%), TTE (3.06%), and total distance (4.01%) compared to the placebo; while PBMT with 60 J only increased RE at 9 km·h-1 (3.87%) compared to placebo. All PBMT doses positively affected physiological and/or performance parameters; however magnitude-based inference reported that PBMT applied with 30 J led to more beneficial effects than 15 J and 60 J.

  15. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Low-dose hydrocortisone replacement is associated with improved arterial stiffness index and blood pressure dynamics in severely adrenocorticotrophin-deficient hypopituitary male patients.

    PubMed

    Behan, Lucy-Ann; Carmody, David; Rogers, Bairbre; Hannon, Mark J; Davenport, Colin; Tormey, William; Smith, Diarmuid; Thompson, Christopher J; Stanton, Alice; Agha, Amar

    2016-06-01

    Increased cardiovascular and cerebrovascular morbidity and mortality in hypopituitary subjects may be linked to inappropriate glucocorticoid exposure; however, the pathophysiology remains unclear. We aimed to examine the effect of three commonly prescribed hydrocortisone (HC) regimens on vascular risk factors. An open crossover study randomising ten hypopituitary men with severe adrenocorticotrophic hormone deficiency to three HC dose regimens: dose A (20mg mane and 10mg tarde), dose B (10mg mane and 10mg tarde) and dose C (10mg mane and 5mg tarde). Following 6 weeks on each regimen, participants underwent 24-h serum cortisol sampling, 24-h ambulatory blood pressure (BP) measurements, calculation of the Ambulatory Arterial Stiffness Index (AASI), oral glucose tolerance testing and fasting serum osteoprotegerin (OPG) sampling. There were no differences in 24-h BP between dose regimens and controls; however, low-dose HC replacement (dose C) was associated with the lowest AASI, indicating a less stiff arterial tree (P<0.05) compared with the other dose regimens. Loss of the physiologic nocturnal BP dip was more common in higher HC replacement regimens, although only significant for dose B compared with dose C (P=0.03). Twenty per cent of patients had abnormal glucose tolerance, but this was unrelated to dose regimen. OPG correlated strongly with 24-h BP in those on dose A only (r=0.65, P=0.04). Currently prescribed HC replacement doses do not result in significant differences in absolute BP levels or improvements in insulin sensitivity. However, lower HC doses may result in lower arterial stiffness and a more physiological nocturnal BP dip. Long-term studies are required to confirm these findings and evaluate their impact on vascular morbidity in this patient group. © 2016 European Society of Endocrinology.

  17. Physiological profile of fighters influences training organisation in combat sports: response to Del Vecchio, Hirata, and Franchini (2011).

    PubMed

    Paillard, Thierry

    2011-12-01

    The article by Del Vecchio, et al. (2011) provides relevant information to trainers about the effort-pause ratio during mixed martial arts matches. Taking into account the physiological profiles of fighters would increase interest in these findings.

  18. Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger.

    PubMed

    Cuvillier-Hot, Virginie; Salin, Karine; Devers, Séverine; Tasiemski, Aurélie; Schaffner, Pauline; Boulay, Raphaël; Billiard, Sylvain; Lenoir, Alain

    2014-05-01

    Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. EVALUATION OF ORAL AND INTRAVENOUS ROUTE PHARMACOKINETICS, PLASMA PROTEIN BINDING AND UTERINE TISSUE DOSE METRICS OF BPA: A PHYSIOLOGICALLY BASED PHARMACOKINETIC APPROACH

    EPA Science Inventory

    Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastics and epoxy resins, both of which are used in food contact applications. A physiologically based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed t...

  20. EVALUATION OF ORAL AND INTRAVENOUS ROUTE PHARMACOKINETICS, PLASMA PROTEIN BINDING AND UTERINE TISSUE DOSE METRICS OF BPA: A PHYSIOLOGICALLY BASED PHARMACOKINETIC APPROACH

    EPA Science Inventory

    Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastics and epoxy resins, both of which are used in food contact applications. A physiologically based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed ...

  1. A simple sensing mechanism for wireless, passive pressure sensors.

    PubMed

    Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.

  2. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.

    PubMed

    Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel

    2015-09-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Controversial constitutive TSHR activity: patients, physiology, and in vitro characterization.

    PubMed

    Huth, S; Jaeschke, H; Schaarschmidt, J; Paschke, R

    2014-06-01

    G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are "preliminary attempts" and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology.

    PubMed

    Liang, Tao; Dolai, Subhankar; Xie, Li; Winter, Erin; Orabi, Abrahim I; Karimian, Negar; Cosen-Binker, Laura I; Huang, Ya-Chi; Thorn, Peter; Cattral, Mark S; Gaisano, Herbert Y

    2017-04-07

    A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca 2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca 2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans.

    PubMed

    Law, Francis C P; Yao, Meicun; Bi, Hui-Chang; Lam, Stephen

    2017-06-01

    Although green tea ( Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (TCM) in rats and humans, and to predict an integrated or total concentration of TCM in the plasma of humans after consuming GT or Polyphenon E (PE). To this end, a PBPK model of epigallocatechin gallate (EGCg) consisting of 13 first-order, blood flow-limited tissue compartments was first developed in rats. The rat model was scaled up to humans by replacing its physiological parameters, pharmacokinetic parameters and tissue/blood partition coefficients (PCs) with human-specific values. Both rat and human EGCg models were then extrapolated to other TCs by substituting its physicochemical parameters, pharmacokinetic parameters, and PCs with catechin-specific values. Finally, a PBPK model of TCM was constructed by linking three rat (or human) tea catechin models together without including a description for pharmacokinetic interaction between the TCs. The mixture PBPK model accurately predicted the pharmacokinetic behaviors of three individual TCs in the plasma of rats and humans after GT or PE consumption. Model-predicted total TCM concentration in the plasma was linearly related to the dose consumed by humans. The mixture PBPK model is able to translate an external dose of TCM into internal target tissue doses for future safety assessment and dose-response analysis studies in humans. The modeling framework as described in this paper is also applicable to the bioactive chemical in other plant-based health products.

  6. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.

    PubMed

    Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T

    2016-09-01

    Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dose-response plasma appearance of coffee chlorogenic and phenolic acids in adults.

    PubMed

    Renouf, Mathieu; Marmet, Cynthia; Giuffrida, Francesca; Lepage, Mélissa; Barron, Denis; Beaumont, Maurice; Williamson, Gary; Dionisi, Fabiola

    2014-02-01

    Coffee contains phenolic compounds, mainly chlorogenic acids (CGAs). Even though coffee intake has been associated with some health benefits in epidemiological studies, the bioavailability of coffee phenolics is not fully understood. We performed a dose-response study measuring plasma bioavailability of phenolics after drinking three increasing, but still nutritionally relevant doses of instant pure soluble coffee. The study design was a one treatment (coffee) three-dose randomized cross-over design, with a washout period of 2 wks between visits. CGAs, phenolic acids, and late-appearing metabolites all increased with increasing ingested dose. Hence, the sum of area under the curve was significantly higher for the medium to low dose, and high to medium dose, by 2.23- and 2.38-fold, respectively. CGAs were not well absorbed in their intact form, regardless of the dose. CGA and phenolic acids appeared rapidly in plasma, indicating an early absorption in the gastrointestinal tract. Late-appearing metabolites were the most abundant, regardless of the dose. This study confirmed previous findings about coffee bioavailability but also showed that coffee phenolics appear in a positive dose-response manner in plasma when drank at nutritionally relevant doses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of Low-Dose Mindfulness-Based Stress Reduction (MBSR-ld) on Working Adults

    ERIC Educational Resources Information Center

    Klatt, Maryanna D.; Buckworth, Janet; Malarkey, William B.

    2009-01-01

    Mindfulness-based stress reduction (MBSR) has produced behavioral, psychological, and physiological benefits, but these programs typically require a substantial time commitment from the participants. This study assessed the effects of a shortened (low-dose [ld]) work-site MBSR intervention (MBSR-ld) on indicators of stress in healthy working…

  9. USE OF PBPK MODELS FOR ASSESSING ABSORBED DOSE AND CHE INHIBITION FROM AGGREGATE EXPOSURE OF INFANTS AND CHILDREN TO ORGANOPHOSPHORUS INSECTICIDES

    EPA Science Inventory

    A physiological pharmacokinetic (PBPK) modeling framework has been established to assess cumulative risk of dose and injury of infants and children to organophosphorus (OP) insecticides from aggregate sources and routes. Exposure inputs were drawn from all reasonable sources, pr...

  10. USE OF EXPOSURE-RELATED DOSE ESTIMATING MODEL (ERDEM) FOR ASSESSMENT OF AGGREGATE EXPOSURE OF INFANT AND CHILDREN TO N-METHYL CARBAMATE INSECTICIDES

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...

  11. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  12. Mechanisms and therapeutic effectiveness of lactobacilli

    PubMed Central

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-01-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541

  13. Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants

    USGS Publications Warehouse

    Fernie, KJ; Palace, V; Peters, L.; Basu, Niladri; Letcher, R.J.; Karouna-Renier, Natalie K.; Schultz, Sandra; Lazarus, Rebecca S.; Rattner, Barnett A.

    2015-01-01

    Organophosphate triesters are high production volume additive flame retardants (OPFRs) and plasticizers. Shown to accumulate in abiotic and biotic environmental compartments, little is known about the risks they pose. Captive adult male American kestrels (Falco sparverius) were fed the same dose (22 ng OPFR/g kestrel/d) daily (21 d) of tris(2- butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), or tris(1,2-dichloro-2-propyl) phosphate (TDCIPP). Concentrations were undetected in tissues (renal, hepatic), suggesting rapid metabolism. There were no changes in glutathione status, indicators of hepatic oxidative status, or the cholinergic system (i.e., cerebrum, plasma cholinesterases; cerebrum muscarinic, nicotinic receptors). Modest changes occurred in hepatocyte integrity and function (clinical chemistry). Significant effects on plasma free triiodothyronine (FT3) concentrations occurred with exposure to TBOEP, TCEP, TCIPP, and TDCIPP; TBOEP and TCEP had additional overall effects on free thyroxine (FT4), whereas TDCIPP also influenced total thyroxine (TT4). Relative increases (32%−96%) in circulating FT3, TT3, FT4, and/or TT4 were variable with each OPFR at 7 d exposure, but limited thereafter, which was likely maintained through decreased thyroid gland activity and increased hepatic deiodinase activity. The observed physiological and endocrine effects occurred at environmentally relevant concentrations and suggest parent OPFRs or metabolites may have been present despite rapid degradation.

  14. Modeling Population-Level Consequences of Polychlorinated Biphenyl Exposure in East Greenland Polar Bears.

    PubMed

    Pavlova, Viola; Grimm, Volker; Dietz, Rune; Sonne, Christian; Vorkamp, Katrin; Rigét, Frank F; Letcher, Robert J; Gustavson, Kim; Desforges, Jean-Pierre; Nabe-Nielsen, Jacob

    2016-01-01

    Polychlorinated biphenyls (PCBs) can cause endocrine disruption, cancer, immunosuppression, or reproductive failure in animals. We used an individual-based model to explore whether and how PCB-associated reproductive failure could affect the dynamics of a hypothetical polar bear (Ursus maritimus) population exposed to PCBs to the same degree as the East Greenland subpopulation. Dose-response data from experimental studies on a surrogate species, the mink (Mustela vision), were used in the absence of similar data for polar bears. Two alternative types of reproductive failure in relation to maternal sum-PCB concentrations were considered: increased abortion rate and increased cub mortality. We found that the quantitative impact of PCB-induced reproductive failure on population growth rate depended largely on the actual type of reproductive failure involved. Critical potencies of the dose-response relationship for decreasing the population growth rate were established for both modeled types of reproductive failure. Comparing the model predictions of the age-dependent trend of sum-PCBs concentrations in females with actual field measurements from East Greenland indicated that it was unlikely that PCB exposure caused a high incidence of abortions in the subpopulation. However, on the basis of this analysis, it could not be excluded that PCB exposure contributes to higher cub mortality. Our results highlight the necessity for further research on the possible influence of PCBs on polar bear reproduction regarding their physiological pathway. This includes determining the exact cause of reproductive failure, i.e., in utero exposure versus lactational exposure of offspring; the timing of offspring death; and establishing the most relevant reference metrics for the dose-response relationship.

  15. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  16. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.

  17. Effects of epidermal growth factor on bone formation and resorption in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-02-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in themore » periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.« less

  18. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    NASA Astrophysics Data System (ADS)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.

  19. Inter-Individual Variability in High-Throughput Risk ...

    EPA Pesticide Factsheets

    We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion

  20. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action

    PubMed Central

    Bell, Lynne; Lamport, Daniel J.; Butler, Laurie T.; Williams, Claire M.

    2015-01-01

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0–6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base. PMID:26690214

  1. The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral-mediated drug-drug interactions on piperaquine antimalarial therapy during pregnancy.

    PubMed

    Olafuyi, Olusola; Coleman, Michael; Badhan, Raj K S

    2017-11-01

    Antimalarial therapy during pregnancy poses important safety concerns due to potential teratogenicity and maternal physiological and biochemical changes during gestation. Piperaquine (PQ) has gained interest for use in pregnancy in response to increasing resistance towards sulfadoxine-pyrimethamine in sub-Saharan Africa. Coinfection with HIV is common in many developing countries, however, little is known about the impact of antiretroviral (ARV) mediated drug-drug interaction (DDI) on piperaquine pharmacokinetics during pregnancy. This study applied mechanistic pharmacokinetic modelling to predict pharmacokinetics in non-pregnant and pregnant patients, which was validated in distinct customised population groups from Thailand, Sudan and Papua New Guinea. In each population group, no significant differences in day 7 concentrations were observed during different gestational weeks (GW) (weeks 10-40), supporting the notion that piperaquine is safe throughout pregnancy with consistent pharmacokinetics, although possible teratogenicity may limit this. Antiretroviral-mediated DDIs (efavirenz and ritonavir) had moderate effects on piperaquine during different gestational weeks with a predicted AUC ratio in the range 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir, respectively, over GW 10-40, with a reduction in circulating human serum albumin significantly reducing the number of subjects attaining the day 7 (post-dose) therapeutic efficacy concentrations under both efavirenz and ritonavir DDIs. This present model successfully mechanistically predicted the pharmacokinetics of piperaquine in pregnancy to be unchanged with respect to non-pregnant women, in the light of factors such as malaria/HIV co-infection. However, antiretroviral-mediated DDIs could significantly alter piperaquine pharmacokinetics. Further model refinement will include collation of relevant physiological and biochemical alterations common to HIV/malaria patients. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).

    PubMed

    Heuer, Rachael M; Munley, Kathleen M; Narsinghani, Nafis; Wingar, Jessica A; Mackey, Theresa; Grosell, Martin

    2016-01-01

    Most marine teleosts defend blood pH during high CO2 exposure by sustaining elevated levels of HCO3(-) in body fluids. In contrast to the gill, where measures are taken to achieve net base retention, elevated CO2 leads to base loss in the intestine of marine teleosts studied to date. This loss is thought to occur through transport pathways previously demonstrated to be involved with routine osmoregulation in marine teleosts. The main objective of this study was to characterize the intestinal transport physiology of the gulf toadfish (Opsanus beta) when exposed to varied levels of CO2: control, 5,000, 10,000, and 20,000 μatm CO2 (0.04, 0.5, 1, and 2 kPa, respectively). Results of this study suggest that intestinal apical anion exchange is highly responsive to hypercarbia, evidenced by a dose-dependent increase in intestinal luminal HCO3(-) (mmol L(-1)) that was mirrored by a reduction in Cl(-) (mmol L(-1)). Despite activation of HCO3(-) transport pathways typically used during osmoregulation, fractional fluid absorption was only significantly lower at the highest level of CO2. Although increased HCO3(-) excretion could provide more substrate for intestinally produced carbonates, carbonate production was not significantly increased during hypercarbia at the levels tested. This study is among the first to thoroughly characterize how compensation for elevated CO2 affects transport physiology and carbonate production in the marine fish intestine. This deeper understanding may be particularly relevant when considering the impacts of future predicted ocean acidification, where prolonged base loss may alter the energetic cost of acid-base balance or osmoregulation in marine fish.

  3. Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model

    NASA Astrophysics Data System (ADS)

    Wang, Ken Kang-Hsin; Busch, Theresa M.; Finlay, Jarod C.; Zhu, Timothy C.

    2009-02-01

    Singlet oxygen (1O2) is generally believed to be the major cytotoxic agent during photodynamic therapy (PDT), and the reaction between 1O2 and tumor cells define the treatment efficacy. From a complete set of the macroscopic kinetic equations which describe the photochemical processes of PDT, we can express the reacted 1O2 concentration, [1O2]rx, in a form related to time integration of the product of 1O2 quantum yield and the PDT dose rate. The production of [1O2]rx involves physiological and photophysical parameters which need to be determined explicitly for the photosensitizer of interest. Once these parameters are determined, we expect the computed [1O2]rx to be an explicit dosimetric indicator for clinical PDT. Incorporating the diffusion equation governing the light transport in turbid medium, the spatially and temporally-resolved [1O2]rx described by the macroscopic kinetic equations can be numerically calculated. A sudden drop of the calculated [1O2]rx along with the distance following the decrease of light fluence rate is observed. This suggests that a possible correlation between [1O2]rx and necrosis boundary may occur in the tumor subject to PDT irradiation. In this study, we have theoretically examined the sensitivity of the physiological parameter from two clinical related conditions: (1) collimated light source on semi-infinite turbid medium and (2) linear light source in turbid medium. In order to accurately determine the parameter in a clinical relevant environment, the results of the computed [1O2]rx are expected to be used to fit the experimentally-measured necrosis data obtained from an in vivo animal model.

  4. Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model.

    PubMed

    Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.

  5. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  6. Omentin-1 levels are reduced by pharmacologic doses of leptin, but remain unaffected by energy deprivation and display no day-night variation.

    PubMed

    Hamnvik, Ole-Petter Riksfjord; Thakkar, Bindiya; Chamberland, John; Aronis, Konstantinos; Schneider, Benjamin; Mantzoros, Christos S

    2015-02-01

    To study the day-night variation of omentin-1 levels and assess whether leptin and/or short- and long-term energy deprivation alter circulating omentin-1 levels via cytokines. Omentin-1 levels were measured hourly in serum samples from six healthy men to evaluate for day-night variation. To study effects of acute energy deprivation and of leptin administration, eight healthy subjects were studied in the fasting state for 72 h with administration of either placebo or metreleptin (recombinant human leptin) in physiologic replacement doses. We evaluated the effect of leptin in pharmacologic doses on serum omentin-1 and cytokine levels, as well as on omentin-1 levels in ex vivo omental adipose tissue, in 15 healthy volunteers. To study the effect of chronic energy deprivation and weight loss on omentin-1 levels, we followed 18 obese subjects for 12 months who underwent bariatric surgery. There is no day-night variation in omentin-1 levels. Short-term and chronic energy deprivation, as well as ex vivo leptin administration and physiologic replacement doses of leptin, do not alter omentin-1 levels; pharmacologic doses of metreleptin reduce omentin-1 levels, whereas levels of tumor necrosis factor-α receptor II and interleukin-6 tend to increase. Omentin-1 levels are reduced by pharmacologic doses of metreleptin independent of effects on cytokine levels.

  7. Anatomy and physiology of the aging neck.

    PubMed

    Shadfar, Scott; Perkins, Stephen W

    2014-05-01

    This article discusses the surgically relevant anatomic and physiologic tenets of the aging neck. Procedures performed to rejuvenate and contour the aging neck can be challenging. A thorough understanding of the underlying neck anatomy, as well as the physiology associated with aging, is critical for surgical planning, execution, and achieving aesthetically pleasing outcomes. These topics are reviewed and used as the foundation for a discussion of various other techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. How is physiology relevant to behavior analysis?

    PubMed Central

    Reese, Hayne W.

    1996-01-01

    Physiology is an important biological science; but behavior analysis is not a biological science, and behavior analysts can safely ignore biological processes. However, ignoring products of biological processes might be a serious mistake. The important products include behavior, instinctive drift, behavior potentials, hunger, and many developmental milestones and events. Physiology deals with the sources of such products; behavior analysis can deal with how the products affect behavior, which can be understood without understanding their sources. PMID:22478240

  9. Effects of Maternally-Transferred Methylmercury on Stress Physiology in Northern Water Snake (Nerodia sipedon) Neonates.

    PubMed

    Cusaac, J Patrick W; Kremer, Victoria; Wright, Raymond; Henry, Cassandra; Otter, Ryan R; Bailey, Frank C

    2016-06-01

    Biomagnification of methylmercury in aquatic systems can cause elevated tissue mercury (Hg) and physiological stress in top predators. Mercury is known to affect stress hormone levels in mammals, birds and fish. In this study, the effects of maternally-transferred methylmercury on the stress physiology of Northern Water Snake (Nerodia sipedon) neonates were tested. Gravid females were dosed via force-fed capsules during late gestation with 0, 0.01, or 10 µg methylmercury per gram of body mass. Plasma corticosterone levels and leukocyte differentials were analyzed in baseline and confinement-stressed neonates from all dose levels. Neither Hg nor confinement stress had a significant effect on leukocyte differentials nor was Hg related to corticosterone levels. However, stress group neonates showed lower heterophil/lymphocyte ratios and this study was the first to show that neonate N. sipedon can upregulate CORT in response to stress. These results indicate that N. sipedon may be somewhat tolerant to Hg contamination.

  10. Pharmacometrics in pregnancy: An unmet need.

    PubMed

    Ke, Alice Ban; Rostami-Hodjegan, Amin; Zhao, Ping; Unadkat, Jashvant D

    2014-01-01

    Pregnant women and their fetuses are orphan populations with respect to the safety and efficacy of drugs. Physiological and absorption, distribution, metabolism, and excretion (ADME) changes during pregnancy can significantly affect drug pharmacokinetics (PK) and may necessitate dose adjustment. Here, the specific aspects related to the design, execution, and analysis of clinical studies in pregnant women are discussed, underlining the unmet need for top-down pharmacometrics analyses and bottom-up modeling approaches. The modeling tools that support data analysis for the pregnancy population are reviewed, with a focus on physiologically based pharmacokinetics (PBPK) and population pharmacokinetics (POP-PK). By integrating physiological data, preclinical data, and clinical data (e.g., via POP-PK) to quantify anticipated changes in the PK of drugs during pregnancy, the PBPK approach allows extrapolation beyond the previously studied model drugs to other drugs with well-characterized ADME characteristics. Such a systems pharmacology approach can identify drugs whose PK may be altered during pregnancy, guide rational PK study design, and support dose adjustment for pregnant women.

  11. Comparison of preoperative tramadol and pethidine on postoperative pain in cats undergoing ovariohysterectomy.

    PubMed

    Evangelista, Marina C; Silva, Rodrigo A; Cardozo, Larissa B; Kahvegian, Marcia A P; Rossetto, Thais C; Matera, Julia M; Fantoni, Denise T

    2014-10-15

    A variety of analgesic agents are available, and which one can be used in dogs and cats is a highly controversial issue, existing however a fear in the use of opiates due to possible adverse effects that these drugs can cause. The aim of this study was to compare the analgesic effect provided by the administration of tramadol or pethidine on early postoperative pain of cats undergoing ovariohysterectomy in a double-blind prospective study. Fourty-two animals were randomly assigned into three groups. Pet received pethidine (6 mg/kg), Tra 2 received tramadol (2 mg/kg) and Tra 4 received tramadol (4 mg/kg); all intramuscularly and associated with acepromazine (0.1 mg/kg). The efficacy of each analgesic regimen was evaluated prior to surgery (baseline - TBL), during surgery and 1, 3 and 6 hours after extubation with subjective pain scale, physiologic parameters, serum concentrations of glucose, cortisol and IL-6. Changes in cardiovascular system were not clinically relevant. There were no significant differences in pain scores (P > 0.05) during the study, although the number of rescue analgesia was significantly higher (P < 0.05) at Pet group (5/14) than Tra 4 group (0/14), whereas in Tra 2, two animals (2/14) required additional analgesia. The serum cortisol values of Pet group were significantly higher at T1h T3h (P < 0.05) and T6h (P < 0.01) when compared to baseline (induction), also it was noticed a significant difference among the groups at T6h (Pet values were higher than Tra 2 and Tra 4; P < 0.05). Tramadol provided adequate analgesia and it was more effective than pethidine to at least six hours for the studied animals. At the higher dose (4 mg/kg) tramadol is probably more effective, since rescue analgesia was not necessary. No significant changes were observed physiological parameter that could contraindicate the use of these opioid in described doses, for the feline species.

  12. Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay

    PubMed Central

    Zhou, Enhua H; Watson, Christa; Pizzo, Richard; Cohen, Joel; Dang, Quynh; de Barros, Pedro Macul Ferreira; Park, Chan Young; Chen, Cheng; Brain, Joseph D; Butler, James P; Ruberti, Jeffrey W; Fredberg, Jeffrey J; Demokritout, Philip

    2015-01-01

    Aim As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. Materials & methods Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. Results & discussion We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. Conclusion Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs. PMID:24823434

  13. Solar radiation and human health

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  14. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    EPA Science Inventory

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  15. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably. PMID:27611841

  16. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides.

    PubMed

    Kletting, Peter; Schuchardt, Christiane; Kulkarni, Harshad R; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P; Beer, Ambros J

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25-29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1-3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably.

  17. Passing on the Legacy: Teaching Capillary Filtration and Developing Presentation Skills Using Classic Papers

    ERIC Educational Resources Information Center

    McGeown, J. Graham

    2006-01-01

    Capillary filtration is a key area in the understanding of cardiovascular function and has both physiological and pathophysiological relevance in nearly every organ system. This article describes how classic papers in the Legacy collection of American Physiological Society publications can be used in a teaching symposium exploring the evidence…

  18. Social aggravation: Understanding the complex role of social relationships on stress and health-relevant physiology.

    PubMed

    Birmingham, Wendy C; Holt-Lunstad, Julianne

    2018-04-05

    There is a rich literature on social support and physical health, but research has focused primarily on the protective effects of social relationship. The stress buffering model asserts that relationships may be protective by being a source of support when coping with stress, thereby blunting health relevant physiological responses. Research also indicates relationships can be a source of stress, also influencing health. In other words, the social buffering influence may have a counterpart, a social aggravating influence that has an opposite or opposing effect. Drawing upon existing conceptual models, we expand these to delineate how social relationships may influence stress processes and ultimately health. This review summarizes the existing literature that points to the potential deleterious physiological effects of our relationships when they are sources of stress or exacerbate stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases

    PubMed Central

    da Silva, Marcia Gracindo; Mattos, Elisabete; Camacho-Pereira, Juliana; Domitrovic, Tatiana; Galina, Antonio; Costa, Mauro W; Kurtenbach, Eleonora

    2012-01-01

    Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models. PMID:23620696

  20. Mechanisms and disease relevance of neutrophil extracellular trap formation.

    PubMed

    Van Avondt, Kristof; Hartl, Dominik

    2018-03-15

    While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  1. Prediction of Drug-Drug Interactions with Crizotinib as the CYP3A Substrate Using a Physiologically Based Pharmacokinetic Model.

    PubMed

    Yamazaki, Shinji; Johnson, Theodore R; Smith, Bill J

    2015-10-01

    An orally available multiple tyrosine kinase inhibitor, crizotinib (Xalkori), is a CYP3A substrate, moderate time-dependent inhibitor, and weak inducer. The main objectives of the present study were to: 1) develop and refine a physiologically based pharmacokinetic (PBPK) model of crizotinib on the basis of clinical single- and multiple-dose results, 2) verify the crizotinib PBPK model from crizotinib single-dose drug-drug interaction (DDI) results with multiple-dose coadministration of ketoconazole or rifampin, and 3) apply the crizotinib PBPK model to predict crizotinib multiple-dose DDI outcomes. We also focused on gaining insights into the underlying mechanisms mediating crizotinib DDIs using a dynamic PBPK model, the Simcyp population-based simulator. First, PBPK model-predicted crizotinib exposures adequately matched clinically observed results in the single- and multiple-dose studies. Second, the model-predicted crizotinib exposures sufficiently matched clinically observed results in the crizotinib single-dose DDI studies with ketoconazole or rifampin, resulting in the reasonably predicted fold-increases in crizotinib exposures. Finally, the predicted fold-increases in crizotinib exposures in the multiple-dose DDI studies were roughly comparable to those in the single-dose DDI studies, suggesting that the effects of crizotinib CYP3A time-dependent inhibition (net inhibition) on the multiple-dose DDI outcomes would be negligible. Therefore, crizotinib dose-adjustment in the multiple-dose DDI studies could be made on the basis of currently available single-dose results. Overall, we believe that the crizotinib PBPK model developed, refined, and verified in the present study would adequately predict crizotinib oral exposures in other clinical studies, such as DDIs with weak/moderate CYP3A inhibitors/inducers and drug-disease interactions in patients with hepatic or renal impairment. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    PubMed

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. AGING AND TOXIC RESPONSE: ISSUES RELEVANT TO RISK ASSESSMENT (FINAL)

    EPA Science Inventory

    EPA has released a final report entitled, Aging and Toxic Response: Issues Relevant to Risk Assessment. This document contributes to the Agency's efforts to better understand the physiology of aging in order to protect the health of older persons, and identifies several d...

  4. Human health and the environment: Predicting plasma protein binding and metabolic clearance rates of environmentally relevant chemicals.

    EPA Science Inventory

    In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...

  5. Heritability of climate-relevant traits in a rainforest skink.

    PubMed

    Martins, Felipe; Kruuk, Loeske; Llewelyn, John; Moritz, Craig; Phillips, Ben

    2018-05-22

    There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h 2  < 0.31), but significant and higher heritability of desiccation resistance (h 2 ~0.42). These values contrasted with uniformly higher heritabilities (h 2  > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.

  6. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  7. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of sixmore » selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.« less

  8. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms.

    PubMed

    Thijssen, Dick H J; Maxwell, Joseph; Green, Daniel J; Cable, N Timothy; Jones, Helen

    2016-06-01

    What is the topic of this review? This review discusses the effects of repeated exposure of tissue to ischaemic preconditioning on cardiovascular function, the attendant adaptations and their potential clinical relevance. What advances does it highlight? We discuss the effects of episodic exposure to ischaemic preconditioning to prevent and/or attenuate ischaemic injury and summarize evidence pertaining to improvements in cardiovascular function and structure. Discussion is provided regarding the potential mechanisms that contribute to both local and systemic adaptation. Findings suggest that clinical benefits result from both the prevention of ischaemic events and the attenuation of their consequences. Ischaemic preconditioning (IPC) refers to the phenomenon whereby short periods of cyclical tissue ischaemia confer subsequent protection against ischaemia-induced injury. As a consequence, IPC can ameliorate the myocardial damage following infarction and can reduce infarct size. The ability of IPC to confer remote protection makes IPC a potentially feasible cardioprotective strategy. In this review, we discuss the concept that repeated exposure of tissue to IPC may increase the 'dose' of protection and subsequently lead to enhanced protection against ischaemia-induced myocardial injury. This may be relevant for clinical populations, who demonstrate attenuated efficacy of IPC to prevent or attenuate ischaemic injury (and therefore myocardial infarct size). Furthermore, episodic IPC facilitates repeated exposure to local (e.g. shear stress) and systemic stimuli (e.g. hormones, cytokines, blood-borne substances), which may induce improvement in vascular function and health. Such adaptation may contribute to prevention of cardio- and cerebrovascular events. The clinical benefits of repeated IPC may, therefore, result from both the prevention of ischaemic events and the attenuation of their consequences. We provide an overview of the literature pertaining to the impact of repeated IPC on cardiovascular function, related to both local and remote adaptation, as well as potential clinical implications. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  9. Bisphenol A Disrupts HNF4α-Regulated Gene Networks Linking to Prostate Preneoplasia and Immune Disruption in Noble Rats

    PubMed Central

    Lam, Hung-Ming; Chen, Jing; Medvedovic, Mario; Tam, Neville Ngai Chung

    2016-01-01

    Exposure of humans to bisphenol A (BPA) is widespread and continuous. The effects of protracted exposure to BPA on the adult prostate have not been studied. We subjected Noble rats to 32 weeks of BPA (low or high dose) or 17β-estradiol (E2) in conjunction with T replenishment. T treatment alone or untreated groups were used as controls. Circulating T levels were maintained within the physiological range in all treatment groups, whereas the levels of free BPA were elevated in the groups treated with T+low BPA (1.06 ± 0.05 ng/mL, P < .05) and T+high BPA (10.37 ± 0.43 ng/mL, P < .01) when compared with those in both controls (0.1 ± 0.05 ng/mL). Prostatic hyperplasia, low-grade prostatic intraepithelial neoplasia (PIN), and marked infiltration of CD4+ and CD8+ T cells into the PIN epithelium (P < .05) were observed in the lateral prostates (LPs) of T+low/high BPA-treated rats. In contrast, only hyperplasia and high-grade PIN, but no aberrant immune responses, were found in the T+E2-treated LPs. Genome-wide transcriptome analysis in LPs identified differential changes between T+BPA vs T+E2 treatment. Expression of multiple genes in the regulatory network controlled by hepatocyte nuclear factor 4α was perturbed by the T+BPA but not by the T+E2 exposure. Collectively these findings suggest that the adult rat prostate, under a physiologically relevant T environment, is susceptible to BPA-induced transcriptomic reprogramming, immune disruption, and aberrant growth dysregulation in a manner distinct from those caused by E2. They are more relevant to our recent report of higher urinary levels BPA found in patients with prostate cancer than those with benign disease. PMID:26496021

  10. Prediction of a Therapeutic Dose for Buagafuran, a Potent Anxiolytic Agent by Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Starting from Pharmacokinetics in Rats and Human.

    PubMed

    Yang, Fen; Wang, Baolian; Liu, Zhihao; Xia, Xuejun; Wang, Weijun; Yin, Dali; Sheng, Li; Li, Yan

    2017-01-01

    Physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlus TM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.

  11. The effects of caffeine in women during aerobic-dance bench stepping.

    PubMed

    Ahrens, Jennifer N; Lloyd, Lisa K; Crixell, Sylvia H; Walker, John L

    2007-02-01

    People of all ages and fitness levels participate regularly in aerobic-dance bench stepping (ADBS) to increase fitness and control body weight. Any reasonable method for enhancing the experience or effectiveness of ADBS would be beneficial. This study examined the acute effects of a single dose of caffeine on physiological responses during ADBS in women. When compared with a placebo, neither a 3- nor a 6-mg/kg dose of caffeine altered physiological responses or rating of perceived exertion (RPE) in 20 women (age 19-28 y) of average fitness level, not habituated to caffeine, while they performed an ADBS routine. Since neither dose of caffeine had any effect on VO2, VCO2, minute ventilation, respiratory-exchange ratio, rate of energy expenditure, heart rate, or RPE during ADBS exercise, it would not be prudent for a group exercise leader to recommend caffeine to increase energy cost or decrease perception of effort in an ADBS session. Furthermore, caffeine ingestion should not interfere with monitoring intensity using heart rate or RPE during ADBS.

  12. Methyl parathion and fenvalerate toxicity in American kestrels: Acute physiological responses and effects of cold

    USGS Publications Warehouse

    Rattner, B.A.; Franson, J.C.

    1984-01-01

    Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.

  13. In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants).

    PubMed

    Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas; Selen, Arzu; Müllertz, Anette

    2017-02-01

    The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.

  14. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    PubMed Central

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-01-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours. PMID:26996103

  15. FGF21 and the late adaptive response to starvation in humans.

    PubMed

    Fazeli, Pouneh K; Lun, Mingyue; Kim, Soo M; Bredella, Miriam A; Wright, Spenser; Zhang, Yang; Lee, Hang; Catana, Ciprian; Klibanski, Anne; Patwari, Parth; Steinhauser, Matthew L

    2015-11-03

    In mice, FGF21 is rapidly induced by fasting, mediates critical aspects of the adaptive starvation response, and displays a number of positive metabolic properties when administered pharmacologically. In humans, however, fasting does not consistently increase FGF21, suggesting a possible evolutionary divergence in FGF21 function. Moreover, many key aspects of FGF21 function in mice have been identified in the context of transgenic overexpression or administration of supraphysiologic doses, rather than in a physiologic setting. Here, we explored the dynamics and function of FGF21 in human volunteers during a 10-day fast. Unlike mice, which show an increase in circulating FGF21 after only 6 hours, human subjects did not have a notable surge in FGF21 until 7 to 10 days of fasting. Moreover, we determined that FGF21 induction was associated with decreased thermogenesis and adiponectin, an observation that directly contrasts with previous reports based on supraphysiologic dosing. Additionally, FGF21 levels increased after ketone induction, demonstrating that endogenous FGF21 does not drive starvation-mediated ketogenesis in humans. Instead, a longitudinal analysis of biologically relevant variables identified serum transaminases--markers of tissue breakdown--as predictors of FGF21. These data establish FGF21 as a fasting-induced hormone in humans and indicate that FGF21 contributes to the late stages of adaptive starvation, when it may regulate the utilization of fuel derived from tissue breakdown.

  16. Preoperative assessment and preparation of patients with diseases affecting the central nervous system.

    PubMed

    Milaković, Branko; Dimitrijević, Ivan; Malenković, Vesna; Marković, Dejan; Pantić-Palibrk, Vesna; Gvozdenović, Ljiljana

    2011-01-01

    This review will examine the most important issues of preoperative evaluation and preparation in relation to patients with deseases affecting the central nervous system. Those patients may undergo various forms of surgery unrelated to the central nervous system disease. We discuss the effect of physiologic and pharmacological factors on cerebral autoregulation and control of intracranial pressure alongside its clinical relevance with the help of new evidence. Regardless of the reason for surgery, coexisting diseases of brain often have important implications when selecting anesthetic drugs, procedures and monitoring techniques. Suppression of cerebral metabolic rate is not the sole mechanism for the neuroprotective effect of anaesthetic agents. There are certain general principles, but also some specific circumstances, when we are talking about optimal anesthetic procedure for a patient with coexisting brain disease. Intravenous anesthesia, such as combination of propofol and remifentanil, provides best preservation of autoregulation. Among inhaled agents isoflurane and sevoflurane appear to preserve autoregulation at all doses, whereas with other agents autoregulation is impaired in a dose-related manner. During maintenance of anesthesia the patient is ventilated by intermittent positive pressure ventilation, at intermediate hyperventilation (PaCO2 25-30 mmHg). Intraoperative cerebral autoregulation monitoring is an important consideration for the patients with coexisting neurological disease. Transcranial Doppler based static autoregulation measurements appears to be the most robust bedside method for this purpose.

  17. Environmental Progestins Progesterone and Drospirenone Alter the Circadian Rhythm Network in Zebrafish (Danio rerio).

    PubMed

    Zhao, Yanbin; Castiglioni, Sara; Fent, Karl

    2015-08-18

    Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.

  18. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    NASA Astrophysics Data System (ADS)

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  19. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology.

    PubMed

    Lazic, Stanley E

    2008-07-21

    Analysis of variance (ANOVA) is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis - even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159). This will be true in general, and the reasons for this are discussed. There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  20. Acute and subacute toxicity of Schinus terebinthifolius bark extract.

    PubMed

    Lima, L B; Vasconcelos, C F B; Maranhão, H M L; Leite, V R; Ferreira, P A; Andrade, B A; Araújo, E L; Xavier, H S; Lafayette, S S L; Wanderley, A G

    2009-12-10

    Schinus terebinthifolius Raddi (Anacardiaceae) has long been used in traditional Brazilian medicine, especially to treat inflammatory and haemostatic diseases. The objective of this study was to evaluate the acute and subacute toxicity (45 days) of Schinus terebinthifolius via the oral route in Wistar rats of both sexes. For the acute toxicity test, the dried extract of Schinus terebinthifolius bark was administered in doses from 0.625 to 5.0 g/kg (n=5/group/sex) and in the subacute toxicity test the following doses were used: 0.25, 0.625 and 1.5625 g/kg/day (n=13/group/sex), for 45 consecutive days. In the acute toxicity test, Schinus terebinthifolius did not produce any toxic signs or deaths. The subacute treatment with Schinus terebinthifolius did not alter either the body weight gain or the food and water consumption. The hematological and biochemical analysis did not show significant differences in any of the parameters examined in female or male groups, except in two male groups, in which the treatment with Schinus terebinthifolius (0.25 and 0.625 g/kg) induced an increase of mean corpuscular volume values (2.9 and 2.6%, respectively). These variations are within the physiological limits described for the specie and does not have clinical relevance. The acute and subacute administration of the dried extract of Schinus terebinthifolius bark did not produced toxic effects in Wistar rats.

  1. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression.

    PubMed

    Choi, Suh-Yeon; Bin, Bum-Ho; Kim, Wanil; Lee, Eunkyung; Lee, Tae Ryong; Cho, Eun-Gyung

    2018-06-01

    Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. Human epidermal melanocytes were exposed twice with 20 mJ/cm 2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  2. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  3. Developing a rich definition of the person/residence to support ...

    EPA Pesticide Factsheets

    Characterizing interindividual variation in combined chemical exposures from the use of consumer products is a challenge because of the complexity of these exposures. There are many products commercially available and individuals use combinations of products dictated by their specific needs. Product use varies with an individual’s demographics (e.g., age, gender, ethnicity, family structure, and type of residence). Exposures also occur as a result of other individuals using products in the home (e.g., painting a room exposes all individuals in a home and washing a child exposes both child and adult). Finally, characterizing applied and internal doses requires data on the physiology and behaviors of the individual. The U.S. EPA is developing probabilistic methods of modeling variation in exposure-relevant characteristics of individuals, their residences, and their families. The goal of this effort is the generation of synthetic populations whose characteristics can be used to predict chemical doses from the use of consumer products. A database of population demographics is created by linking data from the U.S. Census with data from U.S. housing surveys. Survey data are linked by matching records based on similarities in the characteristics correlated with the parameters of interest. The demographics are also combined with rules controlling product usage to refine the estimates of the products that individuals in a household may use (e.g., only adults with a you

  4. From Claude Bernard to the Batcave and Beyond: Using Batman as a Hook for Physiology Education

    ERIC Educational Resources Information Center

    Zehr, E. Paul

    2011-01-01

    Communicating physiology to the general public and popularizing science can be tremendously rewarding activities. Providing relevant and compelling points of linkage, however, between the scientific experiences and the interests of the general public can be challenging. One avenue for popularizing science is to link scientific concepts to images,…

  5. The Emergent Coordination of Cognitive Function

    ERIC Educational Resources Information Center

    Kello, Christopher T.; Beltz, Brandon C.; Holden, John G.; Van Orden, Guy C.

    2007-01-01

    1/f scaling has been observed throughout human physiology and behavior, but its origins and meaning remain a matter of debate. Some argue that it is a byproduct of ongoing processes in the brain or body and therefore of limited relevance to psychological theory. Others argue that 1/f scaling reflects a fundamental aspect of all physiological and…

  6. Challenges of physiological monitoring in a Navy operational setting

    NASA Technical Reports Server (NTRS)

    Banta, Guy R.

    1988-01-01

    Challenges to physiological monitoring in the Navy include environmental extremes, acceptance of use by test subjects, data transfer, data interpretation, and capability of relating collected data to valid operational relevant criterion measures. These problems are discussed with respect to diving, electrophysiological monitoring, in-flight monitoring, aircrew fatigue, in-flight cardiac stress, and in-flight monitoring devices.

  7. Fluoxetine: clinical pharmacology and physiologic disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemberger, L.; Bergstrom, R.F.; Wolen, R.L.

    Fluoxetine (30 mg), administered for 7 days to normal volunteers, produced a 66% inhibition of tritiated serotonin uptake into platelets. Plasma concentrations of fluoxetine correlated positively with inhibition of serotonin uptake. Fluoxetine is well absorbed after oral administration in both the fed and fasted states and demonstrates dose proportionality. Fluoxetine disappears from plasma with a half-life of 1-3 days; its metabolite norfluoxetine has a plasma half-life of 7-15 days. After administration of /sup 14/C-fluoxetine, approximately 65% of the administered dose of radioactivity is recovered in urine and about 15% in feces. Fluoxetine, given as a single dose or in multiplemore » doses over 8 days, did not produce significant effects on the plasma disappearance of warfarin, diazepam, tolbutamide, or chlorothiazide. Coadministration of fluoxetine and ethanol did not result in an increase from control values in the blood ethanol levels, nor did it produce significant changes in physiologic, psychometric, or psychomotor activity. Pharmacokinetics of fluoxetine in the elderly and normal volunteers appear to be similar. In addition, pharmacokinetic analyses in patients with varying degrees of renal impairment did not show significant differences from healthy subjects.« less

  8. The Educated Guess: Determining Drug Doses in Exotic Animals Using Evidence-Based Medicine.

    PubMed

    Visser, Marike; Oster, Seth C

    2018-05-01

    Lack of species-specific pharmacokinetic and pharmacodynamic data is a challenge for pharmaceutical and dose selection. If available, dose extrapolation can be accomplished via basic equations. If unavailable, several methods have been described. Linear scaling uses an established milligrams per kilograms dose based on weight. This does not allow for differences in species drug metabolism, sometimes resulting in toxicity. Allometric scaling correlates body weight and metabolic rate but fails for drugs with significant hepatic metabolism and cannot be extrapolated to avians or reptiles. Evidence-based veterinary medicine for dose design based on species similarity is discussed, considering physiologic differences between classes. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The G protein-coupled receptor GPR34 - The past 20 years of a grownup.

    PubMed

    Schöneberg, Torsten; Meister, Jaroslawna; Knierim, Alexander Bernd; Schulz, Angela

    2018-04-22

    Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers.

    PubMed

    Heishman, S J; Henningfield, J E

    2000-10-01

    When administered acutely to nonsmokers, nicotine's effects on performance are inconsistent, perhaps because of suboptimal dosing or initial dysphoria that could interfere with performance. The purpose of this study was to determine if a range of nicotine doses administered for 8 days to nonsmokers would enhance psychomotor and cognitive abilities and to document the development of nicotine tolerance or sensitization. Twelve male volunteers, who reported ever smoking five cigarettes or less, participated in 8 consecutive experimental days in which they were administered four doses of nicotine polacrilex gum each day in this order: 0, 2, 4, and 8 mg. Performance, subjective, and physiological measures were assessed before and after each dose. Plasma nicotine concentration ranged from 6.9 to 11.5 ng/ml following the 8 mg dose. Nicotine increased rate of responding and decreased response time on working memory (digit recall); however, accuracy was impaired. Nicotine also decreased accuracy on visual scanning and attention (two-letter search), and the 8 mg dose impaired gross motor coordination (circular lights). Tolerance did not develop to the performance impairing effects of nicotine. Nicotine produced dose-related increases in ratings of dysphoria and negative mood, including tension, anxiety, nervousness, turning of stomach, and sedation. Tolerance developed to some, but not all, of these aversive effects. Tolerance also was not observed to the increased cardiovascular measures. Although tolerance developed to some of the aversive effects of nicotine, performance enhancement was not observed. These data do not support the hypothesis that nicotine-induced performance enhancement contributes to the reinforcing effects of tobacco use during the early stages of dependence development.

  11. Terbinafine in Combination with Other Antifungal Agents for Treatment of Resistant or Refractory Mycoses: Investigating Optimal Dosing Regimens Using a Physiologically Based Pharmacokinetic Model

    PubMed Central

    Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579

  12. Effect of low dosage biochar amendment on plant physiology parameters of sunflowers

    NASA Astrophysics Data System (ADS)

    María De la Rosa, José; Paneque, Marina; Franco-Navarro, Juan D.; Colmenero-Flores, José Manuel; Knicker, Heike

    2017-04-01

    Four different biochars were used as organic ameliorants in a typical agricultural soil of the Mediterranean region a (Calcic Cambisol). This field study was performed with plants of sunflower (Helianthus annuus L.) at the experimental station "La Hampa", located in the Guadalquivir river valley (SW Spain). The soil was amended with doses equivalent to 1.5 and 15 t ha-1 of the four biochars in two independent plantations. In addition, un-amended plots were prepared for comparison purposes 1. This study showed that the amendment with 1.5 t biochar ha-1 did not modify significantly soil properties, or the agronomic productivity of sunflowers. However, in spite of this low dose of biochar, positive effects on plant physiology were observed. The efficiency of Photosystem-II (quantum yield (QYPSII)), is a stress marker, related to the water status of the plant, and is reduced under drought stress. The QYPSII values of the plants grown with 1.5 t biochar ha-1 were higher than in the control and ranged between 72 and 77%. Values between 70 and 80% correspond to non-stressed (well-watered) sunflower plants. Biochar reduced stomatal conductance (gs, leaf transpiration) in both treatments. Therefore, the dependence of agronomic productivity on biochar dose was not observed, since both doses resulted in similar gs reductions. In C3 plants, such as sunflower, an increase of leaf area (LA) is usually associated to a decrease of gs caused by a reduction of stomatal frequency and increases the water use efficiency and drought tolerance 2. However, here no clear correlation could be established between biochar-induced LA stimulation and gs response after application of biochar. Thus, gs reduction was evident but not a consequence of LA increase. We hypothesize that biochar addition to soils alters anatomical and/or physiological parameters of the plants that in turn reduces stomatal conductance and increases water use efficiency of sunflower plants. After the last rain, increasing drought and water deficit resulted in a progressive reduction of gs in control plants. The more efficient use of water increased drought tolerance of amended plants. Therefore, we propose that biochar amendment provides protection from water deficit stress, a finding that points to the agronomic relevance of biochar use for Mediterranean rainfed crops. Acknowledgements: J.M. de la Rosa and Marina Paneque thank the Spanish Ministry of Economy and Competitiveness (MINECO) for his "Ramón y Cajal" post-doctoral contract and her FPU fellowship (FPU 13/05831) respectively. MINECO, the European Regional Development Fund and Marie Curie Integration Grants of 7th European Community Framework Programme are thanked for the financial support (CGL2015-64811-P, PCIG12-GA-2012-333784). References: 1Paneque M., De la Rosa J.M., Franco-Navarro J., Colmenero-Flores JM., Knicker H., 2016. CATENA. 147, 280-287. 2 Franco-Navarro J.D., Brumós J., Rosales M.A., Cubero-Font P., Talón M., Colmenero-Flores J.M., 2016. J. Exp. Bot. 67, 873-891.

  13. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation.

    PubMed

    Hernando, Marcelo; Minaglia, Melina Celeste Crettaz; Malanga, Gabriela; Houghton, Christian; Andrinolo, Darío; Sedan, Daniela; Rosso, Lorena; Giannuzzi, Leda

    2018-01-17

    The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m -2 . For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m -2 , oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m -2 ), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.

  14. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    PubMed Central

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  15. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone.

    PubMed

    Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R

    2016-04-01

    The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeksmore » 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.« less

  17. Clinical Pharmacokinetics in Kidney Disease: Fundamental Principles.

    PubMed

    Lea-Henry, Tom N; Carland, Jane E; Stocker, Sophie L; Sevastos, Jacob; Roberts, Darren M

    2018-06-22

    Kidney disease is an increasingly common comorbidity that alters the pharmacokinetics of many drugs. Prescribing to patients with kidney disease requires knowledge about the drug, the extent of the patient's altered physiology, and pharmacokinetic principles that influence the design of dosing regimens. There are multiple physiologic effects of impaired kidney function, and the extent to which they occur in an individual at any given time can be difficult to define. Although some guidelines are available for dosing in kidney disease, they may be on the basis of limited data or not widely applicable, and therefore, an understanding of pharmacokinetic principles and how to apply them is important to the practicing clinician. Whether kidney disease is acute or chronic, drug clearance decreases, and the volume of distribution may remain the same or increase. Although in CKD, these changes progress relatively slowly, they are dynamic in AKI, and recovery is possible depending on the etiology and treatments. This, and the use of kidney replacement therapies further complicate attempts to quantify drug clearance at the time of prescribing and dosing in AKI. The required change in the dosing regimen can be estimated or even quantitated in certain instances through the application of pharmacokinetic principles to guide rational drug dosing. This offers an opportunity to provide personalized medical care and minimizes adverse drug events from either under- or overdosing. We discuss the principles of pharmacokinetics that are fundamental for the design of an appropriate dosing regimen in this review. Copyright © 2018 by the American Society of Nephrology.

  18. Arterial gastroduodenal infusion of cholecystokinin-33 stimulates the exocrine pancreatic enzyme release via an enteropancreatic reflex, without affecting the endocrine insulin secretion in pigs.

    PubMed

    Rengman, Sofia; Weström, Björn; Ahrén, Bo; Pierzynowski, Stefan G

    2009-03-01

    Cholecystokinin (CCK)-dependent exocrine pancreatic regulation seems to involve different pathways in different species. The aims were to explore the enteropancreatic reflex in the CCK-mediated regulation of the exocrine pancreas and to evaluate a possible involvement of this reflex in the endocrine insulin release. In anesthetized pigs, CCK-33 in increasing doses (4-130 pmol kg 10 min) was infused locally to the gastroduodenal artery, or systemically via the jugular vein. Also, a low CCK-33 dose (13 pmol kg) was injected to the duodenum/antrum area before and after a bilateral truncal vagotomy. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min increased protein and trypsin outputs after local infusion to the antral-duodenal area, whereas it had no effect after systemic infusion. Cholecystokinin-33 in the pharmacological dose range 64 to 130 pmol kg 10 min further increased the secretion after both local and systemic infusions. Only CCK-33 infusions in the pharmacological dose range were able to elevate the plasma insulin levels. Vagotomy had no effect on CCK-33-mediated stimulation of the enzyme release, whereas it had a significant effect on the plasma insulin level. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min stimulates the enzyme secretion but had no effect on the insulin release via a short enteropancreatic pathway in pigs.

  19. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    PubMed Central

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)–induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8±7.1 min compared to 75.4±25.1 and 76.4±42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS. PMID:20210475

  20. Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease

    PubMed Central

    Lowe, David E.; Glomski, Ian J.

    2012-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667

  1. Capillary response to skeletal muscle contraction: evidence that redundancy between vasodilators is physiologically relevant during active hyperaemia.

    PubMed

    Lamb, Iain R; Novielli, Nicole M; Murrant, Coral L

    2018-04-15

    The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K + ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10 -7 m S-nitroso-N-acetylpenicillamine (SNAP), 10 -7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and ∼128.0% respectively and ADO significantly attenuated KCl- and SNAP-induced vasodilatations by ∼94.7% and ∼59.6%, respectively. NO significantly attenuated KCl vasodilatation by 93.8%. Further, during muscle contraction we found that inhibition of NO production using l-N G -nitroarginine methyl ester and inhibition of ADO receptors using xanthine amine congener was effective at inhibiting contraction-induced vasodilatation but only in the presence of K + release channel inhibition. Thus, only when the inhibiting vasodilator K + was blocked was the second vasodilator, NO or ADO, able to produce effective vasodilatation. Therefore, we show that there are inhibitory interactions between specific vasodilators at the level of the capillary. Further, these inhibitions can be observed during muscle contraction indicating that redundancies between vasodilators are physiologically relevant and influence vasodilatation during active hyperaemia. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS... elements underlying the dose reconstruction process, based on relevant new research findings and...

  3. Development of a biologically based dose response (BBDR) model for arsenic induced cancer

    EPA Science Inventory

    We are developing a biologically based dose response (BBDR) model for arsenic carcinogenicity in order to reduce uncertainty in estimates of low dose risk by maximizing the use of relevant data on the mode of action. Expert consultation and literature review are being conducted t...

  4. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study.

    PubMed

    Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars

    2015-11-01

    A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.

  5. Reproductive Alterations in Chronically Exposed Female Mice to Environmentally Relevant Doses of a Mixture of Phthalates and Alkylphenols.

    PubMed

    Patiño-García, Daniel; Cruz-Fernandes, Leonor; Buñay, Julio; Palomino, Jaime; Moreno, Ricardo D

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice. Copyright © 2018 Endocrine Society.

  6. Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop.

    PubMed

    Aigner, Achim; Buesen, Roland; Gant, Tim; Gooderham, Nigel; Greim, Helmut; Hackermüller, Jörg; Hubesch, Bruno; Laffont, Madeleine; Marczylo, Emma; Meister, Gunter; Petrick, Jay S; Rasoulpour, Reza J; Sauer, Ursula G; Schmidt, Kerstin; Seitz, Hervé; Slack, Frank; Sukata, Tokuo; van der Vies, Saskia M; Verhaert, Jan; Witwer, Kenneth W; Poole, Alan

    2016-12-01

    The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  7. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria.

    PubMed

    Hu, Liyan; Pandey, Amit V; Eggimann, Sandra; Rüfenacht, Véronique; Möslinger, Dorothea; Nuoffer, Jean-Marc; Häberle, Johannes

    2013-11-29

    Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.

  8. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID)

    PubMed Central

    Hainsworth, Atticus H; Yeo, Natalie E; Weekman, Erica M; Wilcock, Donna M

    2016-01-01

    Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3–10µM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100–200µM), mild-moderate hyperhomocysteinemia ([HCy]: 10–100µM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100 µM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support Hcy as a mediator for VCID. In our view further trails of combined B-vitamin supplementation are called for, incorporating lessons from previous trails and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; target cohorts with low baseline B-vitamin status. PMID:26689889

  9. Approaches for the Application of Physiologically Based ...

    EPA Pesticide Factsheets

    EPA released the final report, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment as announced in a September 22 2006 Federal Register Notice.This final report addresses the application and evaluation of PBPK models for risk assessment purposes. These models represent an important class of dosimetry models that are useful for predicting internal dose at target organs for risk assessment applications. EPA is releasing a final report describing the evaluation and applications of physiologically based pharmacokinetic (PBPK) models in health risk assessment. This was announced in the September 22 2006 Federal Register Notice.

  10. Assessing dose of the representative person for the purpose of radiation protection of the public. ICRP publication 101. Approved by the Commission in September 2005.

    PubMed

    2006-01-01

    The Commission intended that its revised recommendations should be based on a simple, but widely applicable, system of protection that would clarify its objectives and provide a basis for the more formal systems needed by operating managers and regulators. The recommendations would establish quantified constraints, or limits, on individual dose from specified sources. These dose constraints apply to actual or representative people who encounter occupational, medical, and public exposures. This report updates the previous guidance for estimating dose to the public. Dose to the public cannot be measured directly and, in some cases, it cannot be measured at all. Therefore, for the purpose of protection of the public, it is necessary to characterise an individual, either hypothetical or specific, whose dose can be used for determining compliance with the relevant dose constraint. This individual is defined as the 'representative person'. The Commission's goal of protection of the public is achieved if the relevant dose constraint for this individual for a single source is met and radiological protection is optimised. This report explains the process of estimating annual dose and recognises that a number of different methods are available for this purpose. These methods range from deterministic calculations to more complex probabilistic techniques. In addition, a mixture of these techniques may be applied. In selecting characteristics of the representative person, three important concepts should be borne in mind: reasonableness, sustainability, and homogeneity. Each concept is explained and examples are provided to illustrate their roles. Doses to the public are prospective (may occur in the future) or retrospective (occurred in the past). Prospective doses are for hypothetical individuals who may or may not exist in the future, while retrospective doses are generally calculated for specific individuals. The Commission recognises that the level of detail afforded by its provision of dose coefficients for six age categories is not necessary in making prospective assessments of dose, given the inherent uncertainties usually associated with estimating dose to the public and with identification of the representative person. It now recommends the use of three age categories for estimating annual dose to the representative person for prospective assessments. These categories are 0-5 years (infant), 6-15 years (child), and 16-70 years (adult). For practical implementation of this recommendation, dose coefficients and habit data for a 1-year-old infant, a 10-year-old child, and an adult should be used to represent the three age categories. In a probabilistic assessment of dose, whether from a planned facility or an existing situation, the Commission recommends that the representative person should be defined such that the probability is less than about 5% that a person drawn at random from the population will receive a greater dose. If such an assessment indicates that a few tens of people or more could receive doses above the relevant constraint, the characteristics of these people need to be explored. If, following further analysis, it is shown that doses to a few tens of people are indeed likely to exceed the relevant dose constraint, actions to modify the exposure should be considered. The Commission recognises the role that stakeholders can play in identifying characteristics of the representative person. Involvement of stakeholders can significantly improve the quality, understanding, and acceptability of the characteristics of the representative person and the resulting estimated dose.

  11. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans

    2010-05-15

    Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less

  12. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Leptin administered in physiological or pharmacological doses does not regulate circulating angiogenesis factors in humans.

    PubMed

    Aronis, K N; Diakopoulos, K N; Fiorenza, C G; Chamberland, J P; Mantzoros, C S

    2011-09-01

    Leptin has been shown to regulate angiogenesis in animal and in vitro studies by upregulating the production of several pro-angiogenic factors, but its role in regulating angiogenesis has never been studied in humans. The potential angiogenic effect of two doses of metreleptin (50 and 100 ng/ml) was evaluated in vitro, using a novel three-dimensional angiogenesis assay. Fifteen healthy, normoleptinaemic volunteers were administered both a physiological (0.1 mg/kg) and a pharmacological (0.3 mg/kg) single dose of metreleptin, in vivo, on two different inpatient admissions separated by 1-12 weeks. Serum was collected at 0, 6, 12 and 24 h after metreleptin administration. Twenty lean women, with leptin levels <5 ng/ml, were randomised in a 1:1 fashion to receive either physiological replacement doses of metreleptin (0.04-0.12 mg/kg q.d.) or placebo for 32 weeks. Serum was collected at 0, 8, 20 and 32 weeks after randomisation. Proteomic angiogenesis array analysis was performed to screen for angiogenic factors. Circulating concentrations of angiogenin, angiopoietin-1, platelet derived endothelial factor (PDGF)-AA, matrix metalloproteinase (MMP) 8 and 9, endothelial growth factor (EGF) and vascular EGF (VEGF) were also measured. Both metreleptin doses failed to induce angiogenesis in the in vitro model. Although leptin levels increased significantly in response to both short-term and long-term metreleptin administration, circulating concentrations of angiogenesis markers did not change significantly in vivo. This is the first study that examines the effect of metreleptin administration in angiogenesis in humans. Metreleptin administration does not regulate circulating angiogenesis related factors in humans. ClinicalTrials.gov NCT00140205 and NCT00130117. This study was supported by National Institutes of Health-National Center for Research Resources grant M01-RR-01032 (Harvard Clinical and Translational Science Center) and grant number UL1 RR025758. Funding was also received from the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785, 79929 and 81913, and AG032030.

  14. Using a simulation model to assess risk of false negative point-of-care urinary human chorionic gonadotropin device results due to high-dose hook interference.

    PubMed

    Milhorn, Denise; Korpi-Steiner, Nichole

    2015-02-01

    It is unclear if the point-of-care (POC) Clinitest hCG device is subject to high-dose hook interference from physiological concentrations of intact human chorionic gonadotropin (hCG), β-core fragment of hCG (hCGβcf), and hCG free β-subunit (hCGβ) found in urine during pregnancy. We used a simulation model to address this question and related our findings to our institution's pregnant population in order to assess risk for potential false-negative hCG results. The expected distribution of days relative to ovulation during routine POC hCG testing was estimated from 182 patients. Clinitest-Clinitek Status hCG device susceptibility to high-dose hook interference from hCG variants and potential risk of false-negative results as it relates to this population were evaluated by testing increasing concentrations of hCG, hCGβcf, hCGβ as well as urine simulating physiological hCG, hCGβcf and hCGβ concentrations expected during early pregnancy (≤44 days post-ovulation). The Clinitest-Clinitek Status hCG device exhibited high-dose hook interference from hCGβcf alone, but not from hCG, hCGβ, or simulated physiological urinary concentrations of combined hCG, hCGβcf and hCGβ expected during early pregnancy. The majority of our patient population had urinary hCG testing conducted during early pregnancy. The Clinitest-Clinitek Status hCG device is unlikely to exhibit false-negative urinary hCG results due to high-dose hook interference for women in early healthy pregnancy, although additional studies are necessary to determine potential risk in other patient populations. Visual interpretation of POC urinary hCG device results is an important failure mode to consider in risk analyses for erroneous urinary hCG device results. Published by Elsevier Inc.

  15. Physiology undergraduate degree requirements in the U.S.

    PubMed

    VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A

    2017-12-01

    Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.

  16. Translating Pharmacokinetic and Pharmacodynamic Data into Practice.

    PubMed

    Visser, Marike

    2018-05-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) publications provide scientific evidence for incorporation in evidence-based veterinary medicine, aiding the clinician in selecting doses and dosing intervals. PK and PD studies have reported wide variations within exotic species, due to physiologic differences in absorption, distribution, metabolism, and excretion. PK studies offer species-specific data to help tailor doses and dosing routes to individual patients, minimize toxicity, and provide a cornerstone for PD studies to determine drug efficacy. This article reviews the application of PK parameters and the challenges in determining the PD activity of drugs, with a particular emphasis on exotic species. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The Effect of Different Levels of Cu, Zn and Mn Nanoparticles in Hen Turkey Diet on the Activity of Aminopeptidases.

    PubMed

    Jóźwik, Artur; Marchewka, Joanna; Strzałkowska, Nina; Horbańczuk, Jarosław Olav; Szumacher-Strabel, Małgorzata; Cieślak, Adam; Lipińska-Palka, Paulina; Józefiak, Damian; Kamińska, Agnieszka; Atanasov, Atanas G

    2018-05-11

    The aim of the study was to estimate the influence of the different levels of Cu, Zn, and Mn nanoparticles on the activity of aminopeptidases in turkey. An experiment was carried out on 144 turkey hen Hybrid Converter. The birds were divided into groups given standard- and nanoparticle-supplementation of different level of copper (Cu 20, 10, 2 mg/kg), zinc (Zn 100, 50, 10 ppm), and manganese (Mn 100, 50, 10 ppm), covering respectively 100%, 50%, and 10% of the physiological demands for those minerals in the diet. The activity of aminopeptidases (alanyl: AlaAP, leucyl: LeuAP and arginyl: ArgAP) after supplementation of minerals was determined in the breast and thigh turkey muscle. The strongest effect of interaction among minerals supplementation form and dose on the activity levels of the aminopeptidases in thigh muscle was observed for nano-Cu already at the lowest dose of 2 mg/kg. In this dose (covering 10% of the birds’ demand) nano form of supplementation significantly increased the activity of Ala-, Leu-, and ArgAP (877, 201, and 719, respectively), compared to standard form of supplementation (461, 90.5, and 576, respectively). In turn, in breast muscle, after supplementation covering 10% of the demand with the nano-Cu, nano-Zn, and nano-Mn compared to the standard form, we did not observe any significant difference in the activity levels of any of the investigated aminopeptidases, except for AlaAP under Zn supplementation. Supplementation with the 20 mg/kg of Nano-Cu (100% of demand) and with 10 mg/kg of Nano-Cu (50% of demand) inhibited the activity of all of the three aminopeptidases in thigh muscle. Supplementation of the minerals in nano form into the diet, especially of Cu and Zn in the dose covering 10% of the demand is relevant to maintain homeostasis in turkey muscles, as indicated by the activity of the aminopeptidases.

  18. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology.

    PubMed

    Schuldt, Carsten; Karl, Anett; Körber, Nicole; Koch, Christian; Liu, Qing; Fritsch, Anatol W; Reichenbach, Andreas; Wiedemann, Peter; Käs, Josef A; Francke, Mike; Iseli, Hans Peter

    2015-08-01

    To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2015 the American Physiological Society.

  20. Susceptibility of Blastomyces dermatitidis strains to products of oxidative metabolism.

    PubMed

    Sugar, A M; Chahal, R S; Brummer, E; Stevens, D A

    1983-09-01

    Three strains of Blastomyces dermatitidis which differ in their virulence for mice were exposed in their yeast form to various components of the peroxidase-hydrogen peroxide-halide system. Susceptibility to H2O2 alone correlated with virulence, with the most virulent strain (ATCC 26199) least susceptible (50% lethal dose, greater than 50 mM) and an avirulent strain (ATCC 26197) most susceptible (50% lethal dose less than 3.3 mM). A strain of intermediate virulence (ATCC 26198) was of intermediate susceptibility (50% lethal dose, 11.5 mM). The addition of a nontoxic concentration of KI (5 X 10(-4) M) did not increase H2O2 toxicity. However, the addition of either myeloperoxidase or horseradish peroxidase and KI markedly decreased the amount of H2O2 required to kill the organisms, with 100 +/- 0% of all strains killed at 5 X 10(-5) M H2O2 and 97 +/- 4, 100 +/- 0, and 94 +/- 8% of ATCC 26199, ATCC 26198, and ATCC 26197 killed, respectively, at 5 X 10(-6) M H2O2. Kinetic studies with H2O2 alone revealed a delayed onset of killing, but virtually 100% of organisms were killed by 120 min of exposure in all strains. By comparison, the peroxidase-hydrogen peroxide-halide system was 100% lethal for all strains at 1 min. The relatively high concentrations of H2O2 required to kill the yeast phase of B. dermatitidis suggest that H2O2 alone does not account for host resistance to the organism. However, the rapidly lethal effect of the peroxidase-hydrogen peroxide-halide system at physiologically relevant concentrations suggests that this may be one mechanism of host defense to B. dermatitidis.

  1. Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin.

    PubMed

    Hodge, Sandra; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N

    2015-01-01

    Corticosteroid resistance in chronic obstructive pulmonary disease (COPD) is a major challenge. We have reported increased bronchial epithelial cell apoptosis and increased airway CD8 T-cell numbers in COPD. Apoptosis can be induced via the serine protease, granzyme B. However, glucocorticosteroids fail to adequately suppress granzyme B production by CD8 T cells. We previously showed that low-dose azithromycin reduced airways inflammation in COPD subjects and we hypothesized that it would also reduce granzyme B production by CD8 T cells. We administered 250 mg azithromycin daily for 5 days then twice weekly (total 12 weeks) to 11 COPD subjects (five current smokers; six ex-smokers) and assessed granzyme B in the airway (bronchoalveolar lavage), intra-epithelial compartment and peripheral blood, collected before and following administration of azithromycin. To then dissect the effects of on CD4 and CD8 T-cell subsets, we applied an in vitro assay and physiologically relevant concentrations of azithromycin (and, for comparison, n-acetyl cysteine) and stimulation of peripheral blood mononuclear cells from five healthy subjects with CD3/CD28 T-cell expander. T-cell granzyme B production in both airway and intra-epithelial compartments was reduced in COPD patients following 12 weeks of azithromycin treatment, with no significant effect in blood. Both azithromycin and n-acetyl cysteine suppressed CD4 T-cell granzyme B production, but only azithromycin was effective at reducing CD8+ T-cell granzyme B production in vitro. We provide further evidence for the application of low-dose azithromycin as an attractive adjunct treatment option for controlling epithelial cell apoptosis, abnormal airway repair and chronic inflammation in COPD. © 2014 Asian Pacific Society of Respirology.

  2. Tidal stretches do not modulate responsiveness of intact airways in vitro

    PubMed Central

    Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.

    2010-01-01

    Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023

  3. Clinical pharmacokinetic and pharmacodynamic profile of lacosamide.

    PubMed

    Cawello, Willi

    2015-09-01

    Lacosamide-a third-generation antiepileptic drug available in multiple formulations-was first approved in 2008 as adjunctive therapy for partial-onset seizures (POS) in adults. In 2014, lacosamide was approved as monotherapy for POS by the US Food and Drug Administration (FDA). A loading dose administration was approved in 2013 by the European Medicines Agency and in 2014 by the FDA. Unlike traditional sodium channel blockers affecting fast inactivation, lacosamide selectively enhances sodium channel slow inactivation. This mechanism of action results in stabilization of hyperexcitable neuronal membranes, inhibition of neuronal firing and reduction in long-term channel availability without affecting physiological function. Lacosamide is rapidly absorbed, with maximum plasma concentrations reached 0.5-4 h after intake. Oral bioavailability is high (100 %) for a dose up to 800 mg. Bioavailability is irrespective of food intake. Variability in pharmacokinetic parameters is low (coefficients of variation almost all <20 %). The pharmacokinetic profile of lacosamide is consistent in healthy subjects and across different patient populations studied. Lacosamide elimination from plasma occurs with a terminal half-life of approximately 13 h in young subjects and 14-16 h in elderly subjects; this difference does not impact the dose regimen. Lacosamide produces a pharmacodynamic effect that is closely correlated with its plasma concentration. The pharmacokinetic and pharmacodynamic relationship for reduction of seizure frequency can be described by a maximum effect (E max) model. Lacosamide does not induce or inhibit cytochrome P450 enzymes or known drug transporter systems, has low protein binding of less than 15 % and, because it has multiple elimination pathways, it has no clinically relevant interactions with commonly prescribed medications.

  4. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    PubMed

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  5. A novel resveratrol-salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis.

    PubMed

    Venkatadri, Rajkumar; Iyer, Anand Krishnan V; Kaushik, Vivek; Azad, Neelam

    2017-08-01

    Resveratrol is a dietary compound that has been widely reported for its anticancer activities. However, successful extrapolation of its effects to pre-clinical studies is met with limited success due to inadequate bioavailability. We investigated the potential of combination therapy to improve the efficacy of resveratrol in a more physiologically relevant dose range. The effect of resveratrol on canonical Wnt signaling was evaluated by Western blotting. Wnt modulators HLY78 (activator) and salinomycin (inhibitor) were evaluated in combination with resveratrol for their effect on breast cancer cell viability (MTT assay), cell cycle progression and apoptosis (Western blotting). Bliss independency model was used to evaluate combinatorial effects of resveratrol-salinomycin combination. Resveratrol downregulated canonical Wnt signaling proteins in treated breast cancer cells (MCF-7, MDA-MB-231 and MDA-MB-468) in the dose range of 50-200μM, which also affected cellular viability. However, at very low doses (0-50μM), resveratrol exhibited no cellular toxicity. Co-treatment with salinomycin significantly potentiated the anti-cancer effects of resveratrol, whereas HLY78 co-treatment had minimal effect. Bliss independency model revealed that Wnt inhibition synergistically potentiates the effects of resveratrol in MCF-7 and BT474 cells. Significantly downregulated canonical Wnt signaling proteins and marker of epithelial-mesenchymal transition (EMT), vimentin were observed in cells treated with resveratrol-salinomycin combination. Cell cycle arrest, caspase activation and apoptosis induction in cells treated with resveratrol-salinomycin combination further confirmed the efficacy of the combination. We report a novel resveratrol-salinomycin combination for targeting ER-positive breast cancer cells and present evidence for successful pre-clinical implementation of resveratrol. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Effects of ionizing radiation on the light sensing elements of the retina. [Structural and physiological effects of carbon, helium, and neon ions on rods and cones of salamanders and mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malachowski, M.J.

    1978-07-01

    This investigation was undertaken to quantitate possible morphological and physiological effects of particles of high linear energy transfer on the retina, in comparison with x-ray effects. The particles used were accelerated atomic nuclei of helium, carbon, and neon at kinetic energies of several hundred MeV/nucleon. For morphological studies, scanning and transmission electron microscopy and light microscopy were used. Physiological studies consisted of autoradiographic data of the rate of incorporation of labeled protein in the structures (opsin) of the outer segment of visual cells. Structural changes were found in the nuclei, as well as the inner and outer segments of visualmore » cells, rods and cones. At a low dose of 10 rad, x rays and helium had no statistically significant morphological effects, but carbon and neon beams did cause significant degeneration of individual cells, pointing to the existence of a linear dose--effect relationship. At high doses of several hundred rads, a Pathologic Index determined the relative biological effectiveness of neon against alpha particles to have a value of greater than 6. The severity of effects per particle increased with atomic number. Labeling studies demonstrated a decreased rate of incorporation of labeled proteins in the structural organization of the outer segments of visual rods. The rate of self-renewal of visual rod discs was punctuated by irradiation and the structures themselves were depleted of amino acids. A model of rod discs (metabolic and catabolic) was postulated for correlated early and late effects to high and low doses.« less

  7. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration.

    PubMed

    Newmeyer, Matthew N; Swortwood, Madeleine J; Abulseoud, Osama A; Huestis, Marilyn A

    2017-06-01

    Although smoking is the most common cannabis administration route, vaporization and consumption of cannabis edibles are common. Few studies directly compare cannabis' subjective and physiological effects following multiple administration routes. Subjective and physiological effects, and expired carbon monoxide (CO) were evaluated in frequent and occasional cannabis users following placebo (0.001% Δ 9 -tetrahydrocannabinol [THC]), smoked, vaporized, and oral cannabis (6.9% THC, ∼54mg). Participants' subjective ratings were significantly elevated compared to placebo after smoking and vaporization, while only occasional smokers' ratings were significantly elevated compared to placebo after oral dosing. Frequent smokers' maximum ratings were significantly different between inhaled and oral routes, while no differences in occasional smokers' maximum ratings between active routes were observed. Additionally, heart rate increases above baseline 0.5h after smoking (mean 12.2bpm) and vaporization (10.7bpm), and at 1.5h (13.0bpm) and 3h (10.2bpm) after oral dosing were significantly greater than changes after placebo, with no differences between frequent and occasional smokers. Finally, smoking produced significantly increased expired CO concentrations 0.25-6h post-dose compared to vaporization. All participants had significant elevations in subjective effects after smoking and vaporization, but only occasional smokers after oral cannabis, indicating partial tolerance to subjective effects with frequent exposure. There were no differences in occasional smokers' maximum subjective ratings across the three active administration routes. Vaporized cannabis is an attractive alternative for medicinal administrations over smoking or oral routes; effects occur quickly and doses can be titrated with minimal CO exposure. These results have strong implications for safety and abuse liability assessments. Published by Elsevier B.V.

  8. Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle.

    PubMed

    Ferdinandus; Arai, Satoshi; Ishiwata, Shin'ichi; Suzuki, Madoka; Sato, Hirotaka

    2015-01-01

    This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.

  9. Oral Dosing of Chemical Indicators for In Vivo Monitoring of Ca2+ Dynamics in Insect Muscle

    PubMed Central

    Ferdinandus; Arai, Satoshi; Ishiwata, Shin’ichi; Suzuki, Madoka; Sato, Hirotaka

    2015-01-01

    This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects. PMID:25590329

  10. Virtual tissues in toxicology.

    PubMed

    Shah, Imran; Wambaugh, John

    2010-02-01

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.

  11. Imepitoin as novel treatment option for canine idiopathic epilepsy: pharmacokinetics, distribution, and metabolism in dogs

    PubMed Central

    Rundfeldt, C; Gasparic, A; Wlaź, P

    2014-01-01

    Imepitoin is a novel anti-epileptic licensed in the European Union for the treatment of canine idiopathic epilepsy. The aim of this study was to characterize the pharmacokinetics of imepitoin in dogs and to evaluate the interaction with drug metabolizing enzymes. Upon administration of imepitoin tablets at a dose of 30 mg/kg to beagle dogs, high plasma levels were observed within 30 min following oral dosing, with maximal plasma concentrations of 14.9–17.2 μg/mL reached after 2–3 h. In a crossover study, co-administration of imepitoin tablets with food reduced the total AUC by 30%, but it did not result in significant changes in Tmax and Cmax, indicating lack of clinical relevance. No clinically relevant effects of sex and no accumulation or metabolic tolerance were observed upon twice daily dosing. Following single dose administration of 10–100 mg/kg, dose linearity was found. Administering [14C] imepitoin, high enteral absorption of 92% and primary fecal excretion were identified. Plasma protein binding was only 55%. At therapeutic plasma concentrations, imepitoin did not inhibit microsomal cytochrome P450 family liver enzymes in vitro. In rats, no relevant induction of liver enzymes was found. Therefore, protein binding or metabolism-derived drug–drug interactions are unlikely. Based on these data, imepitoin can be dosed twice daily, but the timing of tablet administration in relation to feeding should be kept consistent. PMID:24611573

  12. Is the full potential of the biopharmaceutics classification system reached?

    PubMed

    Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders

    2014-06-16

    In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

    PubMed Central

    Leibson, Tom; Carls, Alexandra; Ito, Shinya; Koren, Gideon

    2016-01-01

    Background Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. Methods and Findings Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. Conclusion This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications. PMID:27802281

  14. 10 GY TOTAL BODY IRRADIATION INCREASES RISK OF CORONARY SCLEROSIS, DEGENERATION OF HEART STRUCTURE AND FUNCTION IN A RAT MODEL

    PubMed Central

    Baker, John E; Fish, Brian L; Su, Jidong; Haworth, Steven T; Strande, Jennifer L; Komorowski, Richard A; Migrino, Raymond Q; Doppalapudi, Anil; Harmann, Leanne; Li, X Allen; Hopewell, John W; Moulder, John E

    2009-01-01

    Purpose To determine the impact of 10 Gy total body irradiation (TBI) or local thorax irradiation, a dose relevant to a radiological terrorist threat, on lipid and liver profile, coronary microvasculature and ventricular function. Materials and methods WAG/RijCmcr rats received 10 Gy TBI followed by bone marrow transplantation, or 10 Gy local thorax irradiation. Age-matched, non-irradiated rats served as controls. The lipid profile and liver enzymes, coronary vessel morphology, nitric oxide synthase (NOS) isoforms, protease activated receptor (PAR)-1 expression and fibrinogen levels were compared. Two dimensional strain echocardiography assessed global radial and circumferential strain on the heart. Results TBI resulted in a sustained increase in total and low density lipoprotein (LDL) cholesterol (190±8 vs. 58±6; 82±8 vs. 13±3 mg/dL, respectively). The density of small coronary arterioles was decreased by 32%. Histology revealed complete blockage of some vessels while cardiomyocytes remained normal. TBI resulted in cellular peri-arterial fibrosis whereas control hearts had symmetrical penetrating vessels with less collagen and fibroblasts. TBI resulted in a 32±4% and 28±3% decrease in endothelial NOS and inducible NOS protein respectively, and a 21±4% and 35±5% increase in fibrinogen and PAR-1 protein respectively, after 120 days. TBI reduced radial strain (19±8 vs. 46±7%) and circumferential strain (-8±3 vs. −15±3%) compared to controls. Thorax-only irradiation produced no changes over the same time frame. Conclusions TBI with 10 Gy, a dose relevant to radiological terrorist threats, worsened lipid profile, injured coronary microvasculature, altered endothelial physiology and myocardial mechanics. These changes were not manifest with local thorax irradiation. Non-thoracic circulating factors may be promoting radiation-induced injury to the heart. PMID:19995235

  15. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review.

    PubMed

    Pariente, Gali; Leibson, Tom; Carls, Alexandra; Adams-Webber, Thomasin; Ito, Shinya; Koren, Gideon

    2016-11-01

    Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications.

  16. Nutritional aspects of ascorbic acid: uses and abuses.

    PubMed

    Vilter, R W

    1980-12-01

    Ascorbic acid in physiological doses is essential for the normal functioning of the human body. Larger doses are required to treat a severe deficiency of vitamin C intake, as in the case of scurvy. Occasionally, massive doses may be required to treat a metabolic defect involving ascorbic acid. There has been some mention of megadose therapy with ascorbic acid for the prevention of colds, the improved healing of wounds and even the treatment of cancer, but no acceptable scientific data have been presented. In fact, in a few instances, such therapy has proved injurious.

  17. Medicinal cannabis: rational guidelines for dosing.

    PubMed

    Carter, Gregory T; Weydt, Patrick; Kyashna-Tocha, Muraco; Abrams, Donald I

    2004-05-01

    The medicinal value of cannabis (marijuana) is well documented in the medical literature. Cannabinoids, the active ingredients in cannabis, have many distinct pharmacological properties. These include analgesic, anti-emetic, anti-oxidative, neuroprotective and anti-inflammatory activity, as well as modulation of glial cells and tumor growth regulation. Concurrent with all these advances in the understanding of the physiological and pharmacological mechanisms of cannabis, there is a strong need for developing rational guidelines for dosing. This paper will review the known chemistry and pharmacology of cannabis and, on that basis, discuss rational guidelines for dosing.

  18. Early irradiation syndrome. A study of the functional changes in the rabbit following whole-body $gamma$ exposure at sublethal doses (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, R.; Collignon, Y.; Vincent, F.

    1975-05-01

    A method of simultaneous observation of several physiological functions was developed in the unanaesthetized rabbit. Arterial blood pressure, local brain circulation, internal body temperature and arterial blodd acido-basic balance were thus followed before, during and after $gamma$-irradiation. There appeared two periods in the development of this early syndrome: they were related to two processes, a central one, mainly of sympathetic origin was hardly sensitive to the dose, the other is dose-dependent. (FR)

  19. [Clinical, morphological and molecular biological characteristics of the aging eye].

    PubMed

    Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P

    2017-02-01

    The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.

  20. Computational Toxicology

    EPA Science Inventory

    ‘Computational toxicology’ is a broad term that encompasses all manner of computer-facilitated informatics, data-mining, and modeling endeavors in relation to toxicology, including exposure modeling, physiologically based pharmacokinetic (PBPK) modeling, dose-response modeling, ...

  1. Ceruletide intravenous dose-response study by a simplified scintigraphic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, G.T.; Turner, F.E.; Mangham, D.

    1985-04-01

    The intravenous dose response of a ceruletide diethylamine (ceruletide) was established by a simplified scintigraphic technique where multiple graded doses were given sequentially on a single occasion. The gallbladder volume was presented nongeometrically by /sup 99m/Tc-IDA counts. The mean latent period, ejection period, and ejection rate were similar for all four groups of subjects given 1-20 ng/kg of ceruletide. The ejection fractions were similar to the values when the identical dose of ceruletide was administered sequentially either before or after another dose. A dose of 5 ng/kg produced the most physiologic type of emptying. Intravenous doses of 10 ng/kg andmore » larger caused adverse reactions in 42% of the total doses in the form of abdominal pain, nausea, systolic and diastolic hypotension, or bradycardia. It is concluded that the dose response of a cholecystokininlike agent (ceruletide) can be established reliably by a scintigraphic technique where multiple graded doses are given on a single occasion.« less

  2. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster.

    PubMed

    Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J

    2018-06-01

    Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.

  3. Preliminary in vivo evaluation of [131I]-2-iodo-D-phenylalanine as a potential radionuclide therapeutic agent in R1M-fluc rhabdomyosarcoma tumor-bearing NuNu mice using bioluminescent imaging.

    PubMed

    Bauwens, Matthias; Wimana, Lena; Keyaerts, Marleen; Peleman, Cindy; Lahoutte, Tony; Kersemans, Ken; Snykers, Sarah; Vinken, Mathieu; Mertens, John; Bossuyt, Axel

    2010-04-01

    Carrier-added [(123)I]-2-iodo-D-phenylalanine (CA [(123)I]-2-I-D-Phe) was previously found to have a preferential retention in tumors with a high tumor background contrast in animal models. A previous human dosimetry study demonstrated a favorable biodistribution and radiation burden in human subjects. The aim of this study was to investigate the potential of CA [(131)I]-2-I-D-Phe as an agent for radionuclide therapy. Sixty (60) nude athymic mice were inoculated subcutaneously with firefly luciferase-transduced R1M rhabdomyosarcoma cells. The mice in the therapy group were injected intravenously (i.v.) with 148 MBq [(131)I]-2-I-D-Phe (432 GBq/mmol) in kit solution. Controls were injected with kit solution without radioactivity, with physiological saline, or with 148 MBq [(131)I](-) in physiological saline. Tumor growth was quantified using bioluminescent imaging and caliper measurements. [(131)I]-2-I-D-Phe clearly reduced tumor growth in the treated mice compared with the control groups. A tumor growth-rate reduction of at least 33% was found for mice receiving a therapeutic dose. There were no serious adverse side-effects of the therapy. In conclusion, i.v. injection of CA 148 MBq [(131)I]-2-I-D-Phe specifically reduces tumor growth in athymic nude mice without relevant side-effects on the animals' health.

  4. Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice.

    PubMed

    Edginton, Andrea N; Zimmerman, Eric I; Vasilyeva, Aksana; Baker, Sharyn D; Panetta, John C

    2016-05-01

    This study used uncertainty and sensitivity analysis to evaluate a physiologically based pharmacokinetic (PBPK) model of the complex mechanisms of sorafenib and its two main metabolites, sorafenib glucuronide and sorafenib N-oxide in mice. A PBPK model for sorafenib and its two main metabolites was developed to explain disposition in mice. It included relevant influx (Oatp) and efflux (Abcc2 and Abcc3) transporters, hepatic metabolic enzymes (CYP3A4 and UGT1A9), and intestinal β-glucuronidase. Parameterization of drug-specific processes was based on in vitro, ex vivo, and in silico data along with plasma and liver pharmacokinetic data from single and multiple transporter knockout mice. Uncertainty analysis demonstrated that the model structure and parameter values could explain the observed variability in the pharmacokinetic data. Global sensitivity analysis demonstrated the global effects of metabolizing enzymes on sorafenib and metabolite disposition and the local effects of transporters on their respective substrate exposures. In addition, through hypothesis testing, the model supported that the influx transporter Oatp is a weak substrate for sorafenib and a strong substrate for sorafenib glucuronide and that the efflux transporter Abcc2 is not the only transporter affected in the Abcc2 knockout mouse. Translation of the mouse model to humans for the purpose of explaining exceptionally high human pharmacokinetic variability and its relationship with exposure-dependent dose-limiting toxicities will require delineation of the importance of these processes on disposition.

  5. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometricallymore » scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.« less

  6. Metabolism and disposition of [14C]-methylcyclosiloxanes in rats.

    PubMed

    Domoradzki, Jeanne Y; Sushynski, Christopher M; Sushynski, Jacob M; McNett, Debra A; Van Landingham, Cynthia; Plotzke, Kathleen P

    2017-10-20

    Octamethylcyclotetrasiloxane (D 4 ) and decamethylcyclopentasiloxane (D 5 ) are low molecular weight cyclic volatile methyl siloxanes (cVMSs) primarily used as intermediates or monomers in the production of high molecular weight silicone polymers. The use of D 4 as a direct ingredient in personal care products has declined significantly over the past 20 years, although it may be present as a residual impurity in a variety of consumer products. D 5 is still used as an intentional ingredient in cosmetics, consumer products and in dry cleaning. Persons who may be exposed include occupational exposure for workers, and potential inhalation or dermal exposure for consumers and the general public. Because of the diverse use, especially of D 5 , and the potential for human exposure, a comprehensive program was undertaken to understand the kinetics, metabolism, enzyme induction and toxicity of D 4 and D 5 in rats following relevant routes of exposure. Physiologically based pharmacokinetic (PBPK) models utilizing these studies have been reported for D 4 and D 5 in the rat and human following dermal and inhalation exposures, with the oral uptake component of the model being limited in its description. Data from high dose oral studies in corn oil and simethicone vehicles and neat were used in the D 4 /D 5 harmonized PBPK model development. It was uncertain if the inability to adequately describe the oral uptake was due to unrealistic high doses or unique aspects of the chemistry of D 4 /D 5. Low dose studies were used to provide data to refine the description of oral uptake in the model by exploring the dose dependency and the impact of a more realistic food-like vehicle. Absorption, distribution, metabolism and elimination (ADME) of D 4 and D 5 was determined following a single low oral gavage dose of 14 C-D 4 and 14 C-D 5 at 30 and 100mg/kg body weight (bw), respectively, in a rodent liquid diet. Comparison of the low vs. high dose oral gavage administration of D 4 and D 5 demonstrated dose-dependent kinetic behavior. Data and modeling results suggest differences in metabolism between low and high dose administration indicating high dose administration results in or approaches non-linear saturated metabolism. These low dose data sets were used to refine the D 4 /D 5 multi-route harmonized PBPK model to allow for a better description of the disposition and toxicokinetics of D 4 /D 5 following oral exposure. With a refined oral uptake description, the model could be used in risk assessment to better define the internal dose of D 4 and D 5 following exposure to D 4 and D 5 via multiple routes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. TESTING FOR ADDITIVITY IN THE LOW DOSE REGION OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF 18 OLYHALOGENATED AROMATIC HYDROCARBONS.

    EPA Science Inventory

    A common default assumption in risk assessment of chemical mixtures is that the chemicals combine additively in the low dose region. Under additivity, with information from single chemical dose-response data, the risk associated with the mixture can be estimated. The objective ...

  8. Overcoming the challenges of studying conservation physiology in large whales: a review of available methods

    PubMed Central

    Hunt, Kathleen E.; Moore, Michael J.; Rolland, Rosalind M.; Kellar, Nicholas M.; Hall, Ailsa J.; Kershaw, Joanna; Raverty, Stephen A.; Davis, Cristina E.; Yeates, Laura C.; Fauquier, Deborah A.; Rowles, Teresa K.; Kraus, Scott D.

    2013-01-01

    Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples (‘blow’), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures. PMID:27293590

  9. NOTE: Investigating the potential of polymer gel dosimetry for interventional radiology: first results

    NASA Astrophysics Data System (ADS)

    Antoniou, P. E.; Bousbouras, P.; Sandaltzopoulos, R.; Kaldoudi, E.

    2008-04-01

    Complex interventional radiology (IR) procedures contribute an increasing percentage of the overall medical radiation exposure of the population making accurate dosimetry a challenge. Magnetic resonance (MR) based polymer gel dosimetry has been widely employed in complex dosimetric problems in radiotherapy. The aim of this note is to investigate the feasibility of normoxic gel dosimetry in IR. Dose response, energy dependence and dose rate dependence were investigated in irradiation set-ups relevant to IR for a particular normoxic gel, based on methacrylic acid (MAA) as the monomer and including tetrakis-hydroxy-methyl-phosphonium chloride (THPC) as antioxidant. The gel presents a linear dose response beyond a 25 cGy threshold. No significant energy dependence was observed in the useful range of interventional radiology (80-110 kVp). A linear correlation between the gel response and dose rate was observed in the range of dose rates relevant to IR (5-8 cGy min-1). These results demonstrate a reduction of gel sensitivity at very low dose rate levels. A possible explanation of this effect is suggested.

  10. Feasibility of a low-dose orbital CT protocol with a knowledge-based iterative model reconstruction algorithm for evaluating Graves' orbitopathy.

    PubMed

    Lee, Ho-Joon; Kim, Jinna; Kim, Ki Wook; Lee, Seung-Koo; Yoon, Jin Sook

    2018-06-23

    To evaluate the clinical feasibility of low-dose orbital CT with a knowledge-based iterative model reconstruction (IMR) algorithm for evaluating Graves' orbitopathy. Low-dose orbital CT was performed with a CTDI vol of 4.4 mGy. In 12 patients for whom prior or subsequent non-low-dose orbital CT data obtained within 12 months were available, background noise, SNR, and CNR were compared for images generated using filtered back projection (FBP), hybrid iterative reconstruction (iDose 4 ), and IMR and non-low-dose CT images. Comparison of clinically relevant measurements for Graves' orbitopathy, such as rectus muscle thickness and retrobulbar fat area, was performed in a subset of 6 patients who underwent CT for causes other than Graves' orbitopathy, by using the Wilcoxon signed-rank test. The lens dose estimated from skin dosimetry on a phantom was 4.13 mGy, which was on average 59.34% lower than that of the non-low-dose protocols. Image quality in terms of background noise, SNR, and CNR was the best for IMR, followed by non-low-dose CT, iDose 4 , and FBP, in descending order. A comparison of clinically relevant measurements revealed no significant difference in the retrobulbar fat area and the inferior and medial rectus muscle thicknesses between the low-dose and non-low-dose CT images. Low-dose CT with IMR may be performed without significantly affecting the measurement of prognostic parameters for Graves' orbitopathy while lowering the lens dose and image noise. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Validation and Application of Pharmacokinetic Models for Interspecies Extrapolations in Toxicity Risk Assessments of Volatile Organics

    DTIC Science & Technology

    1989-07-21

    formulation of physiologically-based pharmacokinetic models. Adult male Sprague-Dawley rats and male beagle dogs will be administered equal doses...experiments in the 0 dog . Physiologically-based pharmacokinetic models will be developed and validated for oral and inhalation exposures to halocarbons...of conducting experiments in dogs . The original physiolo ic model for the rat will be scaled up to predict halocarbon pharmacokinetics in the dog . The

  12. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study.

    PubMed

    Johannsson, Gudmundur; Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-07-01

    Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure-time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5-20mg and assess intrasubject variability. Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20-55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography-tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration-time profiles. DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0-4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration-time curve (AUC)0-∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional - an important consideration when managing intercurrent illness in patients with adrenal insufficiency. © 2016 The authors.

  13. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  14. Research on Infancy of Special Relevance for Mental Health. Matrix No. 11A.

    ERIC Educational Resources Information Center

    Provence, Sally

    Research relevant to planning and practice in the area of infant mental health is discussed in this paper. First, three examples of research approaches that reflect current attitudes are given. The first example represents those studies in which there is an effort to closely coordinate physiological and behavioral studies. The second example…

  15. Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness

    NASA Technical Reports Server (NTRS)

    Dement, W. C.; Barchas, J. D.

    1972-01-01

    An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.

  16. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    PubMed

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  17. Managing fatigue in operational settings. 1: Physiological considerations and countermeasures

    NASA Technical Reports Server (NTRS)

    Rosekind, M. R.; Gander, P. H.; Gregory, K. B.; Smith, R. M.; Miller, D. L.; Oyung, R.; Webbon, L. L.; Johnson, J. M.

    1996-01-01

    The authors consider three aspects of managing fatigue in the workplace. They provide a brief overview of important scientific findings related to sleep and circadian physiology that establish the psychobiological foundation of fatigue. Their major focus is on the relevance of these findings to operational settings. In addition, they provide examples to describe practical fatigue countermeasures that can be used in operational settings.

  18. Changes in the vascular tissue of fresh Hass avocados treated with cobalt 60

    NASA Astrophysics Data System (ADS)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-03-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy.

  19. Alternative Reinforcer Response Cost Impacts Cocaine Choice in Humans

    PubMed Central

    Stoops, William W.; Lile, Joshua A.; Glaser, Paul E.A.; Hays, Lon R.; Rush, Craig R.

    2011-01-01

    Cocaine use disorders are an unrelenting public health concern. Behavioral treatments reduce cocaine use by providing non-drug alternative reinforcers. The purpose of this human laboratory experiment was to determine how response cost for non-drug alternative reinforcers influenced cocaine choice. Seven cocaine-using, non-treatment-seeking subjects completed a crossover, double-blind protocol in which they first sampled doses of intranasal cocaine (5, 10, 20 or 30 mg) and completed a battery of subject-rated and physiological measures. Subjects then made eight discrete choices between the sampled dose and an alternative reinforce (US$0.25). The response cost to earn a cocaine dose was always a fixed ratio (FR) of 100 responses. The response cost for the alternative reinforcer varied across sessions (FR1, FR10, FR100, FR1000). Dose-related increases were observed for cocaine choice. Subjects made fewer drug choices when the FR requirements for the alternative reinforcers were lower than that for drug relative to when the FR requirements were equal to or higher than that for drug. Intranasal cocaine also produced prototypical stimulant-like subject-rated and physiological effects (e.g., increased ratings of Like Drug; elevated blood pressure). These data demonstrate that making alternative reinforcers easier to earn reduces cocaine self-administration, which has implications for treatment efforts. PMID:22015480

  20. Effect of vitamin C on male fertility in rats subjected to forced swimming stress.

    PubMed

    Vijayprasad, Sanghishetti; Bb, Ghongane; Bb, Nayak

    2014-07-01

    Stress is defined as a general body response to initially threatening external or internal demands, involving the mobilization of physiological and psychological resources to deal with them. Recently, oxidative stress has become the focus of interest as a potential cause of male infertility. Normally, equilibrium exists between reactive oxygen species (ROS) production and antioxidant scavenging activities in the male reproductive organs. The ascorbic acid is a known antioxidant present in the testis with the precise role of protecting the latter from the oxidative damage. It also contributes to the support of spermatogensis at least in part through its capacity to maintain antioxidant in an active state. Group1: Normal Control animal received Distilled water, Group 2: Positive control (Only Stress), Group 3: Normal rats received an intermediate dose of Vitamin C (20mg/kg/day), Group 4: Stress + Low dose Vitamin C (10mg/kg/day), Group 5: Stress+ Intermediate dose Vitamin C (20mg/kg/day), Group 6: High dose Vitamin C (30mg/kg/day). On 16(th) day effect of stress on body weight, Reproductive organ weight, sperm parameters, and hormonal assay was studied. In the present context, in stress group the sperm count, motility, testicular weight declined significantly. The intermediate dose and high dose of vitamin C showed significantly increased effect on the sperm count and motility. Various physiological changes produced force swimming indicates that swimming is an effective model for producing stress in albino rats. The results suggest that Vitamin C supplementation improves the stress induced reproductive infertility due to both their testosterone increase effect and their antioxidant effect.

  1. Age-Related Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience

    PubMed Central

    Cooper, Rachel; Shardell, Michelle; Simonsick, Eleanor M.; Schrack, Jennifer A.; Kuh, Diana

    2016-01-01

    Mobility is the most studied and most relevant physical ability affecting quality of life with strong prognostic value for disability and survival. Natural selection has built the “engine” of mobility with great robustness, redundancy, and functional reserve. Efficient patterns of mobility can be acquired during development even by children affected by severe impairments. Analogously, age-associated impairments in mobility-related physiological systems are compensated and overt limitations of mobility only occur when the severity can no longer be compensated. Mobility loss in older persons usually results from multiple impairments in the central nervous system, muscles, joints, and energetic and sensory physiological systems. Early preclinical changes in these physiological systems that precede mobility loss have been poorly studied. Peak performance, rate of decline, compensatory behaviors, or subclinical deterioration of physiological resources may cumulatively influence both timing of mobility loss and chances of recovery, but their role as risk factors has not been adequately characterized. Understanding the natural history of these early changes and intervening on them would likely be the most effective strategy to reduce the burden of disability in the population. For example, young women with low bone peak mass could be counseled to start strength resistance exercise to reduce their high risk of developing osteoporosis and fracture later in life. Expanding this approach to other physiological domains requires collecting and interpreting data from life course epidemiological studies, establishing normative measures of mobility, physical function, and physical activity, and connecting them with life course trajectories of the mobility-relevant physiological domains. PMID:26975983

  2. Performance of first-year health sciences students in a large, diverse, multidisciplinary, first-semester, physiology service module.

    PubMed

    Higgins-Opitz, Susan B; Tufts, Mark

    2014-06-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. Copyright © 2014 The American Physiological Society.

  3. Diggin’ on U(biquitin): A Novel Method for the Identification of Physiological E3 Ubiquitin Ligase Substrates

    PubMed Central

    Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam

    2013-01-01

    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782

  4. RadNuc: A graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator

    PubMed Central

    Pasternack, Jordan B.; Howell, Roger W.

    2012-01-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668

  5. RadNuc: a graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator.

    PubMed

    Pasternack, Jordan B; Howell, Roger W

    2013-02-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations.

    PubMed

    Starcke, Katrin; Antons, Stephanie; Trotzke, Patrick; Brand, Matthias

    2018-05-23

    Background and aims Recent research has applied cue-reactivity paradigms to behavioral addictions. The aim of the current meta-analysis is to systematically analyze the effects of learning-based cue-reactivity in behavioral addictions. Methods The current meta-analysis includes 18 studies (29 data sets, 510 participants) that have used a cue-reactivity paradigm in persons with gambling (eight studies), gaming (nine studies), or buying (one study) disorders. We compared subjective, peripheral physiological, electroencephal, and neural responses toward addiction-relevant cues in patients versus control participants and toward addiction-relevant cues versus control cues in patients. Results Persons with behavioral addictions showed higher cue-reactivity toward addiction-relevant cues compared with control participants: subjective cue-reactivity (d = 0.84, p = .01) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.61, p < .01). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, median cingulate cortex, subgenual cingulate, and precentral gyrus. Persons with gambling, gaming, or buying disorders also showed higher cue-reactivity toward addiction-relevant cues compared with control cues: subjective cue-reactivity (d = 0.39, p = .11) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.47, p = .05). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, angular gyrus, inferior network, and precuneus. Discussion and conclusions Cue-reactivity not only exists in substance-use disorders but also in gambling, gaming, and buying disorders. Future research should differentiate between cue-reactivity in addictive behaviors and cue-reactivity in functional excessive behaviors such as passions, hobbies, or professions.

  7. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter evaluated. Conclusions The present findings suggest that GABAA receptor-active neurosteroids may modulate the regulatory processes that govern the onset, maintenance, and termination of drinking episodes. The differential influence of ALLO and EPI on ethanol intake patterns may reflect an alteration in GABAergic inhibitory tone that is likely due to each neurosteroid’s pharmacological profile at GABAA receptors. Manipulation of endogenous ALLO may prove a useful strategy for diminishing excessive intake and protecting against the loss of regulatory control over drinking. PMID:16205363

  8. Lack of Impact by SCY-078, a First-in-Class Oral Fungicidal Glucan Synthase Inhibitor, on the Pharmacokinetics of Rosiglitazone, a Substrate for CYP450 2C8, Supports the Low Risk for Clinically Relevant Metabolic Drug-Drug Interactions.

    PubMed

    Wring, Stephen; Murphy, Gail; Atiee, George; Corr, Christy; Hyman, Michele; Willett, Michael; Angulo, David

    2018-05-10

    SCY-078, the first in a new class of β 1,3-glucan synthesis inhibitors, is being developed as an oral and intravenous antifungal treatment for Candida and Aspergillus species fungal infections. In vitro, studies indicated SCY-078 is an inhibitor of cytochrome P450 (CYP) 2C8 with markedly lower effect over other CYP isozymes. To examine clinically relevant effects of the potential interaction with SCY-078, this phase 1, open-label, 2-period crossover study evaluated the pharmacokinetic parameters of rosiglitazone, a sensitive substrate of CYP2C8 metabolism, in the absence and presence of SCY-078 dosed to therapeutically relevant SCY-078 concentration exposure after repeat dosing. Healthy adult subjects were randomized to 2 treatment sequences: a single oral 4-mg rosiglitazone dose alone on day 1 or a 1250-mg SCY-078 loading dose on day 1 followed by a once-daily 750-mg SCY-078 dose for an additional 7 days (reflecting the clinical regimen evaluated during phase 2 studies for infections by Candida species) and concurrent administration of a single oral 4-mg rosiglitazone dose on day 3, before alternating following a ≥10-day washout. The exposure to SCY-078 observed in this study was in line with the intended exposure for treatment of invasive fungal infections. The 90% confidence intervals for rosiglitazone exposure geometric mean ratios were within the prespecified no effect interval of 0.70-1.43. Additionally, maximum concentration values for rosiglitazone and its metabolite, N-desmethylrosiglitazone, were not significantly affected by co-administration with SCY-078. Overall, rosiglitazone exposure was not impacted to a clinically meaningful extent with co-administration of therapeutically relevant SCY-078 concentration exposure after repeat dosing. The results are indicative of low risk for interaction of SCY-078 with drugs metabolized via the CYP family of enzymes. © 2018, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  9. Designing drug regimens for special intensive care unit populations

    PubMed Central

    Erstad, Brian L

    2015-01-01

    This review is intended to help clinicians design drug regimens for special populations of critically ill patients with extremes of body size, habitus and composition that make drug choice or dosing particularly challenging due to the lack of high-level evidence on which to make well-informed clinical decisions. The data sources included a literature search of MEDLINE and EMBASE with reviews of reference lists of retrieved articles. Abstracts of original research investigations and review papers were reviewed for their relevance to drug choice or dosing in the following special critically ill populations: patients with more severe forms of bodyweight or height, patients with amputations or missing limbs, pregnant patients, and patients undergoing extracorporeal membrane oxygenation or plasma exchange. Relevant papers were retrieved and evaluated, and their associated reference lists were reviewed for citations that may have been missed through the electronic search strategy. Relevant original research investigations and review papers that could be used to formulate general principles for drug choice or dosing in special populations of critically ill patients were extracted. Randomized studies with clinically relevant endpoints were not available for performing quantitative analyses. Critically ill patients with changes in body size, habitus and composition require special consideration when designing medication regimens, but there is a paucity of literature on which to make drug-specific, high-level evidence-based recommendations. Based on the evidence that is available, general recommendations are provided for drug choice or dosing in special critically ill populations. PMID:25938029

  10. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  11. Basic obstetric pharmacology

    PubMed Central

    Zhao, Yang; Hebert, Mary F.; Venkataramanan, Raman

    2017-01-01

    Pregnancy is associated with a variety of physiological changes that can alter the pharmacokinetics and pharmacodynamics of several drugs. However, limited data exists on the pharmacokinetics and pharmacodynamics of the majority of the medications used in pregnancy. In this article, we first describe basic concepts (drug absorption, bioavailability, distribution, metabolism, elimination, and transport) in pharmacokinetics. Then, we discuss several physiological changes that occur during pregnancy that theoretically affect absorption, distribution, metabolism, and elimination. Further, we provide a brief review of the literature on the clinical pharmacokinetic studies performed in pregnant women in recent years. In general, pregnancy increases the clearance of several drugs and correspondingly decreases drug exposure during pregnancy. Based on current drug exposure measurements during pregnancy, alterations in the dose or dosing regimen of certain drugs are essential during pregnancy. More pharmacological studies in pregnant women are needed to optimize drug therapy in pregnancy. PMID:25281357

  12. Plasma concentrations, analgesic and physiological assessments in horses with chronic laminitis treated with two doses of oral tramadol.

    PubMed

    Guedes, A; Knych, H; Hood, D

    2016-07-01

    Laminitis is a painful disease for which adequate pain management remains a challenging and largely unmet medical need. To investigate plasma concentrations, analgesic and physiological effects of 2 doses of tramadol in horses with chronic laminitis. Nonrandomised trial. Four horses with naturally occurring chronic laminitis received 5 mg/kg bwt and then 10 mg/kg bwt tramadol orally every 12 h for one week with a one-week washout between. Noninvasive arterial blood pressure, heart and respiratory rates, intestinal sounds and forelimb off-loading frequency were evaluated before and during treatments. Plasma tramadol and metabolite (M1 and M2) concentrations were measured on predetermined days and times after the morning dosing. Forelimb off-loading frequency decreased significantly with 10 mg/kg bwt (40%, P = 0.02) but not with 5 mg/kg bwt (9%, P = 0.4). Physiological variables did not change significantly with either treatment. For 5 and 10 mg/kg bwt treatments, respectively, individual maximum plasma concentrations (μg/l) ranged from 329 to 728 and 628 to 1330 (tramadol), 12-24 and 32-80 (M1), and 90-157 and 239-362 (M2). Respective median area under the concentration vs. time curves (h μg/l) were 727 and 1426, 33 and 88, 303 and 1003. Twice daily oral tramadol at 10 mg/kg bwt may produce analgesic plasma levels in horses with chronic laminitis. © 2015 EVJ Ltd.

  13. Physiological Reactivity in a Community Sample of Sexually Aggressive Young Men: A Test of Competing Hypotheses

    PubMed Central

    Peterson, Zoë D.; Janssen, Erick; Goodrich, David; Heiman, Julia R.

    2015-01-01

    Men’s sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men’s salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men’s sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. PMID:24310818

  14. Physiological reactivity in a community sample of sexually aggressive young men: a test of competing hypotheses.

    PubMed

    Peterson, Zoë D; Janssen, Erick; Goodrich, David; Heiman, Julia R

    2014-01-01

    Men's sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men's salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men's sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. © 2013 Wiley Periodicals, Inc.

  15. Comparisons between the attitudes of medical and dental students toward the clinical importance of gross anatomy and physiology.

    PubMed

    Olowo-Ofayoku, Anthony; Moxham, Bernard John

    2014-10-01

    Marked changes are occurring within both the medical and dental curricula and new ways of teaching the basic sciences have been devised and traditional methods (e.g., dissection for gross anatomy and of bench-based animal preparations for physiology) are increasingly no longer the norm. Although there is much anecdotal evidence that students are not in favor of such changes, there is little evidence for this based on quantitative analyses of students' attitudes. Using Thurstone and Chave attitude analyses, we assessed the attitudes of first year medical and dental students at Cardiff University toward gross anatomy and physiology in terms of their perceived clinical importance. In addition, we investigated the appropriateness ("fitness for purpose") of teaching methodologies used for anatomy and physiology. The hypotheses tested recognized the possibility that medical and dental students differed in their opinions, but that they had a preference to being taught gross anatomy through the use of dissection and had no preference for physiology teaching. It was found that both medical and dental students displayed positive attitudes toward the clinical relevance of gross anatomy and that they preferred to be taught by means of dissection. Although both medical and dental students displayed positives attitudes toward the clinical relevance of physiology, this was greater for the medical students. Both medical and dental students showed a preference for being taught physiology through didactic teaching in small groups but the medical students also appreciated being taught by means of practicals. Overall, this study highlights the expectations that students have for the basic science foundation teaching within their professional training and signals a preference for being taught experientially/practically. Differences were discerned between medical and dental students that might reflect the direct association between systems physiology and pathophysiology and the application of this knowledge within the medical field in comparison to the dental field, which is heavily skill-based. © 2014 Wiley Periodicals, Inc.

  16. Imepitoin as novel treatment option for canine idiopathic epilepsy: pharmacokinetics, distribution, and metabolism in dogs.

    PubMed

    Rundfeldt, C; Gasparic, A; Wlaź, P

    2014-10-01

    Imepitoin is a novel anti-epileptic licensed in the European Union for the treatment of canine idiopathic epilepsy. The aim of this study was to characterize the pharmacokinetics of imepitoin in dogs and to evaluate the interaction with drug metabolizing enzymes. Upon administration of imepitoin tablets at a dose of 30 mg/kg to beagle dogs, high plasma levels were observed within 30 min following oral dosing, with maximal plasma concentrations of 14.9-17.2 μg/mL reached after 2-3 h. In a crossover study, co-administration of imepitoin tablets with food reduced the total AUC by 30%, but it did not result in significant changes in Tmax and Cmax , indicating lack of clinical relevance. No clinically relevant effects of sex and no accumulation or metabolic tolerance were observed upon twice daily dosing. Following single dose administration of 10-100 mg/kg, dose linearity was found. Administering [(14) C] imepitoin, high enteral absorption of 92% and primary fecal excretion were identified. Plasma protein binding was only 55%. At therapeutic plasma concentrations, imepitoin did not inhibit microsomal cytochrome P450 family liver enzymes in vitro. In rats, no relevant induction of liver enzymes was found. Therefore, protein binding or metabolism-derived drug-drug interactions are unlikely. Based on these data, imepitoin can be dosed twice daily, but the timing of tablet administration in relation to feeding should be kept consistent. © 2014 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  17. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  18. [Principles of the EOS™ X-ray machine and its use in daily orthopedic practice].

    PubMed

    Illés, Tamás; Somoskeöy, Szabolcs

    2012-02-26

    The EOS™ X-ray machine, based on a Nobel prize-winning invention in Physics in the field of particle detection, is capable of simultaneously capturing biplanar X-ray images by slot scanning of the whole body in an upright, physiological load-bearing position, using ultra low radiation doses. The simultaneous capture of spatially calibrated anterioposterior and lateral images allows the performance of a three-dimensional (3D) surface reconstruction of the skeletal system by a special software. Parts of the skeletal system in X-ray images and 3D-reconstructed models appear in true 1:1 scale for size and volume, thus spinal and vertebral parameters, lower limb axis lengths and angles, as well as any relevant clinical parameters in orthopedic practice could be very precisely measured and calculated. Visualization of 3D reconstructed models in various views by the sterEOS 3D software enables the presentation of top view images, through which one can analyze the rotational conditions of lower limbs, joints and spine deformities in horizontal plane and this provides revolutionary novel possibilities in orthopedic surgery, especially in spine surgery.

  19. Flip-flop pharmacokinetics – delivering a reversal of disposition: challenges and opportunities during drug development

    PubMed Central

    Yáñez, Jaime A; Remsberg, Connie M; Sayre, Casey L; Forrest, M Laird; Davies, Neal M

    2011-01-01

    Flip-flop pharmacokinetics is a phenomenon often encountered with extravascularly administered drugs. Occurrence of flip-flop spans preclinical to human studies. The purpose of this article is to analyze both the pharmacokinetic interpretation errors and opportunities underlying the presence of flip-flop pharmacokinetics during drug development. Flip-flop occurs when the rate of absorption is slower than the rate of elimination. If it is not recognized, it can create difficulties in the acquisition and interpretation of pharmacokinetic parameters. When flip-flop is expected or discovered, a longer duration of sampling may be necessary in order to avoid overestimation of fraction of dose absorbed. Common culprits of flip-flop disposition are modified dosage formulations; however, formulation characteristics such as the drug chemical entities themselves or the incorporated excipients can also cause the phenomenon. Yet another contributing factor is the physiological makeup of the extravascular site of administration. In this article, these causes of flip-flop pharmacokinetics are discussed with incorporation of relevant examples and the implications for drug development outlined. PMID:21837267

  20. A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations

    PubMed Central

    Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars

    2017-01-01

    Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932

  1. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways.

    PubMed

    Manteiga, Sara; Lee, Kyongbum

    2017-04-01

    A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.

  2. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  3. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  4. Magnesium degradation under physiological conditions - Best practice.

    PubMed

    Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank

    2018-06-01

    This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  5. The Behavior-Physiology Nexus: Behavioral and Physiological Compensation Are Relied on to Different Extents between Seasons.

    PubMed

    Basson, Christine H; Clusella-Trullas, Susana

    2015-01-01

    Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.

  6. Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis.

    PubMed

    Henricson, Joakim; Nilsson, Anders; Tesselaar, Erik; Nilsson, Gert; Sjöberg, Folke

    2009-09-01

    When one is studying the physiology of the cutaneous microcirculation there is a need for relevant non-invasive and versatile techniques. In this study we used a new optical device, the tissue viability imager (TiVi), to map changes in cutaneous microvascular concentrations of red blood cells during iontophoresis of vasoactive substances (noradrenaline (NA) and phenylephrine (Phe) for vasoconstriction and acetylcholine (ACh) and sodium nitroprusside (SNP) for vasodilatation). We aimed to present data both individually and pooled, using a four-variable logistic dose response model that is commonly used in similar in vitro vascular studies. The accuracy of the TiVi was also investigated by calculating the coefficient of variation and comparing it with similar tests previously done using laser Doppler imaging. Tests were also performed using the TiVi and LDPI simultaneously to further compare the two methods. Results showed that the TiVi is capable of quantifying vascular responses to iontophorised noradrenaline and phenylephrine without the need to increase background flow first. Fitting the TiVi data to the dose response model resulted in ED(50)-values with narrow confidence intervals and acceptable r(2) values. Mean ED(50)-values for the TiVi did not differ significantly from similar values obtained using laser Doppler. Results further seem to suggest that when the blood perfusion increases during vasodilatation in skin the initial phase relies mainly on an increase in red blood cell concentration whereas the further perfusion increase is due to an increase in red blood cell velocity.

  7. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed Central

    Moody, R P; Chu, I

    1995-01-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  8. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    PubMed

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  9. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    EPA Science Inventory

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  10. THE RESISTANCE TO $gamma$ RADIATION OF THE WORKER BEE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, G.; Lecomte, J.

    The worker bee which has been subjected to gamma radiation from a Co/ sup 60/ source can withstand without apparent physical damage a dose of 18,000 r. At 90,000 r there is, however, appreciable damage. At a dose of 200,000 r, death is immediate in 100% of the cases. The physiological state of the bee plays an important role in determining its resistance to gamma radiation. (auth)

  11. Evaluation of a computer-based approach to teaching acid/base physiology.

    PubMed

    Rawson, Richard E; Quinlan, Kathleen M

    2002-12-01

    Because acid/base physiology is a difficult subject for most medical and veterinary students, the first author designed a software program, Acid/Base Primer, that would help students with this topic. The Acid/Base Primer was designed and evaluated within a conceptual framework of basic educational principles. Seventy-five first-year veterinary students (of 81; 93% response rate) participated in this study. Students took both a pre- and posttest of content understanding. After completing the Acid/Base Primer in pairs, each student filled out a survey evaluating the features of the program and describing his/her use and experience of it. Four pairs of students participated in interviews that elaborated on the surveys. Scores improved from 53 +/- 2% on the pretest to 74 +/- 1% on an immediate posttest. On surveys and in interviews, students reported that the program helped them construct their own understanding of acid/base physiology and prompted discussions in pairs of students when individual understandings differed. The case-based format provided anchors and a high degree of relevance. Repetition of concepts helped students develop a more complex network of understanding. Questions in the program served to scaffold the learning process by providing direction, accentuating the relevant features of the cases, and provoking discussion. Guidelines for software development were generated on the basis of the findings and relevant educational literature.

  12. A conceptual framework for homeostasis: development and validation.

    PubMed

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  13. Systemic SMAD7 Gene Therapy Increases Striated Muscle Mass and Enhances Exercise Capacity in a Dose-Dependent Manner.

    PubMed

    Maricelli, Joseph W; Bishaw, Yemeserach M; Wang, Bo; Du, Min; Rodgers, Buel D

    2018-03-01

    Striated muscle wasting occurs with a variety of disease indications, contributing to mortality and compromising life quality. Recent studies indicate that the recombinant adeno-associated virus (serotype 6) Smad7 gene therapeutic, AVGN7, enhances skeletal and cardiac muscle mass and prevents cancer-induced wasting of both tissues. This is accomplished by attenuating ActRIIb intracellular signaling and, as a result, the physiological actions of myostatin and other ActRIIb ligands. AVGN7 also enhances isolated skeletal muscle twitch force, but is unknown to improve systemic muscle function similarly, especially exercise capacity. A 2-month-long dose-escalation study was therefore conducted using 5 × 10 11 , 1 × 10 12 , and 5 × 10 12 vg/mouse and different tests of systemic muscle function. Body mass, skeletal muscle mass, heart mass, and forelimb grip strength were all increased in a dose-dependent manner, as was the fiber cross-sectional area of tibialis anterior muscles. Maximal oxygen consumption (VO 2 max), a measure of metabolic rate, was similarly enhanced during forced treadmill running, and although the total distance traveled was only elevated by the highest dose, all doses reduced the energy expenditure rate compared to control mice injected with an empty vector. Such improvements in VO 2 max are consistent with physiological cardiac hypertrophy, which is highly beneficial and a normal adaptive response to exercise. This was particularly evident at the lowest dose tested, which had minimal significant effects on skeletal muscle mass and/or function, but increased heart weight and exercise capacity. These results together suggest that AVGN7 enhances striated muscle mass and systemic muscle function. They also define minimally effective and optimal doses for future preclinical trials and toxicology studies and in turn will aid in establishing dose ranges for clinical trials.

  14. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    PubMed

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. High Throughput Transcriptomics @ USEPA (Toxicology Forum)

    EPA Science Inventory

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest...

  16. Dose assessment in environmental radiological protection: State of the art and perspectives.

    PubMed

    Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G

    2017-09-01

    Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparing paediatric intravenous phenytoin doses using physiologically based pharmacokinetic (PBPK) modelling software.

    PubMed

    Batchelor, Hannah; Appleton, Richard; Hawcutt, Daniel B

    2015-12-01

    To use a physiologically based pharmacokinetic (PBPK) modelling system to predict the serum levels achieved by two different intravenous loading doses of phenytoin. A phenytoin pharmacokinetic model was used in the Simcyp population-based ADME simulator, simulating 100 children age 2-10 years receiving intravenous phenytoin (18 and 20mg/kg). Visual checks were used to evaluate the predictive performance of the candidate model. Loading with doses of 18 mg/kg, blood levels were sub-therapeutic in 22/100 (concentration at 2h post infusion (C2h) <10 μg/mL), therapeutic in 62/100 (C2h 10-20 μg/mL), and supra-therapeutic in 16/100 (C2h>20 μg/mL). Loading with 20mg/kg, the percentages were 15, 59, and 26, respectively. Increasing from 18 to 20 mg/kg increased the mean C2h from 16.0 to 17.9 μg/mL, and the mean AUC from 145 to 162 μg/mL/h. A C2h>30 μg/mL was predicted in 4% and 8% of children in the 18 and 20 mg/kg doses, with 3% predicted to have a C2h>40 μg/mL following either dose. For maintenance doses, a 1st dose of 2.5 or 5mg/kg (intravenous) given at 12h (after either 18 or 20 mg/kg loading) gives the highest percentages of 10-20 μg/mL serum concentrations. For sub-therapeutic concentrations following intravenous loading (20 mg/kg), a 1st maintenance dose (intravenous) of 10mg/kg will achieve therapeutic concentrations in 93%. Use of PBPK modelling suggests that children receiving the 20 mg/kg intravenous loading dose are at slightly increased risk of supra-therapeutic blood levels. Ideally, therapeutic drug monitoring is required to monitor serum concentrations, although the dose regime suggested by the BNFc appear appropriate. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. The Transition Period in Soccer: A Window of Opportunity.

    PubMed

    Silva, Joao Renato; Brito, Joao; Akenhead, Richard; Nassis, George P

    2016-03-01

    The aim of this paper is to describe the physiological changes that occur during the transition period in soccer players. A secondary aim is to address the issue of utilizing the transition period to lay the foundation for the succeeding season. We reviewed published peer-reviewed studies if they met the following three selection criteria: (1) the studied population comprised adult soccer players (aged >18 years), (2) time points of physiological and performance assessments were provided, and (3) appropriate statistics for the calculation of effect sizes were reported. Following two selection phases, 12 scientific publications were considered, involving a total sample of 252 players. The transition period elicits small to moderate negative changes in body composition, a moderate decline in sprint performance with and without changes of direction, and small to moderate decrements in muscle power. Detraining effects are also evident for endurance-related physiological and performance outcomes: large decrements in maximal oxygen consumption V̇O2max) and time to exhaustion, and moderate to very large impairments have been observed in intermittent-running performance. Off-season programs should be characterized by clear training objectives, a low frequency of training sessions, and simple training tools in order to facilitate compliance. The program suggested here may constitute the 'minimum effective dose' to maintain or at least attenuate the decay of endurance- and neuromuscular-related performance parameters, as well as restore an adequate strength profile (reduce muscle strength imbalances). This periodization strategy may improve the ability of players to cope with the elevated training demands of pre-season training and therefore reduce the risk of injury. Moreover, this strategy will favor a more efficient development of other relevant facets of performance during the pre-competition phase (e.g., tactical organization). We contend that the transition period needs to be perceived as a 'window of opportunity' for players to both recover and 'rebuild' for the following season.

  19. Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse

    PubMed Central

    Campbell, Jerry L.; Clewell, Harvey J.; Zhou, Yi-Hui; Wright, Fred A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. Objectives: We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Results: Concentration–time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability. Citation: Chiu WA, Campbell JL Jr, Clewell HJ III, Zhou YH, Wright FA, Guyton KZ, Rusyn I. 2014. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456–463; http://dx.doi.org/10.1289/ehp.1307623 PMID:24518055

  20. Fear memory for cue and context: opposite and time-dependent effects of a physiological dose of corticosterone in male BALB/c and C57BL/6J mice.

    PubMed

    Diamantopoulou, Anastasia; Oitzl, Melly S; Grauer, Ettie

    2012-07-23

    Highly emotional, stress reactive BALB/c mice secrete more corticosterone in response to fear conditioning than the low stress reactive C57BL/6J mice. Fear memory to cue and context differs between the strains. We injected corticosterone at physiological concentrations (250 μg/kg i.p.) 30 min before fear conditioning. Fear memory was tested 48 and 72 h later. Although corticosterone had little effect on acquisition, it differentially affected fear memories in strain dependent manner: while BALB/c mice decreased freezing during cue and context episodes, C57BL/6J mice showed an overall increase in freezing. BALB/c mice showed extinction over days while no such extinction was seen in C57BL/6J mice. Evaluation of these data in the perspective of previous studies using the same fear conditioning paradigm with corticosterone injections 5 min before or immediately after acquisition, revealed the impact of corticosterone during conditioning on the strength of fear memories. In C57BL/6J mice the overall increase in fear memories was higher if corticosterone was injected 30 min pre acquisition than if injected 5 min pre. In contrast, BALB/c mice showed reduced fear memories when injected 30 min pre compared to that seen 5 min pre acquisition. Both strains showed decreased fear memories compared to vehicle if corticosterone was administered immediately after acquisition. We conclude that the timing of physiologically relevant, stress levels increase in corticosterone is essential for the processing of aversive events and the formation of fear memories. However, the quality of the effect depends on the genetic background. These findings contribute to the understanding of the etiology of stress-related disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of delta sleep-inducing peptide on the expression of antioxidant enzyme genes in the brain and blood of rats during physiological aging.

    PubMed

    Kutilin, D S; Bondarenko, T I; Kornienko, I V; Mikhaleva, I I

    2014-09-01

    Subcutaneous injections of exogenous delta sleep-inducing peptide in a dose of 100 μg/kg (monthly, 5-day courses) to rats of various age groups (2-24 months) were followed by an increase in the expression of genes for SOD 1 (Sod1) and glutathione peroxidase 1 (Gpx1) in the brain and nucleated blood cells. The expression of these genes was shown to decrease during physiological aging of the body.

  2. Space colonization - Some physiological perspectives

    NASA Technical Reports Server (NTRS)

    Winkler, L. H.

    1978-01-01

    Physiological criteria determining the design of the habitat for a space colony with 10,000 people are discussed. Centrifugally generated earth-normal gravity, maximum ionizing radiation dose standards less than or equal to 0.5 rem/year (obtained with passive shielding), and an atmosphere with reduced nitrogen partial pressures were established as design requirements for the habitat. However, further research is needed to determine whether humans experience complete adaptation to weightlessness and whether there are long-term effects of breathing various atmospheric mixtures and pressures.

  3. A Laboratory Program for Bioinorganic Chemistry

    ERIC Educational Resources Information Center

    Ochiai, Ei-ichiro

    1973-01-01

    Outlines a laboratory course entitled Inorganic Chemistry for Biological Sciences'' which is designed primarily for juniors in biochemistry, physiology, and soil sciences. Inclusion of relevant environmental topics is indicated. (CC)

  4. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  5. Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.

    PubMed

    Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R

    1994-05-01

    1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.

  6. [Signaling mechanisms involved in resolution of inflammation].

    PubMed

    Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel

    2014-01-01

    Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.

  7. Predicting EMP hazard: Lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles.

    PubMed

    Oberdörster, Günter; Graham, Uschi

    2018-05-08

    Inhalation exposure to elongated cleavage fragments occurring at mineral and rock mining and crushing operations raises important questions regarding potential health effects given their resemblance to fibers with known adverse health effects like amphibole asbestos. Thus, a major goal for establishing a toxicity profile for elongate mineral particles (EMPs) is to identify and characterize a suspected hazard and characterize a risk by examining together results of hazard and exposure assessment. This will require not only knowledge about biokinetics of inhaled EMPs but also about underlying mechanisms of effects induced by retained EMPs. In vitro toxicity assays with predictive power for in vivo effects have been established as useful screening tools for toxicological characterization of particulate materials including EMPs. Important determinants of physiological/toxicological mechanisms are physico-chemical and functional properties of inhaled particulate materials. Of the physico-chemical (intrinsic) properties, size, shape and surface characteristics are well known to affect toxicological responses; functional properties include (i) solubility/dissolution rate in physiological fluid simulants in vitro and following inhalation in vivo; (ii) ROS-inducing capacity in vitro and in vivo determined as specific particle surface reactivity; (iii) bioprocessing in vivo. A key parameter for all is the dose and duration of exposure, requiring to establish exposure-dose-response relationships. Examples of studies with fibrous and non-fibrous particles are discussed to illustrate the relevancy of evaluating extrinsic and intrinsic particle properties for predicting in vivo responses of new particulate materials. This will allow hazard and risk ranking/grouping based on a comparison to toxicologically well-characterized positive and negative benchmarks. Future efforts should be directed at developing and validating new approaches using in vitro (non-animal) studies for establishing a complete risk assessment for EMPs. Further comparative in-depth analyses with analytical and ultra-high resolution technology examining bioprocessing events at target organ sites have proven highly successful to identify biotransformations in target cells at near atomic level. In the case of EMPs, such analyses can be essential to separate benign from harmful ones. Copyright © 2018. Published by Elsevier Inc.

  8. Kv7 (KCNQ) channel openers induce hypothermia in the mouse.

    PubMed

    Kristensen, Line V; Sandager-Nielsen, Karin; Hansen, Henrik H

    2011-01-20

    Kv7 channels, encoded by corresponding kcnq genes, are expressed both centrally and peripherally where they serve to dampen neuronal activity. While Kv7 channel openers have shown efficacy in neurological and neuropsychiatric disease models, the impact of Kv7 channel activation on physiological endpoint markers have not been addressed in detail. In this study we assessed the effect of a range of Kv7 channel openers with different affinity for neuronal Kv7.2-5 channel subunits on body temperature regulation in mice. Female NMRI mice were acutely exposed to vehicle (10% Tween-80, i.p.), retigabine (3-30 mg/kg, i.p., pan-Kv7 channel opener), (S)BMS-204352 (60-240 mg/kg, i.p., Kv7.4/5 channel-preferring opener), ICA-27243 (1-10mg/kg, i.p., Kv7.2/3 channel-preferring opener), or S-(1) (10-60 mg/kg, i.p., Kv7.2/3 channel-preferring opener), and rectal body temperature was measured 15-120 min post-injection. Retigabine (>10mg/kg), ICA-27243 (≥ 10 mg/kg), and S-(1) (≥ 30 mg/kg) dose-dependently lowered rectal body temperature with maximal doses of each Kv7 channel opener inducing a marked drop (>4°C) in rectal temperature. The Kv7 channel openers showed differential temporal pharmacodynamics, which likely reflects their different pharmacokinetic profiles. Pretreatment with the pan-Kv7 channel blocker XE-991 (1.0mg/kg, i.p.) completely reversed the hypothermic effect of the pan-Kv7 opener, retigabine (15 mg/kg), whereas ICA-27243-induced hypothermia (10mg/kg) could only be partially prevented by XE-991. Because ICA-27743 and S-(1) are Kv7.2/3 channel subunit-preferring compounds, this suggests that the Kv7.2/3 channel isoform is the predominant substrate for Kv7 channel opener-evoked hypothermia. These data indicate the physiological relevance of Kv7 channel function on body temperature regulation which may potentially reside from central inhibitory Kv7 channel activity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Prior methylphenidate self-administration alters the subsequent reinforcing effects of methamphetamine in rats

    PubMed Central

    Baladi, Michelle G.; Nielsen, Shannon M.; Umpierre, Anthony; Hanson, Glen R.; Fleckenstein, Annette E

    2014-01-01

    Methylphenidate (MPD) is clinically effective in treating symptoms of attention-deficit/hyperactivity disorder; however, its relatively wide availability has raised public health concerns for non-medical use of MPD among certain adult populations. Most preclinical studies investigate whether presumed therapeutically relevant doses of MPD alter sensitivity to the reinforcing effects of other drugs, but it remains unclear whether doses of MPD likely exceeding therapeutic relevance impact the subsequent reinforcing effects of drugs. To begin to address this question, the effect of prior MPD self-administration (0.56 mg/kg/infusion) on the subsequent reinforcing effects of methamphetamine (METH, 0.032 or 0.1 mg/kg/infusion) was investigated in male, Sprague-Dawley rats. For comparison, it was also determined whether prior experimenter-administered MPD, injected daily at a presumed therapeutically-relevant dose (2 mg/kg), altered the subsequent reinforcing effects of METH. Results indicate that under the current conditions, only a history of MPD self-administration increased sensitivity to the subsequent reinforcing effects of METH. Furthermore, MPD did not impact food-maintained responding, suggesting that the effect of MPD might be specific to drug reinforcers. These data suggest that short-term, non-medical use of MPD might alter the positive reinforcing effects of METH in a manner relevant to vulnerability to drug use in humans. PMID:25325290

  10. Prior methylphenidate self-administration alters the subsequent reinforcing effects of methamphetamine in rats.

    PubMed

    Baladi, Michelle G; Nielsen, Shannon M; Umpierre, Anthony; Hanson, Glen R; Fleckenstein, Annette E

    2014-12-01

    Methylphenidate (MPD) is clinically effective in treating the symptoms of attention-deficit hyperactivity disorder; however, its relatively widespread availability has raised public health concerns on nonmedical use of MPD among certain adult populations. Most preclinical studies investigate whether presumed therapeutically relevant doses of MPD alter sensitivity to the reinforcing effects of other drugs, but it remains unclear whether doses of MPD likely exceeding therapeutic relevance impact the subsequent reinforcing effects of drugs. To begin to address this question, the effect of prior MPD self-administration (0.56 mg/kg/infusion) on the subsequent reinforcing effects of methamphetamine (METH, 0.032 or 0.1 mg/kg/infusion) was investigated in male Sprague-Dawley rats. For comparison, it was also determined whether prior experimenter-administered MPD, injected daily at a presumed therapeutically relevant dose (2 mg/kg), altered the subsequent reinforcing effects of METH. Results indicated that, under the current conditions, only a history of MPD self-administration increased sensitivity to the subsequent reinforcing effects of METH. Furthermore, MPD did not impact food-maintained responding, suggesting that the effect of MPD might be specific to drug reinforcers. These data suggest that short-term, nonmedical use of MPD might alter the positive reinforcing effects of METH in a manner relevant to vulnerability to drug use in humans.

  11. Microbial ecology and host-microbiota interactions during early life stages

    PubMed Central

    Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar

    2012-01-01

    The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759

  12. Bio-integrated electronics and sensor systems

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  13. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines.

    PubMed

    Foster, Kenneth R; Glaser, Roland

    2007-06-01

    This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.

  14. Extended release naltrexone injection is performed in the majority of opioid dependent patients receiving outpatient induction: a very low dose naltrexone and buprenorphine open label trial.

    PubMed

    Mannelli, Paolo; Wu, Li-Tzy; Peindl, Kathleen S; Swartz, Marvin S; Woody, George E

    2014-05-01

    The approval of extended release injectable naltrexone (XR-NTX; Vivitrol(®)) has introduced a new option for treating opioid addiction, but studies are needed to identify its place within the spectrum of available therapies. The absence of physiological opioid dependence is a necessary and challenging first step for starting XR-NTX. Outpatient detoxification gives poor results and inpatient detoxification is either unavailable or too brief for the physiological effects of opioids to resolve. Here we present findings from an open label study that tested whether the transition from opioid addiction to XR-NTX can be safely and effectively performed in an outpatient setting using very low dose naltrexone and buprenorphine. Twenty treatment seeking opioid addicted individuals were given increasing doses of naltrexone starting at 0.25mg with decreasing doses of buprenorphine starting at 4 mg during a 7-day outpatient XR-NTX induction procedure. Withdrawal discomfort, craving, drug use, and adverse events were assessed daily until the XR-NTX injection, then weekly over the next month. Fourteen of the 20 participants received XR-NTX and 13 completed weekly assessments. Withdrawal, craving, and opioid or other drug use were significantly lower during induction and after XR-NTX administration compared with baseline, and no serious adverse events were recorded. Outpatient transition to XR-NTX combining upward titration of very low dose naltrexone with downward titration of low dose buprenorphine was safe, well tolerated, and completed by most participants. Further studies with larger numbers of subjects are needed to see if this approach is useful for naltrexone induction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Biological effects of α-radiation exposure by (241)Am in Arabidopsis thaliana seedlings are determined both by dose rate and (241)Am distribution.

    PubMed

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-11-01

    Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Drug disposition in obesity: toward evidence-based dosing.

    PubMed

    Knibbe, Catherijne A J; Brill, Margreke J E; van Rongen, Anne; Diepstraten, Jeroen; van der Graaf, Piet Hein; Danhof, Meindert

    2015-01-01

    Obesity and morbid obesity are associated with many physiological changes affecting pharmacokinetics, such as increased blood volume, cardiac output, splanchnic blood flow, and hepatic blood flow. In obesity, drug absorption appears unaltered, although recent evidence suggests that this conclusion may be premature. Volume of distribution may vary largely, but the magnitude and direction of changes seem difficult to predict, with extrapolation on the basis of total body weight being the best approach to date. Changes in clearance may be smaller than in distribution, whereas there is growing evidence that the influence of obesity on clearance can be predicted on the basis of reported changes in the metabolic or elimination pathways involved. For obese children, we propose two methods to distinguish between developmental and obesity-related changes. Future research should focus on the characterization of physiological concepts to predict the optimal dose for each drug in the obese population.

  17. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose ofmore » 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.« less

  18. Low-dose hydrocortisone therapy attenuates septic shock in adult patients but does not reduce 28-day mortality: a meta-analysis of randomized controlled trials.

    PubMed

    Wang, Changsong; Sun, Jiaxiao; Zheng, Juanjuan; Guo, Lei; Ma, Hongyan; Zhang, Yang; Zhang, Fengmin; Li, Enyou

    2014-02-01

    The role of low-dose hydrocortisone in attenuating septic shock and reducing short-term mortality in adult patients with septic shock is unclear. We conducted a meta-analysis of previous studies to determine whether hydrocortisone could ameliorate the effects of septic shock at 7 and 28 days and reduce 28-day morality. Randomized controlled trials (RCTs) of corticosteroids versus placebo (or supportive treatment alone) were retrieved from electronic searches (Medline, Embase, and Cochrane Library databases; LILACS; and Web of Knowledge) and manual searches (up to May 2012). From a pool of 1949 potentially relevant articles, duplicate independent review identified 10 relevant, RCTs of low-dose hydrocortisone therapy in septic shock. Four pairs of reviewers agreed on the criteria for trial eligibility. One reviewer entered the data into the computer, and 3 reviewers checked the data. Missing data were obtained from the authors of the relevant trials. The primary outcome analyzed was an estimate of 28-day mortality. Eight publications were included in the meta-analysis. Low-dose hydrocortisone therapy did not reduce 28-day mortality (N = 1063; odds ratio (OR) = 0.891, 95% confidence interval (CI), 0.69-1.15). Low-dose hydrocortisone therapy ameliorated shock at 7 days (6 RCTs, N = 964, OR = 2.078, 95% CI, 1.58-2.73, P < 0.0001, and I = 26.9%) and 28 days (6 RCTs, N = 947, OR = 1.495, 95% CI, 1.12-1.99, P = 0.006, and I = 0.0%). Although low-dose hydrocortisone therapy ameliorates septic shock at 7 and 28 days, it does not reduce 28-day mortality.

  19. Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben

    2009-01-01

    Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less

  20. Bioavailability of cyanidin glycosides from natural chokeberry (Aronia melanocarpa) juice with dietary-relevant dose of anthocyanins in humans.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Ewa; Piskula, Mariusz K

    2010-12-08

    The aim of this study was to investigate the bioavailability of anthocyanins from chokeberry juice with a dietary-relevant dose of anthocyanins. Thirteen healthy volunteers consumed chokeberry juice providing 0.8 mg of anthocyanins/kg of body weight. Before and after juice consumption, blood and urine were collected. Concentration of anthocyanins was measured with HPLC-PDA-MS-ESI. Cyanidin-3-galactoside comprised 66% of total chokeberry anthocyanins. Eight cyanidin derivatives were found in blood and urine after juice consumption. The maximum plasma anthocyanin concentration of 32.7 ± 2.9 nmol/L was reached at 1.3 ± 0.1 h after juice consumption. The anthocyanins' urine excretion rate (62.9 ± 5.0 nmol/h) was the highest within the first 2 h. In total, 0.25 ± 0.02% of the ingested anthocyanins was excreted by the renal route during 24 h, mainly as metabolites of cyanidin. According to these observations, after consumption of a dietary-relevant dose of anthocyanins as natural chokeberry juice, anthocyanins and their metabolites were present in plasma and urine of volunteers.

  1. Current Status and Future Challenges in Risk-Based Radiation Engineering

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2017-01-01

    This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.

  2. Optimisation of environmental remediation: how to select and use the reference levels.

    PubMed

    Balonov, M; Chipiga, L; Kiselev, S; Sneve, M; Yankovich, T; Proehl, G

    2018-06-01

    A number of past industrial activities and accidents have resulted in the radioactive contamination of large areas at many sites around the world, giving rise to a need for remediation. According to the International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA), such situations should be managed as existing exposure situations (ExESs). Control of exposure to the public in ExESs is based on the application of appropriate reference levels (RLs) for residual doses. The implementation of this potentially fruitful concept for the optimisation of remediation in various regions is hampered by a lack of practical experience and relevant guidance. This paper suggests a generic methodology for the selection of numeric values of relevant RLs both in terms of residual annual effective dose and derived RLs (DRLs) based on an appropriate dose assessment. The value for an RL should be selected in the range of the annual residual effective dose of 1-20 mSv, depending on the prevailing circumstances for the exposure under consideration. Within this range, RL values should be chosen by the following assessment steps: (a) assessment of the projected dose, i.e. the dose to a representative person without remedial actions by means of a realistic model as opposed to a conservative model; (b) modelling of the residual dose to a representative person following application of feasible remedial actions; and (c) selection of an RL value between the projected and residual doses, taking account of the prevailing social and economic conditions. This paper also contains some recommendations for practical implementation of the selected RLs for the optimisation of public protection. The suggested methodology used for the selection of RLs (in terms of dose) and the calculation of DRLs (in terms of activity concentration in food, ambient dose rate, etc) has been illustrated by a retrospective analysis of post-Chernobyl monitoring and modelling data from the Bryansk region, Russia, 2001. From this example, it follows that analysis of real data leads to the selection of an RL from a relatively narrow annual dose range (in this case, about 2-3 mSv), from which relevant DRLs can be calculated and directly used for optimisation of the remediation programme.

  3. Administration of growth hormone and nandrolone decanoate alters mRNA expression of the GABAB receptor subunits as well as of the GH receptor, IGF-1, and IGF-2 in rat brain.

    PubMed

    Grönbladh, Alfhild; Johansson, Jenny; Nyberg, Fred; Hallberg, Mathias

    2014-01-01

    The illicit use of anabolic androgenic steroids (AAS), especially among young adults, is of major concern. Among AAS users it is common to combine the AAS nandrolone decanoate (ND), with intake of growth hormone (GH) and a connection between gonadal steroids and the GH system has been suggested. Both AAS and GH affect functions in the brain, for example those associated with the hypothalamus and pituitary, and several GH actions are mediated by growth factors such as insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2). The GABAergic system is implicated in actions induced by AAS and previous studies have provided evidence for a link between GH and GABAB receptors in the brain. Our aim was to examine the impact of AAS administration and a subsequent administration of GH, on the expression of GABAB receptors and important GH mediators in rat brain. The aim was to investigate the CNS effects of a high-dose ND, and to study if a low, but physiological relevant, dose of GH could reverse the ND-induced effects. In the present study, male rats were administered a high dose of ND every third day during three weeks, and subsequently the rats were given recombinant human GH (rhGH) during ten days. Quantitative PCR (qPCR) was used to analyze gene expression in hypothalamus, anterior pituitary, caudate putamen, nucleus accumbens, and amygdala. In the pituitary gland, the expression of GABAB receptor subunits was affected differently by the steroid treatment; the GABAB1 mRNA expression was decreased whereas a distinct elevation of the GABAB2 expression was found. Administration of ND also caused a decrease of GHR, IGF-1, and IGF-2 mRNA expression in the pituitary while the corresponding expression in the hypothalamus, caudate putamen, nucleus accumbens, and amygdala was unaffected. The rhGH administration did not alter the GABAB2 expression but increased the GABAB1 gene expression in the hypothalamus as compared to the AAS treated group. These results provide new insights on the impact of ND and GH on the brain and highlight the interaction of these hormones with systems influencing GABAB receptor expression. The physiological significance of the observed effects of these hormones is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Big Data Analyses for Continuous Evaluation of Pharmacotherapy: A Proof of Principle with Doxapram in Preterm Infants.

    PubMed

    Flint, Robert B; Weteringen, Willem van; Voller, Swantje; Poppe, Jarinda A; Koch, Birgit C P; de Groot, Ronald; Tibboel, Dick; Knibbe, Catherijne A J; Reiss, Irwin K M; Simons, Sinno H P; Dino Research Group

    2017-01-01

    Drug effect evaluation is often based on subjective interpretation of a selection of patient data. Continuous analyses of high frequency patient monitor data are a valuable source to measuring drug effects. However, these have not yet been fully explored in clinical care. We aim to evaluate the usefulness and applicability of high frequency physiological data for analyses of pharmacotherapy. As a proof of principle, the effects of doxapram, a respiratory stimulant, on the oxygenation in preterm infants were studied. Second-to-second physiological data were collected from 12 hours before until 36 hours after start of doxapram loading dose plus continuous maintenance dose in seven preterm infants. Besides physiological data, plasma concentrations of doxapram and keto-doxapram were measured. Arterial oxygen saturation (SpO2) increased after the start of doxapram treatment alongside an increase in heart rate. The respiratory rate remained unaffected. The number of saturation dips and the time below a saturation of 80%, as well as the area under the 80%-saturation-time curve (AUC), were significantly lowered after the start of doxapram. The AUC under 90% saturation also significantly improved after start of doxapram. Plasma concentrations of doxapram and keto-doxapram were measured. Using high-frequency monitoring data, we showed the detailed effects over time of pharmacotherapy. We could objectively determine the respiratory condition and the effects of doxapram treatment in preterm infants. This type of analysis might help to develop individualized drug treatments with tailored dose adjustments based on a closed-loop algorithm. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  6. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.

    PubMed

    Carlander, Ulrika; Li, Dingsheng; Jolliet, Olivier; Emond, Claude; Johanson, Gunnar

    2016-01-01

    To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight.

  7. Interactive effects of supplemental ultraviolet-B radiation and indole-3-acetic acid on Coleus forskohlii Briq.: Alterations in morphological-, physiological-, and biochemical characteristics and essential oil content.

    PubMed

    Takshak, Swabha; Bhushan Agrawal, Shashi

    2018-01-01

    Ultraviolet (UV)-B radiation and the growth hormone indole-3-acetic acid (IAA) have been known to cause various changes in plants at morphological and physiological levels as individual entities, but their interactive effects on the overall plant performance remain practically unknown. The present study was conducted under near-natural field conditions to evaluate the effects of supplemental (s)-UV-B (ambient+3.6kJm -2 day -1 ) treatment alone, and in combination with two doses of IAA (200ppm and 400ppm) exogenously applied as foliar spray on various growth-, morphological-, physiological-, and biochemical parameters of an indigenous medicinal plant, Coleus forskohlii. Under s-UV-B, the plant growth and morphology were adversely affected (along with reductions in protein- and chlorophyll contents) with concomitant increase in secondary metabolites (as substantiated by an increase in the activities of various enzymes of the phenylpropanoid pathway) and cumulative antioxidative potential (CAP), suggesting the plant's capability of adaptive resilience against UV-B. The essential oil content of the plant was, however, compromised reducing its pharmaceutical value. IAA application at both doses led to a reversal in the effects caused by s-UV-B radiation alone; both the plant growth as well as the essential oil content improved, especially at the higher IAA dose, suggesting its ameliorative role against UV-B induced oxidative stress, and also in improving the plant's medicinal value. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, David J.; Ravindra, Kodihalli C.; Dyer, Rachel L.; Ebrahimkhani, Mohammad R.; Griffith, Linda G.

    2015-01-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  9. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor.

    PubMed

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M; Hughes, David J; Ravindra, Kodihalli C; Dyer, Rachel L; Ebrahimkhani, Mohammad R; Wishnok, John S; Griffith, Linda G; Tannenbaum, Steven R

    2015-07-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte-Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase-ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10% of the loss, and 45-52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour(-1), 6.6 × 10(-5) l⋅hour(-1), and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  11. Improving practices in nanomedicine through near real-time pharmacokinetic analysis

    NASA Astrophysics Data System (ADS)

    Magafia, Isidro B.

    More than a decade into the development of gold nanoparticles, with multiple clinical trials underway, ongoing pre-clinical research continues towards better understanding in vivo interactions. The goal is treatment optimization through improved best practices. In an effort to collect information for healthcare providers enabling informed decisions in a relevant time frame, instrumentation for real-time plasma concentration (multi-wavelength photoplethysmography) and protocols for rapid elemental analysis (energy dispersive X-Ray fluorescence) of biopsied tumor tissue have been developed in a murine model. An initial analysis, designed to demonstrate the robust nature and utility of the techniques, revealed that area under the bioavailability curve (AUC) alone does not currently inform tumor accumulation with a high degree of accuracy (R2=0.56), marginally better than injected dose (R2=0.46). This finding suggests that the control of additional experimental and physiological variables (chosen through modeling efforts) may yield more predictable tumor accumulation. Subject core temperature, blood pressure, and tumor perfusion are evaluated relative to particle uptake in a murine tumor model. New research efforts are also focused on adjuvant therapies that are employed to modify circulation parameters, including the AUC, of nanorods and gold nanoshells. Preliminary studies demonstrated a greater than 300% increase in average AUC using a reticuloendothelial blockade agent versus control groups. Given a better understanding of the relative importance of the physiological factors that influence rates of tumor accumulation, a set of experimental best practices is presented. This dissertation outlines the experimental protocols conducted, and discusses the real-world needs discovered and how these needs became specifications of developed protocols.

  12. Sialorphin, a natural inhibitor of rat membrane-bound neutral endopeptidase that displays analgesic activity

    PubMed Central

    Rougeot, Catherine; Messaoudi, Michaël; Hermitte, Véronique; Rigault, Anne Gaëlle; Blisnick, Thierry; Dugave, Christophe; Desor, Didier; Rougeon, François

    2003-01-01

    Sialorphin is an exocrine and endocrine signaling mediator, which has been identified by a genomic approach. It is synthesized predominantly in the submandibular gland and prostate of adult rats in response to androgen steroids and is released locally and systemically in response to stress. We now demonstrate that the cell surface molecule to which sialorphin binds in vivo in the rat kidney is the membrane-anchored neutral endopeptidase (neprilysin; NEP, EC 3.4.24.11). NEP plays an important role in nervous and peripheral tissues, as it turns off several peptide-signaling events at the cell surface. We show that sialorphin prevents spinal and renal NEP from breaking down its two physiologically relevant substrates, substance P and Met-enkephalin in vitro. Sialorphin inhibited the breakdown of substance P with an IC50 of 0.4–1 μM and behaved as a competitive inhibitor. In vivo, i.v. sialorphin elicited potent antinociceptive responses in two behavioral rat models of injury-induced acute and tonic pain, the pin-pain test and formalin test. The analgesia induced by 100–200 μg/kg doses of sialorphin required the activation of μ- and δ-opioid receptors, consistent with the involvement of endogenous opioid receptors in enkephalinergic transmission. We conclude that sialorphin protects endogenous enkephalins released after nociceptive stimuli by inhibiting NEP in vivo. Sialorphin is a natural systemically active regulator of NEP activity. Furthermore, our study provides evidence that it is a physiological modulator of pain perception after injury and might be the progenitor of a new class of therapeutic molecules. PMID:12835417

  13. Sialorphin, a natural inhibitor of rat membrane-bound neutral endopeptidase that displays analgesic activity.

    PubMed

    Rougeot, Catherine; Messaoudi, Michaël; Hermitte, Véronique; Rigault, Anne Gaëlle; Blisnick, Thierry; Dugave, Christophe; Desor, Didier; Rougeon, François

    2003-07-08

    Sialorphin is an exocrine and endocrine signaling mediator, which has been identified by a genomic approach. It is synthesized predominantly in the submandibular gland and prostate of adult rats in response to androgen steroids and is released locally and systemically in response to stress. We now demonstrate that the cell surface molecule to which sialorphin binds in vivo in the rat kidney is the membrane-anchored neutral endopeptidase (neprilysin; NEP, EC 3.4.24.11). NEP plays an important role in nervous and peripheral tissues, as it turns off several peptide-signaling events at the cell surface. We show that sialorphin prevents spinal and renal NEP from breaking down its two physiologically relevant substrates, substance P and Met-enkephalin in vitro. Sialorphin inhibited the breakdown of substance P with an IC50 of 0.4-1 microM and behaved as a competitive inhibitor. In vivo, i.v. sialorphin elicited potent antinociceptive responses in two behavioral rat models of injury-induced acute and tonic pain, the pin-pain test and formalin test. The analgesia induced by 100-200 mcicrog/kg doses of sialorphin required the activation of mu- and delta-opioid receptors, consistent with the involvement of endogenous opioid receptors in enkephalinergic transmission. We conclude that sialorphin protects endogenous enkephalins released after nociceptive stimuli by inhibiting NEP in vivo. Sialorphin is a natural systemically active regulator of NEP activity. Furthermore, our study provides evidence that it is a physiological modulator of pain perception after injury and might be the progenitor of a new class of therapeutic molecules.

  14. Opposite Effect of Opuntia ficus-indica L. Juice Depending on Fruit Maturity Stage on Gastrointestinal Physiological Parameters in Rat.

    PubMed

    Rtibi, Kais; Selmi, Slimen; Grami, Dhekra; Amri, Mohamed; Sebai, Hichem; Marzouki, Lamjed

    2018-06-01

    The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg -1 , b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α- 2 -adrenergic agonist, 1 mg kg -1 , b.w., i.p.), yohimbine (α- 2 -adrenergic antagonist, 2 mg kg -1 , b.w., i.p.), and loperamide (5 mg kg -1 , b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.

  15. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  16. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

    PubMed

    Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J

    2015-09-01

    Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.

  17. I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.

    PubMed

    Kofler, Walter

    2007-01-01

    There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.

  18. Quantitative structure - mesothelioma Potency Model Optimization for Complex Mixtures of Elongated Particles in Rat Pleura

    EPA Science Inventory

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including fibers from asbestos, are influenced by changes in fiber dose composition, bioavailability and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and com...

  19. Radiation Dose-Volume Effects in the Larynx and Pharynx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rancati, Tiziana; Schwarz, Marco; Allen, Aaron M.

    2010-03-01

    The dose-volume outcome data for RT-associated laryngeal edema, laryngeal dysfunction, and dysphagia, have only recently been addressed, and are summarized. For late dysphagia, a major issue is accurate definition and uncertainty of the relevant anatomical structures. These and other issues are discussed.

  20. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    PubMed

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-08-01

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  2. Impact of Thiamethoxam on Honey Bee Queen (Apis mellifera carnica) Reproductive Morphology and Physiology.

    PubMed

    Gajger, Ivana Tlak; Sakač, Martina; Gregorc, Aleš

    2017-09-01

    High honey bee losses around the world have been linked in part by the regular use of neonicotinoids in agriculture. In light of the current situation, the aim of this study was to investigate the effects of thiamethoxam on the development of the reproductive system and physiology in the honey bee queen. Two experimental groups of honey bee queen larvae were treated with thiamethoxam during artificial rearing, applied via artificial feed in two cycles. In the first rearing cycle, honey bee larvae received a single treatment dose (4.28 ng thiamethoxam/queen larva on the 4th day after larvae grafting in artificial queen cells), while the second honey bee queen rearing cycle received a double treatment dose (total of 8.56 ng thiamethoxam/queen larva on the 4th and 5th day after larvae grafting in artificial queen cells). After emerging, queens were anesthetized and weighed, and after mating with drones were anesthetized, weighed, and sectioned. Ovary mass and number of stored sperm were determined. Body weight differed between untreated and treated honey bee queens. The results also show a decrease in the number of sperm within honey bee queen spermathecae that received the double thiamethoxam dose.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada

    It is generally accepted that silica (SiO{sub 2}) is not toxic. But the increasing use of silica nanoparticles (SiO{sub 2}NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO{sub 2}NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h.more » At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO{sub 2}NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO{sub 2}NPs, and that the physiological modifications are transduced to gene expression modulation.« less

  4. Physiological responses to hypothermia.

    PubMed

    Wood, Thomas; Thoresen, Marianne

    2015-04-01

    Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.

    PubMed

    Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu

    2015-02-15

    Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Physiological Interaction of Heart and Lung in Thoracic Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi, Ghazaleh; Veen, Sonja van der; Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen

    Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamicmore » measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.« less

  7. Overview of exocrine pancreatic pathobiology.

    PubMed

    Pandiri, Arun R

    2014-01-01

    Exocrine pancreas is a source of several enzymes that are essential for the digestive process. The exocrine pancreatic secretion is tightly regulated by the neuroendocrine system. The endocrine pancreas is tightly integrated anatomically and physiologically with the exocrine pancreas and modulates its function. Compound-induced pancreatitis is not a common event in toxicology or drug development, but it becomes a significant liability when encountered. Understanding the species-specific differences in physiology is essential to understand the underlying pathobiology of pancreatic disease in animal models and its relevance to human disease. This review will mainly focus on understanding the morphology and physiology of the pancreas, unique islet-exocrine interactions, and pancreatitis.

  8. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  9. TRIBAL ENVIRONMENTAL PUBLIC HEALTH INDICATORS

    EPA Science Inventory

    Tribal-specific EPHIs are necessary because current U.S. government public health regulations and policies are based on a position that views risks and impacts as objective measures of dose-response assessments and physiological morbidity or mortality outcomes but does not ...

  10. Perioperative abstinence from cigarettes: physiologic and clinical consequences.

    PubMed

    Warner, David O

    2006-02-01

    Chronic exposure to cigarette smoke produces profound changes in physiology that may alter responses to perioperative interventions and contribute to perioperative morbidity. Because of smoke-free policies in healthcare facilities, all smokers undergoing surgery are abstinent from cigarettes for at least some period of time so that all are in various stages of recovery from the effects of smoke. Understanding this recovery process will help perioperative physicians better treat these patients. This review examines current knowledge regarding how both short-term (duration ranging from hours to weeks) and long-term smoking cessation affects selected physiology and pathophysiology of particular relevance to perioperative outcomes and how these changes affect perioperative risk. It will also consider current evidence regarding how nicotine replacement therapy, a valuable adjunct to help patients maintain abstinence, may affect perioperative physiology.

  11. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    PubMed

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system

    PubMed Central

    Xin, Frances; Smith, Lauren M; Susiarjo, Martha; Jepsen, Karl J

    2018-01-01

    Abstract Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals. PMID:29732168

  13. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system.

    PubMed

    Xin, Frances; Smith, Lauren M; Susiarjo, Martha; Bartolomei, Marisa S; Jepsen, Karl J

    2018-04-01

    Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.

  14. a Biokinetic Model for CESIUM-137 in the Fetus

    NASA Astrophysics Data System (ADS)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data. The uncertainty in the dose estimate was calculated by propagation of errors after determining the uncertainty in the fetal and placenta mass estimates and the effective half-life.

  15. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert J.; Jun, Brandon J.; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California

    Purpose: In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. Methods and Materials: Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. Results: Fractional anisotropy in the spleniummore » of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. Conclusions: The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.« less

  16. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs

    PubMed Central

    Burr, David B.; Liu, Ziyue; Allen, Matthew R.

    2014-01-01

    Bisphosphonates (BPs) have been shown to significantly reduce bone toughness in vertebrae within one year when given at clinical doses to dogs. Although BPs also reduce toughness in cortical bone when given at high doses, their effect on cortical bone material properties when given at clinical doses is less clear. In part, this may be due to the use of small sample sizes that were powered to demonstrate differences in bone mineral density rather than bone’s material properties. Our lab has conducted several studies in which dogs were treated with alendronate at a clinically relevant dose. The goal of this study was to examine these published and unpublished data collectively to determine whether there is a significant time-dependent effect of alendronate on toughness of cortical bone. This analysis seemed particularly relevant given the recent occurrence of atypical femoral fractures in humans. Differences in the toughness of ribs taken from dogs derived from five separate experiments were measured. The dogs were orally administered saline (CON, 1 ml/kg/day) or alendronate (ALN) at a clinical dose (0.2 mg/kg/day). Treatment duration ranged from 3 months to 3 years. Groups were compared using ANOVA, and time trends analyzed with linear regression analysis. Linear regressions of the percent difference in toughness between CON and ALN at each time point revealed a significant reduction in toughness with longer exposure to ALN. The downward trend was primarily driven by a downward trend in post-yield toughness, whereas toughness in the pre-yield region was not changed relative to CON. These data suggest that a longer duration of treatment with clinical doses of ALN results in deterioration of cortical bone toughness in a time-dependent manner. As the duration of treatment is lengthened, the cortical bone exhibits increasingly brittle behavior. This may be important in assessing the role that long-term BP treatments play in the risk of atypical fractures of femoral cortical bone in humans. PMID:25445446

  17. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  18. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study

    PubMed Central

    Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-01-01

    Objective Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure−time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5–20mg and assess intrasubject variability. Methods Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20−55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography−tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration−time profiles. Results DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0−4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration−time curve (AUC)0−∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. Conclusions DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional – an important consideration when managing intercurrent illness in patients with adrenal insufficiency. PMID:27129362

  19. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar

    USGS Publications Warehouse

    Duffy, Tara A.; Iwanowicz, Luke R.; McCormick, Stephen D.

    2014-01-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (four day) exposures using three doses each of 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and one year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embyos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting this is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2 and plasma T3 decreased at the highest dose of EE2. Our results indicate that all life stages after hatching are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild.

  20. In type 1 diabetics, high-dose biotin may compensate for low hepatic insulin exposure, promoting a more normal expression of glycolytic and gluconeogenic enyzymes and thereby aiding glycemic control.

    PubMed

    McCarty, Mark F

    2016-10-01

    In type 1 diabetics, hepatic exposure to insulin is chronically subnormal even in the context of insulin therapy; as a result, expression of glycolytic enzymes is decreased, and that of gluconeogenic enzymes is enhanced, resulting in a physiologically inappropriate elevation of hepatic glucose output. Subnormal expression of glucokinase (GK) is of particular importance in this regard. Possible strategies for correcting this perturbation of hepatic enzyme expression include administration of small molecule allosteric activators of GK, as well as a procedure known as chronic intermittent intravenous insulin therapy (CIIIT); however, side effects accompany the use of GK activators, and CIIIT is time and labor intensive. Alternatively, administration of high-dose biotin has potential for modulating hepatic enzyme expression in a favorable way. Studies in rodents and in cultured hepatocytes demonstrate that, in the context of low insulin exposure, supra-physiological levels of biotin induce increased expression of GK while suppressing that of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. These effects may be a downstream consequence of the fact that biotin down-regulates mRNA expression of FOXO1; insulin's antagonism of the activity of this transcription factor is largely responsible for its modulatory impact on hepatic glycolysis and gluconeogenesis. Hence, high-dose biotin may compensate for subnormal insulin exposure by suppressing FOXO1 levels. High-dose biotin also has the potential to oppose hepatic steatosis by down-regulating SREBP-1 expression. Two pilot trials of high-dose biotin (16 or 2mg per day) in type 1 diabetics have yielded promising results. There is also some reason to suspect that high-dose biotin could aid control of diabetic neuropathy and nephropathy via its stimulatory effect on cGMP production. Owing to the safety, good tolerance, moderate expense, and current availability of high-dose biotin, this strategy merits more extensive evaluation in type 1 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top