Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Predicting physiological capacity of human load carriage - a review.
Drain, Jace; Billing, Daniel; Neesham-Smith, Daniel; Aisbett, Brad
2016-01-01
This review article aims to evaluate a proposed maximum acceptable work duration model for load carriage tasks. It is contended that this concept has particular relevance to physically demanding occupations such as military and firefighting. Personnel in these occupations are often required to perform very physically demanding tasks, over varying time periods, often involving load carriage. Previous research has investigated concepts related to physiological workload limits in occupational settings (e.g. industrial). Evidence suggests however, that existing (unloaded) workload guidelines are not appropriate for load carriage tasks. The utility of this model warrants further work to enable prediction of load carriage durations across a range of functional workloads for physically demanding occupations. If the maximum duration for which personnel can physiologically sustain a load carriage task could be accurately predicted, commanders and supervisors could better plan for and manage tasks to ensure operational imperatives were met whilst minimising health risks for their workers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.
Zimmermann, Wolfram-Hubertus
2013-01-01
The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.
Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair
2013-01-01
The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application. PMID:24229468
Coles, L G; Gheduzzi, S; Miles, A W
2014-12-01
The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen variability and often cannot be carried out at physiological levels of loading. This study aimed to evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics under physiological levels of loading. The simulator allowed the knee to move in 6 degrees of freedom under quadriceps actuation and included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological relevance and repeatability of the simulator, measurements were made of the quadriceps force and the force, contact area and pressure within the patellofemoral joint using load cells, pressure-sensitive film, and a flexible pressure sensor. The results were in agreement with those previously reported in the literature, confirming that the simulator is able to provide a realistic physiological loading situation. Under physiological loading, average standard deviations of force and area measurements were substantially lower and comparable to those reported in previous cadaveric studies, respectively. The simulator replicates the physiological environment and has been demonstrated to allow the initial investigation of factors affecting patellofemoral biomechanics following total knee arthroplasty. © IMechE 2014.
Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs
Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva
2016-01-01
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections. PMID:26839750
Effects of Vibration and G-Loading on Heart Rate, Breathing Rate, and Response Time
NASA Technical Reports Server (NTRS)
Godinez, Angelica; Ayzenberg, Ruthie; Liston, Dorian B.; Stone, Leland S.
2013-01-01
Aerospace and applied environments commonly expose pilots and astronauts to G-loading and vibration, alone and in combination, with well-known sensorimotor (Cohen, 1970) and performance consequences (Adelstein et al., 2008). Physiological variables such as heart rate (HR) and breathing rate (BR) have been shown to increase with G-loading (Yajima et al., 1994) and vibration (e.g. Guignard, 1965, 1985) alone. To examine the effects of G-loading and vibration, alone and in combination, we measured heart rate and breathing rate under aerospace-relevant conditions (G-loads of 1 Gx and 3.8 Gx; vibration of 0.5 gx at 8, 12, and 16 Hz).
Intradiscal pressure variation under spontaneous ventilation
NASA Astrophysics Data System (ADS)
Roriz, Paulo; Ferreira, J.; Potes, J. C.; Oliveira, M. T.; Santos, J. L.; Simões, J. A.; Frazão, O.
2014-05-01
The pressure measured in the intervertebral discs is a response to the loads acting on the spine. External loads, such as the reaction forces resulting from locomotion, manual handling and collisions are probably the most relevant in studying spine trauma. However, the physiological functions such as breathing and hearth rate also participate in subtle variations of intradiscal pressure that can be observed only in vivo at resting. Present work is an effort to measure the effect of breathing on intradiscal pressure of an anesthetized sheep.
Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E
2016-07-01
The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.
Load carriage, human performance, and employment standards.
Taylor, Nigel A S; Peoples, Gregory E; Petersen, Stewart R
2016-06-01
The focus of this review is on the physiological considerations necessary for developing employment standards within occupations that have a heavy reliance on load carriage. Employees within military, fire fighting, law enforcement, and search and rescue occupations regularly work with heavy loads. For example, soldiers often carry loads >50 kg, whilst structural firefighters wear 20-25 kg of protective clothing and equipment, in addition to carrying external loads. It has long been known that heavy loads modify gait, mobility, metabolic rate, and efficiency, while concurrently elevating the risk of muscle fatigue and injury. In addition, load carriage often occurs within environmentally stressful conditions, with protective ensembles adding to the thermal burden of the workplace. Indeed, physiological strain relates not just to the mass and dimensions of carried objects, but to how those loads are positioned on and around the body. Yet heavy loads must be borne by men and women of varying body size, and with the expectation that operational capability will not be impinged. This presents a recruitment conundrum. How do employers identify capable and injury-resistant individuals while simultaneously avoiding discriminatory selection practices? In this communication, the relevant metabolic, cardiopulmonary, and thermoregulatory consequences of loaded work are reviewed, along with concomitant impediments to physical endurance and mobility. Also emphasised is the importance of including occupation-specific clothing, protective equipment, and loads during work-performance testing. Finally, recommendations are presented for how to address these issues when evaluating readiness for duty.
THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT
Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.
2014-01-01
The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198
Mechanics of the Unusual Basilar Membrane in Gerbil
NASA Astrophysics Data System (ADS)
Kapuria, Santosh; Steele, Charles R.; Puria, Sunil
2011-11-01
The basilar membrane in gerbil differs from most other mammals, since its width and thickness show little variation from base to apex, and tympanic fiber layer in the pectinate zone forms a pronounced arch. Measurements indicate a quadratically increasing stiffness under point loading, which is contrary to the expected behavior of an arch. The plateau value has been considered to be the physiologically relevant stiffness, but it only occurs after 10-25 μm of deflection, whereas the normal physiological deflection is in the submicron range. The present work aims to resolve these contradictions by considering the mechanics of the geometric configuration.
Microfluidic cardiac cell culture model (μCCCM).
Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan
2010-09-15
Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.
[Numeric simulation of functional remodeling of the anterior alveolar bone].
Wang, Wei-feng; Xin, Hai-tao; Zang, Shun-lai; Ding, Jie
2012-04-01
To study the remodeling of the anterior alveolar bone with parodontium under physiology loading using finite element method (FEM) and theory of bone remodeling. A FEM model of the maxillary central incisor with parodontium was established, and the change of bone density during the remodeling of alveolar bone was investigated under physiology loading (60 - 150 N) based on the theory of bone remodeling about strain energy density (SED). The finite element analysis software Abaqus user material subroutine (UMAT) were used. With the increase of physiology loading, the pressure stress on the buccal cervical margin increased gradually while the density was decreased gradually. The cortical bone was lower than its initial density 1.74 g/cm(3), which was 1.74 - 1.63 g/cm(3). The density of cancellous bone was 0.90 - 0.77 g/cm(3), which was lower than its intial density 0.90 g/cm(3). The lingual cervical margin was under tensile stress which also increased with loading, the density had no significant change. When the achieve to 120 N, the density of cortical bone was 1.74 - 1.73 g/cm(3). No significant change was found in the cancellous bone. The simulation of the perodontium remodeling is achieved and proved to be effective by the relevant research based on the method of the study. And the result will be helpful to form the basis of analysis bone remodeling process and predict the results in the clinical work.
The use of subjective rating of exertion in Ergonomics.
Capodaglio, P
2002-01-01
In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity of individuals thus can be obtained.
NASA Astrophysics Data System (ADS)
Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu
2015-11-01
Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates. Electronic supplementary information (ESI) available: DOX-AuNP absorption spectra and colored solution images, citrate displacement data, original DOX-AuNP loading isotherm, XPS data and TEM micrographs, modelling data. See DOI: 10.1039/c5nr05826k
2014-11-01
response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...over time , when a bipha- sic soft tissue is subjected to dynamic loading. Also, after the initial transient, the variation of solid skeleton stresses...will be naturally calculated as the fluid phase pressure dissipates over time . This is important for developing physiologically- relevant degradation
Subramanian, Gayathri; Elsaadany, Mostafa; Bialorucki, Callan; Yildirim-Ayan, Eda
2017-08-01
Mechanical loading bioreactors capable of applying uniaxial tensile strains are emerging to be a valuable tool to investigate physiologically relevant cellular signaling pathways and biochemical expression. In this study, we have introduced a simple and cost-effective uniaxial tensile strain bioreactor for the application of precise and homogenous uniaxial strains to 3D cell-encapsulated collagen constructs at physiological loading strains (0-12%) and frequencies (0.01-1 Hz). The bioreactor employs silicone-based loading chambers specifically designed to stretch constructs without direct gripping to minimize stress concentration at the ends of the construct and preserve its integrity. The loading chambers are driven by a versatile stepper motor ball-screw actuation system to produce stretching of the constructs. Mechanical characterization of the bioreactor performed through Finite Element Analysis demonstrated that the constructs experienced predominantly uniaxial tensile strain in the longitudinal direction. The strains produced were found to be homogenous over a 15 × 4 × 2 mm region of the construct equivalent to around 60% of the effective region of characterization. The strain values were also shown to be consistent and reproducible during cyclic loading regimes. Biological characterization confirmed the ability of the bioreactor to promote cell viability, proliferation, and matrix organization of cell-encapsulated collagen constructs. This easy-to-use uniaxial tensile strain bioreactor can be employed for studying morphological, structural, and functional responses of cell-embedded matrix systems in response to physiological loading of musculoskeletal tissues. It also holds promise for tissue-engineered strategies that involve delivery of mechanically stimulated cells at the site of injury through a biological carrier to develop a clinically useful therapy for tissue healing. Biotechnol. Bioeng. 2017;114: 1878-1887. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The role of heart rate variability in sports physiology
DONG, JIN-GUO
2016-01-01
Heart rate variability (HRV) is a relevant marker reflecting cardiac modulation by sympathetic and vagal components of the autonomic nervous system (ANS). Although the clinical application of HRV is mainly associated with the prediction of sudden cardiac death and assessing cardiovascular and metabolic illness progression, recent observations have suggested its applicability to physical exercise training. HRV is becoming one of the most useful tools for tracking the time course of training adaptation/maladaptation of athletes and in setting the optimal training loads leading to improved performances. However, little is known regarding the role of HRV and the internal effects of physical exercise on an athlete, which may be useful in designing fitness programs ensuring sufficient training load that may correspond with the specific ability of the athlete. In this review, we offer a comprehensive assessment of investigations concerning the interrelation between HRV and ANS, and examine how the application of HRV to physical exercise may play a role in sports physiology. PMID:27168768
The role of heart rate variability in sports physiology.
Dong, Jin-Guo
2016-05-01
Heart rate variability (HRV) is a relevant marker reflecting cardiac modulation by sympathetic and vagal components of the autonomic nervous system (ANS). Although the clinical application of HRV is mainly associated with the prediction of sudden cardiac death and assessing cardiovascular and metabolic illness progression, recent observations have suggested its applicability to physical exercise training. HRV is becoming one of the most useful tools for tracking the time course of training adaptation/maladaptation of athletes and in setting the optimal training loads leading to improved performances. However, little is known regarding the role of HRV and the internal effects of physical exercise on an athlete, which may be useful in designing fitness programs ensuring sufficient training load that may correspond with the specific ability of the athlete. In this review, we offer a comprehensive assessment of investigations concerning the interrelation between HRV and ANS, and examine how the application of HRV to physical exercise may play a role in sports physiology.
Single cell active force generation under dynamic loading - Part I: AFM experiments.
Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P
2015-11-01
A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon; Marcott, Stephen C; Polamraju, Praveen V; Lee, Yeonkyung; Fischbach, Claudia
2016-08-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.
Bates, Nathaniel A.; Myer, Gregory D.; Shearn, Jason T.; Hewett, Timothy E.
2014-01-01
Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070
Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.
2014-01-01
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271
A Database as a Service for the Healthcare System to Store Physiological Signal Data.
Chang, Hsien-Tsung; Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records- 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users-we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance.
A Database as a Service for the Healthcare System to Store Physiological Signal Data
Lin, Tsai-Huei
2016-01-01
Wearable devices that measure physiological signals to help develop self-health management habits have become increasingly popular in recent years. These records are conducive for follow-up health and medical care. In this study, based on the characteristics of the observed physiological signal records– 1) a large number of users, 2) a large amount of data, 3) low information variability, 4) data privacy authorization, and 5) data access by designated users—we wish to resolve physiological signal record-relevant issues utilizing the advantages of the Database as a Service (DaaS) model. Storing a large amount of data using file patterns can reduce database load, allowing users to access data efficiently; the privacy control settings allow users to store data securely. The results of the experiment show that the proposed system has better database access performance than a traditional relational database, with a small difference in database volume, thus proving that the proposed system can improve data storage performance. PMID:28033415
Davidson Jebaseelan, D; Jebaraj, C; Yoganandan, N; Rajasekaran, S; Yerramshetty, J
2014-07-01
Growth modulation changes occur in pediatric spines and lead to kyphotic deformity during discitis infection from mechanical forces. The present study was done to understand the consequences of discitis by simulating inflammatory puss at the T12/L1 disc space using a validated eight-year-old thoracolumbar spine finite element model. Changes in the biomechanical responses of the bone, disc and ligaments were determined under physiological compression and flexion loads in the intact and discitis models. During flexion, the angular-displacement increased by 3.33 times the intact spine and localized at the infected junction (IJ). The IJ became a virtual hinge. During compression loading, higher stresses occurred in the growth plate superior to the IJ. The components of the principal stresses in the growth plates at the T12/L1 junction indicated differential stresses. The strain increased by 143% during flexion loading in the posterior ligaments. The study indicates that the flexible pediatric spine increases the motion of the infected spine during physiological loadings. Understanding intrinsic responses around growth plates is important within the context of growth modulation in children. These results are clinically relevant as it might help surgeons to come up with better decisions while developing treatment protocols or performing surgeries. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Hunt, Kathleen E.; Moore, Michael J.; Rolland, Rosalind M.; Kellar, Nicholas M.; Hall, Ailsa J.; Kershaw, Joanna; Raverty, Stephen A.; Davis, Cristina E.; Yeates, Laura C.; Fauquier, Deborah A.; Rowles, Teresa K.; Kraus, Scott D.
2013-01-01
Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples (‘blow’), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures. PMID:27293590
Alius, Manuela G; Pané-Farré, Christiane A; Von Leupoldt, Andreas; Hamm, Alfons O
2013-05-01
Although respiratory symptoms are relevant for diagnosis and etiology of panic disorder, anxiety responses and breathing behavior evoked by induction of dyspnea have rarely been studied. Therefore, dyspnea sensations and affective evaluations evoked by inspiratory resistive loads of different intensities were first assessed in 23 individuals with high versus 24 participants with low anxiety sensitivity (AS). High AS participants with high fear of suffocation rated loads of the same physical intensity as more unpleasant and reported more intense feelings of dyspnea and more respiratory and panic symptoms than low AS individuals. In the second experiment assessing physiological responses to physically comparable loads, high suffocation fear participants showed an increase in minute ventilation to compensate for fear-induced air hunger. This ventilation behavior results in increased frequency of dyspnea sensations, thus increasing fear of suffocation. Copyright © 2013 Society for Psychophysiological Research.
Measuring Physician Cognitive Load: Validity Evidence for a Physiologic and a Psychometric Tool
ERIC Educational Resources Information Center
Szulewski, Adam; Gegenfurtner, Andreas; Howes, Daniel W.; Sivilotti, Marco L. A.; van Merriënboer, Jeroen J. G.
2017-01-01
In general, researchers attempt to quantify cognitive load using physiologic and psychometric measures. Although the construct measured by both of these metrics is thought to represent overall cognitive load, there is a paucity of studies that compares these techniques to one another. The authors compared data obtained from one physiologic tool…
Lynch, Maureen E.; Chiou, Aaron E.; Lee, Min Joon; Marcott, Stephen C.; Polamraju, Praveen V.; Lee, Yeonkyung
2016-01-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis. PMID:27401765
Measuring Cognitive Load: A Comparison of Self-Report and Physiological Methods
ERIC Educational Resources Information Center
Joseph, Stacey
2013-01-01
This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure-a traditional subjective measure-and two objective, physiological measures…
Physiological response of pilots to the LBNP-, flight-, and centrifuge load.
Dosel, P; Hanousek, J; Cmiral, J; Petricek, J
1998-07-01
The possibility of the LBNP method's utilization at persons with low resistance of the cardiovascular system to the orthostatic load is a matter one of the research projects of IAM. We concentrated in previous stages our effort on an evaluation of basic physiological responses of the organism to this type of a load and on determination of reliable markers of the precollapse state. After analysis of results of examinations of 64 probands' set we defined qualifying criteria to the prediction for selection of individuals with the insufficient orthostatic resistance. Verification of experimental results by the comparison with well-established examination methods, during a real flight load and at the examination in a human centrifuge, is a goal of the following research activity. In current period of the task's solution the physiological response to an LBNP load has been compared with the physiological response to the load during real flight in an aircraft.
The effects of dynamic loading on the intervertebral disc.
Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin
2011-11-01
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Using Electroencephalography to Measure Cognitive Load
ERIC Educational Resources Information Center
Antonenko, Pavlo; Paas, Fred; Grabner, Roland; van Gog, Tamara
2010-01-01
Application of physiological methods, in particular electroencephalography (EEG), offers new and promising approaches to educational psychology research. EEG is identified as a physiological index that can serve as an online, continuous measure of cognitive load detecting subtle fluctuations in instantaneous load, which can help explain effects of…
Localized cervical facet joint kinematics under physiological and whiplash loading.
Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A
2005-12-01
Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.
Fluid flow and convective transport of solutes within the intervertebral disc.
Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P
2004-02-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
Burkhart, Timothy A; Herman, Benjamin V; Perry, Kevin; Vandekerckhove, Pieter-Jan; Howard, James; Lanting, Brent
2017-11-01
Total knee arthroplasty is an effective treatment for osteoarthritis. Restoration of physiologic varus alignment may restore the native soft tissue tension and improve outcomes. Six paired fresh-frozen knee specimens were used to perform total knee arthroplastys. The left and right sides of were randomly assigned to have either a physiologic alignment cut or a standard of care neutral alignment bony cut prior to the implantation. Loads of 100 and 200N were applied at 0, 30, 60, and 90° of flexion and the magnitude of the medial and lateral compartment distraction was measured. The loads were applied with the knee specimen intact and post arthroplasty. The physiologic alignment had no difference between medial and lateral gaps at either load. With 100N of load the physiologic alignment had a greater gap at 90° than at full extension while the standard alignment had significantly more gap at 60° of flexion than full extension. The physiologic alignment had a significantly greater gap with the implant compared to the intact condition at both loads. The standard alignment had no significant difference in overall gap between the implant and intact condition with any load. Although performing a physiologic aligned TKA resulted in medial-lateral soft tissue balance, the flexion gap was found to have greater magnitude than the intact knee. Notably, a neutral aligned TKA was found to be balanced, but also was found to recreate the intact knee flexion gaps. These results suggest that coronal plane stability can be achieved with physiologic alignment objectives, but the clinician needs to be aware of the potential to have greater laxity than the intact and neutral alignment surgical objectives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring physician cognitive load: validity evidence for a physiologic and a psychometric tool.
Szulewski, Adam; Gegenfurtner, Andreas; Howes, Daniel W; Sivilotti, Marco L A; van Merriënboer, Jeroen J G
2017-10-01
In general, researchers attempt to quantify cognitive load using physiologic and psychometric measures. Although the construct measured by both of these metrics is thought to represent overall cognitive load, there is a paucity of studies that compares these techniques to one another. The authors compared data obtained from one physiologic tool (pupillometry) to one psychometric tool (Paas scale) to explore whether they actually measured the construct of cognitive load as purported. Thirty-two participants with a range of resuscitation medicine experience and expertise completed resuscitation-medicine based multiple-choice-questions as well as arithmetic questions. Cognitive load, as measured by both tools, was found to be higher for the more difficult questions as well as for questions that were answered incorrectly (p < 0.001). The group with the least medical experience had higher cognitive load than both the intermediate and experienced groups when answering domain-specific questions (p = 0.023 and p = 0.003 respectively for the physiologic tool; p = 0.006 and p < 0.001 respectively for the psychometric tool). There was a strong positive correlation (Spearman's ρ = 0.827, p < 0.001 for arithmetic questions; Spearman's ρ = 0.606, p < 0.001 for medical questions) between the two cognitive load measurement tools. These findings support the validity argument that both physiologic and psychometric metrics measure the construct of cognitive load.
NASA Astrophysics Data System (ADS)
Wahlquist, Joseph A.
This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.
Iwanowicz, L.R.; Blazer, V.S.
2011-01-01
Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.
The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; ...
2014-10-21
Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less
Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications.
Mujika, Iñigo
2017-04-01
Training quantification is basic to evaluate an endurance athlete's responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes' performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2008-12-01
Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.
Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.
2011-01-01
Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584
Kraft, Jeffrey J; Jeong, Changhoon; Novotny, John E; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M; Richardson, Dean W; Dodge, George R
2011-07-01
Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture-derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair.
Evaluative pressure overcomes perceptual load effects.
Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude
2015-06-01
Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.
Evolutionary relevance facilitates visual information processing.
Jackson, Russell E; Calvillo, Dusti P
2013-11-03
Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.
Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G
2006-01-01
Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games.
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-06-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles.
Robertson, Tony; Beveridge, Gayle; Bromley, Catherine
2017-01-01
Allostatic load is a multiple biomarker measure of physiological 'wear and tear' that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological 'health') was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death.
Beveridge, Gayle; Bromley, Catherine
2017-01-01
Allostatic load is a multiple biomarker measure of physiological ‘wear and tear’ that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological ‘health’) was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death. PMID:28813505
Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W
2017-07-01
The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (p<0.01), greater impact loading rates (p<0.0001), greater stride frequency (p<0.05), shorter stride length (p<0.01), and greater rate of acceleration development at toe-off (p<0.0001) for the mid-shin and mid-thigh compared to running immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (p<0.0001) when running immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigating reduced bag weight as an effective risk mediator for mason tenders.
Davis, Kermit G; Kotowski, Susan E; Albers, James; Marras, William S
2010-10-01
Masonry workers face some of the highest physical demands in the construction industry where large bags of masonry material weighing 42.7 kg are commonly handled by mason tenders who mix the mortar, distribute mortar and bricks/blocks, and erect/dismantle scaffolding throughout the day. The objective of this study was to determine the effectiveness of using half-weight bags (21.4 kg) on reducing the biomechanical loading, physiological response, and perceived exertions. Ten male subjects performed asymmetric lifting tasks simulating unloading bags from a pallet. Muscle activity, trunk kinematics, heart rate, blood pressure and subjective rating data were collected. Spine loads were predicted from a well-validated EMG-assisted model. Bag weight, lift type, bag height at origin, and asymmetry at destination significantly impacted the spine loads. While there was a 50% reduction in bag weight, the peak loads for the half-weight bags were only 25% less than the more available full-weight bags (a reduction of about 320 N of shear and 1000 N of compression). Lifts allowing movement of the feet reduced the loads by about 22% in shear and 27% in compression compared to constrained postures. Interestingly, cumulative spine loads were greater for the lighter bags than the heavy bags ( approximately 40%). The subjective ratings of exertion and risk were significantly lower for the lighter bags. RELEVANCE TO INDUSTRY: The reduction in peak spine loading for the half-weight bags, particularly at the higher heights and when the feet were allowed to move could significantly reduce the injuries of masonry workers. However, there were trade-offs with cumulative loads that may minimize the reduced risk. Overall, given the limited amount of time lifting bags, the reduction of peak loads.
Papazacharias, Apostolos; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Di Giorgio, Annabella; Lo Bianco, Luciana; Quarto, Tiziana; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Caforio, Grazia; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro
2015-01-01
Earlier studies have demonstrated that emotional stimulation modulates attentional processing during goal-directed behavior and related activity of a brain network including the inferior frontal gyrus (IFG) and the caudate nucleus. However, it is not clear how emotional interference modulates behavior and brain physiology during variation in attentional control, a relevant question for everyday life situations in which both emotional stimuli and cognitive load vary. The aim of this study was to investigate the impact of negative emotions on behavior and activity in IFG and caudate nucleus during increasing levels of attentional control. Twenty two healthy subjects underwent event-related functional magnetic resonance imaging while performing a task in which neutral or fearful facial expressions were displayed before stimuli eliciting increasing levels of attentional control processing. Results indicated slower reaction time (RT) and greater right IFG activity when fearful compared with neutral facial expressions preceded the low level of attentional control. On the other hand, fearful facial expressions preceding the intermediate level of attentional control elicited faster behavioral responses and greater activity in the right and left sides of the caudate. Finally, correlation analysis indicated a relationship between behavioral correlates of attentional control after emotional interference and right IFG activity. All together, these results suggest that the impact of negative emotions on attentional processing is differentially elicited at the behavioral and physiological levels as a function of cognitive load.
Papazacharias, Apostolos; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Di Giorgio, Annabella; Lo Bianco, Luciana; Quarto, Tiziana; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Caforio, Grazia; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro
2015-01-01
Earlier studies have demonstrated that emotional stimulation modulates attentional processing during goal-directed behavior and related activity of a brain network including the inferior frontal gyrus (IFG) and the caudate nucleus. However, it is not clear how emotional interference modulates behavior and brain physiology during variation in attentional control, a relevant question for everyday life situations in which both emotional stimuli and cognitive load vary. The aim of this study was to investigate the impact of negative emotions on behavior and activity in IFG and caudate nucleus during increasing levels of attentional control. Twenty two healthy subjects underwent event-related functional magnetic resonance imaging while performing a task in which neutral or fearful facial expressions were displayed before stimuli eliciting increasing levels of attentional control processing. Results indicated slower reaction time (RT) and greater right IFG activity when fearful compared with neutral facial expressions preceded the low level of attentional control. On the other hand, fearful facial expressions preceding the intermediate level of attentional control elicited faster behavioral responses and greater activity in the right and left sides of the caudate. Finally, correlation analysis indicated a relationship between behavioral correlates of attentional control after emotional interference and right IFG activity. All together, these results suggest that the impact of negative emotions on attentional processing is differentially elicited at the behavioral and physiological levels as a function of cognitive load. PMID:25954172
Influence of a Vented Mouthguard on Physiological Responses in Handball.
Schulze, Antina; Laessing, Johannes; Kwast, Stefan; Busse, Martin
2018-05-23
Schulze, A, Laessing, J, Kwast, S, and Busse, M. Influence of a vented mouthguard on physiological responses in handball. J Strength Cond Res XX(X): 000-000, 2018-Mouthguards (MGs) improve sports safety. However, airway obstruction and a resulting decrease in performance are theoretical disadvantages regarding their use. The study aim was to assess possible limitations of a "vented" MG on aerobic performance in handball. The physiological effects were investigated in 14 male professional players in a newly developed handball-specific course. The measured values were oxygen uptake, ventilation, heart rate, and lactate. Similar oxygen uptake (V[Combining Dot Above]O2) values were observed with and without MG use (51.9 ± 6.4 L·min·kg vs. 52.1 ± 10.9 L·min·kg). During maximum load, ventilation was markedly lower with the vented MG (153.1 ± 25 L·min vs. 166.3 ± 20.8 L·min). The endexpiratory concentrations of O2 (17.2 ± 0.5% vs. 17.6 ± 0.8%) and CO2 (4.0 ± 0.5% vs. 3.7 ± 0.6%) were significantly lower and higher, respectively, when using the MG. The inspiration and expiration times with and without the MG were 0.6 ± 0.1 seconds vs. 0.6 ± 0.1 seconds and 0.7 ± 0.2 seconds vs. 0.6 ± 0.2 seconds (all not significant), respectively, indicating that there was no relevant airflow restriction. The maximum load was not significantly affected by the MG. The lower ventilation for given V[Combining Dot Above]O2 values associated with MG use may be an effect of improved biomechanics and lower respiratory drive of the peripheral musculature.
Monitoring external and internal loads of brazilian soccer referees during official matches.
Costa, Eduardo C; Vieira, Caio M A; Moreira, Alexandre; Ugrinowitsch, Carlos; Castagna, Carlo; Aoki, Marcelo S
2013-01-01
This study aimed to assess the external and internal loads of Brazilian soccer referees during official matches. A total of 11 field referees (aged 36.2 ± 7.5 years) were monitored during 35 matches. The external (distance covered, mean and maximal speed) and internal load parameters (session ratings of perceived exertion [RPE] training load [TL], Edwards' TL, and time spent in different heart rate [HR] zones) were assessed in 3-4 matches per referee. External load parameters were measured using a wrist Global Positioning System (GPS) receiver. No differences in distance covered (5.219 ± 205 vs. 5.230 ± 237 m) and maximal speed (19.3 ± 1.0 vs. 19.4 ± 1.4 km·h(-1)) were observed between the halves of the matches (p > 0.05). However, the mean speed was higher in the first half of the matches (6.6 ± 0.4 vs. 6.4 ± 0.3 km·h(-1)) (p < 0.05) than in the second half. The mean HR during the matches was ~89% of HRmax. In ~95% of the matches, the referees demonstrated a HR ≥ 80% of HRmax. Nonetheless, the time spent at 90-100% of HRmax was higher in the first half (59.9 vs. 52.3%) (p < 0.05). Significant correlations between session RPE TL and distance covered at 90-100% of HRmax (r = 0.62) and session RPE TL and maximal speed (r = 0.54) (p < 0.05) were noted. Furthermore, there was a positive correlation between session RPE TL and Edwards' TL (r = 0.61) (p < 0.05). Brazilian soccer referees demonstrated high external and internal load demands during official matches. The portable GPS/HR monitors and session RPE method can provide relevant information regarding the magnitude of the physiological strain during official matches. Key PointsHigh external and internal loads were imposed on Brazilian soccer referees during official matches.There was a high positive correlation between a subjective marker of internal load (session RPE) and parameters of external load (distance covered between 90-100% of HRmax and maximal speed).There was a high positive correlation between session RPE method and Edwards' method.Session RPE seems to be a reliable marker of internal load.The portable GPS/HR monitors and the session RPE method can provide relevant information regarding the magnitude of external and internal loads of soccer referees during official matches.
Kusumoto, Yasuaki; Nitta, Osamu; Takaki, Kenji
2016-10-01
In the present study, we aimed to determine whether similarly loaded sit-to-stand exercises at different speeds improve the physiological cost of walking in children with spastic diplegia. This design was a single-blind randomized clinical trial. Sixteen children with cerebral palsy (CP), aged 12-18 years, with a diagnosis of spastic diplegia, were randomly allocated to a slow loaded sit-to-stand exercise group (n=8) and a self-paced loaded sit-to-stand exercise group (n=8). Loaded sit-to-stand exercise was conducted at home for 15min, 4 sets per day, 3-4days per week, for 6 weeks. The patients were evaluated immediately before the intervention and after the training. Lower limb muscle strength using a hand-held dynamometer, selective voluntary motor control using SCALE, 6-min walk distance (6MWD), and Physiological Cost Index (PCI) were measured. The 6MWD showed a significant difference before and after intervention. PCI showed a significant difference between the two groups and the two time points. 6MWD and the PCI improved after intervention in the slow sit-to-stand exercise group. Compared to loaded sit-to-stand exercise at a regular speed, slow low-loaded sit-to-stand exercise improved the 6MWD and PCI in children with CP, suggesting that this decrease in speed during exercise improves the physiological cost of walking in these children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.
2014-01-01
Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru
2017-12-15
T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.
Bertrand, R
2012-09-01
Though hemoglobin (Hb) is best known for transporting oxygen and metabolic wastes throughout the circulatory system, this erythrocyte protein also acts as a hypoxic sensor, its oxygen saturation dependent on the oxygen partial pressure (pO(2)) which varies throughout the vasculature. The production and transport of the endogenous vasodilator nitric oxide (NO) by Hb is dependent on Hb's oxygen saturation, thereby allowing the protein to auto-regulate blood flow efficiency to meet the relative demands of respiring tissues. Erythrocyte concentrations of 2,3-bisphosphoglycerate (BPG), an enhancer of oxygen off-loading from Hb, is very sensitive to changes in glycolytic rates because its synthesis by BPG synthase is dependent on the availability of the glycolytic intermediate 1,3-bisphosphoglycerate. BPG synthase, as well as some glycolytic enzymes, are also very sensitive to pH changes, and variations in BPG levels have direct consequences on the oxygen off-loading function of Hb. I hypothesize that NO may suppress BPG production by (1) inhibiting glyceraldehyde-3-phosphate dehydrogenase (G3PDH), the most critical glycolytic enzyme for the bioavailability of 1,3-bisphosphoglycerate; and to a lesser extent by (2) associated pH changes in the deoxy-Hb-catalyzed depletion of nitrite, a metabolic reservoir of NO. Both mechanisms are favored in low pO(2) environments where BPG is most needed to maximize oxygen off-loading, indicating that the auto-regulatory link between NO and Hb may have inadvertently linked Hb and BPG synthesis in an unfavorable manner. However, for reasons discussed, NO-mediated suppression of BPG may be advantageous in some circumstances; namely, for individuals living at high altitudes and those with the blood disorder sickle cell anemia. This hypothesis is thus relevant to respiratory health under both normative conditions as well as under hypoxic stress. The potential relevance of the hypothesis to comparative animal physiology and evolutionary biology is also briefly described. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nishida, Yasuhiro; Maruyama, Satoshi; Shouji, Ichiro; Kemuriyama, Takehito; Tashiro, Akimasa; Ohta, Hiroyuki; Hagisawa, Kohsue; Hiruma, Megumi; Yokoe, Hidetake
2016-11-01
The effects of gravitational loading (G load) on humans have been studied ever since the early 20th century. After the dangers of G load in the vertical head-to-leg direction (+Gz load) became evident, many animal experiments were performed between 1920 and 1945 in an effort to identify the origins of high G-force-induced loss of consciousness (G-LOC), which led to development of the anti-G suit. The establishment of norms and training for G-LOC prevention resulted in a gradual decline in reports of animal experiments on G load, a decline that steepened with the establishment of anti-G techniques in humans, such as special breathing methods and skeletal muscle contraction, called an anti-G straining maneuver, which are voluntary physiological functions. Because the issue involves humans during flight, the effects on humans themselves are clearly of great importance, but ethical considerations largely preclude any research on the human body that probes to any depth the endogenous physiological states and functions. The decline in reports on animal experiments may therefore signify a general decline in research into the changes seen in the various involuntary, autonomic functions. The declining number of related reports on investigations of physiological autonomic systems other than the circulatory system seems to bear this out. In this review, we therefore describe our findings on the effects of G load on the autonomic nervous system, cardiac function, cerebral blood flow, tissue oxygen level, and other physiological autonomic functions as measured in animal experiments, including denervation or pharmacological blocking, in an effort to present the limits and the mechanisms of G-load response extending physiologically. We demonstrate previously unrecognized risks due to G load, and also describe fundamental research aimed at countering these effects and development of a scientific training measure devised for actively enhancing +Gz tolerance in involuntary, autonomic system functions. The research described here is rough and incomplete, but it is offered as a beginning, in the hope that researchers may find it of reference and carry the effort toward completion. The advances described here include (1) a finding that cerebral arterial perfusion pressure decreases to nearly zero under +5.0 Gz loads, (2) indications that G load may cause myocardial microinjuries, (3) detection of differences between cerebral regions in tissue-oxygen level under +3.0 Gz load, (4) discovery that hypotension is deeper under decreasing +Gz loads than increasing +Gz loads with use of an anti-G system, due in part to suppression of baroreceptor reflex, and (5) revelations and efforts investigating new measures to reduce cerebral hypotension, namely the "teeth-clenching pressor response" and preconditioning with slight but repeated G loads.
Collet, C; Guillot, A; Petit, C
2010-05-01
The impact of cell (mobile) phone use on driving performance has been widely questioned for 20 years. This paper reviews the literature to evaluate the extent to which phoning may impact behaviour with a risk to affect safety. After analysing epidemiological studies that give an overview of cell phone use, this paper examines the experimental results and focuses on variables showing that driving is impacted by holding a mobile-phone conversation. Information processing (e.g. reaction time and detection rate of cues related to driving information) and variables associated with vehicle control (e.g. lane-keeping, headway and vehicle speed) seem the most relevant. Although less studied than behavioural indices, physiological data give information about the supplementary potential strain that the driver may undergo under dual-task conditions. This first part of the review highlights common findings, questionable results and differences among studies, which originate from specific experimental designs with particular dependent variables, i.e. self-report, behavioural and physiological indicators. Finally, how drivers try to compensate for the additional load brought by phone use is described. STATEMENT OF RELEVANCE: The two papers review the influence of mobile-phone use on driving performance. While there is ample evidence that this dual task is likely to increase the risk of car crash, the review analyses the variables eliciting detrimental conditions and, conversely, those that may preserve acceptable conditions for safety, close to usual driving. The decision of answering or initiating a cell phone call while driving depends upon the complex interaction among several variables, including driving conditions and driver's own characteristics. In addition, this decision remains under driver's awareness of being able or not to manage the two tasks simultaneously.
Integration of the response to a dietary potassium load: a paleolithic perspective.
Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L
2014-05-01
Our purpose is to integrate new insights in potassium (K(+)) physiology to understand K(+) homeostasis and illustrate some of their clinical implications. Since control mechanisms that are essential for survival were likely developed in Paleolithic times, we think the physiology of K(+) homeostasis can be better revealed when viewed from what was required to avoid threats and achieve balance in Paleolithic times. Three issues will be highlighted. First, we shall consider the integrative physiology of the gastrointestinal tract and the role of lactic acid released from enterocytes following absorption of sugars (fruit and berries) to cause a shift of this K(+) load into the liver. Second, we shall discuss the integrative physiology of WNK kinases and modulation of delivery of bicarbonate to the distal nephron to switch the aldosterone response from sodium chloride retention to K(+) secretion when faced with a K(+) load. Third, we shall emphasize the role of intra-renal recycling of urea in achieving K(+) homeostasis when the diet contains protein and K(+).
Soldier Performance as a Function of Stress and Load: A Review
1990-01-01
1985) increasing load obstacle course decreased weight performance Ikai & Steinhaus shouting forearm flex strength increased (1961) gun shot increased...performance. Capacity represents relatively fil1 ed physiological limits of behavior, while performance is a function of psychological factors (Ikai & Steinhaus ...3), 513-524. Ikai, M., & Steinhaus , A. H. (1961). Some factors modifying the expression of human strength. Journal of ADnlied Physiology, 15, 157-163
Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio
2014-04-01
Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.
Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J
2016-02-01
Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah
2015-10-01
Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.
Deadly diving? Physiological and behavioural management of decompression stress in diving mammals
Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.
2012-01-01
Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402
Manual handling methods evaluation based on oxygen consumption
NASA Astrophysics Data System (ADS)
Nurmianto, E.; Ciptomulyono, U.; Suparno; Kromodihardjo, S.; Setijono, H.; Arief, N. A.
2018-04-01
Mining industry has become one of the largest industries in Indonesia, now competing in billions dollar market, with numbers people employed. Deliveries of a Return Rolls (RR) involve the use of a hand truck and, in many cases, a shoulder/elbow-mode of carriage. Workers usually prefer to the Gendong (carrying on the small of the back or the hip, supported by the waist and arm) mode or Manggul (carrying on some stuff shoulder) mode, because they feel safer by carrying RR on the shoulder/elbow. In this study, the physiological workload involved in shoulder/elbow-mode carrying was investigated, especially focusing on the effects of load weight and inclination. To measure heart rate and oxygen uptake while carrying on the shoulder/elbow, a laboratory experiment was conducted and safety guidelines for such tasks were proposed, based on the experimental results. Four healthy male subjects performed shoulder/elbow-mode carrying, weight between 20 and 24 kg: (1) on inclination of 10o, (2) 20o and (3) 30o. The results showed that inclination involved an increased physiological burden, and that a load of 24 kg entailed a significantly higher physiological cost than carrying a load of 20 kg. Although shoulder/elbow-mode carrying has some advantages, the worker should be advised to carry a load of less than 20 kg, to avoid a high physiological load. During shoulder/elbow-mode carrying, it is also recommended that a person prepare more training in order to have muscular strength.
Barbour, P S; Stone, M H; Fisher, J
1999-01-01
In some designs of hip joint simulator the cost of building a highly complex machine has been offset with the requirement for a large number of test stations. The application of the wear results generated by these machines depends on their ability to reproduce physiological wear rates and processes. In this study a hip joint simulator has been shown to reproduce physiological wear using only one load vector and two degrees of motion with simplified input cycles. The actual path of points on the femoral head relative to the acetabular cup were calculated and compared for physiological and simplified input cycles. The in vitro wear rates were found to be highly dependent on the shape of these paths and similarities could be drawn between the shape of the physiological paths and the simplified elliptical paths.
Cyclic load magnitude is a risk factor for a cumulative lower back disorder.
Le, Peter; Solomonow, Moshe; Zhou, Bing-He; Lu, Yun; Patel, Vikas
2007-04-01
Epidemiological data suggest that high loads lifted by workers engaged in static and cyclic daily activities may be a risk factor for low back disorder. Our previous research provided physiological and biomechanical validation of the epidemiological data for static load conditions. The objective of this report was to provide physiological and biomechanical experimental validation to the epidemiological data in cyclic (repetitive) load conditions. Three groups of in vivo feline models were subjected to 3 cyclic load levels in a series of 6 periods of 10 minutes of work spaced by 10 minutes of rest followed by 7 hours of rest. Multifidus electromyography (EMG) and lumbar displacement were statistically analyzed after processing. Delayed muscular hyperexcitability was observed only in moderate (40 N) and high (60 N) loads (P<0.0001) but was absent in low (20 N) loads. The magnitude of the delayed hyperexcitability was found to be higher (P<0.0001) in the high (60 N) loads compared with the moderate (40 N) loads. Exposure to moderate and high loads in cyclic (repetitive) work results in an acute neuromuscular disorder indicative of soft tissue inflammation that may become chronic with further exposure.
NASA Technical Reports Server (NTRS)
Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie
2003-01-01
Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.
Wilson, David J; Scully, William F; Min, Kyong S; Harmon, Tess A; Eichinger, Josef K; Arrington, Edward D
2016-06-01
Middle-third clavicle fractures represent 2% to 4% of all skeletal trauma in the United States. Treatment options include intramedullary (IM) as well as plate and screw (PS) constructs. The purpose of this study was to analyze the biomechanical stability of a specific IM system compared with nonlocking PS fixation under low-threshold physiologic load. Twenty fourth-generation Sawbones (Pacific Research Laboratories, Vashon, WA, USA) with a simulated middle-third fracture pattern were repaired with either an IM device (n = 10) or superiorly positioned nonlocking PS construct (n = 10). Loads were modeled to simulate physiologic load. Combined axial compression and torsion forces were sequentially increased until failure. Data were analyzed on the basis of loss of rotational stability using 3 criteria: early (10°), clinical (30°), and terminal (120°). No significant difference was noted between constructs in early loss of rotational stability (P > .05). The PS group was significantly more rotationally stable than the IM group on the basis of clinical and terminal criteria (P < .05 for both). All test constructs failed in rotational stability. When tested under physiologic load, fixation failure occurred from loss of rotational stability. No statistical difference was seen between groups under early physiologic loads. However, during load to failure, the PS group was statistically more rotationally stable than the IM group. Given the clavicle's function as a bony strut for the upper extremity and the biomechanical results demonstrated, rotational stability should be carefully considered during surgical planning and postoperative advancement of activity in patients undergoing operative fixation of middle-third clavicle fractures. Basic Science Study; Biomechanics. Published by Elsevier Inc.
Barker, D P; Simpson, J; Pawula, M; Barrett, D A; Shaw, P N; Rutter, N
1995-07-01
To compare the safety and efficacy of two loading doses of diamorphine in 27 ventilated newborn infants in a randomised double blind trial. Fifty or 200 mcg/kg were infused intravenously over 30 minutes, followed by a 15 mcg/kg/hour continuous infusion. Serial measurements were made of physiology, behaviour, and stress hormones. Both loading doses produced small but significant falls in blood pressure. The 200 mcg/kg dose produced greater respiratory depression, and two infants deteriorated clinically, requiring resuscitation. Loading reduced respiratory effort in most of the infants, but had little effect on behavioural activity. Stress hormone concentrations were reduced at six hours in both dosage groups; differences between loading doses were not significant. Morphine, morphine-3-glucuronide, and morphine-6-glucuronide were detected in the plasma of all patients. No significant differences in concentrations between loading doses were found. Diamorphine reduces the stress response in ventilated newborn infants. A high loading dose confers no benefit, and may produce undesirable physiological effects. A 50 mcg/kg loading dose seems to be safe and effective.
Barker, D. P.; Simpson, J.; Pawula, M.; Barrett, D. A.; Shaw, P. N.; Rutter, N.
1995-01-01
AIMS--To compare the safety and efficacy of two loading doses of diamorphine in 27 ventilated newborn infants in a randomised double blind trial. METHODS--Fifty or 200 mcg/kg were infused intravenously over 30 minutes, followed by a 15 mcg/kg/hour continuous infusion. Serial measurements were made of physiology, behaviour, and stress hormones. RESULTS--Both loading doses produced small but significant falls in blood pressure. The 200 mcg/kg dose produced greater respiratory depression, and two infants deteriorated clinically, requiring resuscitation. Loading reduced respiratory effort in most of the infants, but had little effect on behavioural activity. Stress hormone concentrations were reduced at six hours in both dosage groups; differences between loading doses were not significant. Morphine, morphine-3-glucuronide, and morphine-6-glucuronide were detected in the plasma of all patients. No significant differences in concentrations between loading doses were found. CONCLUSIONS--Diamorphine reduces the stress response in ventilated newborn infants. A high loading dose confers no benefit, and may produce undesirable physiological effects. A 50 mcg/kg loading dose seems to be safe and effective. PMID:7552591
Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit
2012-10-01
Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.
Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC
2014-01-01
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441
Analysis of 3D strain in the human medial meniscus.
Kolaczek, S; Hewison, C; Caterine, S; Ragbar, M X; Getgood, A; Gordon, K D
2016-10-01
This study presents a method to evaluate three-dimensional strain in meniscal tissue using medical imaging. Strain is calculated by tracking small teflon markers implanted within the meniscal tissue using computed tomography imaging. The results are presented for strains in the middle and posterior third of the medial menisci of 10 human cadaveric knees, under simulated physiologically relevant loading. In the middle position, an average compressive strain of 3.4% was found in the medial-lateral direction, and average tensile strains of 1.4% and 3.5% were found in the anterior-posterior and superior-inferior directions respectively at 5° of knee flexion with an applied load of 1× body weight. In the posterior position, under the same conditions, average compressive strains of 2.2% and 6.3% were found in the medial-lateral and superior-inferior directions respectively, and an average tensile strain of 3.8% was found in the anterior-posterior direction. No statistically significant difference between strain in the middle or posterior of the meniscus or between the global strains is uncovered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ratings of perceived exertion by women with internal or external locus of control.
Hassmén, P; Koivula, N
1996-10-01
Ratings of perceived exertion are frequently used to estimate the strain and effort experienced subjectively by individuals during various forms of physical activity. A number of factors, both physiological and psychological in origin, have been suggested to work as modifiers of the exertion perceived by the individual. It has been reported in nonsport-related research that individuals with an internal locus of control seem to pay more attention to relevant information and use the available information more adequately than individuals with an external locus of control. The reputed inferior information-processing abilities of externals compared with internals could possibly also influence the ratings of perceived exertion, with externals being less accurate in their ratings. Whether locus of control might be such a factor was investigated. Fifty women worked on an ergometer cycle at four different work loads. The results showed statistically significant differences in subjective ratings of perceived exertion between externals and internals, especially at heavier work loads. Such differences might be because of unequal information-processing abilities, as the observed discrepancies occurred at higher work intensities, when more cues are available for processing.
Ai, Todd
2012-01-01
There has been limited attention given to the physiological demands of pushing and pulling, especially in industrially developing countries such as South Africa. Two key factors affecting the physiological demands of these tasks are the hand forces exerted and the start/stop frequency. The purpose of the current study was therefore to investigate the physiological responses to pushing and pulling at various loads and start/stop frequencies. 36 male subjects participated in the study and were required to complete a total of 18 conditions (three techniques: pushing, two- and one-handed pulling; three loads: 200, 350 and 500 kg; and two frequencies: 2 and 4 stops per minute). During each condition the heart rate, oxygen uptake and energy expenditure were measured. Pushing was found to elicit significantly lower responses for all three dependent variables than either form of pulling. The start/stop frequency was also found to have a significant impact on subject responses. The findings of this study indicate that the technique adopted to maneuver loads is critical in determining the physical demands placed on the human operator. Furthermore increasing the frequency of start/stops plays an important role, thus the forces exerted during these two phases are important from a physiological perspective.
Sasaki, Kotaro; Rispin, Karen
2017-01-01
In under-resourced settings where motorized wheelchairs are rarely available, manual wheelchair users with limited upper-body strength and functionalities need to rely on assisting pushers for their mobility. Because traveling surfaces in under-resourced settings are often unpaved and rough, wheelchair pushers could experience high physiological loading. In order to evaluate pushers' physiological loading and to improve wheelchair designs, we built indoor modular units that simulate rough surface conditions, and tested a hypothesis that pushing different wheelchairs would result in different physiological performances and pushers' perception of difficulty on the simulated rough surface. Eighteen healthy subjects pushed two different types of pediatric wheelchairs (Moti-Go manufactured by Motivation, and KidChair by Hope Haven) fitted with a 50-kg dummy on the rough and smooth surfaces at self-selected speeds. Oxygen uptake, traveling distance for 6 minutes, and the rating of difficulty were obtained. The results supported our hypothesis, showing that pushing Moti-Go on the rough surface was physiologically less loading than KidChair, but on the smooth surface, the two wheelchairs did not differ significantly. These results indicate wheelchair designs to improve pushers' performance in under-resourced settings should be evaluated on rough surfaces.
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
Knowledge Retention of Exercise Physiology Content between Athletes and Nonathletes
ERIC Educational Resources Information Center
Clark, Brian; Webster, Collin; Druger, Marvin
2006-01-01
Based on the idea that learning is linked to personal relevance, this study examined knowledge retention of exercise physiology content between college athletes and nonathletes. No differences were observed between the groups. These findings have implications on understanding the relationship between personal relevance and memory. (Contains 1…
1983-05-01
worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...ratio; thermal comfort ; evaporative cooling; permeability; physiological responses mA]X .................................... INTRODUCTION The Temperate
Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight
NASA Technical Reports Server (NTRS)
Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.
1990-01-01
The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.
Neural control of renal function in health and disease.
DiBona, G F
1994-04-01
The renal sympathetic innervation of the kidney exerts significant effects on multiple aspects of renal function, including renal haemodynamics, tubular sodium and water reabsorption and renin secretion. These effects constitute an important control system which is important in the physiological regulation of arterial pressure and total body fluid and sodium homeostasis. Abnormalities in this regulatory mechanism have pathophysiological consequences and are manifest in clinically relevant human disease states. Decreased renal sympathetic nerve activity results in impaired renin secretion, the inability to conserve sodium normally and an attenuated ability to dispose of both acute and chronic sodium loads. Increased renal sympathetic nerve activity contributes significantly to the excess renal sodium retention and related renal abnormalities observed in both hypertension and oedema forming conditions, such as cardiac failure, cirrhosis and nephrotic syndrome.
Lu, W W; Luk, K D K; Cheung, K C M; Gui-Xing, Qiu; Shen, J X; Yuen, L; Ouyang, J; Leong, J C Y
2004-06-01
Fifty-five human thoracolumbar vertebrae were randomly fatigue loaded and analyzed. The purpose of this study was to explore the relationship between fatigue loading, trabecular microfracture, and energy absorption to fracture in human cadaveric thoracolumbar vertebrae. Although trabecular microfractures are found in vivo and have been produced by fatigue loading in vitro, the effect of the level of physiologic fatigue loading on microfracture and energy absorption has not been investigated. Fifty-five human thoracolumbar vertebrae (T11-L4) were randomly divided into 5 groups: 1) control (no loading, n = 6); 2) axial compression to yield (n = 7); and 3-5) 20,000 cycles of fatigue loading at 2 Hz (each n = 14). The level of fatigue loading was determined as a proportion of the yield load of Group 2 as follows: 10% (Group 3), 20% (Group 4), and 30% (Group 5). Half of the specimens in groups 3 to 5 were used for radiographic and histomorphometric analysis to determine microfracture density and distribution, whereas the other half were tested to determine the energy absorption to yield failure. No radiographic evidence of gross fracture was found in any of the groups following fatigue loading. A mean 7.5% increase in stiffness was found in specimens subject to cyclic loading at 10% of yield stress (Group 3). Fatigue at 20% (Group 4) and 30% of yield stress (Group 5) caused significantly higher (P < 0.05) increases in mean stiffness of 23.6% and 24.2%, respectively. Microfracture density increased from 0.46/mm in Group 3 to 0.66/mm in Group 4 and 0.94/mm in Group 5 (P < 0.05). The energy absorbed to failure decreased from 21.9 J in Group 3 to 18.1 J and 19.6 J in Groups 4 and 5, respectively (P < 0.05). Fatigue loading at physiologic levels produced microfractures that are not detectable by radiography. Increased fatigue load results in an increase in microfracture density and decrease energy absorbed to fracture, indicating a reduced resistance to further fatigue loading.
A new way of thinking about complications of prematurity.
Moore, Tiffany A; Berger, Ann M; Wilson, Margaret E
2014-01-01
The morbidity and mortality of preterm infants are impacted by their ability to maintain physiologic homeostasis using metabolic, endocrine, and immunologic mechanisms independent of the mother's placenta. Exploring McEwen's allostatic load model in preterm infants provides a new way to understand the altered physiologic processes associated with frequently occurring complications of prematurity such as bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity. The purpose of this article is to present a new model to enhance understanding of the altered physiologic processes associated with complications of prematurity. The model of allostatic load and complications of prematurity was derived to explore the relationship between general stress of prematurity and complications of prematurity. The proposed model uses the concepts of general stress of prematurity, allostasis, physiologic response patterns (adaptive-maladaptive), allostatic load, and complications of prematurity. These concepts are defined and theoretical relationships in the proposed model are interpreted using the four maladaptive response patterns of repeated hits, lack of adaptation, prolonged response, and inadequate response. Empirical evidence for cortisol, inflammation, and oxidative stress responses are used to support the theoretical relationships. The proposed model provides a new way of thinking about physiologic dysregulation in preterm infants. The ability to describe and understand complex physiologic mechanisms involved in complications of prematurity is essential for research. Advancing the knowledge of complications of prematurity will advance clinical practice and research and lead to testing of interventions to reduce negative outcomes in preterm infants.
Klaver, Peter; Talsma, Durk
2013-11-01
We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.
A Systems Approach to Stress, Stressors and Resilience in Humans
Oken, Barry S.; Chamine, Irina; Wakeland, Wayne
2014-01-01
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state towards a lower utility state. The physiological system may return towards the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system’s resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective. PMID:25549855
MacPherson, Megan K; Abur, Defne; Stepp, Cara E
2017-07-01
This study aimed to determine the relationship among cognitive load condition and measures of autonomic arousal and voice production in healthy adults. A prospective study design was conducted. Sixteen healthy young adults (eight men, eight women) produced a sentence containing an embedded Stroop task in each of two cognitive load conditions: congruent and incongruent. In both conditions, participants said the font color of the color words instead of the word text. In the incongruent condition, font color differed from the word text, creating an increase in cognitive load relative to the congruent condition in which font color and word text matched. Three physiologic measures of autonomic arousal (pulse volume amplitude, pulse period, and skin conductance response amplitude) and four acoustic measures of voice (sound pressure level, fundamental frequency, cepstral peak prominence, and low-to-high spectral energy ratio) were analyzed for eight sentence productions in each cognitive load condition per participant. A logistic regression model was constructed to predict the cognitive load condition (congruent or incongruent) using subject as a categorical predictor and the three autonomic measures and four acoustic measures as continuous predictors. It revealed that skin conductance response amplitude, cepstral peak prominence, and low-to-high spectral energy ratio were significantly associated with cognitive load condition. During speech produced under increased cognitive load, healthy young adults show changes in physiologic markers of heightened autonomic arousal and acoustic measures of voice quality. Future work is necessary to examine these measures in older adults and individuals with voice disorders. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.
Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo
2017-06-01
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Loose coupling in the bacterial flagellar motor
Boschert, Ryan; Adler, Frederick R.; Blair, David F.
2015-01-01
Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730
Crew performance monitoring: Putting some feeling into it
NASA Astrophysics Data System (ADS)
Pattyn, N.; Migeotte, P.-F.; Morais, J.; Soetens, E.; Cluydts, R.; Kolinsky, R.
2009-08-01
Two hypotheses have been invoked so far to explain performance decrements in space: the microgravity hypothesis and the multiple stressors hypothesis. Furthermore, previous investigations of cognitive performance did not specifically target executive functions. The aim of this study was to investigate the impact of operational stress on cognitive control, towards both neutral and emotionally loaded material, using both psychometric and physiological indicators (autonomic nervous system activity computed through cardio-respiratory recordings). We applied the same design in a study on student pilots (N=12) in baseline conditions and right before a major evaluation flight and on astronauts (N=3) before, during and after a short-duration spaceflight. To address the problem of scarcity of subjects, we applied analytical methods derived from neuropsychology: comparing each astronaut treated as a single subject to a group of carefully matched controls (N=13). Results from both student pilots and astronauts showed that operational stress resulted in failing cognitive control, especially on emotionally loaded material that was relevant to the subjects' current concern. This impaired cognitive control was associated with a decreased physiological reactivity during mental tasks. Furthermore, for astronauts, this performance decrement appeared on the last data-collection before launch and lasted for the two in-flight measurements. These results thus allow us to conclude that: (i) performance testing including an emotional dimension seems more sensitive to operational stress, (ii) decreased heart rate reactivity was associated with impaired cognitive control and (iii) microgravity is not the sole causal factor of potential performance decrements in space, which are more likely due to the combination of multiple stressors.
Abdalla, Ahmed; Mäder, Karsten
2009-02-09
The aim of the current study is the evaluation of a recently optimized SEDDS, composed of Solutol HS15 and medium chain glycerides, and self-emulsifying pellets by means of ESR. Tempol-benzoate (TB)-loaded SEDDS were produced and electron spin resonance (ESR) spectroscopy was used to evaluate the diluted self-emulsifying mixtures. Moreover, ESR in vitro digestion experiments were carried out to have an insight on the characteristics of the different phases formed during the digestion process and to evaluate the distribution and the localization of TB in these phases. In addition, self-emulsifying pellets were produced using nitroxide-loaded SEDDS and the microenvironment within the pellets during release process was monitored in an online process using ESR spectroscopy. After dilution of nitroxide-loaded SEDDS, the percent of TB localized in the lipophilic compartment was decreasing with increasing the surfactant fraction in the mixture. Moreover, it was found that different phases with variable viscosity and polarity were produced as a result of the enzymatic digestion of SEDDS in physiologically relevant media. This change in lipid composition has largely affected the distribution and the localization of the spin probe during the digestion process. A rapid increase in the mobility of the spin probe inside the pellets was noticed after exposure to the release media. Additionally, TB was localized within the self-emulsifying mixture environment for the time of the experiment. ESR is considered a powerful non-invasive tool to assess the microenvironment of the diluted SEDDS and to monitor in vitro digestion process. Digestion induces a change in lipid composition which can affect the solubilization capacity of the administered drug. Therefore, monitoring in vitro digestion process using ESR spectroscopy will help in providing greater understanding of the interaction between the administered drug and the digested lipid vehicles.
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-01-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles. Key points The number of decelerations and the total distance can be considered risk factors for injuries in professional basketball players. Unloaded players have greater risk of injury compared to players with higher accumulated external workload. Workload management should be considered a major factor in injury prevention programs. PMID:29769830
Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities.
Shoaf, C; Genaidy, A; Karwowski, W; Waters, T; Christensen, D
1997-11-01
The objective of this study was to develop a set of mathematical models for manual lowering, pushing, pulling and carrying activities that would result in establishing load capacity limits to protect the lower back against occupational low-back disorders. In order to establish safe guidelines, a three-stage process was used. First, psychophysical data was used to generate the models' discounting factors and recommended load capacities. Second, biomechanical analysis was used to refine the recommended load capacities. Third, physiological criteria were used to validate the models' discounting factors. Both task and personal factors were considered in the models' development. When compared to the results from prior psychophysical research for these activities, the developed load capacity values are lower than previously established limits. The results of this study allowed the authors to validate the hypothesis proposed and tested by Karwowski (1983) that states that the combination of physiological and biomechanical stresses should lead to the overall measure of task acceptability or the psychophysical stress. This study also found that some of the discounting factors for the task frequency parameters recommended in the prior psychophysical research should not be used as several of the high frequency factors violated physiological limits.
Conservation physiology across scales: insights from the marine realm
Cooke, Steven J.; Killen, Shaun S.; Metcalfe, Julian D.; McKenzie, David J.; Mouillot, David; Jørgensen, Christian; Peck, Myron A.
2014-01-01
As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology—both the challenges and the opportunities that it creates—will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored. PMID:27293645
2001-05-01
completed subjective evaluations of the load location after each loaded trial. The questionnaire asked about overall acceptability, balance, thermal comfort , load... thermal comfort when marching Results The results of this study are summarized in Table 2. Oxygen consumption levels across load distributions were not...acceptable in 7 out of 8 categories that were examined. The alternate configuration ranked most acceptable in all categories except thermal comfort , where
Load Carriage Capacity of the Dismounted Combatant - A Commanders’ Guide
2012-10-01
predictive model has been used throughout this document to predict the physiological burden (i.e. energy cost ) of representative load carriage...scenarios. As a general guide this model indicates that a 10 kg increase in external load is metabolically equivalent (i.e. energy cost ) to an increase...larger increases in energy cost for a load carriage task. The multi-factorial nature of human load carriage capacity makes it difficult to set
ERIC Educational Resources Information Center
Marton, Janos
1983-01-01
Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
An Organotypic Liver System for Tumor Progression
2006-04-01
a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association
The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology
ERIC Educational Resources Information Center
Akkaraju, Shylaja
2016-01-01
To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…
The effect of non-visual working memory load on top-down modulation of visual processing
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2009-01-01
While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of task-relevant and irrelevant visual representations. In our dual-task paradigm, each trial began with the auditory presentation of six random (high load) or sequentially-ordered (low load) digits. Next, two relevant visual stimuli (e.g., faces), presented amongst two temporally interspersed visual distractors (e.g., scenes), were to be encoded and maintained across a 7-sec delay interval, after which memory for the relevant images and digits was probed. When taxed by high load digit maintenance, participants exhibited impaired performance on the visual WM task and a selective failure to attenuate the neural processing of task-irrelevant scene stimuli. The over-processing of distractor scenes under high load was indexed by elevated encoding activity in a scene-selective region-of-interest relative to low load and passive viewing control conditions, as well as by improved long-term recognition memory for these items. In contrast, the load manipulation did not affect participants' ability to upregulate activity in this region when scenes were task-relevant. These results highlight the critical role of domain-general WM resources in the goal-directed regulation of distractor processing. Moreover, the consequences of increased WM load in young adults closely resemble the effects of cognitive aging on distractor filtering [Gazzaley et al., (2005) Nature Neuroscience 8, 1298-1300], suggesting the possibility of a common underlying mechanism. PMID:19397858
Dich, Nadya; Doan, Stacey N; Kivimäki, Mika; Kumari, Meena; Rod, Naja Hulvej
2014-11-01
Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cognitive Load Theory: How Many Types of Load Does It Really Need?
ERIC Educational Resources Information Center
Kalyuga, Slava
2011-01-01
Cognitive load theory has been traditionally described as involving three separate and additive types of load. Germane load is considered as a learning-relevant load complementing extraneous and intrinsic load. This article argues that, in its traditional treatment, germane load is essentially indistinguishable from intrinsic load, and therefore…
The role of perceptual load in inattentional blindness.
Cartwright-Finch, Ula; Lavie, Nilli
2007-03-01
Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the effects of load on conscious perception using the "inattentional blindness" paradigm. As predicted by load theory, awareness of a task-irrelevant stimulus was significantly reduced by higher perceptual load (with increased numbers of search items, or a harder discrimination vs. detection task). These results demonstrate that conscious perception of task-irrelevant stimuli critically depends upon the level of task-relevant perceptual load rather than intentions or expectations, thus enhancing the resolution to the early vs. late selection debate offered by the perceptual load theory.
[Early attachement relationships and epigenetic customization].
Rocchi, Giordana; Serio, Valentina; Carluccio, Giuseppe Mattia; Marini, Isabella; Meuti, Valentina; Zaccagni, Michela; Giacchetti, Nicoletta; Aceti, Franca
2015-01-01
Recently, new findings in epigenetic science switched the focus from the observation of physiological intragenomic dynamics to the idea of an environmental co-construction of phenotypic expression. In psichodynamic field, objectual relations and attachement theoreticians emphasized the interpersonal dimension of individual development, focusing the attention on the relational matrix of self organization. The construction of stable affective-behavioral traits throughout different parenting styles has actually found a coincidence in ethological studies, which have explored the epigenetic processes underlying the relationship between caregiving and HPA stress responsiveness. An adequate parenting style seems to support affective regulation throughout psychobiological hidden moderators, which would tend to rebalance the physiological systems homeostasis; an unconfident attachment style would promote, on the other hand, the allostatic load rise. Sites of longlife epigenetic susceptibility have also been identified in humans; although associated with risk of maladaptive developing in adverse environmental conditions, they seem to confer protection under favorable conditions. This persisting possibility of reorganization of stable traits throughout lifetime, which seems to be activated by a relevant environmental input, grant to significant relationships, and to therapeutical one as well, an implicit reconditioning potential which could result into the configuration of new stable affective-behavioral styles.
Is burnout related to allostatic load?
Langelaan, Saar; Bakker, Arnold B; Schaufeli, Wilmar B; van Rhenen, Willem; van Doornen, Lorenz J P
2007-01-01
Burnout has a negative impact on physical health, but the mechanisms underlying this relation remain unclear. To elucidate these mechanisms, possible mediating physiological systems or risk factors for adverse health in burned-out employees should be investigated. The aim of the present study among 290 Dutch managers was to explore whether allostatic load mediates the relationship between burnout and physical health. Burned-out managers, as identified with the Maslach Burnout Inventory General Survey (MBI-GS), were compared with a healthy control group with regard to their allostatic load. The allostatic load index included eight parameters: Body-mass index (BMI), systolic and diastolic blood pressure (SBP and DBP), C-reactive protein (CRP), high-density lipoprotein (HDL), cholesterol, glycosylated hemoglobin (HbA1C) and glucose. Contrary to expectations, burned-out managers did not differ from healthy managers with regard to their scores on the allostatic load index. An additional analysis, using groups of managers in the extreme deciles of exhaustion (the core symptom of burnout), did also not reveal differences in allostatic load. Burnout seems not to be associated with this proxy measure of allostatic load. The mediating physiological mechanisms between burnout and objective physical health remain to be elucidated.
Ho, Fu Chak; Zhang, Wei; Li, Yuk Yin; Chan, Barbara Pui
2015-01-01
Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell-matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell-matrix interaction and mechanoregulation studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiplexed fibre optic sensing in the distal lung (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Tanner, Michael G.; Megia-Fernandez, Alicia; Harrington, Kerrianne; Wood, Harry A.; Chankeshwara, Sunay; Zhu, Patricia; Choudhury, Debaditya; Yu, Fei; Thomson, Robert R.; Duncan, Rory R.; Dhaliwal, Kevin; Bradley, Mark
2017-02-01
We present a toolkit for a multiplexed pH and oxygen sensing probe in the distal lung using multicore fibres. Measuring physiological relevant parameters like pH and oxygen is of significant importance in understanding changes associated with disease pathology. We present here, a single multicore fibre based pH and oxygen sensing probe which can be used with a standard bronchoscope to perform in vivo measurements in the distal lung. The multiplexed probe consists of fluorescent pH sensors (fluorescein based) and oxygen sensors (Palladium porphyrin complex based) covalently bonded to silica microspheres (10 µm) loaded on the distal facet of a 19 core (10 µm core diameter) multicore fibre (total diameter of 150 µm excluding coating). Pits are formed by selectively etching the cores using hydrofluoric acid, multiplexing is achieved through the self-location of individual probes on differing cores. This architecture can be expanded to include probes for further parameters. Robust measurements are demonstrated of self-referencing fluorophores, not limited by photobleaching, with short (100ms) measurement times at low ( 10µW) illumination powers. We have performed on bench calibration and tests of in vitro tissue models and in an ovine whole lung model to validate our sensors. The pH sensor is demonstrated in the physiologically relevant range of pH 5 to pH 8.5 and with an accuracy of ± 0.05 pH units. The oxygen sensor is demonstrated in gas mixtures downwards from 20% oxygen and in liquid saturated with 20% oxygen mixtures ( 8mg/L) down to full depletion (0mg/L) with 0.5mg/L accuracy.
Deka, C; Aidew, L; Devi, N; Buragohain, A K; Kakati, D K
2016-11-01
Curcumin has acquired an important position in the treatment of various diseases. But its use, as a chemotherapeutic agent, is limited due to its low water solubility, poor bioavailability, and its sensitive nature at the physiological pH. To overcome this, curcumin was loaded into chitosan phosphate nanoparticles (CPNs). The loading efficiency was found to be 84%. DLS studies revealed the average particle size of CPNs and curcumin-loaded CPNs as 53 and 91 nm, respectively, and TEM results supplemented these values. A sustained release pattern was noticed and the amount of curcumin released in acidic pH was higher than at physiological pH. The curcumin nanoformulation exhibited proficient activity against both Gram-positive and Gram-negative bacteria as well as fungus. Cytocompatibility of the nanoformulations against peripheral blood mononuclear cells (PBMCs) and murine monocyte-macrophage cell line was confirmed by incubating with PBMCs and murine monocyte-macrophage cell line.
Biomechanical, physiological and psychophysical evaluations of clean room boots.
Lin, Chih-Long; Wang, Mao-Jiun J; Drury, Colin G
2007-04-01
The purpose of this study was to evaluate the significance of boot sole properties on reducing fatigue, to evaluate the effects of load carrying and walking (over a 1 h period) on biomechanical, physiological and psychophysical responses, and to investigate the correlations between the measurements. The results indicated that elasticity and shock absorption of the boot had significant effects on outcome variables. Significant load effects were seen in most measurements. All of the significant time period effects gave strong regressions, with no R2 value less than 0.983. The findings of this study provide useful information for the selection and design of clean room boots as well as for job design for load carrying tasks in the clean room environment.
Gomarus, H Karin; Althaus, Monika; Wijers, Albertus A; Minderaa, Ruud B
2006-04-01
Psychophysiological correlates of selective attention and working memory were investigated in a group of 18 healthy children using a visually presented selective memory search task. Subjects had to memorize one (load1) or 3 (load3) letters (memory set) and search for these among a recognition set consisting of 4 letters only if the letters appeared in the correct (relevant) color. Event-related potentials (ERPs) as well as alpha and theta event-related synchronization and desynchronization (ERD/ERS) were derived from the EEG that was recorded during the task. In the ERP to the memory set, a prolonged load-related positivity was found. In response to the recognition set, effects of relevance were manifested in an early frontal positivity and a later frontal negativity. Effects of load were found in a search-related negativity within the attended category and a suppression of the P3-amplitude. Theta ERS was most pronounced for the most difficult task condition during the recognition set, whereas alpha ERD showed a load-effect only during memorization. The manipulation of stimulus relevance and memory load affected both ERP components and ERD/ERS. The present paradigm may supply a useful method for studying processes of selective attention and working memory and can be used to examine group differences between healthy controls and children showing psychopathology.
Creating Simulated Microgravity Patient Models
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Bacal, Kira
2004-01-01
The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).
Material properties of rat middle cerebral arteries at high strain rates.
Bell, E David; Converse, Matthew; Mao, Haojie; Unnikrishnan, Ginu; Reifman, Jaques; Monson, Kenneth L
2018-03-19
Traumatic brain injury (TBI), resulting from either impact- or non-impact blast-related mechanisms, is a devastating cause of death and disability. The cerebral blood vessels, which provide critical support for brain tissue in both health and disease, are commonly injured in TBI. However, little is known about how vessels respond to traumatic loading, particularly at rates relevant to blast. To better understand vessel responses to trauma, the objective of this project was to characterize the high-rate response of passive cerebral arteries. Rat middle cerebral arteries were isolated and subjected to high-rate deformation in the axial direction. Vessels were perfused at physiological pressures and stretched to failure at strain rates ranging from approximately 100 to 1300 s-1. Although both in vivo stiffness and failure stress increased significantly with strain rate, failure stretch did not depend on rate.
Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target
Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin
2016-01-01
The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697
In-cell thermodynamics and a new role for protein surfaces.
Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J
2016-02-16
There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.
Bruegger, Joel J; Smith, Brian C; Wynia-Smith, Sarah L; Marletta, Michael A
2018-04-27
Cysteine S -nitrosation is a reversible post-translational modification mediated by nitric oxide ( • NO)-derived agents. S -Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical • NO-signaling pathway, little is understood about how much S -nitrosation affects protein function. Moreover, identifying physiologically relevant targets of S -nitrosation is difficult because of the dynamics of transnitrosation and a limited understanding of the physiological mechanisms leading to selective protein S -nitrosation. To identify proteins whose activities are modulated by S -nitrosation, we performed a metabolomics study comparing WT and endothelial nitric-oxide synthase knockout mice. We integrated our results with those of a previous proteomics study that identified physiologically relevant S -nitrosated cysteines, and we found that the activity of at least 21 metabolic enzymes might be regulated by S -nitrosation. We cloned, expressed, and purified four of these enzymes and observed that S -nitrosation inhibits the metabolic enzymes 6-phosphogluconate dehydrogenase, Δ1-pyrroline-5-carboxylate dehydrogenase, catechol- O -methyltransferase, and d-3-phosphoglycerate dehydrogenase. Furthermore, using site-directed mutagenesis, we identified the predominant cysteine residue influencing the observed activity changes in each enzyme. In summary, using an integrated metabolomics approach, we have identified several physiologically relevant S -nitrosation targets, including metabolic enzymes, which are inhibited by this modification, and we have found the cysteines modified by S -nitrosation in each enzyme. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen
2016-04-08
Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.
Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K
2011-01-01
Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.
Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter
2015-01-01
The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.
Enhancement and suppression in the visual field under perceptual load.
Parks, Nathan A; Beck, Diane M; Kramer, Arthur F
2013-01-01
The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
Campbell, Graeme Michael; Glüer, Claus-C
2017-07-01
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
Attention modifies sound level detection in young children.
Sussman, Elyse S; Steinschneider, Mitchell
2011-07-01
Have you ever shouted your child's name from the kitchen while they were watching television in the living room to no avail, so you shout their name again, only louder? Yet, still no response. The current study provides evidence that young children process loudness changes differently than pitch changes when they are engaged in another task such as watching a video. Intensity level changes were physiologically detected only when they were behaviorally relevant, but frequency level changes were physiologically detected without task relevance in younger children. This suggests that changes in pitch rather than changes in volume may be more effective in evoking a response when sounds are unexpected. Further, even though behavioral ability may appear to be similar in younger and older children, attention-based physiologic responses differ from automatic physiologic processes in children. Results indicate that 1) the automatic auditory processes leading to more efficient higher-level skills continue to become refined through childhood; and 2) there are different time courses for the maturation of physiological processes encoding the distinct acoustic attributes of sound pitch and sound intensity. The relevance of these findings to sound perception in real-world environments is discussed.
Esmende, Sean M; Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2015-01-01
The pendulum testing system is capable of applying physiologic compressive loads without constraining the motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. To examine the dynamic bending stiffness and energy absorption of the cervical spine, with and without implanted cervical total disc replacement (TDR) under simulated physiologic motion. A biomechanical cadaver investigation. Nine unembalmed, frozen human cervical FSUs from levels C3-C4 and C5-C6 were tested on the pendulum system with axial compressive loads of 25, 50, and 100 N before and after TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°, resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and the bending stiffness (Newton-meter/°) was calculated and compared for each testing mode. In flexion/extension, with increasing compressive loading from 25 to 100 N, the average number of cycles to equilibrium for the intact FSUs increased from 6.6 to 19.1, compared with 4.1 to 12.7 after TDR implantation (p<.05 for loads of 50 and 100 N). In flexion, with increasing compressive loading from 25 to 100 N, the bending stiffness of the intact FSUs increased from 0.27 to 0.59 Nm/°, compared with 0.21 to 0.57 Nm/° after TDR implantation. No significant differences were found in stiffness between the intact FSU and the TDR in flexion/extension and lateral bending at any load (p<.05). Cervical FSUs with implanted TDR were found to have similar stiffness, but had greater energy absorption than intact FSUs during cyclic loading with an unconstrained pendulum system. These results provide further insight into the biomechanical behavior of cervical TDR under approximated physiologic loading conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J
2012-11-01
Biomechanical cadaver investigation. To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted total disc replacement (TDR) under simulated physiological motion. The pendulum testing system is capable of applying physiological compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5º resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N·m/º) was calculated and compared for each testing mode. In flexion/extension, the TDR constructs reached equilibrium with significantly (P < 0.05) fewer cycles than the intact FSU with compressive loads of 282 N, 385 N, and 488 N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (P < 0.001). In flexion, with increasing compressive loading from 181 N to 488 N, the bending stiffness of the intact FSUs increased from 4.0 N·m/º to 5.5 N·m/º, compared with 2.1 N·m/º to 3.6 N·m/º after TDR implantation. At each compressive load, the intact FSU was significantly stiffer than the TDR (P < 0.05). Lumbar FSUs with implanted TDR were found to be less stiff, but absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion-preserving devices are not fully known, these results provide further insight into the biomechanical behavior of these devices under approximated physiological loading conditions.
Karamitros, Christos S; Yashchenok, Alexey M; Möhwald, Helmuth; Skirtach, Andre G; Konrad, Manfred
2013-12-09
The present study focuses on the formation of microcapsules containing catalytically active L-asparaginase (L-ASNase), a protein drug of high value in antileukemic therapy. We make use of the layer-by-layer (LbL) technique to coat protein-loaded calcium carbonate (CaCO3) particles with two or three poly dextran/poly-L-arginine-based bilayers. To achieve high loading efficiency, the CaCO3 template was generated by coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO3 core material was dissolved under mild conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated L-asparaginase was analyzed by treating the capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of residual l-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of l-asparaginase remarkably improves both proteolytic resistance and thermal inactivation at 37 °C, which could considerably prolong the enzyme's in vivo half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the dissolution of CaCO3 by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used. Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis.
Mohino-Herranz, Inma; Gil-Pita, Roberto; Ferreira, Javier; Rosa-Zurera, Manuel; Seoane, Fernando
2015-10-08
Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible compared to the nominal computational load of current smartphones.
Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N
2017-01-01
This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Osteocyte calcium signals encode strain magnitude and loading frequency in vivo.
Lewis, Karl J; Frikha-Benayed, Dorra; Louie, Joyce; Stephen, Samuel; Spray, David C; Thi, Mia M; Seref-Ferlengez, Zeynep; Majeska, Robert J; Weinbaum, Sheldon; Schaffler, Mitchell B
2017-10-31
Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca 2+ ) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca 2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca 2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca 2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading. Published under the PNAS license.
Measuring Cognitive Load in Embodied Learning Settings.
Skulmowski, Alexander; Rey, Günter Daniel
2017-01-01
In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning.
Li, Yang; Rosemberg, Marie-Anne Sanon; Seng, Julia S
2018-07-01
Adverse birth outcomes such as preterm birth and low birth weight are significant public health concerns and contribute to neonatal morbidity and mortality. Studies have increasingly been exploring the predictive effects of maternal posttraumatic stress disorder (PTSD) on adverse birth outcomes. However, the biological mechanisms by which maternal PTSD affects birth outcomes are not well understood. Allostatic load refers to the cumulative dysregulations of the multiple physiological systems as a response to multiple social-ecological levels of chronic stress. Allostatic load has been well documented in relation to both chronic stress and adverse health outcomes in non-pregnant populations. However, the mediating role of allostatic load is less understood when it comes to maternal PTSD and adverse birth outcomes. To propose a theoretical model that depicts how allostatic load could mediate the impact of maternal PTSD on birth outcomes. We followed the procedures for theory synthesis approach described by Walker and Avant (2011), including specifying focal concepts, identifying related factors and relationships, and constructing an integrated representation. We first present a theoretical overview of the allostatic load theory and the other 4 relevant theoretical models. Then we provide a brief narrative review of literature that empirically supports the propositions of the integrated model. Finally, we describe our theoretical model. The theoretical model synthesized has the potential to advance perinatal research by delineating multiple biomarkers to be used in future. After it is well validated, it could be utilized as the theoretical basis for health care professionals to identify high-risk women by evaluating their experiences of psychosocial and traumatic stress and to develop and evaluate service delivery and clinical interventions that might modify maternal perceptions or experiences of stress and eliminate their impacts on adverse birth outcomes. Copyright © 2018. Published by Elsevier Ltd.
Vuletic, L; Spalj, S; Peros, K
2016-02-01
The primary objective of this study was to assess whether exposing dental students to visual stimuli related to dental profession during the medical physiology seminar could affect their perception of the clinical relevance of the topic. A self-administered questionnaire on attitudes towards medical physiology was conducted amongst 105 students of the School of Dental Medicine in Zagreb, Croatia, aged 19-24 years (80% females) following a seminar on respiratory system physiology. Power-point presentation accompanying the seminar for a total of 52 students (study group) was enriched with pictures related to dental practice in order to assess whether these pictures could make the topic appear more clinically relevant for a future dentist. The results of the survey indicated that dental students in the study group perceived the topic of the seminar as more important for them as future dentists when compared to the perception of the control group (P = 0.025). The results of this survey encourage physiology lecturers to present medical physiology as clinically relevant for dental students whenever possible as this could increase students' interest in the subject and their motivation for learning. Such an approach could be particularly beneficial if there is a significant time gap between basic courses and involvement of students into clinical training for it could promote meaningful learning. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pair Comparison Study of the Relevance of Nine Basic Science Courses
ERIC Educational Resources Information Center
Spilman, Edra L.; Spilman, Helen W.
1975-01-01
Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…
Distracted and confused?: selective attention under load.
Lavie, Nilli
2005-02-01
The ability to remain focused on goal-relevant stimuli in the presence of potentially interfering distractors is crucial for any coherent cognitive function. However, simply instructing people to ignore goal-irrelevant stimuli is not sufficient for preventing their processing. Recent research reveals that distractor processing depends critically on the level and type of load involved in the processing of goal-relevant information. Whereas high perceptual load can eliminate distractor processing, high load on "frontal" cognitive control processes increases distractor processing. These findings provide a resolution to the long-standing early and late selection debate within a load theory of attention that accommodates behavioural and neuroimaging data within a framework that integrates attention research with executive function.
Teaching Stress Physiology Using Zebrafish ("Danio Rerio")
ERIC Educational Resources Information Center
Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed
2009-01-01
A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…
Phun Week: Understanding Physiology
ERIC Educational Resources Information Center
Limson, Mel; Matyas, Marsha Lakes
2009-01-01
Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…
Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro
Behrend, Matthew R.; Ahuja, Ashish K.; Humayun, Mark S.; Weiland, James D.; Chow, Robert H.
2012-01-01
Here we present a retrograde loading technique that makes it possible for the first time to rapidly load a calcium indicator in the majority of retinal ganglion cells (RGCs) in salamander retina, and then to observe physiological activity of these dye-loaded cells. Dextran-conjugated calcium indicator, dissolved in water, was applied to the optic nerve stump. Following dye loading, the isolated retina was mounted on a microelectrode array to demonstrate that electrical activity and calcium activity were preserved, as the retina responded to electrical stimuli. PMID:19428523
Environmental impact on crew of armoured vehicles: Effects of 24 h combat exercise in a hot desert
NASA Astrophysics Data System (ADS)
Singh, A. P.; Majumdar, D.; Bhatia, M. R.; Srivastava, K. K.; Selvamurthy, W.
1995-06-01
A field study was undertaken to investigate the effects of combined noise, vibration and heat stress on the physiological functions of the crew of armoured vehicles during prolonged combat exercise in a desert. The sound pressure level of noise was measured with a sound level meter and accelerations by vibration analyser. The thermal load on the crew was evaluated by calculating the wet bulb globe temperature index. The physiological responses of the subjects ( n=9), included significant increases in the heart rate, 24 h water intake and urinary catecholamine concentration. A significant decrease was recorded in body mass, peak expiratory flow rate and 24 h urinary output. The high heat load on the crew resulted in a hypohydration of 3% body mass and appeared to be the dominant factor in producing the physiological strain.
Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael
2010-03-01
Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.
Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response
Jung, GangSeob; Qin, Zhao
2017-01-01
The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales. PMID:26108895
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Orthostatic function during a stand test before and after head-up or head-down bedrest
NASA Technical Reports Server (NTRS)
Lathers, Claire M.; Diamandis, Peter H.; Riddle, Jeanne M.; Mukai, Chiaki; Elton, Kay F.; Bungo, Michael W.; Charles, John B.
1991-01-01
The effects of head-down or head-up bedrest at -5, +10, +20, or +42 deg (simulating 0, 1/6, 1/3, and 2/3 g, respectively) for 6 hrs on four different days on the orthostatic tolerance were investigated by measuring relevant physiological reactions to orthostatic test taken before and after bedrest sessions. The multivariate analysis of variance statistical analyses indicates that there was no angle effect on any of the cardiovascular parameters monitored during the last 3 min of the stand test, suggesting that partial gravity loads would have no effect on the cardiovascular deconditioning exhibited postflight. There was, however, a significant elevation in the heart rate post-bedrest, and the heart rate increased on standing. Results from the stand test pre- and post-bedrest at -5 deg (but not at +10, +20, and +42 deg) were similar to those observed after space flight.
Effects of Cueing by a Pedagogical Agent in an Instructional Animation: A Cognitive Load Approach
ERIC Educational Resources Information Center
Yung, Hsin I.; Paas, Fred
2015-01-01
This study investigated the effects of a pedagogical agent that cued relevant information in a story-based instructional animation on the cardiovascular system. Based on cognitive load theory, it was expected that the experimental condition with the pedagogical agent would facilitate students to distinguish between relevant and irrelevant…
The influence of perceptual load on age differences in selective attention.
Maylor, E A; Lavie, N
1998-12-01
The effect of perceptual load on age differences in visual selective attention was examined in 2 studies. In Experiment 1, younger and older adults made speeded choice responses indicating which of 2 target letters was present in a relevant set of letters in the center of the display while they attempted to ignore an irrelevant distractor in the periphery. The perceptual load of relevant processing was manipulated by varying the central set size. When the relevant set size was small, the adverse effect of an incompatible distractor was much greater for the older participants than for the younger ones. However, with larger relevant set sizes, this was no longer the case, with the distractor effect decreasing for older participants at lower levels of perceptual load than for younger ones. In Experiment 2, older adults were tested with the empty locations in the central set either unmarked (as in Experiment 1) or marked by small circles to form a group of 6 items irrespective of set size; the 2 conditions did not differ markedly, ruling out an explanation based entirely on perceptual grouping.
ERIC Educational Resources Information Center
Stokes, Stephanie F.; Surendran, Dinoj
2005-01-01
The notion of a universal pattern of phonological development, rooted in basic physiological constraints, is controversial, with some researchers arguing for a strong environmental (ambient language) influence on phonological development or an interaction of both physiological constraints and ambient language effects. This research examines the…
Nindl, Bradley C; Jones, Bruce H; Van Arsdale, Stephanie J; Kelly, Karen; Kraemer, William J
2016-01-01
This article summarizes presentations from a 2014 United States Department of Defense (DoD) Health Affairs Women in Combat symposium addressing physiological, musculoskeletal injury, and optimized physical training considerations from the operational physical performance section. The symposium was held to provide a state-of-the-science meeting on the U.S. DoD's rescinding of the ground combat exclusion policy opening up combat-centric occupations to women. Physiological, metabolic, body composition, bone density, cardiorespiratory fitness, and thermoregulation differences between men and women were briefly reviewed. Injury epidemiological data are presented within military training and operational environments demonstrating women to be at a higher risk for musculoskeletal injuries than men. Physical training considerations for improved muscle strength and power, occupational task performance, load carriage were also reviewed. Particular focus of this article was given to translating physiological and epidemiological findings from the literature on these topics toward actionable guidance and policy recommendations for military leaders responsible for military physical training doctrine: (1) inclusion of resistance training with special emphasis on strength and power development (i.e., activation of high-threshold motor units and recruitment of type II high-force muscle fibers), upper-body strength development, and heavy load carriage, (2) moving away from "field expediency" as the major criteria for determining military physical training policy and training implementation, (3) improvement of load carriage ability with emphasis placed on specific load carriage task performance, combined with both resistance and endurance training, and (4) providing greater equipment resources, coaching assets, and increased training time dedicated to physical readiness training. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Designing PolyHEMA Substrates that Mimic the Viscoelastic Response of Soft Tissue
Holt, Brian; Tripathi, Anubhav; Morgan, Jeffrey R.
2011-01-01
Matching the mechanical properties of a biomaterial to soft tissue is often overlooked despite the fact that it’s well known that cells respond to and are capable of changing their mechanical environment. In this paper, we used NaCl and alginate beads as porogens to make a series of micro- and macro-porous pHEMA substrates [poly(2-hydroxyethly methacrylate)] and quantified their mechanical behavior under low-magnitude shear loads over physiologically relevant frequencies. Using a stress-controlled rheometer, we performed isothermal (37°C) frequency response experiments between 0.628 and 75.4 rad/s [0.01–12Hz] at 0.1% strain. Both micro- and macro-porous pHEMA substrates were predominately elastic in nature with a narrow range of G′ and G″ values that mimicked the response of human skin. The magnitude of the G′ and G″ values of the macro-porous substrates were designed to closely match human skin. To determine how cell growth might alter their mechanical properties, pHEMA substrates were functionalized and human skin fibroblasts grown on them for fourteen days. As a result of cell growth, the magnitude of G′ and G″ increased at low frequencies while also altering the degree of high frequency dependence, indicating that cellular interactions with the micro-pore infrastructure has a profound effect on the viscoelastic behavior of the substrates. These data could be fit to a mathematical model describing a soft solid. A quantitative understanding of the mechanical behavior of biomaterials in regimes that are physiologically relevant and how these mechanics may change after implantation may aid in the design of new materials. PMID:21496821
The glycocalyx promotes cooperative binding and clustering of adhesion receptors.
Xu, Guang-Kui; Qian, Jin; Hu, Jinglei
2016-05-18
Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.
Cumulative stress pathophysiology in schizophrenia as indexed by allostatic load.
Nugent, Katie L; Chiappelli, Joshua; Rowland, Laura M; Hong, L Elliot
2015-10-01
The etiopathophysiology of schizophrenia has long been linked to stress and the influence of stress is important in all stages of the illness. Previous examinations of perceived stress and acute stress responses may not capture this longitudinal stress pathophysiology. We hypothesized that the cumulative negative effects of stress, indexed by allostatic load (AL), would be elevated in schizophrenia, and that the AL paradigm would be relevant to our understanding of pathophysiology in schizophrenia. We assessed allostatic load in 30 patients with schizophrenia (SZ; mean age = 33; 17 males) and 20 healthy controls (HC; mean age = 35; 12 males) using 13 cardiovascular, metabolic, neuroendocrine and immune biomarkers. Participants' perceived stress over the past month, functional capacity and psychiatric symptoms were also measured. Controlling for age, SZ had significantly higher AL as compared to HC (p = 0.007). Greater AL was present in both early course and chronic SZ, and was associated with reduced functional capacity (p = 0.006) and more psychotic symptoms (p = 0.048) in SZ. Current level of perceived stress was not significantly elevated in SZ or associated with AL in either group. The higher AL found in SZ may reflect increased bodily "wear and tear", possibly caused by more chronic stress exposure or maladaptive responses to stress over time, although additional research is required to differentiate these causes. The higher AL is similarly present in early and chronic SZ, suggesting primary maladaptive stress physiology rather than secondary effects from medications or chronic illness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stephen, Zachary R; Gebhart, Rachel N; Jeon, Mike; Blair, Allison A; Ellenbogen, Richard G; Silber, John R; Zhang, Miqin
2017-01-18
Nanoparticle-mediated delivery of chemotherapeutics has demonstrated potential in improving anticancer efficacy by increasing serum half-life and providing tissue specificity and controlled drug release to improve biodistribution of hydrophobic chemotherapeutics. However, suboptimal drug loading, particularly for solid core nanoparticles (NPs), remains a challenge that limits their clinical application. In this study we formulated a NP coated with a pH-sensitive polymer of O 6 -methylguanine-DNA methyltransferase (MGMT) inhibitor analog, dialdehyde modified O 6 -benzylguanosine (DABGS) to achieve high drug loading, and polyethylene glycol (PEG) to ameliorate water solubility and maintain NP stability. The base nanovector consists of an iron oxide core (9 nm) coated with hydrazide functionalized PEG (IOPH). DABGS and PEG-dihydrazide were polymerized on the iron oxide nanoparticle surface (IOPH-pBGS) through acid-labile hydrazone bonds utilizing a rapid, freeze-thaw catalysis approach. DABGS polymerization was confirmed by FTIR and quantitated by UV-vis spectroscopy. IOPH-pBGS demonstrated excellent drug loading of 33.4 ± 5.1% by weight while maintaining small size (36.5 ± 1.8 nm). Drug release was monitored at biologically relevant pHs and demonstrated pH dependent release with maximum release at pH 5.5 (intracellular conditions), and minimal release at physiological pH (7.4). IOPH-pBGS significantly suppressed activity of MGMT and potentiated Temozolomide (TMZ) toxicity in vitro, demonstrating potential as a new treatment option for glioblastomas (GBMs).
Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu
2015-01-01
Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383
Xia, Lu; Cheung, Kwok-Kuen; Yeung, Simon S; Yeung, Ella W
2016-06-01
Decreased mechanical loading results in skeletal muscle atrophy. The transient receptor potential canonical type 1 (TRPC1) protein is implicated in this process. Investigation of the regulation of TRPC1 in vivo has rarely been reported. In the present study, we employ the mouse hindlimb unloading and reloading model to examine the involvement of TRPC1 in the regulation of muscle atrophy and regrowth, respectively. We establish the physiological relevance of the concept that manipulation of TRPC1 could interfere with muscle regrowth processes following an atrophy-inducing event. Specifically, we show that suppressing TRPC1 expression during reloading impairs the recovery of the muscle mass and slow myosin heavy chain profile. Calcineurin appears to be part of the signalling pathway involved in the regulation of TRPC1 expression during muscle regrowth. These results provide new insights concerning the function of TRPC1. Interventions targeting TRPC1 or its downstream or upstream pathways could be useful for promoting muscle regeneration. Decreased mechanical loading, such as bed rest, results in skeletal muscle atrophy. The functional consequences of decreased mechanical loading include a loss of muscle mass and decreased muscle strength, particularly in anti-gravity muscles. The purpose of this investigation was to clarify the regulatory role of the transient receptor potential canonical type 1 (TRPC1) protein during muscle atrophy and regrowth. Mice were subjected to 14 days of hindlimb unloading followed by 3, 7, 14 and 28 days of reloading. Weight-bearing mice were used as controls. TRPC1 expression in the soleus muscle decreased significantly and persisted at 7 days of reloading. Small interfering RNA (siRNA)-mediated downregulation of TRPC1 in weight-bearing soleus muscles resulted in a reduced muscle mass and a reduced myofibre cross-sectional area (CSA). Microinjecting siRNA into soleus muscles in vivo after 7 days of reloading provided further evidence for the role of TRPC1 in regulating muscle regrowth. Myofibre CSA, as well as the percentage of slow myosin heavy chain-positive myofibres, was significantly lower in TRPC1-siRNA-expressing muscles than in control muscles after 14 days of reloading. Additionally, inhibition of calcineurin (CaN) activity downregulated TRPC1 expression in both weight-bearing and reloaded muscles, suggesting a possible association between CaN and TRPC1 during skeletal muscle regrowth. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
McGlone, John; Sapkota, Avi
2014-01-01
Simple Summary Transport is a routine practice in the modern swine industry. Loading the pigs into trailers can be a novel and stressful experience for the animals. This study compared behaviors and physiological variables during and after loading using a ramp or elevator to determine which method is the least stressful to the pigs. Loading pigs by ramp appears to cause more stress than loading by elevator. Abstract Transport is an inevitable process in the modern U.S. swine industry. The loading process is a novel and potentially stressful experience. This study uses behavior, heart rate and leukocyte counts to compare stress one hour before, during and after loading via ramp or elevator. Piglets were held in a home pen (control (CON)), walked up and down an aisle (handled (HAN)), or walked to a truck and loaded via elevator (ELE) or ramp (RAM). Sitting, feeding and blood parameters did not show a significant treatment by time effect (p > 0.05). Standing behavior did not differ between CON and HAN piglets nor between RAM and ELE piglets (p > 0.05); however, CON and HAN piglets stood more than RAM and ELE piglets during treatment (p < 0.05). After treatment, drinking behavior was increased in RAM piglets (p < 0.05). The heart rate of ELE piglets decreased 6.3% after treatment; whereas the heart rate of RAM piglets remained elevated 2.4% (p < 0.05). In terms of heart rate, loading by elevator appears to be less stressful than loading by ramp. PMID:26480323
Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M
2015-01-01
Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.
NASA Astrophysics Data System (ADS)
Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu
2013-06-01
The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00835e
Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R
2016-05-18
Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures of the motor affordance while working memory load was varied. We observed a typical motor affordance signature when working memory load was low; however, it was abolished when load was high. Further, there was increased intracortical inhibition in primary motor cortex under high working memory load. This suggests that being in a state of high cognitive load "sets" the motor system to be imperturbable to distracting motor influences. This makes a novel link between working memory load and the balance of excitatory/inhibitory activity in the motor cortex and potentially has implications for disorders of impulsivity. Copyright © 2016 the authors 0270-6474/16/365544-12$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao D.; Grazier, John Mark; Boyce, Brad Lee
Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue inmore » the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.« less
Additive fiber-cerclages in proximal humeral fractures stabilized by locking plates
Hurschler, Christof; Rech, Louise; Vosshenrich, Rolf; Lill, Helmut
2009-01-01
Background and purpose The effect of additive fiber-cerclages in proximal humeral fractures stabilized by locking plates on fracture stabilization and rotator cuff function is unclear. Here it was assessed in a human cadaver study. Methods 24 paired human shoulder specimens were harvested from median 77-year-old (range 66–85) female donors. An unstable 3-part fracture model with an intact rotator cuff was developed. 1 specimen of each pair received an additive fiber-cerclage of the rotator cuff after plate fixation, and the other one received a plate fixation without an additive fiber-cerclage. Force-controlled hydraulic cylinders were used to simulate physiological rotator cuff tension, while a robot-assisted shoulder simulator performed 4 relevant cases of load: (1) axial loading at 0°, (2) glenohumeral abduction at 60°, (3) internal rotation at 0° abduction, and (4) external rotation at 0° abduction, and imitated hanging arm weight during loading without affecting joint kinematics. A 3-dimensional real-time interfragmentary motion analysis was done in fracture gaps between the greater tuberosity and the head, as well as subcapital. The capacity of the rotator cuff to strain was analyzed with an optical system. Results Interfragmentary motion was similar between the groups with and without fiber-cerclages, in both fracture gaps and in any of the cases of load. Cerclages did not impair the capacity of the rotator cuff to strain. Interpretation Provided that unstable 3-part fractures are reduced and stabilized anatomically by a locking plate, additive fiber-cerclages do not reduce interfragmentary motion. Additive fiber-cerclages may be necessary in locking plate osteosyntheses of multiple-fractured greater tuberosities or lesser tuberosity fractures that cannot be fixed sufficiently by the plate. PMID:19562564
Frontiers in the Teaching of Physiology. Computer Literacy and Simulation.
ERIC Educational Resources Information Center
Tidball, Charles S., Ed.; Shelesnyak, M. C., Ed.
Provided is a collection of papers on computer literacy and simulation originally published in The Physiology Teacher, supplemented by additional papers and a glossary of terms relevant to the field. The 12 papers are presented in five sections. An affirmation of conventional physiology laboratory exercises, coping with computer terminology, and…
Physiological Strain During Load Carrying: Effects of Mass and Type of Backpack
2001-05-01
load did not significantly increase the EMG signal of the trapezius shoulder muscle (pars descenders). While walking, load carrying significantly...descending part of the right trapezius muscle was measured with two surface silver-silver chloride electrodes (PPG, Hellige), positioned on the distal...values using a previously determined RMS versus force relationship. This calibration curve between RMS of the EMG of the trapezius muscle and the force
Loads Carried by Soldiers: Historical, Physiological, Biomechanical and Medical Aspects
1989-06-01
EMG and cinematographic data in the study of load carriage. They showed that EMG activity of the trapezius, rectus femorls, gastrocnemus and erector... abdominal muscles. Backpack loads of 18 to 27 kg did not change the magnitude of this pressure while walking (45). MEDICAL ASPECTS RUCKSACK PARALYSIS...symptoms included minor pain , paresthesias, numbness and paralysis of the upper extremities. The shoulder girdle and elbow flexor muscle groups were usually
NASA Astrophysics Data System (ADS)
Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela
2016-03-01
A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.
Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian
2017-01-01
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571
EEG Based Analysis of Cognitive Load Enhance Instructional Analysis
ERIC Educational Resources Information Center
Dan, Alex; Reiner, Miriam
2017-01-01
One of the recommended approaches in instructional design methods is to optimize the value of working memory capacity and avoid cognitive overload. Educational neuroscience offers novel processes and methodologies to analyze cognitive load based on physiological measures. Observing psychophysiological changes when they occur in response to the…
González Gómez, M P; Marín Arribas, S L; Vargas-Chacoff, L
2016-07-01
This study looks at how low infestation loads of adult Caligus rogercresseyi and other stressors affect the physiology of Salmo salar. Experimental fish groups were with (infested) or without (control) exposure to the parasite. The parasite cohort was followed for 78 days post-infestation (dpi), and only adult lice were observed. Additional stressors were applied at 60 and 75 dpi. The analysis included measurements of fish physiology and weight. Low-level infestations by adult C. rogercresseyi for more than 50 dpi induced moderate stress in S. salar as well as a high energy demand and increased small skin mucous cells. Threshold lice loads were identified, and above those loads, a high stress response was observed. Additional stressors altered fish physiology, inducing downregulation of the cortisol response after the first stressor and upregulation after the second stressor, but infested fish responded more strongly. Parasitism by C. rogercresseyi is energetically demanding, affecting the primary and secondary responses (e.g. cortisol and glucose levels), as well as the tertiary response (fish weight). © 2015 John Wiley & Sons Ltd.
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J
2012-07-01
The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.
Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W
2015-06-01
What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Measuring Cognitive Load in Embodied Learning Settings
Skulmowski, Alexander; Rey, Günter Daniel
2017-01-01
In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning. PMID:28824473
A Model to Study Articular Cartilage Mechanical and Biological Responses to Sliding Loads.
Schätti, Oliver R; Gallo, Luigi M; Torzilli, Peter A
2016-08-01
In physiological conditions, joint function involves continuously moving contact areas over the tissue surface. Such moving contacts play an important role for the durability of the tissue. It is known that in pathological joints these motion paths and contact mechanics change. Nevertheless, limited information exists on the impact of such physiological and pathophysiological dynamic loads on cartilage mechanics and its subsequent biological response. We designed and validated a mechanical device capable of applying simultaneous compression and sliding forces onto cartilage explants to simulate moving joint contact. Tests with varying axial loads (1-4 kg) and sliding speeds (1-20 mm/s) were performed on mature viable bovine femoral condyles to investigate cartilage mechanobiological responses. High loads and slow sliding speeds resulted in highest cartilage deformations. Contact stress and effective cartilage moduli increased with increasing load and increasing speed. In a pilot study, changes in gene expression of extracellular matrix proteins were correlated with strain, contact stress and dynamic effective modulus. This study describes a mechanical test system to study the cartilage response to reciprocating sliding motion and will be helpful in identifying mechanical and biological mechanisms leading to the initiation and development of cartilage degeneration.
Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha
2014-01-01
A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170
Alpha power gates relevant information during working memory updating.
Manza, Peter; Hau, Chui Luen Vera; Leung, Hoi-Chung
2014-04-23
Human working memory (WM) is inherently limited, so we must filter out irrelevant information in our environment or our mind while retaining limited important relevant contents. Previous work suggests that neural oscillations in the alpha band (8-14 Hz) play an important role in inhibiting incoming distracting information during attention and selective encoding tasks. However, whether alpha power is involved in inhibiting no-longer-relevant content or in representing relevant WM content is still debated. To clarify this issue, we manipulated the amount of relevant/irrelevant information using a task requiring spatial WM updating while measuring neural oscillatory activity via EEG and localized current sources across the scalp using a surface Laplacian transform. An initial memory set of two, four, or six spatial locations was to be memorized over a delay until an updating cue was presented indicating that only one or three locations remained relevant for a subsequent recognition test. Alpha amplitude varied with memory maintenance and updating demands among a cluster of left frontocentral electrodes. Greater postcue alpha power was associated with the high relevant load conditions (six and four dots cued to reduce to three relevant) relative to the lower load conditions (four and two dots reduced to one). Across subjects, this difference in alpha power was correlated with condition differences in performance accuracy. In contrast, no significant effects of irrelevant load were observed. These findings demonstrate that, during WM updating, alpha power reflects maintenance of relevant memory contents rather than suppression of no-longer-relevant memory traces.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Study Design Biomechanical cadaver investigation Objective To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted Total Disc Replacement (TDR) under simulated physiologic motion. Summary of background data The pendulum testing system is capable of applying physiologic compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Methods Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181N, 282N, 385N, and 488N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5° resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results In flexion/extension, the TDR constructs reached equilibrium with significantly (p<0.05) fewer cycles than the intact FSU with compressive loads of 282N, 385N and 488N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (p<0.001). In flexion, with increasing compressive loading from 181N to 488N, the bending stiffness of the intact FSUs increased from 4.0N-m/° to 5.5N-m/°, compared to 2.1N-m/° to 3.6N-m/° after TDR implantation. At each compressive load, the intact FSU was significantly more stiff than the TDR (p<0.05). Conclusion Lumbar FSUs with implanted TDR were found to be less stiff, but also absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices are not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:22869057
NASA Astrophysics Data System (ADS)
Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.
2016-01-01
The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.
Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji
2016-03-30
We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.
Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles.
Kim, Dong-Hyun; Vitol, Elina A; Liu, Jing; Balasubramanian, Shankar; Gosztola, David J; Cohen, Ezra E; Novosad, Valentyn; Rozhkova, Elena A
2013-06-18
Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin β4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.
Load-carriage distance run and push-ups tests: no body mass bias and occupationally relevant.
Vanderburgh, Paul M; Mickley, Nicholas S; Anloague, Philip A
2011-09-01
Recent research has demonstrated body mass (M) bias in military physical fitness tests favoring lighter, not just leaner, service members. Mathematical modeling predicts that a distance run carrying a backpack of 30 lbs would eliminate M-bias. The purpose of this study was to empirically test this prediction for the U.S. Army push-ups and 2-mile run tests. Two tests were performed for both events for each of 56 university Reserve Officer Training Corps male cadets: with (loaded) and without backpack (unloaded). Results indicated significant M-bias in the unloaded and no M-bias in the loaded condition for both events. Allometrically scaled scores for both events were worse in the loaded vs. unloaded conditions, supporting a hypothesis not previously tested. The loaded push-ups and 2-mile run appear to remove M-bias and are probably more occupationally relevant as military personnel are often expected to carry external loads.
Women and Women's Issues in Industrial and Physiological Psychology.
ERIC Educational Resources Information Center
Knight, Patrick A.; And Others
In the area of industrial/organizational (I/O) psychology and physiological psychology, issues of gender have only begun to be addressed. An examination of the recent literatures in I/O and physiological psychology was undertaken to document the extent to which women are used as research subjects, to determine whether or not research relevant to…
77 FR 26714 - Transmission Planning Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... non-consequential load loss that satisfies the relevant Commission's directives in Order No. 693 and... that would allow a transmission planner to plan for non-consequential load loss following a single...), footnote 12 that would allow a transmission planner to plan for ``non-consequential load loss,'' i.e., load...
Excess digestive capacity in predators reflects a life of feast and famine.
Armstrong, Jonathan B; Schindler, Daniel E
2011-07-06
A central challenge for predators is achieving positive energy balance when prey are spatially and temporally heterogeneous. Ecological heterogeneity produces evolutionary trade-offs in the physiological design of predators; this is because the ability to capitalize on pulses of food abundance requires high capacity for food-processing, yet maintaining such capacity imposes energetic costs that are taxing during periods of food scarcity. Recent advances in physiology show that when variation in foraging opportunities is predictable, animals may adjust energetic trade-offs by rapidly modulating their digestive system to track variation in foraging opportunities. However, it is increasingly recognized that foraging opportunities for animals are unpredictable, which should favour animals that maintain a capacity for food-processing that exceeds average levels of consumption (loads). Despite this basic principle of quantitative evolutionary design, estimates of digestive load:capacity ratios in wild animals are virtually non-existent. Here we provide an extensive assessment of load:capacity ratios for the digestive systems of predators in the wild, compiling 639 estimates across 38 species of fish. We found that piscine predators typically maintain the physiological capacity to feed at daily rates 2-3 times higher than what they experience on average. A numerical simulation of the trade-off between food-processing capacity and metabolic cost suggests that the observed level of physiological opportunism is profitable only if predator-prey encounters, and thus predator energy budgets, are far more variable in nature than currently assumed.
Takamizawa, Keiichi; Nakayama, Yasuhide
2013-11-01
It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.
2016-12-27
2015 Approved for public release; distribution is unlimited U.S. Army Natick Soldier Research, Development and Engineering Center...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...MODULAR LIGHTWEIGHT LOAD CARRYING EQUIPMENT) HUMAN FACTORS ENGINEERING U.S. Army Natick Soldier Research, Development and Engineering Center ATTN
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria
Xu, Zeling; Yan, Aixin
2015-01-01
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630
Medical student attitudes toward kidney physiology and nephrology: a qualitative study.
Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W
2016-11-01
Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.
Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module
NASA Astrophysics Data System (ADS)
Deepak, SHARMA; Paritosh, CHAUDHURI
2018-04-01
The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.
Childhood abuse and depression in adulthood: The mediating role of allostatic load.
Scheuer, Sandra; Wiggert, Nicole; Brückl, Tanja Maria; Awaloff, Yvonne; Uhr, Manfred; Lucae, Susanne; Kloiber, Stefan; Holsboer, Florian; Ising, Marcus; Wilhelm, Frank H
2018-04-22
Traumatic experiences during childhood are considered a major risk factor for depression in adulthood. Childhood trauma may induce physiological dysregulation with long-term effects of increased allostatic load until adulthood, which may lead to depression. Thus, our aim was to investigate whether allostatic load - which represents a multi-system measure of physiological dysregulation - mediates the association between childhood trauma and adult depression. The study sample consisted of 324 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project and 261 mentally healthy control participants. The mediation analysis using a case-control approach included childhood trauma, i.e., physical and sexual abuse, as predictor variables and an allostatic load index comprised of 12 stress-related biomarkers as mediator. Age and sex were included as covariates. Mediation analyses revealed that the influence of physical abuse, but not sexual abuse, during childhood on depression in adulthood was mediated by allostatic load. This effect was moderated by age: particularly young (18-42 years) and middle-aged (43-54 years) adults with a history of physical abuse during childhood exhibited high allostatic load, which in turn was associated with increased rates of depression, but this was not the case for older participants (55-81 years). Results support the theoretical assumption of allostatic load mediating the effect of physical abuse during childhood on depression in adulthood. This predominantly holds for younger participants, while depression in older participants was independent of physical abuse and allostatic load. The effect of sexual abuse on depression, however, was not mediated by allostatic load. Identifying allostatic load biomarkers prospectively in the developmental course of depression is an important target for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian
2016-02-01
Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to "feel" the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075-1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.
Wieding, Jan; Souffrant, Robert; Mittelmeier, Wolfram; Bader, Rainer
2013-04-01
Repairing large segmental defects in long bones caused by fracture, tumour or infection is still a challenging problem in orthopaedic surgery. Artificial materials, i.e. titanium and its alloys performed well in clinical applications, are plenary available, and can be manufactured in a wide range of scaffold designs. Although the mechanical properties are determined, studies about the biomechanical behaviour under physiological loading conditions are rare. The goal of our numerical study was to determine the suitability of open-porous titanium scaffolds to act as bone scaffolds. Hence, the mechanical stability of fourteen different scaffold designs was characterized under both axial compression and biomechanical loading within a large segmental distal femoral defect of 30mm. This defect was stabilized with an osteosynthesis plate and physiological hip reaction forces as well as additional muscle forces were implemented to the femoral bone. Material properties of titanium scaffolds were evaluated from experimental testing. Scaffold porosity was varied between 64 and 80%. Furthermore, the amount of material was reduced up to 50%. Uniaxial compression testing revealed a structural modulus for the scaffolds between 3.5GPa and 19.1GPa depending on porosity and material consumption. The biomechanical testing showed defect gap alterations between 0.03mm and 0.22mm for the applied scaffolds and 0.09mm for the intact bone. Our results revealed that minimizing the amount of material of the inner core has a smaller influence than increasing the porosity when the scaffolds are loaded under biomechanical loading. Furthermore, an advanced scaffold design was found acting similar as the intact bone. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function
Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.
2017-01-01
Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202
ERIC Educational Resources Information Center
Dich, Nadya; Doan, Stacey; Evans, Gary
2015-01-01
The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…
Nindl, Bradley C; Castellani, John W; Warr, Bradley J; Sharp, Marilyn A; Henning, Paul C; Spiering, Barry A; Scofield, Dennis E
2013-11-01
Modern international military deployments in austere environments (i.e., Iraq and Afghanistan) place considerable physiological demands on soldiers. Significant physiological challenges exist: maintenance of physical fitness and body composition, rigors of external load carriage, environmental extremes (heat, cold, and altitude), medical illnesses, musculoskeletal injuries, traumatic brain injuries, post-traumatic stress disorder, and environmental exposure hazards (i.e., burn pits, vehicle exhaust, etc.). To date there is very little published research and no comprehensive reviews on the physiological effects of deployments. The purpose of this paper is to overview what is currently known from the literature related mainly to current military conflicts with regard to the challenges and consequences from deployments. Summary findings include: (1) aerobic capacity declines while muscle strength, power and muscular endurance appear to be maintained, (2) load carriage continues to tax the physical capacities of the Soldier, (3) musculoskeletal injuries comprise the highest proportion of all injury categories, (4) environmental insults occur from both terrestrial extremes and pollutant exposure, and (5) post-deployment concerns linger for traumatic brain injury and post-traumatic stress disorder. A full understanding of these responses will assist in identifying the most effective risk mitigation strategies to ensure deployment readiness and to assist in establishment of military employment standards.
Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.
Thrasher, Cat; LoBue, Vanessa
2016-02-01
In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B
2015-02-01
Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.
Physiologic Responses of Able-Bodied and Paraplegic Males to Maximal Arm Ergometry.
ERIC Educational Resources Information Center
Israel, Richard G.; And Others
A study compared physiologic responses of healthy paraplegic males to those of healthy, able-bodied males during maximal arm ergometry. Fifteen able-bodied, healthy adult males and 13 healthy adult male paraplegics followed an exercise program involving heart rate, increased exercise loads, and oxygen uptake. Results from an analysis of the data…
Oral Exposure and Absorption of Toxicants
This chapter provides an overview of the toxicokinetics of orally absorbed xenobiotics. This includes a description of the basic anatomy and physiology of the digestive tract most relevant to the absorption process. In addition, differences in anatomy and physiology between human...
Dilution: A Theoretical Burden or Just Load? A Reply to Tsal and Benoni (2010)
ERIC Educational Resources Information Center
Lavie, Nilli; Torralbo, Ana
2010-01-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and…
Intelligent polymeric micelles: development and application as drug delivery for docetaxel.
Li, Yimu; Zhang, Hui; Zhai, Guang-Xi
2017-04-01
Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.
Fruit load governs transpiration of olive trees
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-01-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540
INFLUENCE OF IRON CHELATION ON R1 AND R2 CALIBRATION CURVES IN GERBIL LIVER AND HEART
Wood, John C.; Aguilar, Michelle; Otto-Duessel, Maya; Nick, Hanspeter; Nelson, Marvin D.; Moats, Rex
2008-01-01
MRI is gaining increasing importance for the noninvasive quantification of organ iron burden. Since transverse relaxation rates depend on iron distribution as well as iron concentration, physiologic and pharmacologic processes that alter iron distribution could change MRI calibration curves. This paper compares the effect of three iron chelators, deferoxamine, deferiprone, and deferasirox on R1 and R2 calibration curves according to two iron loading and chelation strategies. 33 Mongolian gerbils underwent iron loading (iron dextran 500 mg/kg/wk) for 3 weeks followed by 4 weeks of chelation. An additional 56 animals received less aggressive loading (200 mg/kg/week) for 10 weeks, followed by 12 weeks of chelation. R1 and R2 calibration curves were compared to results from 23 iron-loaded animals that had not received chelation. Acute iron loading and chelation biased R1 and R2 from the unchelated reference calibration curves but chelator-specific changes were not observed, suggesting physiologic rather than pharmacologic differences in iron distribution. Long term chelation deferiprone treatment increased liver R1 50% (p<0.01), while long term deferasirox lowered liver R2 30.9% (p<0.0001). The relationship between R1 and R2 and organ iron concentration may depend upon the acuity of iron loading and unloading as well as the iron chelator administered. PMID:18581418
D, Savitha; Vaz, Manjulika; Vaz, Mario
2017-06-01
Integrating medical ethics into the physiology teaching-learning program has been largely unexplored in India. The objective of this exercise was to introduce an interactive and integrated ethics program into the Physiology course of first-year medical students and to evaluate their perceptions. Sixty medical students (30 men, 30 women) underwent 11 sessions over a 7-mo period. Two of the Physiology faculty conducted these sessions (20-30 min each) during the routine physiology (theory/practicals) classes that were of shorter duration and could, therefore, accommodate the discussion of related ethical issues. This exercise was in addition to the separate ethics classes conducted by the Medical Ethics department. The sessions were open ended, student centered, and designed to stimulate critical thinking. The students' perceptions were obtained through a semistructured questionnaire and focused group discussions. The students found the program unique, thought provoking, fully integrated, and relevant. It seldom interfered with the physiology teaching. They felt that the program sensitized them about ethical issues and prepared them for their clinical years, to be "ethical doctors." Neutral observers who evaluated each session felt that the integrated program was relevant to the preclinical year and that the program was appropriate in its content, delivery, and student involvement. An ethics course taught in integration with Physiology curriculum was found to be beneficial, feasible, and compatible with Physiology by students as well as neutral observers. Copyright © 2017 the American Physiological Society.
Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet
2016-10-01
Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.
Effects of Deployment on Musculoskeletal and Physiological Characteristics and Balance.
Nagai, Takashi; Abt, John P; Sell, Timothy C; Keenan, Karen A; McGrail, Mark A; Smalley, Brian W; Lephart, Scott M
2016-09-01
Despite many nonbattle injuries reported during deployment, few studies have been conducted to evaluate the effects of deployment on musculoskeletal and physiological characteristics and balance. A total of 35 active duty U.S. Army Soldiers participated in laboratory testing before and after deployment to Afghanistan. The following measures were obtained for each Soldier: shoulder, trunk, hip, knee, and ankle strength and range of motion (ROM), balance, body composition, aerobic capacity, and anaerobic power/capacity. Additionally, Soldiers were asked about their physical activity and load carriage. Paired t tests or Wilcoxon tests with an α = 0.05 set a priori were used for statistical analyses. Shoulder external rotation ROM, torso rotation ROM, ankle dorsiflexion ROM, torso rotation strength, and anaerobic power significantly increased following deployment (p < 0.05). Shoulder extension ROM, shoulder external rotation strength, and eyes-closed balance (p < 0.05) were significantly worse following deployment. The majority of Soldiers (85%) engaged in physical activity. In addition, 58% of Soldiers reported regularly carrying a load (22 kg average). The deployment-related changes in musculoskeletal and physiological characteristics and balance as well as physical activity and load carriage during deployment may assist with proper preparation with the intent to optimize tactical readiness and mitigate injury risk. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Relevance of human anatomy in daily clinical practice.
Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón
2010-12-20
the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.
Pupillometry as a Tool to Study Expertise in Medicine
ERIC Educational Resources Information Center
Szulewski, Adam; Kelton, Danielle; Howes, Daniel
2017-01-01
Background: Pupillometry has been studied as a physiological marker for quantifying cognitive load since the early 1960s. It has been established that small changes in pupillary size can provide an index of the cognitive load of an individual as he/she performs a mental task. The utility of pupillometry as a measure of expertise is less well…
[Mechanical studies of lumbar interbody fusion implants].
Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R
2002-05-01
In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.
Where have we gone wrong? Perceptual load does not affect selective attention.
Benoni, Hanna; Tsal, Yehoshua
2010-06-18
The theory of perceptual load (Lavie & Tsal, 1994) proposes that with low load in relevant processing left over resources spill over to process irrelevant distractors. Interference could only be prevented under High-Load Conditions where relevant processing exhausts attentional resources. The theory is based primarily on the finding that distractor interference obtained in low load displays, when the target appears alone, is eliminated in high load displays when it is embedded among neutral letters. However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large displays is diluted by the presence of the neutral letters. We separated the possible effects of load and dilution by adding dilution displays that were high in dilution and low in perceptual load. In the first experiment these displays contained as many letters as the high load displays, but their neutral letters were clearly distinguished from the target, thereby allowing for a low load processing mode. In the second experiment we presented identical multicolor displays in the Dilution and High-Load Conditions. However, in the former the target color was known in advance (thereby preserving a low load processing mode) whereas in the latter it was not. In both experiments distractor interference was completely eliminated under the Dilution Condition. Thus, it is dilution not perceptual load affecting distractor processing. 2010 Elsevier Ltd. All rights reserved.
Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?
Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2018-03-27
Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.
Perry, E; Gulson, N; Liu Cross, T-W; Swanson, K S
2017-01-01
Working canines are deployed by the Federal Emergency Management Agency (FEMA), as part of a National Disaster Response Plan. Stress associated with helicopter flight and the resulting physical effects on the dog are unknown. Our objective was to test the hypotheses that (1) helicopter travel affects the physiology and faecal microbiota of working canines, but that (2) physiological consequences of helicopter travel will not negatively affect their work performance. A total of nine FEMA canines were loaded onto helicopters and flown for 30 min in July 2015. Rectal temperature, behavioural stress indicators and saliva swabs (for cortisol) were collected at baseline, loading, mid-flight and post-flight. After flight, canines completed a standardised search exercise to monitor work performance. Faecal samples were collected for microbial DNA extraction and Illumina sequencing. All canines were on a standardised diet (CANIDAE ® Grain Free PURE Land ® ) for 3 weeks prior to the study. Visible indicators of stress were observed at loading and at mid-flight and corresponded with an increase ( P < 0·05) in salivary cortisol from 5·4 µg/l (baseline) to 6·4 µg/l (loading). Additionally, rectal temperature increased ( P < 0·05) from 38·61°C (baseline) to 39·33°C (mid-flight) and 39·72°C (post-flight). Helicopter travel did not affect search performance ( P > 0·05). We found that α- and β-diversity measures of faecal microbiota were not affected ( P > 0·05). Our data suggest that although helicopter travel may cause physiological changes that have been associated with stress in working dogs, it does not make an impact on their search performance or the stability of faecal microbiota.
Advanced Multi-Axis Spine Testing: Clinical Relevance and Research Recommendations
Holsgrove, Timothy P.; Nayak, Nikhil R.; Welch, William C.
2015-01-01
Back pain and spinal degeneration affect a large proportion of the general population. The economic burden of spinal degeneration is significant, and the treatment of spinal degeneration represents a large proportion of healthcare costs. However, spinal surgery does not always provide improved clinical outcomes compared to non-surgical alternatives, and modern interventions, such as total disc replacement, may not offer clinically relevant improvements over more established procedures. Although psychological and socioeconomic factors play an important role in the development and response to back pain, the variation in clinical success is also related to the complexity of the spine, and the multi-faceted manner by which spinal degeneration often occurs. The successful surgical treatment of degenerative spinal conditions requires collaboration between surgeons, engineers, and scientists in order to provide a multi-disciplinary approach to managing the complete condition. In this review, we provide relevant background from both the clinical and the basic research perspectives, which is synthesized into several examples and recommendations for consideration in increasing translational research between communities with the goal of providing improved knowledge and care. Current clinical imaging, and multi-axis testing machines, offer great promise for future research by combining invivo kinematics and loading with in-vitro testing in six degrees of freedom to offer more accurate predictions of the performance of new spinal instrumentation. Upon synthesis of the literature, it is recommended that in-vitro tests strive to recreate as many aspects of the in-vivo environment as possible, and that a physiological preload is a critical factor in assessing spinal biomechanics in the laboratory. A greater link between surgical procedures, and the outcomes in all three anatomical planes should be considered in both the in-vivo and in-vitro settings, to provide data relevant to quality of motion, and stability. PMID:26273552
Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics.
Planz, Viktoria; Wang, Jing; Windbergs, Maike
Predictive in vitro testing of novel wound therapeutics requires adequate cell-based bio-assays. Such assays represent an integral part during preclinical development as pre-step before entering in vivo studies. Simple "scratch tests" based on defected skin cell monolayers exist, however these can solely be used for testing liquids, as cell monolayer destruction and excessive hydration limit their applicability for (semi-)solid systems like wound dressings. In this context, a cell-based wound healing assay is introduced for rapid and predictive testing of wound therapeutics independent of their physical state in a bio-relevant environment. A novel wound healing assay was established for bio-relevant and predictive testing of (semi-) solid wound therapeutics. The assay allows for physiologically relevant hydration of the tested wound therapeutics at the air-liquid interface and their removal without cell monolayer disruption. In a proof-of-concept study, the applicability and discriminative power could be demonstrated by examining unloaded and drug-loaded wound dressings with two different established wound healing actives (dexpanthenol and metyrapone) and their effect on skin cell behavior. The influence of the released drug on the cells´ healing behavior could successfully be monitored over time. Wound size assessment after 96h resulted in an eight fold smaller wound area for drug treated models compared to the ones treated with unloaded fibers and non-treated wounds. This assay provides valuable first insights towards the establishment of a valid screening and evaluation tool for preclinical wound therapeutic development from liquid to (semi-)solid systems to improve predictability in a simple, yet standardized way. Copyright © 2017 Elsevier Inc. All rights reserved.
A comparison of five sampling techniques to estimate surface fuel loading in montane forests
Pamela G. Sikkink; Robert E. Keane
2008-01-01
Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...
Passive and Active Contributions to Glenohumeral Stability
2001-10-25
physiological muscle contraction during free arm suspension and proportional to muscle physiological cross- sectional area [15] (Phys Load); ditto...of muscle contraction around GH-joint. Stiffness of the GH capsuloligamentous structure, which is the ratio of the force required to stretch the...important active stabilizer in inferior stability. Our results also suggested that low-level muscle activity (2% of maximum muscle contraction ), representing
USDA-ARS?s Scientific Manuscript database
The physiological functions of epicuticular wax (EW) include reflectance of irradiation and the reduction of water loss. When a plant experiences stressful conditions, most notably, high irradiance and temperature, damage to the photosynthetic apparatus can occur and is signaled by a decrease in the...
Neuromodulators: available agents, physiology, and anatomy.
Nettar, Kartik; Maas, Corey
2011-12-01
Neuromodulators have risen to the forefront of aesthetic medicine. By reversibly relaxing target muscles, neuromodulators exhibit their effect by softening hyperfunctional lines. An understanding of their physiology, relevant facial anatomy, and current agents is imperative for a successful aesthetic practice. © Thieme Medical Publishers.
A Review of Research on Impulsive Loading of Marine Composites
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Gupta, Nikhil
Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.
Physiological loading of joints prevents cartilage degradation through CITED2
Leong, Daniel J.; Li, Yong H.; Gu, Xiang I.; Sun, Li; Zhou, Zuping; Nasser, Philip; Laudier, Damien M.; Iqbal, Jameel; Majeska, Robert J.; Schaffler, Mitchell B.; Goldring, Mary B.; Cardoso, Luis; Zaidi, Mone; Sun, Hui B.
2011-01-01
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.—Leong, D. J., Li, Y. H., Gu, X. I., Sun, L., Zhou, Z., Nasser, P., Laudier, D. M., Iqbal, J., Majeska, R. J., Schaffler, M. B., Goldring, M. B., Cardoso, L., Zaidi, M., Sun, H. B. Physiological loading of joints prevents cartilage degradation through CITED2. PMID:20826544
Perceptual load in different regions of the visual scene and its relevance for driving.
Marciano, Hadas; Yeshurun, Yaffa
2015-06-01
The aim of this study was to better understand the role played by perceptual load, at both central and peripheral regions of the visual scene, in driving safety. Attention is a crucial factor in driving safety, and previous laboratory studies suggest that perceptual load is an important factor determining the efficiency of attentional selectivity. Yet, the effects of perceptual load on driving were never studied systematically. Using a driving simulator, we orthogonally manipulated the load levels at the road (central load) and its sides (peripheral load), while occasionally introducing critical events at one of these regions. Perceptual load affected driving performance at both regions of the visual scene. Critically, the effect was different for central versus peripheral load: Whereas load levels on the road mainly affected driving speed, load levels on its sides mainly affected the ability to detect critical events initiating from the roadsides. Moreover, higher levels of peripheral load impaired performance but mainly with low levels of central load, replicating findings with simple letter stimuli. Perceptual load has a considerable effect on driving, but the nature of this effect depends on the region of the visual scene at which the load is introduced. Given the observed importance of perceptual load, authors of future studies of driving safety should take it into account. Specifically, these findings suggest that our understanding of factors that may be relevant for driving safety would benefit from studying these factors under different levels of load at different regions of the visual scene. © 2014, Human Factors and Ergonomics Society.
Aortic root dynamics and surgery: from craft to science.
Cheng, Allen; Dagum, Paul; Miller, D Craig
2007-08-29
Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.
Working memory load eliminates the survival processing effect.
Kroneisen, Meike; Rummel, Jan; Erdfelder, Edgar
2014-01-01
In a series of experiments, Nairne, Thompson, and Pandeirada (2007) demonstrated that words judged for their relevance to a survival scenario are remembered better than words judged for a scenario not relevant on a survival dimension. They explained this survival-processing effect by arguing that nature "tuned" our memory systems to process and remember fitness-relevant information. Kroneisen and Erdfelder (2011) proposed that it may not be survival processing per se that facilitates recall but the richness and distinctiveness with which information is encoded. To further test this account, we investigated how the survival processing effect is affected by cognitive load. If the survival processing effect is due to automatic processes or, alternatively, if survival processing is routinely prioritized in dual-task contexts, we would expect this effect to persist under cognitive load conditions. If the effect relies on cognitively demanding processes like richness and distinctiveness of encoding, however, the survival processing benefit should be hampered by increased cognitive load during encoding. Results were in line with the latter prediction, that is, the survival processing effect vanished under dual-task conditions.
Peri-Implant Strain in an In Vitro Model.
Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul
2015-10-01
An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.
A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation
NASA Astrophysics Data System (ADS)
Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.
2017-03-01
Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.
Alterations in redox homeostasis in the elite endurance athlete.
Lewis, Nathan A; Howatson, Glyn; Morton, Katie; Hill, Jessica; Pedlar, Charles R
2015-03-01
The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes. Low to moderate doses of ROS and RNS play a role in muscle adaptation to endurance training, but an overwhelming increase in RNS and ROS may lead to increased cell apoptosis and immunosuppression, fatigued states and underperformance. The objectives of this systematic review are: (a) to test the hypotheses that ARH occur in elite endurance athletes; following an acute exercise bout, in an endurance race or competition; across a micro-, meso- or macro-training cycle; following a training taper; before, during and after altitude training; in females with amenorrhoea versus eumenorrhoea; and in non-functional over-reaching (NFOR) and overtraining states (OTS); (b) to report any relationship between ARH and training load and ARH and performance; and (c) to apply critical difference values for measures of oxidative stress/ARH to address whether there is any evidence of ARH being of physiological significance (not just statistical) and thus relevant to health and performance in the elite athlete. Electronic databases, Embase, MEDLINE, and SPORTDiscus were searched for relevant articles. Only studies that were observational articles of cross-sectional or longitudinal design, and included elite athletes competing at national or international level in endurance sports were included. Studies had to include biomarkers of ARH; oxidative damage, antioxidant enzymes, antioxidant capacity, and antioxidant vitamins and nutrients in urine, serum, plasma, whole blood, red blood cells (RBCs) and white blood cells (WBCs). A total of 3,057 articles were identified from the electronic searches. Twenty-eight articles met the inclusion criteria and were included in the review. ARH occurs in elite endurance athletes, after acute exercise, a competition or race, across training phases, and with natural or simulated altitude. A reduction in ARH occurs across the season in elite athletes, with marked variation around intensified training phases, between individuals, and the greatest disturbances (of physiological significance) occurring with live-high-train-low techniques, and in athletes competing. A relationship with ARH and performance and illness exists in elite athletes. There was considerable heterogeneity across the studies for the biomarkers and assays used; the sport; the blood sampling time points; and the phase in the annual training cycle and thus baseline athlete fitness. In addition, there was a consistent lack of reporting of the analytical variability of the assays used to assess ARH. The reported biochemical changes around ARH in elite athletes suggest that it may be of value to monitor biomarkers of ARH at rest, pre- and post-simulated performance tests, and before and after training micro- and meso-cycles, and altitude camps, to identify individual tolerance to training loads, potentially allowing the prevention of non-functionally over-reached states and optimisation of the individual training taper and training programme.
Mala, Jesse; Szivak, Tunde K; Flanagan, Shawn D; Comstock, Brett A; Laferrier, Justin Z; Maresh, Carl M; Kraemer, William J
2015-01-01
Previous research has investigated the physiological determinants of heavy load carriage while performing medium to long distance road marching, yet research examining the physiological underpinnings of high-intensity battlefield tasks is limited. This study sought to examine the role of strength and power during high-intensity combat tasks under heavy load carriage. Eighteen recreationally trained men (mean±SD: age, 21±2 years; height, 172±6 cm; weight, 80±13 kg) participated in this study and performed an anaerobic combat course under 2 randomized experimental conditions; unloaded and loaded. Subjects performed 3 trials under each condition on separate days, with a 5-minute rest between each trial. In the unloaded trial, subjects wore a uniform with boots weighing approximately 3.2 kg. During the loaded trial, in addition to the uniform and boots, subjects wore Interceptor body armor (6.94 kg-9.10 kg) and a MOLLE rucksack weighing 30 kg. The course consisted of 3 consecutive tasks, which began from the prone position, led into a 30 m sprint, followed by a 27 m zigzag run, and ended with a 10 m casualty drag weighing approximately 79.4 kg. Pearson correlations showed significant (P≤.05) strong correlations between lower body strength (r=-0.63, -0.62), lower body power (r=-0.67, -0.67) and upper body strength (r=-0.60, -0.62) and overall performance times in the unloaded and loaded condition, respectively. Strength and power are strongly related to high-intensity military tasks with and without heavy load carriage.
The APOA1/C3/A4/A5 cluster and markers of allostatic load in the Boston Puerto Rican Health Study
USDA-ARS?s Scientific Manuscript database
The APOA1/C3/A4/A5 cluster encodes key regulators of plasma lipids. Interactions between dietary factors and single nucleotide polymorphisms (SNPs) in the cluster have been reported. Allostatic load, or physiological dysregulation in response to stress, has been implicated in shaping health disparit...
Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice.
Meakin, Lee B; Udeh, Chinedu; Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S
2015-12-01
Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cowings, Patricia; Toscano, William; Kanis, Dionisios; Gebreyesus, Fiyore
2013-01-01
Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. Hypo-volemia is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore loss fluid volume by giving crew salt tablets and water prior to re-entry. Eight men and eight women will be tested during two, 6-hour exposures to 6o HDT: 1) fluid loading, 2) no fluid loading. Before and immediately after each HDT, subjects will perform a stand test to assess their orthostatic tolerance. Physiological measures (e.g., ECG, blood pressure, peripheral blood volume) will be continuously monitored while echocardiography measures are recorded at 30-minute intervals during HDT and stand tests. Preliminary results (N=4) clearly show individual differences in responses to this countermeasure and the time course of physiological changes induced by HDT.
Functional modules, mutational load and human genetic disease.
Zaghloul, Norann A; Katsanis, Nicholas
2010-04-01
The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.
Functional modules, mutational load and human genetic disease
Zaghloul, Norann A.; Katsanis, Nicholas
2013-01-01
The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561
Al Balushi, Halima W M; Rees, David C; Brewin, John N; Hannemann, Anke; Gibson, John S
2018-03-01
Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (P sickle , Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O 2 , together with deoxygenation-induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, P sickle , and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca 2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca 2+ entry likely via the P sickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N-ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Fruit load governs transpiration of olive trees.
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-03-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2017-03-25
the past 16 years of war. 1-3 McEwen’ s allostatic load model delineates how chronic stress up-regulates the sympathetic nervous system causing...physiologic and psychological sequela. Conversely, yogic breathing has been shown to up-regulate the parasympathetic nervous system due to the
The Role of Perceptual Load in Inattentional Blindness
ERIC Educational Resources Information Center
Cartwright-Finch, Ula; Lavie, Nilli
2007-01-01
Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the…
Comparison of the US and Russian Cycle Ergometers
NASA Technical Reports Server (NTRS)
Norcross, Jason; Bentley, Jason R.; Moore, Alan D.; Hagan, R. Donald
2007-01-01
The purpose of this study was to compare the U.S. and Russian cycle ergometers focusing on the mechanical differences of the devices and the physiological differences observed while using the devices. Methods: First, the mechanical loads provided by the U.S. Cycle Ergometer with Vibration Isolation System (CEVIS) and the Russian Veloergometer were measured using a calibration dynamometer. Results were compared and conversion equations were modeled to determine the actual load provided by each device. Second, ten male subjects (32.9 +/- 6.5 yrs, 180.6 +/- 4.4 cm; 81.9 +/- 6.9 kg) experienced with both cycling and exercise testing completed a standardized submaximal exercise test protocol on CEVIS and Veloergometer. The exercise protocol involved 8 sub-maximal workloads each lasting 3 minutes for a total of 24 minutes per session, or until the end of the stage when the subject reached 85% of peak oxygen consumption or age-predicted maximum heart rate (220 - age). The workload started at 50 Watts (W), increased to 100 W, and then increased 25 W every 3 minutes until reaching a peak workload of 250 W. Physiological variables were then compared at each workload by repeated measures ANOVA or paired t-tests (p<0.05). Results: While both CEVIS and Veloergometer produced significantly lower workloads than the displayed workload, CEVIS produced even lower loads than Veloergometer (p<0.05) at each indicated workload. Despite this fact, the only physiological variables that showed a significant difference between the ergometers were VE (125 - 250W), VO2 (175 and 250 W), and VCO2 (175 W). All other physiological data were not statistically different between CEVIS and Veloergometer. Conclusion: Although workloads were different between ergometers, relatively few physiological differences were observed. Therefore, CEVIS workloads of 87.5 - 262.5 W can be rounded to the nearest 25 W increment and performed on the Veloergometer.
The effects of eye movements on emotional memories: using an objective measure of cognitive load.
van Veen, Suzanne C; Engelhard, Iris M; van den Hout, Marcel A
2016-01-01
Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The working memory (WM) theory explains its efficacy: recall of an aversive memory and making eye movements (EM) both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. We hypothesized that 1) recall of an aversive autobiographical memory loads WM compared to no recall, and 2) recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM). Undergraduates (N=108) were randomly assigned to one of three conditions: 1) recall relevant memory with EM, 2) recall relevant memory without EM, and 3) recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s), and after (16×24 s) the intervention. Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory.
Paillard, Thierry
2011-12-01
The article by Del Vecchio, et al. (2011) provides relevant information to trainers about the effort-pause ratio during mixed martial arts matches. Taking into account the physiological profiles of fighters would increase interest in these findings.
Response terminated displays unload selective attention
Roper, Zachary J. J.; Vecera, Shaun P.
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional “spill-over” to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional “spill-over” by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented. PMID:24399983
Response terminated displays unload selective attention.
Roper, Zachary J J; Vecera, Shaun P
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.
Healy, Sinead; McMahon, Jill M; FitzGerald, Una
2017-11-01
Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui
2014-01-01
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292
Modeling the accumulation of degradable polymer drug carriers in the brain.
Bolwerk, Celine; Govers, Larissa P M W D; Knol, Hanna; Oostendorp, Thom F; Brock, Roland
2018-05-11
The blood brain barrier (BBB) limits the access of drugs to the brain. Intensive research is being conducted on the development of nanoparticulate drug carriers that mediate transfer across the BBB. A question that has been neglected so far is the potential accumulation of the carrier in the brain upon long-term exposure. Here, we address this question by implementing a kinetic model to relate drug loading, required concentration of drug in the brain and drug clearance to the degradation half-life of the carrier. As a test case with clinical relevance we chose poly-lactic-co-glycolic-acid (PLGA) as a carrier material and a chemotherapeutic for which the required parameters could be recovered from literature. For methotrexate with a drug load of 8.5 %, a required concentration of free drug of 1 µM, a release from PLGA of 6 hours, a drug clearance from the brain of 3 hours and a half-life of polymer degradation of 28 days, a steady state accumulation of 1.3 g polymer would be reached in the brain (1.5L) after 7 months. While this number is surprisingly small, further physiological research is warranted to assess to which degree this will be in a tolerable range. Insert abstract text here. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences
Gallo, Linda A; Wright, Ernest M; Vallon, Volker
2018-01-01
Traditional treatments for type 1 and type 2 diabetes are often associated with side effects, including weight gain and hypoglycaemia that may offset the benefits of blood glucose lowering. The kidneys filter and reabsorb large amounts of glucose, and urine is almost free of glucose in normoglycaemia. The sodium-dependent glucose transporter (SGLT)-2 in the early proximal tubule reabsorbs the majority of filtered glucose. Remaining glucose is reabsorbed by SGLT1 in the late proximal tubule. Diabetes enhances renal glucose reabsorption by increasing the tubular glucose load and the expression of SGLT2 (as shown in mice), which maintains hyperglycaemia. Inhibitors of SGLT2 enhance urinary glucose excretion and thereby lower blood glucose levels in type 1 and type 2 diabetes. The load-dependent increase in SGLT1-mediated glucose reabsorption explains why SGLT2 inhibitors in normoglycaemic conditions only excrete ~50% of the filtered glucose. The role of SGLT1 in both renal and intestinal glucose reabsorption provides a rationale for the development of dual SGLT1/2 inhibitors. SGLT2 inhibitors lower blood glucose levels independent of insulin and induce pleiotropic actions that may be relevant in the context of lowering cardiovascular risk. Ongoing long-term clinical studies will determine whether SGLT2 inhibitors have a safety profile and exert cardiovascular benefits that are superior to traditional agents. PMID:25616707
Mechanical control of tissue-engineered bone.
Hung, Ben P; Hutton, Daphne L; Grayson, Warren L
2013-01-31
Bone is a load-bearing tissue and physical forces play key roles in the development and maintenance of its structure. Mechanical cues can stimulate the expression of an osteogenic phenotype, enhance matrix and mineral deposition, and influence tissue organization to improve the functional outcome of engineered bone grafts. In recent years, a number of studies have investigated the effects of biophysical forces on the bone formation properties of osteoprogenitor cells. The application of physiologically relevant stimuli to tissue-engineered bone may be determined through observation and understanding of forces to which osteoblasts, osteoclasts, and osteocytes are exposed in native bone. Subsequently, these cues may be parameterized and their effects studied in well-defined in vitro systems. The osteo-inductive effects of three specific mechanical cues - shear stress, substrate rigidity, and nanotopography - on cells cultured in monolayer or in three-dimensional biomaterial scaffolds in vitro are reviewed. Additionally, we address the time-dependent effects of mechanical cues on vascular infiltration and de novo bone formation in acellular scaffolds implanted into load-bearing sites in vivo. Recent studies employing cutting-edge advances in biomaterial fabrication and bioreactor design have provided key insights into the role of mechanical cues on cellular fate and tissue properties of engineered bone grafts. By providing mechanistic understanding, future studies may go beyond empirical approaches to rational design of engineering systems to control tissue development.
Impact of a protective vest and spacer garment on exercise-heat strain.
Cheuvront, Samuel N; Goodman, Daniel A; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N
2008-03-01
Protective vests worn by global security personnel, and weighted vests worn by athletes, may increase physiological strain due to added load, increased clothing insulation and vapor resistance. The impact of protective vest clothing properties on physiological strain, and the potential of a spacer garment to reduce physiological strain, was examined. Eleven men performed 3 trials of intermittent treadmill walking over 4 h in a hot, dry environment (35 degrees C, 30% rh). Volunteers wore the US Army battledress uniform (trial B), B + protective vest (trial P), and B + P + spacer garment (trial S). Biophysical clothing properties were determined and found similar to many law enforcement, industry, and sports ensembles. Physiological measurements included core (T (c)), mean skin (T (sk)) and chest (T (chest)) temperatures, heart rate (HR), and sweating rate (SR). The independent impact of clothing was determined by equating metabolic rate in all trials. In trial P, HR was +7 b/min higher after 1 h of exercise and +19 b/min by the fourth hour compared to B (P < 0.05). T (c) (+0.30 degrees C), T (sk) (+1.0 degrees C) and Physiological Strain Index were all higher in P than B (P < 0.05). S did not abate these effects except to reduce T (sk) (P > S) via a lower T (chest) (-0.40 degrees C) (P < 0.05). SR was higher (P < 0.05) in P and S versus B, but the magnitude of differences was small. A protective vest increases physiological strain independent of added load, while a spacer garment does not alter this outcome.
A simple sensing mechanism for wireless, passive pressure sensors.
Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H
2016-08-01
We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.
Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel
2015-09-01
The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Controversial constitutive TSHR activity: patients, physiology, and in vitro characterization.
Huth, S; Jaeschke, H; Schaarschmidt, J; Paschke, R
2014-06-01
G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are "preliminary attempts" and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity. © Georg Thieme Verlag KG Stuttgart · New York.
Fouda, Mohamed B; Thankam, Finosh G; Dilisio, Matthew F; Agrawal, Devendra K
2017-01-01
Rotator cuff (RC) tendons could beinflicted in many ways with an eventual outcome of pain, weakness and disability, which represent a large burden on health care cost. However, optimal healing, either conservatively or with surgical intervention, remains an issue that needs further investigation. Disorders of the RC tendons may result from external factors like trauma, or internal factors through physiologic and metabolic derangement. Most RC tendon disorders may be asymptomatic and may result from an over-activity of the inflicted shoulder and its tendons. Such tendon disorders are poorly diagnosed since patients do not seek medical attention until pain or weakness ensue. Immunological and biochemical events in RC disorders due to mechanical intolerance have not been investigated. Generally, the mechanical load drives normal physiological properties of the tendon. But, mechanical overload/burden exerts stress on tenocytes, and disrupts the tendon microenvironment by triggering a multitude of signaling pathways leading to extracellular matrix remodeling, disorganization, alteration in collagen composition and apoptosis. These events result in weak tendon which is highly susceptible to rupture or tear. In this article, we critically reviewed the intrinsic signaling pathways that are excessively triggered by continuous mechanical load and the counteracting physiological responses and associated derangements. The elucidation of the molecular events underlying mechanical stress-induced symptomatic/asymptomatic tendinopathy could provide information on potential target sites for translational application in the management of rotator cuff disorders. PMID:29118899
Zhai, Shaodong; Hu, Xianglong; Hu, Yongjun; Wu, Baoyan; Xing, Da
2017-03-01
Undesired physiological instability of nanocarriers and premature drug leakage during blood circulation result in compromised therapeutic efficacy and severe side effects, which have significantly impeded the development of nanomedicine. Facile crosslinking of drug-loaded nanocarriers while keeping the potency of site-specific degradation and drug release has emerged as a viable strategy to overcome these drawbacks. Additionally, combination therapy has already shown advantages in inhibiting advanced tumors and life extension than single drug therapy. Herein, three kinds of diselenide-rich polymers were fabricated with distinct hydrophobic side chains. The component effect was interrogated to screen out PEG-b-PBSe diblock copolymer due to its favorable self-assembly controllability and high drug loading of camptothecin (CPT) and doxorubicin (DOX) that had synergistic antitumor property. Facile visible light-induced diselenide metathesis and regeneration was employed to crosslink nanocarriers for the first time. The dual drug-loaded crosslinked micelles (CPT/DOX-CCM) were stable in physiological conditions with minimal drug leakage, possessing extended blood circulation, whereas hand-in-hand dual drug release was significantly accelerated in tumor's redox microenvironments. In vitro cytotoxicity evaluation and in vivo tumor suppression with low dosage drugs further demonstrated the favorable potency of the redox-responsive nanoplatform in tumor combination chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nomura, M; Sloman, K A; von Keyserlingk, M A G; Farrell, A P
2009-02-16
This study examined the physiology (plasma cortisol, glucose, lactate, potassium, sodium and chloride concentrations) and behaviour (underwater video footage) of commercially produced Atlantic salmon (Salmo salar) smolts during transport from freshwater farms to saltwater net pens. Smolts were transported by truck in closed tanks from two freshwater farms to the dock (30-60 min), and then in the flow-through cargo holds of a live-haul vessel, the Sterling Carrier, to the saltwater net pens (~2 h). Some fish were dockside in the vessel for up to 8 h while successive deliveries were loaded into the holds. Fish and water were sampled both before and after truck transport, and then at several time points aboard the vessel. Analysis of plasma constituents showed modest primary and secondary stress responses due to loading and truck transport, and the recovery that occurred dockside in the live-haul vessel was maintained when the vessel was underway. Underwater video footage revealed behavioural differences between fish from the two freshwater facilities that were not evident from the physiological measurements, but the behaviours observed during transport on a live-haul vessel were consistent with a non-stressful environment. Although smolts were subjected to moderately stressful conditions during loading and trucking, they began to recover rapidly aboard the Sterling Carrier. We therefore conclude that smolt transport, as currently conducted by our industry partner, appears to reflect good fish welfare.
Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.
Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T
2016-09-01
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.
Correia, Cristina; Pereira, Ana L; Duarte, Ana R C; Frias, Ana M; Pedro, Adriano J; Oliveira, João T; Sousa, Rui A; Reis, Rui L
2012-10-01
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.
Kumar, G Aditya; Roy, Saptarshi; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha
2016-09-01
Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Conte, Daniele; Favero, Terence G; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio
2016-01-01
This study aimed to analyse the effects of two factors (number of players and training regimes) on players' physiological and technical demands in basketball ball-drills. Twenty-one young basketball players performed four different ball-drills (two levels for each factor). The number of players involved was 2vs2 and 4vs4, while ball-drill regimes were continuous and intermittent. Physiological demand was assessed using the percentage of maximal heart rate (%HRmax), Edwards' training load and rating of perceived exertion (RPE). Furthermore, the following technical actions were collected: dribbles, steals, rebounds, turnovers, passes (total, correct, wrong and % of correct pass) and shots (total, scored, missed and % of made shot). A 2 × 2 (number of players × regime) two-way ANOVA with repeated measures was applied for physiological parameters and technical actions. The 2vs2 condition showed higher %HRmax (P < 0.001), Edwards' training load (P < 0.001), RPE (P < 0.001), number of dribbles (P < 0.001), rebounds (P < 0.001), passes [total (P = 0.005) and correct (P = 0.005)] and shots [total (P < 0.001) scored (P < 0.001) and missed (P < 0.001)] than 4vs4. Moreover, the continuous regime revealed higher %HRmax (P < 0.001), Edwards' training load (P < 0.001), RPE (P = 0.006) and dribbles (P < 0.001) than the intermittent regime. This study showed that both number of players and regime are useful variables able to modify basketball ball-drills workload.
Kolosov, Dennis; Kelly, Scott P
2016-08-01
This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.
Deciu, Cosmin; Sun, Jun; Wall, Mark A
2007-09-01
We discuss several aspects related to load balancing of database search jobs in a distributed computing environment, such as Linux cluster. Load balancing is a technique for making the most of multiple computational resources, which is particularly relevant in environments in which the usage of such resources is very high. The particular case of the Sequest program is considered here, but the general methodology should apply to any similar database search program. We show how the runtimes for Sequest searches of tandem mass spectral data can be predicted from profiles of previous representative searches, and how this information can be used for better load balancing of novel data. A well-known heuristic load balancing method is shown to be applicable to this problem, and its performance is analyzed for a variety of search parameters.
Strekalova, V V; Khachirov, D G; Dedenkov, A N; Suvorov, Iu I; Shvatsabaia, I K
1989-01-01
Combination of chronic salt loading with protein-poor diet produces experimental hypertension with natrium consumption near to physiological. The present model is characterized, compared to the existing one, by stage development, moderate arterial blood pressure elevation and absence of "salt toxicosis" and may be thus considered more adequate for experimental investigation of primary arterial hypertension pathophysiology.
Principles for classification of work load for women
NASA Technical Reports Server (NTRS)
Navakatikyan, A. O.; Okhrimenko, A. P.; Karakashyan, A. N.; Buzunov, V. A.
1980-01-01
In an attempt to develop guidelines for classification by degree of intensity of various kinds of physical work performed by women, the effects of different work loads on women as compared to men were studied under industrial and experimental conditions, including response of the cardiovascular and respiratory systems to specified physical exercises of increasing intensity. Physiological criteria for assessing female labor in terms of intensity are proposed.
Drowsiness measures for commercial motor vehicle operations.
Sparrow, Amy R; LaJambe, Cynthia M; Van Dongen, Hans P A
2018-04-25
Timely detection of drowsiness in Commercial Motor Vehicle (C MV) operations is necessary to reduce drowsiness-related CMV crashes. This is relevant for manual driving and, paradoxically, even more so with increasing levels of driving automation. Measures available for drowsiness detection vary in reliability, validity, usability, and effectiveness. Passively recorded physiologic measures such as electroencephalography (EEG) and a variety of ocular parameters tend to accurately identify states of considerable drowsiness, but are limited in their potential to detect lower levels of drowsiness. They also do not correlate well with measures of driver performance. Objective measures of vigilant attention performance capture drowsiness reliably, but they require active driver involvement in a performance task and are prone to confounds from distraction and (lack of) motivation. Embedded performance measures of actual driving, such as lane deviation, have been found to correlate with physiologic and vigilance performance measures, yet to what extent drowsiness levels can be derived from them reliably remains a topic of investigation. Transient effects from external circumstances and behaviors - such as task load, light exposure, physical activity, and caffeine intake - may mask a driver's underlying state of drowsiness. Also, drivers differ in the degree to which drowsiness affects their driving performance, based on trait vulnerability as well as age. This paper provides a broad overview of the current science pertinent to a range of drowsiness measures, with an emphasis on those that may be most relevant for CMV operations. There is a need for smart technologies that in a transparent manner combine different measurement modalities with mathematical representations of the neurobiological processes driving drowsiness, that account for various mediators and confounds, and that are appropriately adapted to the individual driver. The research for and development of such technologies requires a multi-disciplinary approach and significant resources, but is technically within reach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Object-Based Attention Overrides Perceptual Load to Modulate Visual Distraction
ERIC Educational Resources Information Center
Cosman, Joshua D.; Vecera, Shaun P.
2012-01-01
The ability to ignore task-irrelevant information and overcome distraction is central to our ability to efficiently carry out a number of tasks. One factor shown to strongly influence distraction is the perceptual load of the task being performed; as the perceptual load of task-relevant information processing increases, the likelihood that…
77 FR 45515 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... could result in the wing structure not supporting the limit load condition, which could lead to loss of... the limit load condition, which could lead to loss of the structural integrity of the wing. Relevant... could result in the wing structure not supporting the limit load condition, which could lead to loss of...
Choudhary, Lokesh; Raman, R K Singh
2012-02-01
It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, Catherine G. R.
1996-01-01
Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.
The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.
Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C
2014-07-01
Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; p<0.01) and the density of osteocyte lacunae (-20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×10(2) #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
The effects of self-induced mood states on behavior and physiological arousal.
Matheny, K B; Blue, F R
1977-10-01
The effects of reading emotionally loaded statements on behavioral tasks and physiological measures were investigated. Statements were constructed to arouse elation, depression, or neutrality. Ss were both pre- and posttested on Writing Speed, Reaction Time, Decision Time, and Spontaneous Verbalizations. Base rates were obtained for heart rate and galvanic skin response. Elation Ss significantly outperformed both Neutral and Depression Ss on the Reaction Time task. Scores for Neutral Ss fell between those of Elation and Depression Ss on three of the four behavioral measures. No significant differneces were found on the physiological measures.
NASA Astrophysics Data System (ADS)
Budhwani, Karim Ismail
The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.
The Importance of Muscular Strength: Training Considerations.
Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H
2018-04-01
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
Effects of vegetation and sewage load on mangrove crab condition using experimental mesocosms
NASA Astrophysics Data System (ADS)
Amaral, Valter; Penha-Lopes, Gil; Paula, José
2009-09-01
Constructed wetlands, especially mangroves, have been studied for their usefulness in sewage treatment but the effects of mangrove vegetation and a sewage load on mangrove macrofauna have been given little attention. Ocypodid crabs are important components of mangrove forests and constitute good bioindicators of the functioning of the ecosystem as a whole. In constructed mangrove mesocosms, three vegetation treatments (bare substratum, and Avicennia marina and Rhizophora mucronata seedlings) were subjected to 0, 20, 60 and 100% sewage loads from a nearby hotel. The physiological condition of introduced Uca annulipes and Uca inversa was evaluated in terms of their RNA/DNA ratio after one, five and twelve months, and used as an indicator of ecological function in the system. Crab condition in 0% sewage load was similar to that of wild crabs throughout, suggesting no significant effects of the mesocosms on their RNA/DNA ratio. Overall, both species coped well with the administered sewage loads, suggesting good ecological function in the system. Both species manifested similar patterns in RNA/DNA ratio, being more affected by seasonal fluctuations than by sewage load and vegetation presence and type. Higher RNA/DNA ratios were recorded in the long compared to the short rainy season. Sewage enhanced crab condition in the bare substratum and R. mucronata treatments, especially after one year, probably as a result of enhanced food availability. Uca inversa may be more sensitive to sewage pollution than U. annulipes. In A. marina, no difference in crab condition was observed between sewage loads, and this mangrove yielded the best reduction in sewage impacts. Our results support the usefulness of constructed mangrove areas in sewage treatment, especially if planted with A. marina and inhabited by physiologically healthy ocypodid crabs to enhance the system's performance.
Castellano, Julen; Casamichana, David; Dellal, Alexandre
2013-05-01
The aim of the study was to examine the extent to which changing the game format (possession play vs. regulation goals and goalkeepers vs. small goals only) and the number of players (3 vs. 3, 5 vs. 5 and 7 vs. 7) influenced the physiological and physical demands of small-sided games (SSGs) in soccer in semiprofessional players. Fourteen semiprofessional male soccer players were monitored with global positioning system and heart rate devices. Heart rate, player load, distance covered, running speed, and the number of accelerations were recorded for 9 different SSGs. The results show that changes both in game format and the number of players affect the players' physiological and physical demands. Possession play places greater physiological and physical demands on players, although reducing the number of players only increases the physiological load. In the 7 vs. 7 games, changing the game format did not alter the heart rate responses. Finally, in the possession play format, changing the number of players did not produce significant differences in heart rate responses, although physical demands did decrease in line with a reduction in the number of players. These results should help coaches to understand how modifying different aspects of SSGs has a differential effect on the players' physiological and physical demands. Moreover, coaches in semiprofessional and amateur teams have now consistent information to design and optimize their training time in mixing the technical, tactical, and physical aspects.
Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
NASA Astrophysics Data System (ADS)
Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.
2017-12-01
In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.
PROPOSED MODELS FOR ESTIMATING RELEVANT DOSE RESULTING FROM EXPOSURES BY THE GASTROINTESTINAL ROUTE
Simple first-order intestinal absorption commonly used in physiologically-based pharmacokinetic(PBPK) models can be made to fit many clinical administrations but may not provide relevant information to extrapolate to real-world exposure scenarios for risk assessment. Small hydr...
Anatomy and physiology of the aging neck.
Shadfar, Scott; Perkins, Stephen W
2014-05-01
This article discusses the surgically relevant anatomic and physiologic tenets of the aging neck. Procedures performed to rejuvenate and contour the aging neck can be challenging. A thorough understanding of the underlying neck anatomy, as well as the physiology associated with aging, is critical for surgical planning, execution, and achieving aesthetically pleasing outcomes. These topics are reviewed and used as the foundation for a discussion of various other techniques. Copyright © 2014 Elsevier Inc. All rights reserved.
How is physiology relevant to behavior analysis?
Reese, Hayne W.
1996-01-01
Physiology is an important biological science; but behavior analysis is not a biological science, and behavior analysts can safely ignore biological processes. However, ignoring products of biological processes might be a serious mistake. The important products include behavior, instinctive drift, behavior potentials, hunger, and many developmental milestones and events. Physiology deals with the sources of such products; behavior analysis can deal with how the products affect behavior, which can be understood without understanding their sources. PMID:22478240
Soldier occupational load carriage: a narrative review of associated injuries.
Orr, Robin Marc; Pope, Rodney; Johnston, Venerina; Coyle, Julia
2014-01-01
This narrative review examines injuries sustained by soldiers undertaking occupational load carriage tasks. Military soldiers are required to carry increasingly heavier occupational loads. These loads have been found to increase the physiological cost to the soldier and alter their gait mechanics. Aggregated research findings suggest that the lower limbs are the most frequent anatomical site of injury associated with load carriage. While foot blisters are common, other prevalent lower limb injuries include stress fractures, knee and foot pain, and neuropathies, like digitalgia and meralgia. Shoulder neuropathies (brachial plexus palsy) and lower back injuries are not uncommon. Soldier occupational load carriage has the potential to cause injuries that impact on force generation and force sustainment. Through understanding the nature of these injuries targeted interventions, like improved physical conditioning and support to specialised organisations, can be employed.
Westerlund, Hugo; Gustafsson, Per E; Theorell, Töres; Janlert, Urban; Hammarström, Anne
2013-06-01
Parental involvement in their children's studies, particularly in terms of academic socialisation, has been shown to predict academic achievement, and is thus a candidate modifiable factor influencing life course socioeconomic circumstances. Socioeconomic disadvantage is thought to impact on health over the life course partly by allostatic load, that is, cumulative biological risk. We sought to elucidate the role of parental involvement at age 16 on the life course development of allostatic load. In a population-based cohort (365 women and 352 men, 67% of the eligible participants), we examined the association between parental involvement in their offspring's studies, measured by teacher and pupil ratings at age 16 and an allostatic load index summarising 12 physiological risk markers at age 43. Mediation through life course academic and occupational achievement was assessed by entering school grades, adult educational achievement and socioeconomic position at age 43 in a linear regression analysis in a stepwise manner and testing for mediation. Parental interest in their offspring's studies during the last year of compulsory school-rather than the parent's social class or availability of practical academic support-was found to predict adult allostatic load (β=-0.12, 95% CI -0.20 to -0.05). Further adjustments indicated that academic achievement over the life course mediated a large part of the effect of parental interest on allostatic load. Parental interest in their offspring's studies may have protective effects by decreasing the likelihood of a chain of risk involving low academic achievement, low socioeconomic position and high accumulated physiological stress.
ERIC Educational Resources Information Center
McGeown, J. Graham
2006-01-01
Capillary filtration is a key area in the understanding of cardiovascular function and has both physiological and pathophysiological relevance in nearly every organ system. This article describes how classic papers in the Legacy collection of American Physiological Society publications can be used in a teaching symposium exploring the evidence…
Birmingham, Wendy C; Holt-Lunstad, Julianne
2018-04-05
There is a rich literature on social support and physical health, but research has focused primarily on the protective effects of social relationship. The stress buffering model asserts that relationships may be protective by being a source of support when coping with stress, thereby blunting health relevant physiological responses. Research also indicates relationships can be a source of stress, also influencing health. In other words, the social buffering influence may have a counterpart, a social aggravating influence that has an opposite or opposing effect. Drawing upon existing conceptual models, we expand these to delineate how social relationships may influence stress processes and ultimately health. This review summarizes the existing literature that points to the potential deleterious physiological effects of our relationships when they are sources of stress or exacerbate stress. Copyright © 2018 Elsevier B.V. All rights reserved.
Rodriquez, Erik J; Livaudais-Toman, Jennifer; Gregorich, Steven E; Jackson, James S; Nápoles, Anna M; Pérez-Stable, Eliseo J
2018-05-01
Unhealthy behaviors may modify relationships between chronic stress and depression among diverse older adults. We analyzed nationally representative cross-sectional data from participants aged 40-79 years of the 2005-2012 National Health and Nutrition Examination Survey. Unhealthy behaviors included current smoking, excessive/binge drinking, insufficient physical activity, and fair/poor diet. Allostatic load was defined by 10 biomarkers indicating the cumulative physiologic burden of stress. Depressive disorder was assessed using the Patient Health Questionnaire. Multivariable logistic regression examined whether current smoking, excessive/binge drinking, insufficient physical activitiy, and fair/poor diet modified relationships between allostatic load and depressive disorder. Mean age of 12,272 participants was 55.6 years (standard error = 0.19), 51.9% were women, and most had at least a high school education (81.8%). Latinos (11.3%) and African Americans (10.4%) were more likely than Whites (7.1%; p < 0.001) to meet depressive disorder criteria. Allostatic load was not associated independently with depressive disorder in any racial/ethnic group and this lack of a relationship did not differ by the extent of unhealthy behaviors. Although Latinos and African Americans report higher levels of depression than Whites, physiological markers of stress do not appear to explain these differences. Published by Elsevier Inc.
Mechanisms and disease relevance of neutrophil extracellular trap formation.
Van Avondt, Kristof; Hartl, Dominik
2018-03-15
While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.
Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S
2013-12-05
The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermal responses and perceptions under distinct ambient temperature and wind conditions.
Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori
2015-01-01
Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knight, M M; Toyoda, T; Lee, D A; Bader, D L
2006-01-01
In numerous cell types, the cytoskeleton has been widely implicated in mechanotransduction pathways involving stretch-activated ion channels, integrins and deformation of intracellular organelles. Studies have also demonstrated that the cytoskeleton can undergo remodelling in response to mechanical stimuli such as tensile strain or fluid flow. In articular chondrocytes, the mechanotransduction pathways are complex, inter-related and as yet, poorly understood. Furthermore, little is known of how the chondrocyte cytoskeleton responds to physiological mechanical loading. This study utilises the well-characterised chondrocyte-agarose model and an established confocal image-analysis technique to demonstrate that both static and cyclic, compressive strain and hydrostatic pressure all induce remodelling of actin microfilaments. This remodelling was characterised by a change from a uniform to a more punctate distribution of cortical actin around the cell periphery. For some loading regimes, this remodelling was reversed over a subsequent 1h unloaded period. This reversible remodelling of actin cytoskeleton may therefore represent a mechanism through which the chondrocyte alters its mechanical properties and mechanosensitivity in response to physiological mechanical loading.
Hassanzadeh, Marjan; Ghaemy, Mousa; Ahmadi, Shamseddin
2016-10-01
Chitosan-based molecular imprinted polymer (CS-MIP) nanogel is prepared in the presence of morphine template, fully characterized and used as a new vehicle to extend duration of morphine analgesic effect in Naval Medical Research Institute mice. The CS-MIP nanogel with ≈25 nm size range exhibits 98% loading efficiency, and in vitro release studies show an initial burst followed by an extended slow release of morphine. In order to study the feasibility of CS-MIP nanogel as morphine carrier, 20 mice are divided into two groups randomly and received subcutaneous injection of morphine-loaded CS-MIP and morphine (10 mg kg -1 ) dissolved in physiologic saline. Those received injection of morphine-loaded CS-MIP show slower and long lasting release of morphine with 193 min effective time of 50% (ET50) analgesia compared to 120 min ET50 in mice received morphine dissolved in physiologic saline. These results suggest that CS-MIP nanogel can be a possible strategy as morphine carrier for controlled release and extension of its analgesic efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AGING AND TOXIC RESPONSE: ISSUES RELEVANT TO RISK ASSESSMENT (FINAL)
EPA has released a final report entitled, Aging and Toxic Response: Issues Relevant to Risk Assessment. This document contributes to the Agency's efforts to better understand the physiology of aging in order to protect the health of older persons, and identifies several d...
In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...
Heritability of climate-relevant traits in a rainforest skink.
Martins, Felipe; Kruuk, Loeske; Llewelyn, John; Moritz, Craig; Phillips, Ben
2018-05-22
There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h 2 < 0.31), but significant and higher heritability of desiccation resistance (h 2 ~0.42). These values contrasted with uniformly higher heritabilities (h 2 > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B
2017-01-03
Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.
Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A
2017-06-01
The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Allostatic load: single parents, stress-related health issues, and social care.
Johner, Randy L
2007-05-01
This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their potential effect on health outcomes. A PHP also recognizes physiological and pathological manifestations of the body such as stress (mental or somatic) and individual biological parameters (for example, glucose levels) as health determinants. AL uses an aggregate score of individual biological parameters as a health measure that is exacerbated through repetitive movement of physiologic systems under stress. The social work profession should incorporate knowledge of both PHP and AL into its theory and practice domains for effective care of vulnerable populations such as single-parent families.
Fluid-acoustic interactions and their impact on pathological voiced speech
NASA Astrophysics Data System (ADS)
Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.; Plesniak, Michael W.
2011-11-01
Voiced speech is produced by vibration of the vocal fold structures. Vocal fold dynamics arise from aerodynamic pressure loadings, tissue properties, and acoustic modulation of the driving pressures. Recent speech science advancements have produced a physiologically-realistic fluid flow solver (BLEAP) capable of prescribing asymmetric intraglottal flow attachment that can be easily assimilated into reduced order models of speech. The BLEAP flow solver is extended to incorporate acoustic loading and sound propagation in the vocal tract by implementing a wave reflection analog approach for sound propagation based on the governing BLEAP equations. This enhanced physiological description of the physics of voiced speech is implemented into a two-mass model of speech. The impact of fluid-acoustic interactions on vocal fold dynamics is elucidated for both normal and pathological speech through linear and nonlinear analysis techniques. Supported by NSF Grant CBET-1036280.
Lillie, M A; Armstrong, T E; Gérard, S G; Shadwick, R E; Gosline, J M
2012-08-09
This study was undertaken to understand elastin's role in the mechanical homeostasis of the arterial wall. The mechanical properties of elastin vary along the aorta, and we hypothesized this maintained a uniform mechanical environment for the elastin, despite regional variation in loading. Elastin's physiological loading was determined by comparing the inflation response of intact and autoclave purified elastin aortas from the proximal and distal thoracic aorta. Elastin's stretch and stress depend on collagen recruitment. Collagen recruitment started in the proximal aorta at systolic pressures (13.3 to 14.6 kPa) and in the distal at sub-diastolic pressures (9.3 to 10.6 kPa). In the proximal aorta collagen did not contribute significantly to the stress or stiffness, indicating that elastin determined the vessel properties. In the distal aorta, the circumferential incremental modulus was 70% higher than in the proximal aorta, half of which (37%) was due to a stiffening of the elastin. Compared to the elastin tissue in the proximal aorta, the distal elastin suffered higher physiological circumferential stretch (29%, P=0.03), circumferential stress (39%, P=0.02), and circumferential stiffness (37%, P=0.006). Elastin's physiological axial stresses were also higher (67%, P=0.003). These findings do not support the hypothesis that the loading on elastin is constant along the aorta as we expected from homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reduced firing rates of high threshold motor units in response to eccentric overload.
Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M
2017-01-01
Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P < 0.05), whereas MUFR for all motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Lawless, I M; Ding, B; Cazzolato, B S; Costi, J J
2014-09-22
Robotic biomechanics is a powerful tool for further developing our understanding of biological joints, tissues and their repair. Both velocity-based and hybrid force control methods have been applied to biomechanics but the complex and non-linear properties of joints have limited these to slow or stepwise loading, which may not capture the real-time behaviour of joints. This paper presents a novel force control scheme combining stiffness and velocity based methods aimed at achieving six degree of freedom unconstrained force control at physiological loading rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas; Selen, Arzu; Müllertz, Anette
2017-02-01
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.
Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P
2014-10-01
Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described in the clinical literature. The characteristics of the human abdominal wall must be extensively characterized to provide a thorough understanding of the tissue being reinforced/replaced by these meshes. A better understanding of these mechanical differences would enable matching of patient characteristics to a specific mesh with the properties best suited to that particular repair. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Cognitive Load on Trust
2013-10-01
that may be affected by load Build a parsing tool to extract relevant features Statistical analysis of results (by load components) Achieved...for a business application. Participants assessed potential job candidates and reviewed the applicants’ virtual resume which included standard...substantially different from each other that would make any confounding problems or other issues. Some statistics of the Australian data collection are
From Claude Bernard to the Batcave and Beyond: Using Batman as a Hook for Physiology Education
ERIC Educational Resources Information Center
Zehr, E. Paul
2011-01-01
Communicating physiology to the general public and popularizing science can be tremendously rewarding activities. Providing relevant and compelling points of linkage, however, between the scientific experiences and the interests of the general public can be challenging. One avenue for popularizing science is to link scientific concepts to images,…
The Emergent Coordination of Cognitive Function
ERIC Educational Resources Information Center
Kello, Christopher T.; Beltz, Brandon C.; Holden, John G.; Van Orden, Guy C.
2007-01-01
1/f scaling has been observed throughout human physiology and behavior, but its origins and meaning remain a matter of debate. Some argue that it is a byproduct of ongoing processes in the brain or body and therefore of limited relevance to psychological theory. Others argue that 1/f scaling reflects a fundamental aspect of all physiological and…
Challenges of physiological monitoring in a Navy operational setting
NASA Technical Reports Server (NTRS)
Banta, Guy R.
1988-01-01
Challenges to physiological monitoring in the Navy include environmental extremes, acceptance of use by test subjects, data transfer, data interpretation, and capability of relating collected data to valid operational relevant criterion measures. These problems are discussed with respect to diving, electrophysiological monitoring, in-flight monitoring, aircrew fatigue, in-flight cardiac stress, and in-flight monitoring devices.
Nowakowski, Alexandra C. H.
2017-01-01
Objectives: This study examines how the effects of childhood socioeconomic status (SES) may carry on into late adulthood. Methods: We examine how childhood SES affects both perceived stress and allostatic load, which is a cumulative measure of the body’s biologic response to chronic stress. We use the National Social Life, Health, and Aging Project, Waves 1 and 2, and suggest a novel method of incorporating a longitudinal allostatic load measure. Results: Individuals who grew up in low SES households have higher allostatic load scores in late adulthood, and this association is mediated mostly by educational attainment. Discussion: The longitudinal allostatic load measure shows similar results to the singular measures and allows us to include 2 time points into one outcome measure. Incorporating 2 separate time points into one measure is important because allostatic load is a measure of cumulative physiological dysregulation, and longitudinal data provide a more comprehensive measure. PMID:29226194
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.
Goldring, Mary B; Goldring, Steven R
2010-03-01
The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
Physiological pump loading of isolated cardiac muscle.
Paulus, W J; Claes, V A; Brutsaert, D L
1976-05-01
Cat papillary muscles were subjected to a continuously changing load, resulting from an analysis of the left ventricle as a muscle pump system. The papillary muscle was assumed to be part of a circumferential bundle of muscle fibers of a simplified ejecting ventricle. The load included the pressure--stress relationship of this ventricle and the peripheral vascular load with its inertial, resistive and capacitive components. When this loading function was imposed on a shortening muscle through an electronic feedback circuit, the time course of force development and the velocity versus force plots closely resembled data obtained in the intact heart. Analysis of mechanical work (delta 1 X f) and power (V X f) and their respective time course permitted distinction between changes of contractile performance due to (1) positive or negative inotropic interventions, (2) altered hypothetical ventricular dimensions and changed preload, and (3) the long-term load-dependent memory of cardiac muscle.
Task-irrelevant memory load induces inattentional blindness without temporo-parietal suppression.
Matsuyoshi, Daisuke; Ikeda, Takashi; Sawamoto, Nobukatsu; Kakigi, Ryusuke; Fukuyama, Hidenao; Osaka, Naoyuki
2010-08-01
We often fail to consciously detect an unexpected object when we are engaged in an attention-demanding task (inattentional blindness). The inattentional blindness which is induced by visual short-term memory (VSTM) load has been proposed to result from a suppression of temporo-parietal junction (TPJ) activity that involves stimulus-driven attention. However, the fact that, inversely proportional to TPJ activity, intraparietal sulcus (IPS) activity correlates with VSTM load renders questionable the account of inattentional blindness based only on TPJ activity. Here, we investigated whether the TPJ is solely responsible for inattentional blindness by decoupling IPS and TPJ responses to VSTM load and then using the same manipulation to test the behavioral inattentional blindness performance. Experiment 1 showed that TPJ activity was not suppressed by task-irrelevant load while the IPS responded to both task-relevant and task-irrelevant load. Although the TPJ account of inattentional blindness predicts that the degree of inattentional blindness should track TPJ activity, we found in Experiment 2 that inattentional blindness was induced not only by task-relevant load but also by task-irrelevant load, showing inconsistency between the extent of inattentional blindness and TPJ response. These findings suggest that inattentional blindness can be induced without suppression of TPJ activity and seem to offer the possibility that the IPS contributes to conscious perception. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Williams loads the HRF2 Refrigerated Centrifuge for the Nutrition Experiment during Expedition 15
2007-06-01
ISS015-E-10554 (1 June 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, loads test samples in the Human Research Facility 2 (HRF-2) Refrigerated Centrifuge as a part of the Nutritional Status Assessment (Nutrition) experiment in the Destiny laboratory of the International Space Station. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Enhanced recovery after surgery-Preoperative fasting and glucose loading-A review.
Sarin, Ankit; Chen, Lee-Lynn; Wick, Elizabeth C
2017-10-01
In this review, we explore the rationale and history behind the practice of preoperative fasting in elective surgery including the gradual move toward longer fasting and the more recent change in direction of practice. Gastric emptying physiology and the metabolic effects of prolonged fasting and carbohydrate loading are examined. Most recent guidelines related to these topics are discussed and practical recommendations for implementing these guidelines are suggested. © 2017 Wiley Periodicals, Inc.
The G protein-coupled receptor GPR34 - The past 20 years of a grownup.
Schöneberg, Torsten; Meister, Jaroslawna; Knierim, Alexander Bernd; Schulz, Angela
2018-04-22
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years. Copyright © 2018 Elsevier Inc. All rights reserved.
This page contains documents relevant to the synthetic minor NSR permi for the Thunder Butte Petroleum Services, Inc., Crude Storage and Loading Facility, located on the Fort Berthold Indian Reservation in Ward County, ND.
Higham, Dean G; Pyne, David B; Anson, Judith M; Hopkins, Will G; Eddy, Anthony
2016-05-01
The specificity of contemporary training practices of international rugby sevens players is unknown. We quantified the positional group-specific activity profiles and physiological demands of on-field training activities and compared these with match demands. Twenty-two international matches and 63 rugby-specific training drills were monitored in 25 backs and 17 forwards from a national squad of male rugby sevens players over a 21-month period. Drills were classified into 3 categories: low-intensity skill refining (n = 23 drills, 560 observations), moderate- to high-intensity skill refining (n = 28 drills, 600 observations), and game simulation (n = 12 drills, 365 observations). Movement patterns (via Global Positioning System devices) and physiological load (via heart rate monitors) were recorded for all activities, and the differences between training and matches were quantified using magnitude-based inferential statistics. Distance covered in total and at ≥3.5 m·s, maximal velocity, and frequency of accelerations and decelerations were lower for forwards during competition compared with those for backs by a small but practically important magnitude. No clear positional group differences were observed for physiological load during matches. Training demands exceeded match demands only for frequency of decelerations of forwards during moderate- to high-intensity skill-refining drills and only by a small amount. Accelerations and distance covered at ≥6 m·s were closer to match values for forwards than for backs during all training activities, but training drills consistently fell below the demands of international competition. Coaches could therefore improve physical and physiological specificity by increasing the movement demands and intensity of training drills.
Joseph, Aaron; Wiley, Amy; Orr, Robin; Schram, Benjamin; Dawes, J Jay
2018-01-07
The current literature suggests that load carriage can impact on a tactical officer's mobility, and that survival in the field may rely on the officer's mobility. The ability for humans to generate power and agility is critical for performance of the high-intensity movements required in the field of duty. The aims of this review were to critically examine the literature investigating the impacts of load carriage on measures of power and agility and to synthesize the findings. The authors completed a search of the literature using key search terms in four databases. After relevant studies were located using strict inclusion and exclusion criteria, the studies were critically appraised using the Downs and Black Checklist and relevant data were extracted and tabled. Fourteen studies were deemed relevant for this review, ranging in percentage quality scores from 42.85% to 71.43%. Outcome measures used in these studies to indicate levels of power and agility included short-distance sprints, vertical jumps, and agility runs, among others. Performance of both power and agility was shown to decrease when tactical load was added to the participants. This suggests that the increase in weight carried by tactical officers may put this population at risk of injury or fatality in the line of duty.
Joseph, Aaron; Wiley, Amy; Dawes, J. Jay
2018-01-01
The current literature suggests that load carriage can impact on a tactical officer’s mobility, and that survival in the field may rely on the officer’s mobility. The ability for humans to generate power and agility is critical for performance of the high-intensity movements required in the field of duty. The aims of this review were to critically examine the literature investigating the impacts of load carriage on measures of power and agility and to synthesize the findings. The authors completed a search of the literature using key search terms in four databases. After relevant studies were located using strict inclusion and exclusion criteria, the studies were critically appraised using the Downs and Black Checklist and relevant data were extracted and tabled. Fourteen studies were deemed relevant for this review, ranging in percentage quality scores from 42.85% to 71.43%. Outcome measures used in these studies to indicate levels of power and agility included short-distance sprints, vertical jumps, and agility runs, among others. Performance of both power and agility was shown to decrease when tactical load was added to the participants. This suggests that the increase in weight carried by tactical officers may put this population at risk of injury or fatality in the line of duty. PMID:29316674
Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease
Lowe, David E.; Glomski, Ian J.
2012-01-01
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667
Lamb, Iain R; Novielli, Nicole M; Murrant, Coral L
2018-04-15
The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K + ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10 -7 m S-nitroso-N-acetylpenicillamine (SNAP), 10 -7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and ∼128.0% respectively and ADO significantly attenuated KCl- and SNAP-induced vasodilatations by ∼94.7% and ∼59.6%, respectively. NO significantly attenuated KCl vasodilatation by 93.8%. Further, during muscle contraction we found that inhibition of NO production using l-N G -nitroarginine methyl ester and inhibition of ADO receptors using xanthine amine congener was effective at inhibiting contraction-induced vasodilatation but only in the presence of K + release channel inhibition. Thus, only when the inhibiting vasodilator K + was blocked was the second vasodilator, NO or ADO, able to produce effective vasodilatation. Therefore, we show that there are inhibitory interactions between specific vasodilators at the level of the capillary. Further, these inhibitions can be observed during muscle contraction indicating that redundancies between vasodilators are physiologically relevant and influence vasodilatation during active hyperaemia. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
14 CFR 23.1583 - Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
The effects of eye movements on emotional memories: using an objective measure of cognitive load
van Veen, Suzanne C.; Engelhard, Iris M.; van den Hout, Marcel A.
2016-01-01
Background Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The working memory (WM) theory explains its efficacy: recall of an aversive memory and making eye movements (EM) both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. Objective We hypothesized that 1) recall of an aversive autobiographical memory loads WM compared to no recall, and 2) recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM). Method Undergraduates (N=108) were randomly assigned to one of three conditions: 1) recall relevant memory with EM, 2) recall relevant memory without EM, and 3) recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s), and after (16×24 s) the intervention. Results Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Conclusions Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory. Highlights of the article Recall of an aversive autobiographical memory is a cognitive demanding task. The vividness and emotionality of an aversive memory decrease more after recall with eye movements than after only recall or only cognitive effort (i.e., recall of an irrelevant memory with eye movements). The cognitive load of recalling the memory does not immediately reduce after recall with eye movements compared to only recall or only cognitive effort. Intervention duration is positively related to memory effects. PMID:27387845
Critical loads as a policy tool for protecting ecosystems from the effects of air pollutants
Douglas A. Burns; Tamara Blett; Richard Haeuber; Linda H. Pardo
2008-01-01
Framing the effects of air pollutants on ecosystems in terms of a "critical load" provides a meaningful approach for research scientists to communicate policy-relevant science to air-quality policy makers and natural resource managers. A critical-loads approach has been widely used to shape air-pollutant control policy in Europe since the 1980s, yet has only...
Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure
Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.
2012-01-01
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. PMID:22559784
Physiology undergraduate degree requirements in the U.S.
VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A
2017-12-01
Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.
Variable stoichiometry in active ion transport: theoretical analysis of physiological consequences.
Johnson, E A; Tanford, C; Reynolds, J A
1985-08-01
Active ion transport systems with fixed stoichiometry are subject to a thermodynamic limit on the ion concentration gradients that they can generate and maintain, and their net rates of transport must inevitably decrease as this limit is approached. The capability to vary stoichiometry might thus be physiologically advantageous: a shift to lower stoichiometry (fewer ions pumped per reaction cycle) at increasing thermodynamic load could increase the limit on the supportable concentration gradient and could accelerate the rate of transport under high-load conditions. Here we present a theoretical and numerical analysis of this possibility, using the sarcoplasmic reticulum ATP-driven Ca pump as the example. It is easy to introduce alternate pathways into the reaction cycle for this system to shift the stoichiometry (Ca2+/ATP) from the normal value of 2:1 to 1:1, but it cannot be done without simultaneous generation of a pathway for uncoupled leak of Ca2+ across the membrane. This counteracts the advantageous effect of the change in transport stoichiometry and a physiologically useful rate acceleration cannot be obtained. This result is likely to be generally applicable to most active transport systems.
Variable stoichiometry in active ion transport: theoretical analysis of physiological consequences.
Johnson, E A; Tanford, C; Reynolds, J A
1985-01-01
Active ion transport systems with fixed stoichiometry are subject to a thermodynamic limit on the ion concentration gradients that they can generate and maintain, and their net rates of transport must inevitably decrease as this limit is approached. The capability to vary stoichiometry might thus be physiologically advantageous: a shift to lower stoichiometry (fewer ions pumped per reaction cycle) at increasing thermodynamic load could increase the limit on the supportable concentration gradient and could accelerate the rate of transport under high-load conditions. Here we present a theoretical and numerical analysis of this possibility, using the sarcoplasmic reticulum ATP-driven Ca pump as the example. It is easy to introduce alternate pathways into the reaction cycle for this system to shift the stoichiometry (Ca2+/ATP) from the normal value of 2:1 to 1:1, but it cannot be done without simultaneous generation of a pathway for uncoupled leak of Ca2+ across the membrane. This counteracts the advantageous effect of the change in transport stoichiometry and a physiologically useful rate acceleration cannot be obtained. This result is likely to be generally applicable to most active transport systems. PMID:3860866
[Principles of the EOS™ X-ray machine and its use in daily orthopedic practice].
Illés, Tamás; Somoskeöy, Szabolcs
2012-02-26
The EOS™ X-ray machine, based on a Nobel prize-winning invention in Physics in the field of particle detection, is capable of simultaneously capturing biplanar X-ray images by slot scanning of the whole body in an upright, physiological load-bearing position, using ultra low radiation doses. The simultaneous capture of spatially calibrated anterioposterior and lateral images allows the performance of a three-dimensional (3D) surface reconstruction of the skeletal system by a special software. Parts of the skeletal system in X-ray images and 3D-reconstructed models appear in true 1:1 scale for size and volume, thus spinal and vertebral parameters, lower limb axis lengths and angles, as well as any relevant clinical parameters in orthopedic practice could be very precisely measured and calculated. Visualization of 3D reconstructed models in various views by the sterEOS 3D software enables the presentation of top view images, through which one can analyze the rotational conditions of lower limbs, joints and spine deformities in horizontal plane and this provides revolutionary novel possibilities in orthopedic surgery, especially in spine surgery.
Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.
Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas
2007-01-01
To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.
Zahari, Siti Nurfaezah; Rahim, Nor Raihanah Abdull; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage. PMID:29065672
Zahari, Siti Nurfaezah; Latif, Mohd Juzaila Abd; Rahim, Nor Raihanah Abdull; Kadir, Mohammed Rafiq Abdul; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teisseire, B.; Ropars, C.; Villereal, M.C.
1987-10-01
A continuous lysing and resealing procedure with erythrocytes permitted incorporation in these cells of inositol hexaphosphate (InsP/sub 6/), a strong allosteric effector of Hb. This leads to significant rightward shifts of the HbO/sub 2/ dissociation curves with in vitro P/sub 50/, values increasing from 32.2 +/- 1.8 torr for control erythrocytes to 86 +/- 60 torr. The shape of the dissociation curve was still sigmoidal, although the Hill coefficient was decreased. The life span of InsP/sub 6/-loaded erythrocytes equaled that of control erythrocytes. Erythrocyte-survival studies were done using /sub 51/Cr labeling of cells. The long-term physiological effects of the InsP/submore » 6/-loaded erythrocytes on piglets were increased O/sub 2/ release and reduced cardiac output. The reduced O/sub 2/ affinity of the InsP/sub 6/-loaded erythrocytes was still effective 20 days after transfusion in awake piglets. The electrolyte concentration appeared stable over the 5-day observation period except for a transient, but significant, hyperkalemia immediately after transfusion. The reductions in the O/sub 2/ affinity of Hb reported here are large compared with previously reported values. Introduction of InsP/sub 6/ into viable erythrocytes improves tissue oxygenation when, for any reason, normal blood flow is impaired.« less
Salivary Hormones Response to Preparation and Pre-competitive Training of World-class Level Athletes
Guilhem, Gaël; Hanon, Christine; Gendreau, Nicolas; Bonneau, Dominique; Guével, Arnaud; Chennaoui, Mounir
2015-01-01
This study aimed to compare the response of salivary hormones of track and field athletes induced by preparation and pre-competitive training periods in an attempt to comment on the physiological effects consistent with the responses of each of the proteins measured. Salivary testosterone, cortisol, alpha-amylase, immunoglobulin A (IgA), chromogranin A, blood creatine kinase activity, and profile of mood state were assessed at rest in 24 world-class level athletes during preparation (3 times in 3 months) and pre-competitive (5 times in 5 weeks) training periods. Total mood disturbance and fatigue perception were reduced, while IgA (+61%) and creatine kinase activity (+43%) increased, and chromogranin A decreased (−27%) during pre-competitive compared to preparation period. A significant increase in salivary testosterone (+9 to +15%) and a decrease in testosterone/cortisol ratio were associated with a progressive reduction in training load during pre-competitive period (P < 0.05). None of the psycho-physiological parameters were significantly correlated to training load during the pre-competitive period. Results showed a lower adrenocortical response and autonomic activity, and an improvement of immunity status, in response to the reduction in training load and fatigue, without significant correlations of salivary hormones with training load. Our findings suggest that saliva composition is sensitive to training contents (season period) but could not be related to workload resulting from track and field athletics training. PMID:26635619
Os'mak, E D; Asanov, É O
2014-01-01
The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.
1989-12-27
is important to note also that as interdisciplinary studies have gained in -kj ’- popularity, theories incorporating physical and behavi6ral hypothesis...have gained strength due to approaches which focus multiple measures on single factors. Th( study of military sustained performance/operations...related fields of study . These environmental and interdisciplinary areas of study are typically sleep deprivation, work load, exercise physiology
[Clinical, morphological and molecular biological characteristics of the aging eye].
Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P
2017-02-01
The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali
2016-03-01
Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment in patients with anterior knee pain. Definition of the exact biomechanical effects of the sagittal tilting will lead to the development of new treatment modalities.
Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology.
Chanphai, P; Tajmir-Riahi, H A
2018-05-01
We report the loading efficacy of folic acid (FA) by polyamidoamine (PAMAM-G3 and PAMAM-G4) nanoparticles in aqueous solution at physiological pH. Thermodynamic parameters ΔH = -47.57 (kJ Mol -1 ), ΔS = -122.78 (J Mol -1 , K -1 ) and ΔG = -10.96 (kJ Mol -1 ) showed FA-PAMAM bindings occur via H-bonding and van der Waals contacts. The stability of acid-PAMAM conjugate increased as polymer size increased. The acid loading efficacy was 40 to 50%. TEM images exhibited major polymer morphological changes upon acid encapsulation. PAMAM dendrimers are capable of FA delivery in vitro.
NASA Technical Reports Server (NTRS)
Machablishvili, O. G.
1980-01-01
The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.
Flow Past a Descending Balloon
NASA Technical Reports Server (NTRS)
Baginski, Frank
2001-01-01
In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.
Todd, Jocelyn N; Maak, Travis G; Ateshian, Gerard A; Maas, Steve A; Weiss, Jeffrey A
2018-03-01
Osteoarthritis of the hip can result from mechanical factors, which can be studied using finite element (FE) analysis. FE studies of the hip often assume there is no significant loss of fluid pressurization in the articular cartilage during simulated activities and approximate the material as incompressible and elastic. This study examined the conditions under which interstitial fluid load support remains sustained during physiological motions, as well as the role of the labrum in maintaining fluid load support and the effect of its presence on the solid phase of the surrounding cartilage. We found that dynamic motions of gait and squatting maintained consistent fluid load support between cycles, while static single-leg stance experienced slight fluid depressurization with significant reduction of solid phase stress and strain. Presence of the labrum did not significantly influence fluid load support within the articular cartilage, but prevented deformation at the cartilage edge, leading to lower stress and strain conditions in the cartilage. A morphologically accurate representation of collagen fibril orientation through the thickness of the articular cartilage was not necessary to predict fluid load support. However, comparison with simplified fibril reinforcement underscored the physiological importance. The results of this study demonstrate that an elastic incompressible material approximation is reasonable for modeling a limited number of cyclic motions of gait and squatting without significant loss of accuracy, but is not appropriate for static motions or numerous repeated motions. Additionally, effects seen from removal of the labrum motivate evaluation of labral reattachment strategies in the context of labral repair. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gray, Robert J; Voegeli, David; Bader, Dan L
2016-02-01
Impaired lymph formation and clearance has previously been proposed as a contributory factor in the development of pressure ulcers. The present study has been designed to trial fluorescence lymphangiography for establishing how lymphatic function is altered under a clinically relevant form of mechanical loading. Lymph formation and clearance was traced in both forearms by an intradermal injection of indocyanine green (ICG) (50 μl, 0.05%w/v), imaged using a commercial near-infrared fluorescence imaging unit (Fluobeam(®) 800). External uniaxial loading equivalent to a pressure of 60 mmHg was applied for 45 min in one arm using a custom-built indenter. Loading was associated with a decreased frequency of normal directional drainage (DD) of ICG within delineated vessels, both immediately after loading and 45 min thereafter. Loading was also associated with non-directional drainage (NDD) of ICG within the interstitium. Signal intensity within NDD was often greatest at areas of stress concentration, producing a 'halo pattern', corresponding to the rounded edges of the indenter. These results suggest that loading skin with a clinically relevant magnitude of pressure alters both lymph formation and clearance. Further work to quantify impaired clearance under mechanical loading could provide valuable insight into their involvement in the development of pressure ulcers. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Simpson, Richard J; Graham, Scott M; Connaboy, Christopher; Clement, Richard; Pollonini, Luca; Florida-James, Geraint D
2017-01-01
We developed a standardized laboratory treadmill protocol for assessing physiological responses to a simulated backpack load-carriage task in trained soldiers, and assessed the efficacy of blood lactate thresholds (LTs) and economy in predicting future backpack running success over an 8-mile course in field conditions. LTs and corresponding physiological responses were determined in 17 elite British soldiers who completed an incremental treadmill walk/run protocol to exhaustion carrying 20 kg backpack load. Treadmill velocity at the breakpoint (r = -0.85) and Δ 1 mmol l(-1) (r = -0.80) LTs, and relative V˙O2 at 4 mmol l(-1) (r = 0.76) and treadmill walk/run velocities of 6.4 (r = 0.76), 7.4 (r = 0.80), 11.4 (r = 0.66) and 12.4 (r = 0.65) km h(-1) were significantly associated with field test completion time. We report for the first time that LTs and backpack walk/run economy are major determinants of backpack load-carriage performance in trained soldiers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rainer, Alberto; Giannitelli, Sara M; Accoto, Dino; De Porcellinis, Stefano; Guglielmelli, Eugenio; Trombetta, Marcella
2012-04-01
Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.
Delextrat, A; Bateman, J; Esser, P; Targen, N; Dawes, H
2016-08-01
To assess the feasibility of Zumba Gold(®) in people with PD, and to investigate the effects of dance styles and number of sessions on activity levels and physiological load. Repeated measure uncontrolled (single group) feasibility study. Eleven participants (age: 64.0±8.1years) with mild-to-moderate idiopathic PD (Hoehn & Yahr stage<3.0) took part in a screening session, followed by six Zumba Gold(®) workouts each separated by one week, and a follow-up interview six months later. The main feasibility parameters measured were retention, compliance, and adverse events. Furthermore, during each Zumba Gold(®) session, physical activity levels were measured using tri-axial accelerometers, while physiological load was assessed by average heart rate (HRmean). A two-way ANOVA with repeated measures assessed the effects of dance styles and session number on activity level and HR. 73% retention and 81% compliance were achieved, and no adverse events were recorded. Participants' enjoyment was high and 38% started Zumba Gold(®) classes in the community after intervention. HR values were similar between dance styles and within the American College of Sports Medicine (ACSM)'s recommendations in 50% of participants. Backwards steps reduced physiological load but improvements in activity levels between the first and last sessions show that steps could be learnt with time. Zumba Gold(®) is safe and enjoyable for people with PD. The excellent compliance and positive participants' feedback suggest the need for a larger-scale trial. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peng, Guotao; Lin, Sijie; Fan, Zhengqiu; Wang, Xiangrong
2017-01-01
An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene (mcyB) and key photosynthesis genes (psaB, psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation. PMID:28513574
Faizan, Ahmad; Bhowmik-Stoker, Manoshi; Alipit, Vincent; Kirk, Amanda E; Krebs, Viktor E; Harwin, Steven F; Meneghini, R Michael
2017-06-01
Porous metaphyseal cones are widely used in revision knee arthroplasty. A new system of porous titanium metaphyseal cones has been designed based on the femoral and tibial morphology derived from a computed tomography-based anatomical database. The purpose of this study is to evaluate the initial mechanical stability of the new porous titanium revision cone system by measuring the micromotion under physiologic loading compared with a widely-used existing porous tantalum metaphyseal cone system. The new cones were designed to precisely fit the femoral and tibial anatomy, and 3D printing technology was used to manufacture these porous titanium cones. The stability of the new titanium cones and the widely-used tantalum cones were compared under physiologic loading conditions in bench top test model. The stability of the new titanium cones was either equivalent or better than the tantalum cones. The new titanium femoral cone construct had significantly less micromotion compared with the traditional femoral cone construct in 5 of the 12 directions measured (P < .05), whereas no statistical difference was found in 7 directions. The new porous titanium metaphyseal tibial cones demonstrated less micromotion in medial varus/valgus (P = .004) and posterior compressive micromotion (P = .002) compared with the traditional porous tantalum system. The findings of this biomechanical study demonstrate satisfactory mechanical stability of an anatomical-based porous titanium metaphyseal cone system for femoral and tibial bone loss as measured by micromotion under physiologic loading. The new cone design, in combination with instrumentation that facilitates surgical efficiency, is encouraging. Long-term clinical follow-up is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Peng, Guotao; Lin, Sijie; Fan, Zhengqiu; Wang, Xiangrong
2017-05-17
An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene ( mcyB ) and key photosynthesis genes ( psaB , psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation.
Schnaser, Erik; Lee, Yuo-yu; Boettner, Friedrich; Gonzalez Della Valle, Alejandro
2015-08-01
The achievement of a well-balanced total knee arthroplasty is necessary for long-term success. We hypothesize that the dislocation of the patella during surgery affects the distribution of loads in the medial and lateral compartments. Intraoperative load sensors were used to record medial and lateral compartment loads in 56 well-balanced TKAs. Loads were recorded in full extension, relaxed extension, at 45 and 90° of flexion at full gravity-assisted flexion, with the patella in four different positions: dislocated (everted and not), located, and located and secured with two retinacular sutures. The loads in the lateral compartment in flexion were higher with a dislocated patella than with a located patella (P<0.001). A lateralized extensor mechanism artificially increases in the lateral compartment loads in flexion during TKA surgery. Instruments that allow intraoperative soft tissue balance with the patella in a physiologic position are more likely to replicate postoperative compartment loads. II (prospective comparative study). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Impact of police body armour and equipment on mobility.
Dempsey, Paddy C; Handcock, Phil J; Rehrer, Nancy J
2013-11-01
Body armour is used widely by law enforcement and other agencies but has received mixed reviews. This study examined the influence of stab resistant body armour (SRBA) and mandated accessories on physiological responses to, and the performance of, simulated mobility tasks. Fifty-two males (37 ± 9.2 yr, 180.7 ± 6.1 cm, 90.2 ± 11.6 kg, VO2max 50 ± 8.5 ml kg(-1) min(-1), BMI 27.6 ± 3.1, mean ± SD) completed a running VO2max test and task familiarisation. Two experimental sessions were completed (≥4 days in between) in a randomised counterbalanced order, one while wearing SRBA and appointments (loaded) and one without additional load (unloaded). During each session participants performed five mobility tasks: a balance task, an acceleration task that simulated exiting a vehicle, chin-ups, a grappling task, and a manoeuvrability task. A 5-min treadmill run (zero-incline at 13 km·h(-1), running start) was then completed. One min after the run the five mobility tasks were repeated. There was a significant decrease in performance during all tasks with loading (p < 0.001). Participants were off-balance longer; slower to complete the acceleration, grapple and mobility tasks; completed fewer chin-ups; and had greater physiological cost (↑ %HRmax, ↑ %VO2max, ↑ RER) and perceptual effort (↑ RPE) during the 5-min run. Mean performance decreases ranged from 13 to 42% while loaded, with further decreases of 6-16% noted after the 5-min run. Unloaded task performance was no different between phases. Wearing SRBA and appointments significantly reduced mobility during key task elements and resulted in greater physiological effort. These findings could have consequences for optimal function in the working environment and therefore officer and public safety. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Guo, Jin-Hu; Qu, Wei-Min; Chen, Shan-Guang; Chen, Xiao-Ping; Lv, Ke; Huang, Zhi-Li; Wu, Yi-Lan
2014-01-01
The circadian clock and sleep are essential for human physiology and behavior; deregulation of circadian rhythms impairs health and performance. Circadian clocks and sleep evolved to adapt to Earth's environment, which is characterized by a 24-hour light-dark cycle. Changes in gravity load, lighting and work schedules during spaceflight missions can impact circadian clocks and disrupt sleep, in turn jeopardizing the mood, cognition and performance of orbiting astronauts. In this review, we summarize our understanding of both the influence of the space environment on the circadian timing system and sleep and the impact of these changes on astronaut physiology and performance.
Attentional load modulates responses of human primary visual cortex to invisible stimuli.
Bahrami, Bahador; Lavie, Nilli; Rees, Geraint
2007-03-20
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.
Opposite effects of capacity load and resolution load on distractor processing.
Zhang, Weiwei; Luck, Steven J
2015-02-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.
Opposite Effects of Capacity Load and Resolution Load on Distractor Processing
Zhang, Weiwei; Luck, Steven J.
2014-01-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Research on Infancy of Special Relevance for Mental Health. Matrix No. 11A.
ERIC Educational Resources Information Center
Provence, Sally
Research relevant to planning and practice in the area of infant mental health is discussed in this paper. First, three examples of research approaches that reflect current attitudes are given. The first example represents those studies in which there is an effort to closely coordinate physiological and behavioral studies. The second example…
Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness
NASA Technical Reports Server (NTRS)
Dement, W. C.; Barchas, J. D.
1972-01-01
An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.
Human pelvis loading rig for static and dynamic stress analysis.
Zanetti, Elisabetta M; Bignardi, Cristina; Audenino, Alberto L
2012-01-01
This work is aimed at designing and constructing a loading rig for the synthetic hemi-pelvis; this system has been conceived with the goal of applying differently oriented articular forces in order to experimentally test the stress distribution and the stability of surgical reconstructions like, for example, hip arthroplasty or pelvic fixation. This device can be interfaced with a usual loading machine; it preserves the anatomy of the hemi-pelvis; it is simply constrained and it allows the simulation of all physiologic activities. Moreover, the visual accessibility of the peri-acetabular area has been guaranteed and this is imperative in order to be able to perform full-field analyses like a thermoelastic or photoelastic stress analysis. First experimental trials have shown a good repeatability of loading-unloading cycles (<1.2%), a low hysteresis (<2.4%) and a good dynamic behaviour (up to 10 Hz loading frequencies).
Dich, Nadya; Doan, Stacey N; Evans, Gary W
2015-01-01
While emotionality is often thought of as a risk factor, differential susceptibility theory argues that emotionality reflects susceptibility to both positive and negative environmental influences. The present study explored whether emotional children might be more susceptible to the effects of both high and low maternal responsiveness on allostatic load, a physiological indicator of chronic stress. Participants were 226 mother and child dyads. Mothers reported on children's emotionality at child age 9. Maternal responsiveness was measured at age 13 using self-reports and behavioral observation. Allostatic load was measured at age 13 and 17 using neuroendocrine, cardiovascular, and metabolic biomarkers. Emotionality was associated with higher allostatic load if self-reported responsiveness was low, but with lower allostatic load, when self-reported responsiveness was high. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Managing fatigue in operational settings. 1: Physiological considerations and countermeasures
NASA Technical Reports Server (NTRS)
Rosekind, M. R.; Gander, P. H.; Gregory, K. B.; Smith, R. M.; Miller, D. L.; Oyung, R.; Webbon, L. L.; Johnson, J. M.
1996-01-01
The authors consider three aspects of managing fatigue in the workplace. They provide a brief overview of important scientific findings related to sleep and circadian physiology that establish the psychobiological foundation of fatigue. Their major focus is on the relevance of these findings to operational settings. In addition, they provide examples to describe practical fatigue countermeasures that can be used in operational settings.
van der Poel, C; Stephenson, D G
2007-07-01
Properties of the sarcoplasmic reticulum (SR) with respect to Ca(2+) loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23 degrees C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43 degrees C). The ability of the SR to accumulate Ca(2+) was significantly reduced by a factor of 1.9-2.1 after the temperature treatments due to a marked increase in SR Ca(2+) leak, which persisted for at least 3 h after treatment. Results with blockers of Ca(2+) release channels (ruthenium red) and SR Ca(2+) pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca(2+) leak was not through the SR Ca(2+) release channel or the SR Ca(2+) pump, although it is possible that the leak pathway was via oligomerized Ca(2+) pump molecules. No significant change in the maximum SR Ca(2+)-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca(2+)-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O(2)(*-)) scavenger Tiron (20 mM), indicating that the production of O(2)(*-) at elevated temperatures is responsible for the increase in SR Ca(2+) leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca(2+) handling that contribute to a marked increase in the SR Ca(2+) leak and, consequently, to the reduction in the average coupling ratio between Ca(2+) transport and SR Ca(2+)-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O(2)(*-) production.
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
Age-Related Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience
Cooper, Rachel; Shardell, Michelle; Simonsick, Eleanor M.; Schrack, Jennifer A.; Kuh, Diana
2016-01-01
Mobility is the most studied and most relevant physical ability affecting quality of life with strong prognostic value for disability and survival. Natural selection has built the “engine” of mobility with great robustness, redundancy, and functional reserve. Efficient patterns of mobility can be acquired during development even by children affected by severe impairments. Analogously, age-associated impairments in mobility-related physiological systems are compensated and overt limitations of mobility only occur when the severity can no longer be compensated. Mobility loss in older persons usually results from multiple impairments in the central nervous system, muscles, joints, and energetic and sensory physiological systems. Early preclinical changes in these physiological systems that precede mobility loss have been poorly studied. Peak performance, rate of decline, compensatory behaviors, or subclinical deterioration of physiological resources may cumulatively influence both timing of mobility loss and chances of recovery, but their role as risk factors has not been adequately characterized. Understanding the natural history of these early changes and intervening on them would likely be the most effective strategy to reduce the burden of disability in the population. For example, young women with low bone peak mass could be counseled to start strength resistance exercise to reduce their high risk of developing osteoporosis and fracture later in life. Expanding this approach to other physiological domains requires collecting and interpreting data from life course epidemiological studies, establishing normative measures of mobility, physical function, and physical activity, and connecting them with life course trajectories of the mobility-relevant physiological domains. PMID:26975983
Higgins-Opitz, Susan B; Tufts, Mark
2014-06-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. Copyright © 2014 The American Physiological Society.
Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam
2013-01-01
The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782
Strain gauges used in the mechanical testing of bones. Part II: "In vitro" and "in vivo" technique.
Cordey, J; Gautier, E
1999-01-01
How to choose and prepare the strain gauges for bonding on bones "in vitro" and "in vivo"? This communication aims to elucidate technical details and some applications: direct assessment of the axial load, the bending moment, and the torque applied to long bones by the physiological loads. As a typical example of application, we will show the assessment of stress protection due to plates on the bones in the sheep tibia.
Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico
2017-01-01
Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations.
Starcke, Katrin; Antons, Stephanie; Trotzke, Patrick; Brand, Matthias
2018-05-23
Background and aims Recent research has applied cue-reactivity paradigms to behavioral addictions. The aim of the current meta-analysis is to systematically analyze the effects of learning-based cue-reactivity in behavioral addictions. Methods The current meta-analysis includes 18 studies (29 data sets, 510 participants) that have used a cue-reactivity paradigm in persons with gambling (eight studies), gaming (nine studies), or buying (one study) disorders. We compared subjective, peripheral physiological, electroencephal, and neural responses toward addiction-relevant cues in patients versus control participants and toward addiction-relevant cues versus control cues in patients. Results Persons with behavioral addictions showed higher cue-reactivity toward addiction-relevant cues compared with control participants: subjective cue-reactivity (d = 0.84, p = .01) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.61, p < .01). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, median cingulate cortex, subgenual cingulate, and precentral gyrus. Persons with gambling, gaming, or buying disorders also showed higher cue-reactivity toward addiction-relevant cues compared with control cues: subjective cue-reactivity (d = 0.39, p = .11) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.47, p = .05). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, angular gyrus, inferior network, and precuneus. Discussion and conclusions Cue-reactivity not only exists in substance-use disorders but also in gambling, gaming, and buying disorders. Future research should differentiate between cue-reactivity in addictive behaviors and cue-reactivity in functional excessive behaviors such as passions, hobbies, or professions.
Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutri...
The Effects of Technical Illustrations on Cognitive Load.
ERIC Educational Resources Information Center
Purnell, Kenneth N.; And Others
1992-01-01
Outlines two theories of cognitive science that are relevant for instructional design, i.e., schema theory and cognitive load theory; and describes four experiments with Australian secondary school geography students that used these theories to examine the effects of splitting attention between technical illustrations and related text. (20…
2016-09-01
2.3.2 Loss -of-Lubrication Protocol 5 2.3.3 Friction Mapping Protocol 7 2.4 Test Matrices 9 3. Results and Discussion 10 3.1 Load Capacity 10...protocols used to simulate relevant contact conditions are the load capacity (LC), loss -of-lubrication (LoL), and mapping protocols. 2.3.1 Load ...Entrainment velocity (m/s) Slip (%) Skew (°) Load (N) Contact stress (GPa) LoL 16 –100 0 100 1.29 2.3.2.2 Low-Speed Loss -of-Lubrication
Peterson, Zoë D.; Janssen, Erick; Goodrich, David; Heiman, Julia R.
2015-01-01
Men’s sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men’s salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men’s sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. PMID:24310818
Peterson, Zoë D; Janssen, Erick; Goodrich, David; Heiman, Julia R
2014-01-01
Men's sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men's salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men's sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. © 2013 Wiley Periodicals, Inc.
Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J
2016-07-01
In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized ecological niches of the spiders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amborella trichopoda, plasmodesmata, and the evolution of phloem loading.
Turgeon, Robert; Medville, Richard
2011-01-01
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with (14)CO(2) translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.
Comparing the Use of Dynamic Response Index (DRI) and Lumbar Load as Relevant Spinal Injury Metrics
2014-01-09
reproducible results in greater detail under controlled testing conditions • Biofidelic enhancements to the Hybrid III design were made which support...occupants 4) General discussion on continued use of DRI as a design criterion for spinal injuries given the availability of the more direct Lumbar...load from fully encumbered ATDs in underbody blast testing . 15. SUBJECT TERMS DRI, Lumbar Load, Blast, LSDYNA, MADYMO, occupant, injury, pelvic
Olowo-Ofayoku, Anthony; Moxham, Bernard John
2014-10-01
Marked changes are occurring within both the medical and dental curricula and new ways of teaching the basic sciences have been devised and traditional methods (e.g., dissection for gross anatomy and of bench-based animal preparations for physiology) are increasingly no longer the norm. Although there is much anecdotal evidence that students are not in favor of such changes, there is little evidence for this based on quantitative analyses of students' attitudes. Using Thurstone and Chave attitude analyses, we assessed the attitudes of first year medical and dental students at Cardiff University toward gross anatomy and physiology in terms of their perceived clinical importance. In addition, we investigated the appropriateness ("fitness for purpose") of teaching methodologies used for anatomy and physiology. The hypotheses tested recognized the possibility that medical and dental students differed in their opinions, but that they had a preference to being taught gross anatomy through the use of dissection and had no preference for physiology teaching. It was found that both medical and dental students displayed positive attitudes toward the clinical relevance of gross anatomy and that they preferred to be taught by means of dissection. Although both medical and dental students displayed positives attitudes toward the clinical relevance of physiology, this was greater for the medical students. Both medical and dental students showed a preference for being taught physiology through didactic teaching in small groups but the medical students also appreciated being taught by means of practicals. Overall, this study highlights the expectations that students have for the basic science foundation teaching within their professional training and signals a preference for being taught experientially/practically. Differences were discerned between medical and dental students that might reflect the direct association between systems physiology and pathophysiology and the application of this knowledge within the medical field in comparison to the dental field, which is heavily skill-based. © 2014 Wiley Periodicals, Inc.
Hiking physiology and the "quasi-isometric" concept.
Spurway, Neil C
2007-08-01
The literature indicates that the heart rate of a planing-dinghy sailor, in winds of 4 - 5 m . s(-1), is in the range seen in aerobic athletes, yet oxygen consumption (VO(2)) is roughly half that of the same individual cycling at that heart rate. Thus, although upper-body dynamic activity is a contributing factor, the dominant physiological demand must be the "quasi-isometric" stress on the lower-body anterior muscles - especially the quadriceps, which appears to impose 40 - 50% of the total oxygen demand in a typical hiking posture. Therefore, a non-trivial part of the sailor's fitness training should involve sustained quadriceps stress. Estimates of this stress on water vary widely in the literature, but about 25 - 30% maximal voluntary contraction (MVC) tallies with endurance times recorded both in the literature and in an outline of new work reported here. Muscle blood flow is restricted under such a load, but not occluded. Laser Doppler measurements of femoral blood flow on a leg-extension ergometer found similar values during 10 - 30% MVC, much less at 40%, and marked hyperaemia on relaxation from 20% MVC or more - implying metabolic debt. Adding low-amplitude alternating leg movements while holding the same overall load stationary, and therefore increasing only internal not external work, further elevates blood flow and VO(2) both during and after exercise. Femoral-vein lactate concentration is also higher after these movements. Speculations that unusually dynamic lower-body movements by elite sailors might assist hiking endurance are not supported by these findings. Nevertheless, afloat or ashore, capillary lactate concentrations hardly ever exceed 5 mmol . l(-1), even during the post-exercise surge - challenging assumptions that the quadriceps had been profoundly anaerobic while under load. On the contrary, it appears that aerobic metabolism contributes substantially, if not completely, to energy supply. A preliminary comparison of elite sailors with aerobic athletes suggests that isometric endurance at a given percentage MVC does not differ between the two groups, but the sailors have higher MVCs. In individuals not highly strength-trained, greater electromyogram activity immediately before capitulation than in an MVC performed while fresh indicates that physiological (not just volitional) limits have been reached. It is concluded that the literature and the outline of my recent work with colleagues support the view that the predominant physiological load during single-handed dinghy sailing is quasi-isometric in form and accounts for roughly half of the metabolic demand. Any more complete account of the physiology of hiking will require simultaneous on-water measurement of electromyographic, cardiovascular, and metabolic indicators in sailors extending from club to Gold Medal standard.
Peptidase inhibitors in tick physiology.
Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I
2018-06-01
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.
Allostatic load and socioeconomic status in Polish adult men.
Lipowicz, Anna; Szklarska, Alicja; Malina, Robert M
2014-03-01
This study considers the relationship between a cumulative index of biological dysregulation (allostatic load) and several dimensions of socioeconomic status (SES) and lifestyle in adult Polish males. The extent to which lifestyle variables can explain SES variation in allostatic load was also evaluated. Participants were 3887 occupationally active men aged 25-60 years living in cities and villages in the Silesia region of Poland. The allostatic load indicator included eleven markers: % fat (adverse nutritional intake), systolic and diastolic blood pressures (cardiovascular activity), FEV1 (lung function), erythrocyte sedimentation rate (inflammatory processes), glucose and total cholesterol (cardiovascular disease risk), total plasma protein (stress-haemoconcentration), bilirubin, creatinine clearance and alkaline phosphatase activity (hepatic and renal functions). A higher level of completed education, being married and residing in an urban area were associated with lower physiological dysregulation. The association between indicators of SES and allostatic load was not eliminated or attenuated when unhealthy lifestyle variables were included in the model. Smoking status and alcohol consumption played minimal roles in explaining the association between SES and allostatic load; physical activity, however, had a generally protective effect on allostatic load.
Magnesium degradation under physiological conditions - Best practice.
Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank
2018-06-01
This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.
Basson, Christine H; Clusella-Trullas, Susana
2015-01-01
Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.
Kumyaito, Nattapon; Yupapin, Preecha; Tamee, Kreangsak
2018-01-08
An effective training plan is an important factor in sports training to enhance athletic performance. A poorly considered training plan may result in injury to the athlete, and overtraining. Good training plans normally require expert input, which may have a cost too great for many athletes, particularly amateur athletes. The objectives of this research were to create a practical cycling training plan that substantially improves athletic performance while satisfying essential physiological constraints. Adaptive Particle Swarm Optimization using ɛ-constraint methods were used to formulate such a plan and simulate the likely performance outcomes. The physiological constraints considered in this study were monotony, chronic training load ramp rate and daily training impulse. A comparison of results from our simulations against a training plan from British Cycling, which we used as our standard, showed that our training plan outperformed the benchmark in terms of both athletic performance and satisfying all physiological constraints.
Lumbar spine disc heights and curvature: upright posture vs. supine compression harness
NASA Technical Reports Server (NTRS)
Lee, Shi-Uk; Hargens, Alan R.; Fredericson, Michael; Lang, Philipp K.
2003-01-01
INTRODUCTION: Spinal lengthening in microgravity is thought to cause back pain in astronauts. A spinal compression harness can compress the spine to eliminate lengthening but the loading condition with harness is different than physiologic conditions. Our purpose was to compare the effect of spine compression with a harness in supine position on disk height and spinal curvature in the lumbar spine to that of upright position as measured using a vertically open magnetic resonance imaging system. METHODS: Fifteen healthy subjects volunteered. On day 1, each subject lay supine for an hour and a baseline scan of the lumbar spine was performed. After applying a load of fifty percent of body weight with the harness for thirty minutes, the lumbar spine was scanned again. On day 2, after a baseline scan, a follow up scan was performed after kneeling for thirty minutes within the gap between two vertically oriented magnetic coils. Anterior and posterior disk heights, posterior disk bulging, and spinal curvature were measured from the baseline and follow up scans. RESULTS: Anterior disk heights increased and posterior disk heights decreased compared with baseline scans both after spinal compression with harness and upright posture. The spinal curvature increased by both loading conditions of the spine. DISCUSSION: The spinal compression with specially designed harness has the same effect as the physiologic loading of the spine in the kneeling upright position. The harness shows some promise as a tool to increase the diagnostic capabilities of a conventional MR system.
Fornasiero, Alessandro; Savoldelli, Aldo; Fruet, Damiano; Boccia, Gennaro; Pellegrini, Barbara; Schena, Federico
2018-06-01
The aims of the study were to describe the physiological profile of a 65-km (4000-m cumulative elevation gain) running mountain ultra-marathon (MUM) and to identify predictors of MUM performance. Twenty-three amateur trail-runners performed anthropometric evaluations and an uphill graded exercise test (GXT) for VO 2max, ventilatory thresholds (VTs), power outputs (PMax, PVTs) and heart rate response (HRmax, HR@VTs). Heart rate (HR) was monitored during the race and intensity was expressed as: Zone I (
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
Evaluation of a computer-based approach to teaching acid/base physiology.
Rawson, Richard E; Quinlan, Kathleen M
2002-12-01
Because acid/base physiology is a difficult subject for most medical and veterinary students, the first author designed a software program, Acid/Base Primer, that would help students with this topic. The Acid/Base Primer was designed and evaluated within a conceptual framework of basic educational principles. Seventy-five first-year veterinary students (of 81; 93% response rate) participated in this study. Students took both a pre- and posttest of content understanding. After completing the Acid/Base Primer in pairs, each student filled out a survey evaluating the features of the program and describing his/her use and experience of it. Four pairs of students participated in interviews that elaborated on the surveys. Scores improved from 53 +/- 2% on the pretest to 74 +/- 1% on an immediate posttest. On surveys and in interviews, students reported that the program helped them construct their own understanding of acid/base physiology and prompted discussions in pairs of students when individual understandings differed. The case-based format provided anchors and a high degree of relevance. Repetition of concepts helped students develop a more complex network of understanding. Questions in the program served to scaffold the learning process by providing direction, accentuating the relevant features of the cases, and provoking discussion. Guidelines for software development were generated on the basis of the findings and relevant educational literature.
DOT National Transportation Integrated Search
1973-12-01
The reductions in task load resulting from the increasing automation of air traffic control may actually increase the requirement for controllers to maintain high levels of sustained attention in order to detect infrequent system malfunctions. A prev...
Physiological problems of weightlessness
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.; Kasyan, I. I.
1975-01-01
A brief review of the compensatory-adjusting body changes observed during and after human exposure to prolonged spaceflight is given. Pathological disturbances caused by increased functional hypokinesia and weightlessness loads affect the cardiovascular system, the nervous and hormonal systems, and the state of the skeletal musculo apparatus.
Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils
USDA-ARS?s Scientific Manuscript database
Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...
A conceptual framework for homeostasis: development and validation.
McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold
2016-06-01
We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.
Does bone cement in percutaneous vertebroplasty act as a stress riser?
Aquarius, René; van der Zijden, Astrid Maria; Homminga, Jasper; Verdonschot, Nico; Tanck, Esther
2013-11-15
An in vitro cadaveric study. To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae. It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures. The in vitro studies that demonstrated this relationship, however, use bigger volumes of bone cement used clinically. Ten fresh-frozen vertebrae were loaded until failure, while registering force and displacement as well as the pressure under the lower endplate. After failure, the vertebrae were augmented with clinically relevant amounts of bone cement and then again loaded until failure. The force, displacement, and pressure under the lower endplate were again registered. Stress peaks were not related to the location of the injected bone cement. Both failure load and stiffness were significantly lower after augmentation. On the basis of our findings, we conclude that vertebral augmentation with clinically relevant amounts of bone cement does not lead to stress peaks under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental stresses in the adjacent vertebrae, leading to new vertebral fractures. N/A.
Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G; Duronio, Vincent
2016-06-01
Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Auditory perceptual load: A review.
Murphy, Sandra; Spence, Charles; Dalton, Polly
2017-09-01
Selective attention is a crucial mechanism in everyday life, allowing us to focus on a portion of incoming sensory information at the expense of other less relevant stimuli. The circumstances under which irrelevant stimuli are successfully ignored have been a topic of scientific interest for several decades now. Over the last 20 years, the perceptual load theory (e.g. Lavie, 1995) has provided one robust framework for understanding these effects within the visual modality. The suggestion is that successful selection depends on the perceptual demands imposed by the task-relevant information. However, less research has addressed the question of whether the same principles hold in audition and, to date, the existing literature provides a mixed picture. Here, we review the evidence for and against the applicability of perceptual load theory in hearing, concluding that this question still awaits resolution. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Macdermid, Paul W; Fink, Philip W; Miller, Matthew C; Stannard, Stephen
2017-07-01
Non-propulsive work demand has been linked to reduced energetic economy of cross-country mountain biking. The purpose of this study was to determine mechanical, physiological and performance differences and observe economy while riding a downhill section of a cross-country course prior to and following the metabolic "load" of a climb at race pace under two conditions (hardtail and full suspension) expected to alter vibration damping mechanics. Participants completed 1 lap of the track incorporating the same downhill section twice, under two conditions (hardtail and full suspension). Performance was determined by time to complete overall lap and specific terrain sections. Power, cadence, heart rate and oxygen consumption were sampled and logged every second while triaxial accelerometers recorded accelerations (128 Hz) to quantify vibration. No differences between performance times (P = 0.65) or power outputs (P = 0.61) were observed while physiological demand of loaded downhill riding was significantly greater (P < 0.0001) than unloaded. Full suspension decreased total vibrations experienced (P < 0.01) but had no effect on performance (P = 0.97) or physiological (P > 0.05) measures. This study showed minimal advantage of a full suspension bike in our trial, with further investigations over a full race distance warranted.
Fluhr, Joachim W; Breternitz, Maria; Kowatzki, Doreen; Bauer, Andrea; Bossert, Joerg; Elsner, Peter; Hipler, Uta-Christina
2010-08-01
The epidermal part of the skin is the major interface between the internal body and the external environment. The skin has a specific physiology and is to different degrees adapted for protection against multiple exogenous stress factors. Clothing is the material with the longest and most intensive contact to human skin. It plays a critical role especially in inflammatory dermatoses or skin conditions with an increased susceptibility of bacterial and fungal infections like atopic dermatitis. Previously, we have shown a dose-dependent antibacterial and antifungal activity of silver-loaded seaweed-based cellulosic fibres. We studied the mode of action of silver-loaded seaweed-based cellulosic fiber and performed a broad safety assessment. The principal aim was to analyse the effects of wearing the textile on epidermal skin physiology in 37 patients with atopic dermatitis in a controlled, randomized single-blinded in vivo study. Furthermore, the sensitization potential was tested in a patch test in 111 panellists. We could demonstrate in vitro a dose-dependent scavenging of induced reactive oxygen species by silver-loaded seaweed-based cellulosic fibers. Safety assessment of these fibres showed no detectable release of silver ions. Furthermore, ex vivo assessment after 24 h application both in healthy volunteers and patients with atopic dermatitis by sequential tape stripping and subsequently raster electron microscopy and energy dispersive microanalysis analysis revealed no detectable amounts of silver in any of stratum corneum layers. Serum analysis of silver showed no detectable levels. The in vivo patch testing of 111 volunteers revealed no sensitization against different SeaCell Active (SeaCell GmbH, Rudolstadt, Germany) containing fabrics. The in vivo study on 37 patients with known atopic dermatitis and mild-to-moderate eczema on their arms were randomly assigned to either silver-loaded seaweed fibre T-shirts or to cotton T-shirts for 8 weeks. A significant reduction in Staphylococcus aureus colonization was detectable for the silver T-shirts compared with cotton T-shirts without any changes in non-pathogenic surface bacteria colonization. Furthermore, a more pronounced improvement in barrier function (transepidermal water loss) was observed in mildly involved eczema areas during the first 4 weeks of the study. Stratum corneum hydration and surface pH improved in both treatment groups over time. The tested silver-loaded seaweed fibre can be regarded as safe and seams to be suited for application in bio-active textiles in atopic dermatitis based on its positive in vivo activity.
Kindermann, Christina; Narayan, Edward J; Hero, Jean-Marc
2017-01-01
It is well known that the disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) has contributed to amphibian declines worldwide. The impact of Bd varies, with some species being more susceptible to infection than others. Recent evidence has shown that Bd can have sub-lethal effects, whereby increases in stress hormones have been associated with infection. Could this increased stress response, which is a physiological adaptation that provides an increased resilience against Bd infection, potentially be a trade-off with important life-history traits such as reproduction? We studied this question in adult male frogs of a non-declining species (Litoria wilcoxii). Frogs were sampled for (1) seasonal hormone (testosterone and corticosterone), color and disease profiles, (2) the relationship between disease infection status and hormone levels or dorsal color, (3) subclinical effects of Bd by investigating disease load and hormone level, and (4) reproductive and stress hormone relationships independent of disease. Testosterone levels and color score varied seasonally (throughout the spring/summer months) while corticosterone levels remained stable. Frogs with high Bd prevalence had significantly higher corticosterone levels and lower testosterone levels compared to uninfected frogs, and no differences in color were observed. There was a significant positive correlation between disease load and corticosterone levels, and a significant negative relationship between disease load and testosterone. Our field data provides novel evidence that increased physiological stress response associated with Bd infection in wild frogs, could suppress reproduction by down-regulating gonadal hormones in amphibians, however the impacts on reproductive output is yet to be established. Copyright © 2016 Elsevier Inc. All rights reserved.
Bradley, Warren J; Cavanagh, Bryce P; Douglas, William; Donovan, Timothy F; Morton, James P; Close, Graeme L
2015-02-01
Rugby Union (RU) is a high-speed collision sport consisting of an intermittent activity profile. Given the extreme physical demands of the sport, significant emphasis is placed on players possessing high lean body mass while minimizing body fat. Anecdotally, the most significant changes in body composition are observed during the preseason; however, there are no objective data on the physiological demands and energy intake during this time. We therefore monitored 45 elite European RU players over the 10-week preseason period by assessing training load using Global Positioning System and session rate of perceived exertion (sRPE) while also assessing changes in anthropometry and physical performance. For forwards and backs, respectively, mean weekly distance covered was 9,774 m (1,404) and 11,585 m (1,810) with a total mean weekly sRPE of 3,398 (335) arbitrary units and 2,944 (410) arbitrary units. Mean daily energy intake was 14.8 MJ (1.9) and 13.3 MJ (1.9), carbohydrate (CHO) intake was 3.3 (0.7) and 4.14 (0.4) g·kg body mass, protein intake was 2.52 (0.3) and 2.59 (0.6) g·kg body mass, and fat intake was 1.0 (0.3) and 0.95 (0.3) g·kg body mass for forwards and backs, respectively. Markers of physical performance (1 repetition maximum strength, speed, and repeated sprint tests) and anthropometry (body fat and estimated lean mass) improved in all players. Interestingly, all players self-selected a "low" CHO "high" protein diet. Based on physiological improvements the training load and energy intake seems appropriate, although further research is required to evaluate if such energy intakes would also be suitable for match day performance.
A Laboratory Program for Bioinorganic Chemistry
ERIC Educational Resources Information Center
Ochiai, Ei-ichiro
1973-01-01
Outlines a laboratory course entitled Inorganic Chemistry for Biological Sciences'' which is designed primarily for juniors in biochemistry, physiology, and soil sciences. Inclusion of relevant environmental topics is indicated. (CC)
Electrical Impedance Tomography of Electrolysis
Meir, Arie; Rubinsky, Boris
2015-01-01
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686
Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.
Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R
1994-05-01
1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.
[Signaling mechanisms involved in resolution of inflammation].
Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel
2014-01-01
Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.
Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.
2017-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606
Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A
2016-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.
Gao, Jie; Roan, Esra; Williams, John L
2015-01-01
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.
Thoemmes, Stephen F; Stutzke, Crystal A; Du, Yanmei; Browning, Michael D; Buttrick, Peter M; Walker, Lori A
2014-01-31
Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhmurov, A; Dima, R I; Kholodov, Y; Barsegov, V
2010-11-01
Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package. © 2010 Wiley-Liss, Inc.
Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M
2016-03-07
Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.
Gao, Jie; Roan, Esra; Williams, John L.
2015-01-01
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales. PMID:25885547
Microbial ecology and host-microbiota interactions during early life stages
Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar
2012-01-01
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759
Bio-integrated electronics and sensor systems
NASA Astrophysics Data System (ADS)
Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.
2013-05-01
Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.
Foster, Kenneth R; Glaser, Roland
2007-06-01
This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.
Daniels, Alan H.; Paller, David J.; Koruprolu, Sarath; Palumbo, Mark A.; Crisco, Joseph J.
2013-01-01
Background Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Methods Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Conclusions Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:23451222
NASA Astrophysics Data System (ADS)
Minka, N. S.; Ayo, J. O.
2012-03-01
The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.
Physiological loading of joints prevents cartilage degradation through CITED2.
Leong, Daniel J; Li, Yong H; Gu, Xiang I; Sun, Li; Zhou, Zuping; Nasser, Philip; Laudier, Damien M; Iqbal, Jameel; Majeska, Robert J; Schaffler, Mitchell B; Goldring, Mary B; Cardoso, Luis; Zaidi, Mone; Sun, Hui B
2011-01-01
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.
Finite element analysis of a condylar support prosthesis to replace the temporomandibular joint.
Abel, Eric W; Hilgers, André; McLoughlin, Philip M
2015-04-01
This paper presents a finite element study of a temporomandibular joint (TMJ) prosthesis in which the mandibular component sits on the condyle after removal of only the diseased articular surface and minimal amount of condylar bone. The condylar support prosthesis (CSP) is customised to fit the patient and allows a large part of the joint force to be transmitted through the condyle to the ramus, rather than relying only on transfer of the load by the screws that fix the prosthesis to the ramus. The 3-dimensional structural finite element analysis compared a design of CSP with a standard commercial prosthesis and one that was modified to fit the ramus, to relate the findings to the different designs and geometrical features. The models simulated an incisal bite under high loading. In the CSP and in its fixation screws, the stresses were much lower than those in the other 2 prostheses and the bone strains were at physiological levels. The CSP gives a more physiological form of load transfer than is possible without the condylar contact, and considerably reduces the amount of strain on the bone around the screws. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang
2018-01-01
Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.
Sleep Deprivation and Exercise Tolerance.
1986-01-01
thermoneutral environment) is alike unchanged by loss of sleep. 5) Seven subjects were allowed to exercise to thermal comfort in a very cold (OC, 2.5...Subjects selected identical work loads for thermal comfort , and became exhausted/miserable after similar period of exposure. Physiologi- cal response and
Rao, Jia-Sheng; Zhao, Can; Zhang, Aifeng; Duan, Hongmei; Hao, Peng; Wei, Rui-Han; Shang, Junkui; Zhao, Wen; Liu, Zuxiang; Yu, Juehua; Fan, Kevin S; Tian, Zhaolong; He, Qihua; Song, Wei; Yang, Zhaoyang; Sun, Yi Eve; Li, Xiaoguang
2018-06-12
Spinal cord injury (SCI) often leads to permanent loss of motor, sensory, and autonomic functions. We have previously shown that neurotrophin3 (NT3)-loaded chitosan biodegradable material allowed for prolonged slow release of NT3 for 14 weeks under physiological conditions. Here we report that NT3-loaded chitosan, when inserted into a 1-cm gap of hemisectioned and excised adult rhesus monkey thoracic spinal cord, elicited robust axonal regeneration. Labeling of cortical motor neurons indicated motor axons in the corticospinal tract not only entered the injury site within the biomaterial but also grew across the 1-cm-long lesion area and into the distal spinal cord. Through a combination of magnetic resonance diffusion tensor imaging, functional MRI, electrophysiology, and kinematics-based quantitative walking behavioral analyses, we demonstrated that NT3-chitosan enabled robust neural regeneration accompanied by motor and sensory functional recovery. Given that monkeys and humans share similar genetics and physiology, our method is likely translatable to human SCI repair.
High-speed AFM for scanning the architecture of living cells
NASA Astrophysics Data System (ADS)
Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong
2013-08-01
We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a
Puetzer, Jennifer L; Bonassar, Lawrence J
2016-07-01
The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.
NASA Astrophysics Data System (ADS)
Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.
1999-12-01
The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.
2007-12-01
Using this timing information and kinematic information from the Optotrak ® motion analysis system, it was found that cadence (the number of strides...la synchronisation et de l’information sur la cinématique du système d’analyse des mouvements Optotrak ®, on a trouvé que la cadence (le nombre... Optotrak and upper body accelerations. .... 20 Figure 1-8. Accelerometer and vertical force plots showing heel strike and toe-off ..... 22 Figure 2-1
The lumbosacral segment as a vulnerable region in various postures
NASA Technical Reports Server (NTRS)
Rosemeyer, B.
1978-01-01
The lumbosacral region in man is exposed to special static and dynamic load. In a supine position, the disc size increases because of the absence of axial load. In a standing position, with physiological posture of the spine, strain discomfort occurs which is increased even more in the sitting position due to the curvature of the lumbar region of the spine and the irregular distribution of pressure in the discs as a result of this. This special problem of sitting posture can be confirmed by examinations.
Using perspective to resolve reference: The impact of cognitive load and motivation.
Cane, James E; Ferguson, Heather J; Apperly, Ian A
2017-04-01
Research has demonstrated a link between perspective taking and working memory. Here we used eye tracking to examine the time course with which working memory load (WML) influences perspective-taking ability in a referential communication task and how motivation to take another's perspective modulates these effects. In Experiment 1, where there was no reward or time pressure, listeners only showed evidence of incorporating perspective knowledge during integration of the target object but did not anticipate reference to this common ground object during the pretarget-noun period. WML did not affect this perspective use. In Experiment 2, where a reward for speed and accuracy was applied, listeners used perspective cues to disambiguate the target object from the competitor object from the earliest moments of processing (i.e., during the pretarget-noun period), but only under low load. Under high load, responses were comparable with the control condition, where both objects were in common ground. Furthermore, attempts to initiate perspective-relevant responses under high load led to impaired recall on the concurrent WML task, indicating that perspective-relevant responses were drawing on limited cognitive resources. These results show that when there is ambiguity, perspective cues guide rapid referential interpretation when there is sufficient motivation and sufficient cognitive resources. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Walczyk, Jeffrey J.; Igou, Frank P.; Dixon, Alexa P.; Tcholakian, Talar
2013-01-01
This article critically reviews techniques and theories relevant to the emerging field of “lie detection by inducing cognitive load selectively on liars.” To help these techniques benefit from past mistakes, we start with a summary of the polygraph-based Controlled Question Technique (CQT) and the major criticisms of it made by the National Research Council (2003), including that it not based on a validated theory and administration procedures have not been standardized. Lessons from the more successful Guilty Knowledge Test are also considered. The critical review that follows starts with the presentation of models and theories offering insights for cognitive lie detection that can undergird theoretically load-inducing approaches. This is followed by evaluation of specific research-based, load-inducing proposals, especially for their susceptibility to rehearsal and other countermeasures. To help organize these proposals and suggest new direction for innovation and refinement, a theoretical taxonomy is presented based on the type of cognitive load induced in examinees (intrinsic or extraneous) and how open-ended the responses to test items are. Finally, four recommendations are proffered that can help researchers and practitioners to avert the corresponding mistakes with the CQT and yield new, valid cognitive lie detection technologies. PMID:23378840
Household crowding is associated with higher allostatic load among the Inuit.
Riva, Mylene; Plusquellec, Pierrich; Juster, Robert-Paul; Laouan-Sidi, Elhadji A; Abdous, Belkacem; Lucas, Michel; Dery, Serge; Dewailly, Eric
2014-04-01
Household crowding is an important problem in some aboriginal communities that is reaching particularly high levels among the circumpolar Inuit. Living in overcrowded conditions may endanger health via stress pathophysiology. This study examines whether higher household crowding is associated with stress-related physiological dysregulations among the Inuit. Cross-sectional data on 822 Inuit adults were taken from the 2004 Qanuippitaa? How are we? Nunavik Inuit Health Survey. Chronic stress was measured using the concept of allostatic load (AL) representing the multisystemic biological 'wear and tear' of chronic stress. A summary index of AL was constructed using 14 physiological indicators compiled into a traditional count-based index and a binary variable that contrasted people at risk on at least seven physiological indicators. Household crowding was measured using indicators of household size (total number of people and number of children per house) and overcrowding defined as more than one person per room. Data were analysed using weighted Generalised Estimating Equations controlling for participants' age, sex, income, diet and involvement in traditional activities. Higher household crowding was significantly associated with elevated AL levels and with greater odds of being at risk on at least seven physiological indicators, especially among women and independently of individuals' characteristics. This study demonstrates that household crowding is a source of chronic stress among the Inuit of Nunavik. Differential housing conditions are shown to be a marker of health inequalities among this population. Housing conditions are a critical public health issue in many aboriginal communities that must be investigated further to inform healthy and sustainable housing strategies.
Physiological and Technical Demands of No Dribble Game Drill in Young Basketball Players.
Conte, Daniele; Favero, Terence G; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio
2015-12-01
This study assessed the physiological and technical demands of no dribble game drill (NDGD) in comparison with a regular drill (RD). Twenty-three young basketball players performed RDs and NDGDs in a random order. All basketball rules were followed for RDs, whereas dribbling was not permitted for NDGDs. The independent variable was the drill condition, and the dependent variables were percentage of maximal heart rate (%HRmax), rate of perceived exertion (RPE), Edwards training load (TL), and the following technical actions (TAs): pass (total, correct, wrong, and percent of correct passes), shot (total, scored, missed, and percent of made shots), interception, steal, turnover, and rebound. Wilcoxon signed-rank tests were applied to assess differences between NDGD and RD conditions for each dependent variable, and the level of statistical significance was set at p ≤ 0.05. Results showed higher values for %HRmax (p = 0.007), Edwards TL (p = 0.006), and RPE (p = 0.027) in NDGD compared with RD condition. Technical action analysis revealed higher values in NDGD than RD for total (p = 0.000), correct (p = 0.000), and wrong pass (p = 0.005), and interception (p = 0.001), whereas no significant differences were found for the other TAs. The main finding of this study was that NDGD condition elicited a greater physiological demand and a higher number of passes and interceptions than the RD one. Basketball coaches should consider the NDGD as a viable method to increase the physiological load of their training sessions and to teach passing skills in a game-based situation.
Harnessing the wandering mind: the role of perceptual load.
Forster, Sophie; Lavie, Nilli
2009-06-01
Perceptual load is a key determinant of distraction by task-irrelevant stimuli (e.g., Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82). Here we establish the role of perceptual load in determining an internal form of distraction by task-unrelated thoughts (TUTs or "mind-wandering"). Four experiments demonstrated reduced frequency of TUTs with high compared to low perceptual load in a visual-search task. Alternative accounts in terms of increased demands on responses, verbal working memory or motivation were ruled out and clear effects of load were found for unintentional TUTs. Individual differences in load effects on internal (TUTs) and external (response-competition) distractors were correlated. These results suggest that exhausting attentional capacity in task-relevant processing under high perceptual load can reduce processing of task-irrelevant information from external and internal sources alike.
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Applying Cognitive Load Theory to the Redesign of a Conventional Database Systems Course
ERIC Educational Resources Information Center
Mason, Raina; Seton, Carolyn; Cooper, Graham
2016-01-01
Cognitive load theory (CLT) was used to redesign a Database Systems course for Information Technology students. The redesign was intended to address poor student performance and low satisfaction, and to provide a more relevant foundation in database design and use for subsequent studies and industry. The original course followed the conventional…
Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J
2015-09-01
Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.
I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.
Kofler, Walter
2007-01-01
There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT
2016-01-01
Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194
Overview of exocrine pancreatic pathobiology.
Pandiri, Arun R
2014-01-01
Exocrine pancreas is a source of several enzymes that are essential for the digestive process. The exocrine pancreatic secretion is tightly regulated by the neuroendocrine system. The endocrine pancreas is tightly integrated anatomically and physiologically with the exocrine pancreas and modulates its function. Compound-induced pancreatitis is not a common event in toxicology or drug development, but it becomes a significant liability when encountered. Understanding the species-specific differences in physiology is essential to understand the underlying pathobiology of pancreatic disease in animal models and its relevance to human disease. This review will mainly focus on understanding the morphology and physiology of the pancreas, unique islet-exocrine interactions, and pancreatitis.
Murine epithelial cells: isolation and culture.
Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R
2004-08-01
We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.
Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A
2015-08-04
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.
Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.
2015-01-01
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258
Subjective evaluation of experimental dyspnoea – Effects of isocapnia and repeated exposure
Hayen, Anja; Herigstad, Mari; Wiech, Katja; Pattinson, Kyle T.S.
2015-01-01
Resistive respiratory loading is an established stimulus for the induction of experimental dyspnoea. In comparison to unloaded breathing, resistive loaded breathing alters end-tidal CO2 (PETCO2), which has independent physiological effects (e.g. upon cerebral blood flow). We investigated the subjective effects of resistive loaded breathing with stabilized PETCO2 (isocapnia) during manual control of inspired gases on varying baseline levels of mild hypercapnia (increased PETCO2). Furthermore, to investigate whether perceptual habituation to dyspnoea stimuli occurs, the study was repeated over four experimental sessions. Isocapnic hypercapnia did not affect dyspnoea unpleasantness during resistive loading. A post hoc analysis revealed a small increase of respiratory unpleasantness during unloaded breathing at +0.6 kPa, the level that reliably induced isocapnia. We did not observe perceptual habituation over the four sessions. We conclude that isocapnic respiratory loading allows stable induction of respiratory unpleasantness, making it a good stimulus for multi-session studies of dyspnoea. PMID:25578628
Trade-Offs between Gaze and Working Memory Use
ERIC Educational Resources Information Center
Droll, Jason A.; Hayhoe, Mary M.
2007-01-01
Eye movements during natural tasks suggest that observers do not use working memory to capacity but instead use eye movements to acquire relevant information immediately before needed. Results here however, show that this strategy is sensitive to memory load and to observers' expectations about what information will be relevant. Depending upon the…
Perioperative abstinence from cigarettes: physiologic and clinical consequences.
Warner, David O
2006-02-01
Chronic exposure to cigarette smoke produces profound changes in physiology that may alter responses to perioperative interventions and contribute to perioperative morbidity. Because of smoke-free policies in healthcare facilities, all smokers undergoing surgery are abstinent from cigarettes for at least some period of time so that all are in various stages of recovery from the effects of smoke. Understanding this recovery process will help perioperative physicians better treat these patients. This review examines current knowledge regarding how both short-term (duration ranging from hours to weeks) and long-term smoking cessation affects selected physiology and pathophysiology of particular relevance to perioperative outcomes and how these changes affect perioperative risk. It will also consider current evidence regarding how nicotine replacement therapy, a valuable adjunct to help patients maintain abstinence, may affect perioperative physiology.
Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steckler, N.; Florita, A.; Zhang, J.
2013-11-01
As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less
Cardiovascular variability and introversion/extroversion, neuroticism and psychoticism.
Burdick, J A; Van Dyck, B; Von Bargen, W J
1982-01-01
Forty-eight subjects were measured during a 10 min rest period for pulse wave velocity (PWV) and heart rate (HR) level and variability, using a Cyborg BL 907 instrument. These subjects were also evaluated by means of the Eysenck Personality Questionnaire for I-E, N, P and L. These data were factor analyzed. Five factors were identified which were accounted for 80.6% of the variance. These factors were: 'cardiovascular lability', 'heart rate time trends', 'cardiovascular balance', 'sex effects' and 'self reports'. The EPQ measurements separated from the physiological measurements in the factor analysis and none were found to be significantly loaded on any physiological variables. On the other hand, significant physiological correlations were found with N. This study adds a possible blood pressure and heart rate descripter to N.
Physiology education in North American dental schools: the basic science survey series.
Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne
2014-06-01
As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.
Husain, Z S; DeFronzo, D J
2000-01-01
This study assesses the strength of fixating avulsion fractures of the fifth metatarsal base with a 4.0-mm partially threaded cancellous screw crossing two cortices as compared to tension banding. Our data showed statistically significant fixation strength improvement over tension banding for avulsion fractures (p < 0.02) in both polystyrene foam models and fresh, nonpreserved frozen cadaveric samples. In cadavers, the screw fixations were able to withstand more than three times the load sustained by the tension band fixations. The study utilized the Instron 8500 tensiometer to apply physiologic loads to test the constructs until failure. The displacement and load data at failure show the limitations of both fixations. By increasing the load resistance while maintaining compression, the bicortical cancellous screw fixation created greater stability at the avulsion fracture of the fifth metatarsal base as compared to tension band stabilization.
Federici, A; Nocera, L
1990-01-01
Models have been proposed in literature describing the contraction of visceral and somatic muscles as an interaction between the time-varying elastances of them and the loads they are working against. The aim of this paper is: 1) to make clear similarities between the models of visceral and somatic muscular contraction; 2) to stress the concept that the power transfer from a time-varying elastance to its load is a behaviour, i.e. an interaction between the entire neuromuscular machinery and the surrounding environment; 3) to propose a theory describing the various physiological and pathological behaviours of both visceral and somatic muscles as different ways of coupling between the time-varying muscular elastances and their loads. In this theory it is assumed that the entire neuromuscular machinery acts as a whole to set the most appropriate power transfer to achieve behavioural goals.
Cardiac atrophy after bed rest and spaceflight.
Perhonen, M A; Franco, F; Lane, L D; Buckey, J C; Blomqvist, C G; Zerwekh, J E; Peshock, R M; Weatherall, P T; Levine, B D
2001-08-01
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.
Cardiac atrophy after bed rest and spaceflight
NASA Technical Reports Server (NTRS)
Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.
2001-01-01
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.
Tufts, Mark
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify “at-risk” students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. PMID:24913452
Zanon, Laura; Falchi, Rachele; Hackel, Aleksandra; Kühn, Christina; Vizzotto, Giannina
2015-09-01
Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Design principles and optimal performance for molecular motors under realistic constraints
NASA Astrophysics Data System (ADS)
Tu, Yuhai; Cao, Yuansheng
2018-02-01
The performance of a molecular motor, characterized by its power output and energy efficiency, is investigated in the motor design space spanned by the stepping rate function and the motor-track interaction potential. Analytic results and simulations show that a gating mechanism that restricts forward stepping in a narrow window in configuration space is needed for generating high power at physiologically relevant loads. By deriving general thermodynamics laws for nonequilibrium motors, we find that the maximum torque (force) at stall is less than its theoretical limit for any realistic motor-track interactions due to speed fluctuations. Our study reveals a tradeoff for the motor-track interaction: while a strong interaction generates a high power output for forward steps, it also leads to a higher probability of wasteful spontaneous back steps. Our analysis and simulations show that this tradeoff sets a fundamental limit to the maximum motor efficiency in the presence of spontaneous back steps, i.e., loose-coupling. Balancing this tradeoff leads to an optimal design of the motor-track interaction for achieving a maximum efficiency close to 1 for realistic motors that are not perfectly coupled with the energy source. Comparison with existing data and suggestions for future experiments are discussed.
Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S
2006-11-01
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
Study of manganese binding to the ferroxidase centre of human H-type ferritin.
Ardini, Matteo; Howes, Barry D; Fiorillo, Annarita; Falvo, Elisabetta; Sottini, Silvia; Rovai, Donella; Lantieri, Marco; Ilari, Andrea; Gatteschi, Dante; Spina, Gabriele; Chiancone, Emilia; Stefanini, Simonetta; Fittipaldi, Maria
2018-05-01
Ferritins are ubiquitous and conserved proteins endowed with enzymatic ferroxidase activity, that oxidize Fe(II) ions at the dimetal ferroxidase centre to form a mineralized Fe(III) oxide core deposited within the apo-protein shell. Herein, the in vitro formation of a heterodimetal cofactor constituted by Fe and Mn ions has been investigated in human H ferritin (hHFt). Namely, Mn and Fe binding at the hHFt ferroxidase centre and its effects on Fe(II) oxidation have been investigated by UV-Vis ferroxidation kinetics, fluorimetric titrations, multifrequency EPR, and preliminary Mössbauer spectroscopy. Our results show that in hHFt, both Fe(II) and Mn(II) bind the ferroxidase centre forming a Fe-Mn cofactor. Moreover, molecular oxygen seems to favour Mn(II) binding and increases the ferroxidation activity of the Mn-loaded protein. The data suggest that Mn influences the Fe binding and the efficiency of the ferroxidation reaction. The higher efficiency of the Mn-Fe heterometallic centre may have a physiological relevance in specific cell types (i.e. glia cells), where the concentration of Mn is the same order of magnitude as iron. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kerimoglu, Onur; Hofmeister, Richard; Wirtz, Kai
2016-04-01
Adaptation and acclimation processes are often ignored in ecosystem-scale model implementations, despite the long-standing recognition of their importance. Here we present a novel adaptive phytoplankton growth model where acclimation of the community to the changes in external resource ratios is accounted for, using optimality principles and dynamic physiological traits. We show that the model can reproduce the internal stoichiometries obtained at marginal supply ratios in chemostat experiments. The model is applied in a decadal hindcast simulation of the southern North Sea, where it is coupled to a 2-D benthic model and a 3-D hydrodynamic model in an approximately 1.5km horizontal resolution at the German Bight coast. The model is shown to have good skill in capturing the steep, coastal gradients in the German Bight, suggested by the match between the estimated and observed dissolved nutrient and chlorophyll concentrations. We then analyze the differential sensitivity of the coastal and off-shore zones to major drivers of the system, such as riverine nutrient loads. We demonstrate that the relevance of phytoplankton acclimation varies across coastal gradients and can become particularly significant in terms of summer nutrient depletion.
Caffeine Inhibits Fluid Secretion by Interlobular Ducts From Guinea Pig Pancreas.
Mochimaru, Yuka; Yamamoto, Akiko; Nakakuki, Miyuki; Yamaguchi, Makoto; Taniguchi, Ituka; Ishiguro, Hiroshi
2017-04-01
Caffeine is contained in coffee, tea, and numerous beverages and foods. We examined the direct effects of caffeine on the physiological function of pancreatic duct cells by using interlobular duct segments isolated from guinea pig pancreas. The rate of fluid secretion was continuously measured by monitoring the luminal volume of isolated duct segments. Changes in intracellular Ca concentration ([Ca]i) were estimated by microfluorometry in ducts loaded with Fura-2. Both secretin-stimulated and acetylcholine (ACh)-stimulated fluid secretions were substantially and reversibly inhibited by relatively low concentrations of caffeine as low as 0.03 mM relevant to blood levels after ingestion of caffeine-containing beverages. Caffeine inhibited ACh-induced elevation of [Ca]i and secretin-induced fluctuation of [Ca]i. Caffeine abolished thapsigargin-induced intracellular Ca release but did not affect the entry of extracellular Ca. Caffeine (0.05 mM) abolished ethanol (1 mM)-induced fluid hypersecretion in secretin-stimulated pancreatic duct. Low concentrations of caffeine directly inhibit pancreatic ductal fluid secretion stimulated by secretin or ACh and also ethanol-induced fluid hypersecretion. The inhibition by caffeine seems to be mediated by the blockade of intracellular Ca mobilization. Daily intake of caffeine may reduce the volume of pancreatic juice secretion.
Challenges in engineering osteochondral tissue grafts with hierarchical structures.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Duez, Julien; Carucci, Mario; Garcia-Barbazan, Irene; Corral, Matias; Perez, Oscar; Presa, Jesus Luis; Henry, Benoit; Roussel, Camille; Ndour, Papa Alioune; Rosa, Noemi Bahamontes; Sanz, Laura; Gamo, Francisco-Javier; Buffet, Pierre
2018-06-01
The mechanical retention of rigid erythrocytes in the spleen is central in major hematological diseases such as hereditary spherocytosis, sickle-cell disease and malaria. Here, we describe the use of microsphiltration (microsphere filtration) to assess erythrocyte deformability in hundreds to thousands of samples in parallel, by filtering them through microsphere layers in 384-well plates adapted for the discovery of compounds that stiffen Plasmodium falciparum gametocytes, with the aim of interrupting malaria transmission. Compound-exposed gametocytes are loaded into microsphiltration plates, filtered and then transferred to imaging plates for analysis. High-content imaging detects viable gametocytes upstream and downstream from filters and quantifies spleen-like retention. This screening assay takes 3-4 d. Unlike currently available methods used to assess red blood cell (RBC) deformability, microsphiltration enables high-throughput pharmacological screening (tens of thousands of compounds tested in a matter of months) and involves a cell mechanical challenge that induces a physiologically relevant dumbbell-shape deformation. It therefore directly assesses the ability of RBCs to cross inter-endothelial splenic slits in vivo. This protocol has potential applications in quality control for transfusion and in determination of phenotypic markers of erythrocytes in hematological diseases.
Load theory behind the wheel; perceptual and cognitive load effects.
Murphy, Gillian; Greene, Ciara M
2017-09-01
Perceptual Load Theory has been proposed as a resolution to the longstanding early versus late selection debate in cognitive psychology. There is much evidence in support of Load Theory but very few applied studies, despite the potential for the model to shed light on everyday attention and distraction. Using a driving simulator, the effect of perceptual and cognitive load on drivers' visual search was assessed. The findings were largely in line with Load Theory, with reduced distractor processing under high perceptual load, but increased distractor processing under high cognitive load. The effect of load on driving behaviour was also analysed, with significant differences in driving behaviour under perceptual and cognitive load. In addition, the effect of perceptual load on drivers' levels of awareness was investigated. High perceptual load significantly increased inattentional blindness and deafness, for stimuli that were both relevant and irrelevant to driving. High perceptual load also increased RTs to hazards. The current study helps to advance Load Theory by illustrating its usefulness outside of traditional paradigms. There are also applied implications for driver safety and roadway design, as the current study suggests that perceptual and cognitive load are important factors in driver attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mammalian lipoxygenases and their biological relevance.
Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus
2015-04-01
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Copyright © 2014 Elsevier B.V. All rights reserved.
Rault, Aline; Bouix, Marielle; Béal, Catherine
2008-12-01
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.
2003-01-01
Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.
Validity and reliability of the session-RPE method for quantifying training load in karate athletes.
Tabben, M; Tourny, C; Haddad, M; Chaabane, H; Chamari, K; Coquart, J B
2015-04-24
To test the construct validity and reliability of the session rating of perceived exertion (sRPE) method by examining the relationship between RPE and physiological parameters (heart rate: HR and blood lactate concentration: [La --] ) and the correlations between sRPE and two HR--based methods for quantifying internal training load (Banister's method and Edwards's method) during karate training camp. Eighteen elite karate athletes: ten men (age: 24.2 ± 2.3 y, body mass: 71.2 ± 9.0 kg, body fat: 8.2 ± 1.3% and height: 178 ± 7 cm) and eight women (age: 22.6 ± 1.2 y, body mass: 59.8 ± 8.4 kg, body fat: 20.2 ± 4.4%, height: 169 ± 4 cm) were included in the study. During training camp, subjects participated in eight karate--training sessions including three training modes (4 tactical--technical, 2 technical--development, and 2 randori training), during which RPE, HR, and [La -- ] were recorded. Significant correlations were found between RPE and physiological parameters (percentage of maximal HR: r = 0.75, 95% CI = 0.64--0.86; [La --] : r = 0.62, 95% CI = 0.49--0.75; P < 0.001). Moreover, individual sRPE was significantly correlated with two HR--based methods for quantifying internal training load ( r = 0.65--0.95; P < 0.001). The sRPE method showed the high reliability of the same intensity across training sessions (Cronbach's α = 0.81, 95% CI = 0.61--0.92). This study demonstrates that the sRPE method is valid for quantifying internal training load and intensity in karate.
Cardiopulmonary data acquisition system. Version 2.0, volume 1: User's guide
NASA Technical Reports Server (NTRS)
1979-01-01
The Cardiopulmonary Data Acquisition System is a computerized method of both collecting and analyzing physiological data on subjects during a treadmill or ergometer stress test in the clinic. The real time acquisition of the physiological data, such as, heart rate, blood pressure, work load, and respiratory gases is accomplished by an LSI-11 microcomputer which displays this data on a hard copy terminal. The data are also concurrently stored on a mass storage device and anytime after the test period a selectable number of copies of the plots or minute reports can be reproduced at the terminal.
TRI-Worthy Projects for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wotring, V. E.; Strangman, G. E.; Donoviel, D.
2018-02-01
Preparations for exploration will require exposure to the actual deep space environment. The new TRI for Space Health proposes innovative projects using real space radiation to make medically-relevant measurements affecting human physiology.
The relevance of phylogeny to studies of global change.
Edwards, Erika J; Still, Christopher J; Donoghue, Michael J
2007-05-01
Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.
Sex Differences in Androgen Regulation of Metabolism in Nonhuman Primates.
True, Cadence; Abbott, David H; Roberts, Charles T; Varlamov, Oleg
2017-01-01
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females. This review will also focus on the interaction between altered androgen levels and dietary restriction and excess, in particular the Western-style diet that underlies significant human pathophysiology.
SEX DIFFERENCES IN ANDROGEN REGULATION OF METABOLISM IN NONHUMAN PRIMATES
True, Cadence; Abbott, David H.; Roberts, Charles T.; Varlamov, Oleg
2018-01-01
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females, as well as the interaction between altered androgen levels and dietary restriction and excess, in particular the western-style diet that underlies significant human pathophysiology. PMID:29224110
Pathways of the Maillard reaction under physiological conditions.
Henning, Christian; Glomb, Marcus A
2016-08-01
Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.
Szajek, Krzysztof; Wierszycki, Marcin
2016-01-01
Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.
Mimura, Satoru; Kubota, Yumiko; Takisawa, Haruhiko
2018-01-01
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.
Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan
2016-06-01
An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Understanding the Onset of Health Impacts Caused by Disturbances
2015-09-30
will define the PCoD Health stage in a way that we can start to integrate ecological and physiological PCoD research. OBJECTIVES In order to...for the first time assess the relevance of adipose transcriptomic and metabolomic biomarkers as measures relevant to PCoD in cetaceans. We aim to...individuals. APPROACH The Population Consequences of Disturbances ( PCoD ) paradigm provides a mean to link perturbations of individual phenotypic
Pupillary transient responses to within-task cognitive load variation.
Wong, Hoe Kin; Epps, Julien
2016-12-01
Changes in physiological signals due to task evoked cognitive load have been reported extensively. However, pupil size based approaches for estimating cognitive load on a moment-to-moment basis are not as well understood as estimating cognitive load on a task-to-task basis, despite the appeal these approaches have for continuous load estimation. In particular, the pupillary transient response to instantaneous changes in induced load has not been experimentally quantified, and the within-task changes in pupil dilation have not been investigated in a manner that allows their consistency to be quantified with a view to biomedical system design. In this paper, a variation of the digit span task is developed which reliably induces rapid changes of cognitive load to generate task-evoked pupillary responses (TEPRs) associated with large, within-task load changes. Linear modelling and one-way ANOVA reveals that increasing the rate of cognitive loading, while keeping task demands constant, results in a steeper pupillary response. Instantaneous drops in cognitive load are shown to produce statistically significantly different transient pupillary responses relative to sustained load, and when characterised using an exponential decay response, the task-evoked pupillary response time constant is in the order of 1-5 s. Within-task test-retest analysis confirms the reliability of the moment-to-moment measurements. Based on these results, estimates of pupil diameter can be employed with considerably more confidence in moment-to-moment cognitive load estimation systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor.
Vidal, Enrique García; Muñoz, Diego Ramírez; Arias, Sergio Iván Ravelo; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; Freitas, Paulo
2017-09-26
In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy.
Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor
García Vidal, Enrique; Ravelo Arias, Sergio Iván; Sánchez Moreno, Jaime; Ferreira, Ricardo; Freitas, Paulo
2017-01-01
In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy. PMID:28954425
ERIC Educational Resources Information Center
Fitch, James Marston
The basic concepts and several examples of the effects of the physical environment on man are discussed. Aesthetic judgments of the environment are related primarily to the physiological well-being of an individual and secondarily to his social experiences. Excessive loading of any one of the senses can prevent a balanced assessment of the…
Analysis of Soldier Effectiveness in a Mine Resistant Ambush Protected Ground Vehicle
2010-08-17
5% 15% 25% 50% 75% 85% 95% Figure 9: Overall thermal comfort CONCLUSION The effectiveness of Soldiers with varying physiological builds was...Curran, A., Pryor, J., Hepokoski, M. 2010 “Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort .” SAE Paper 2010-01-1205.
A Review of Aircraft Cabin Conditioning for Operations in Australia
1980-10-01
Balance for Thermal Comfort 17 3.4 Liquid Conditioned Garments 18 3.5 Environmental Requirements for Electronic Equipment 19 4. THERMAL LOAD- ON AIRCRAFT...References to these two aspects are given by Nunneley and James (1977). 3.3 Physiological Heat Balance for Thermal Comfort The heat balance for thermal ...
Osmium-191/iridium-191m radionuclide
Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude
1987-01-01
A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.
Late winter availablility of surose to buds of shoots affects flowering and crop load
USDA-ARS?s Scientific Manuscript database
Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between leaf area and production of high quality pecan kernels. This experime...
The recovery time course of the endothelial-cell glycocalyx in vivo and its implications in vitro
Potter, Daniel R.; Jiang, John; Damiano, Edward R.
2009-01-01
Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, while inflammation causes shedding of the layer. To track the endogenous recovery of the glycocalyx in vivo, we used fluorescent micro-particle image velocimetry (µ-PIV) in mouse cremaster-muscle venules to estimate the hydrodynamically relevant glycocalyx thickness 1, 3, 5, and 7 days after enzymatic or cytokine-mediated degradation of the layer. Results indicate that after acute degradation of the glycocalyx, 5–7 days are required for the layer to endogenously restore itself to its native hydrodynamically relevant thickness in vivo. In light of these findings, and since demonstrable evidence has emerged that standard cell-culture conditions are not conducive to providing the environment and/or cellular conditions necessary to produce and maintain a physiologically relevant cell-surface glycocalyx in vitro, we sought to determine if merely the passage of time would be sufficient to promote the production of a hydrodynamically relevant glycocalyx on a confluent monolayer of human umbilical vein endothelial cells (HUVECs). Using µ-PIV, we found that the hydrodynamically relevant glycocalyx was substantially absent 7 days post-confluence on HUVEC-lined cylindrical collagen microchannels maintained under standard culture conditions. Thus it remains to be determined how a hydrodynamically relevant glycocalyx surface layer can be synthesized and maintained in culture before the endothelial-cell culture model can be used to elucidate glycocalyx-mediated mechanisms of endothelial-cell function. PMID:19443840
The New IERS Special Bureau for Loading (SBL)
NASA Technical Reports Server (NTRS)
vanDam, Tonie; Plag, Hans-Peter; Blewitt, Geoffrey; Boy, Jean-Paul; Francis, Olivier; Gegout, Pascal; Kierulf, Halfdan Pascal; Sato, Tadahiro; Scherneck, Hans-Georg; Wahr, John
2002-01-01
Currently, the establishment of the International Earth Rotation Service (IERS) Special Bureau for Loading (SBL) is in progress as part of the IERS Global Geophysical Fluids Center (GGFC). The main purpose of the SBL is to provide reliable, consistent model predictions of loading signals that have been thoroughly tested and validated. The products will describe at least the surface deformation, gravity signal and geo-center variations due to the various surface loading processes in reference frames relevant for direct comparison with existing geodetic observing techniques. To achieve these goals, major scientific advances are required with respect to the Earth model, the theory and algorithms used to model deformations of the Earth as well as improvements in the observational data related to surface loading.
Tickle, Peter G.; Lean, Samantha C.; Rose, Kayleigh A. R.; Wadugodapitiya, Avanti P.; Codd, Jonathan R.
2013-01-01
Summary The application of artificial loads to mammals and birds has been used to provide insight into the mechanics and energetic cost of terrestrial locomotion. However, only two species of bird have previously been used in loading experiments, the cursorial guinea fowl (Numida meleagris) and the locomotor-generalist barnacle goose (Branta leucopsis). Here, using respirometry and treadmill locomotion, we investigate the energetic cost of carrying trunk loads in a diving bird, the tufted duck (Aythya fuligula). Attachment of back loads equivalent to 10% and 20% of body mass increased the metabolic rate during locomotion (7.94% and 15.92%, respectively) while sternal loads of 5% and 10% had a greater proportional effect than the back loads (metabolic rate increased by 7.19% and 13.99%, respectively). No effect on locomotor kinematics was detected during any load carrying experiments. These results concur with previous reports of load carrying economy in birds, in that there is a less than proportional relationship between increasing load and metabolic rate (found previously in guinea fowl), while application of sternal loads causes an approximate doubling of metabolic rate compared to back loads (reported in an earlier study of barnacle geese). The increase in cost when carrying sternal loads may result from having to move this extra mass dorso-ventrally during respiration. Disparity in load carrying economy between species may arise from anatomical and physiological adaptations to different forms of locomotion, such as the varying uncinate process morphology and hindlimb tendon development in goose, guinea fowl and duck. PMID:24244861
Allostatic load but not medical burden predicts memory performance in late-life bipolar disorder.
Vaccarino, Sophie R; Rajji, Tarek K; Gildengers, Ariel G; Waters, Sarah E S; Butters, Meryl A; Menon, Mahesh; Blumberger, Daniel M; Voineskos, Aristotle N; Miranda, Dielle; Mulsant, Benoit H
2018-03-01
Older patients with bipolar disorder (BD) present with variable degrees of cognitive impairment. Over time, stress, mood episodes, and comorbidities increase the body's allostatic load. We assessed the extent to which allostatic load vs more traditional measures of medical burden account for the heterogeneity in cognition in this population. Thirty-five older euthymic patients with BD and 30 age-equated, gender-equated, and education-equated comparison participants were administered a comprehensive assessment including a neuropsychological battery, and 9 physiological measures to determine allostatic load. The relationship among allostatic load, medical burden, and cognition was assessed. Compared with the mentally healthy comparators, patients were impaired globally, and in 4 cognitive domains-information-processing speed / executive functioning, delayed memory, language, and visuomotor ability, and presented with greater medical burden but not a different allostatic load. Allostatic load, but not medical burden, was associated with delayed memory performance both in a correlational analysis and in a multivariate regression analysis. Euthymic older patients with BD are impaired on several cognitive domains and have high medical burden. Their memory performance is more strongly associated with allostatic load than with traditional measures of medical burden. These findings need to be replicated and extended longitudinally. Copyright © 2017 John Wiley & Sons, Ltd.
Goldstein, David S
2013-10-01
This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.
Lactase persistence versus lactose intolerance: Is there an intermediate phenotype?
Dzialanski, Zbigniew; Barany, Michael; Engfeldt, Peter; Magnuson, Anders; Olsson, Lovisa A; Nilsson, Torbjörn K
2016-02-01
According to the prevailing theory about the genetic background to lactose intolerance, there are three genotypes but only two adult physiological phenotypes: lactase persistence in individuals with the CT and TT genotypes and lactase non-persistence in individuals with the CC genotype. However, analysis of lactase activity from intestinal biopsies has revealed three distinct levels of activity, suggesting that an intermediate physiological phenotype may exist. To assess possible disparities between different genotypes with regard to biomarkers of lactase activity and physical symptoms during an oral lactose load test. A retrospective study using an oral lactose load test (n=487). Concentrations of hydrogen in exhaled air and blood glucose were measured. Afterwards, subjects were asked to provide oral mucosa samples for genotyping and answer a questionnaire (participation rate 56%, n=274). Mean hydrogen levels in exhaled air at 120min were significantly higher in the CT genotype than in the TT genotype. There was no significant difference in blood glucose levels between the two groups. Reported symptoms, with the possible exception of abdominal pain, were equally prevalent in both groups. Subjects with the CT and TT genotypes, hitherto classified as lactase-persistent, differ in their physiological response to lactose intake, indicating differences in phenotype which could have clinical significance. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
A novel method to assess primary stability of press-fit acetabular cups.
Crosnier, Emilie A; Keogh, Patrick S; Miles, Anthony W
2014-11-01
Initial stability is an essential prerequisite to achieve osseointegration of press-fit acetabular cups in total hip replacements. Most in vitro methods that assess cup stability do not reproduce physiological loading conditions and use simplified acetabular models with a spherical cavity. The aim of this study was to investigate the effect of bone density and acetabular geometry on cup stability using a novel method for measuring acetabular cup micromotion. A press-fit cup was inserted into Sawbones(®) foam blocks having different densities to simulate normal and osteoporotic bone variations and different acetabular geometries. The stability of the cup was assessed in two ways: (a) measurement of micromotion of the cup in 6 degrees of freedom under physiological loading and (b) uniaxial push-out tests. The results indicate that changes in bone substrate density and acetabular geometry affect the stability of press-fit acetabular cups. They also suggest that cups implanted into weaker, for example, osteoporotic, bone are subjected to higher levels of micromotion and are therefore more prone to loosening. The decrease in stability of the cup in the physiological model suggests that using simplified spherical cavities to model the acetabulum over-estimates the initial stability of press-fit cups. This novel testing method should provide the basis for a more representative protocol for future pre-clinical evaluation of new acetabular cup designs. © IMechE 2014.
Goldstein, David S.
2016-01-01
This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239
Barboza Solís, Cristina; Fantin, Romain; Castagné, Raphaële; Lang, Thierry; Delpierre, Cyrille; Kelly-Irving, Michelle
2016-09-01
Understanding how human environments affect our health by "getting under the skin" and penetrating the cells, organs and physiological systems of our bodies is a key tenet in public health research. Here, we examine the idea that early life socioeconomic position (SEP) can be biologically embodied, potentially leading to the production of health inequalities across population groups. Allostatic load (AL), a composite measure of overall physiological wear-and-tear, could allow for a better understanding of the potential biological pathways playing a role in the construction of the social gradient in adult health. We investigate the factors mediating the link between two components of parental SEP, maternal education (ME) and parental occupation (PO), and AL at 44 years. Data was used from 7573 members of the 1958 British birth cohort follow-up to age 44. AL was constructed using 14 biomarkers representing four physiological systems. We assessed the contribution of financial/materialist, psychological/psychosocial, educational, and health behaviors/BMI pathways over the life course, in mediating the associations between ME, PO and AL. ME and PO were mediated by three pathways: educational, material/financial, and health behaviors, for both men and women. A better understanding of embodiment processes leading to disease development may contribute to developing adapted public policies aiming to reduce health inequalities. Copyright © 2016. Published by Elsevier Ltd.
Prescott, Susan L; Logan, Alan C
2017-11-01
Advances in omics and microbiome technology have transformed the ways in which the biological consequences of life in the 'ecological theatre' can be visualized. Exposome science examines the total accumulated environmental exposures (both detrimental and beneficial) as a means to understand the response of the 'total organism to the total environment' over time. The repetitive stimulation of compensatory physiological responses (immune, cardiovascular, neuroendocrine) in response to stress - including sources of stress highly relevant to socioeconomic disadvantage - may lead to metabolic dysregulation and cellular damage, ultimately influencing behavior and disease. The collective toll of physiological wear and tear, known as allostatic load, is not paid equally throughout developed societies. It is paid in excess by the disadvantaged. In the context of fast-food, human and experimental research demonstrates that the biological response to a single fast-food-style meal - especially as mediated by the microbiome- is a product of the person's total lived experience, including the ability to buffer the fast-food meal-induced promotion of inflammation and oxidative stress. Emerging research indicates that each meal and its nutritional context matters. As we discuss, equal weekly visits to major fast-food outlets by the affluent and deprived do not translate into biological equivalency. Hence, debate concerning reducing fast-food outlets through policy - especially in disadvantaged neighborhoods where they are prevalent - requires a biological context. The fast-food establishment and fast-food meal - as they represent matters of food justice and press upon non-communicable disease risk - are far more than physical structures and collections of carbohydrate, fat, sugar and sodium. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ruscello, B; Briotti, G; Tozzo, N; Partipilo, F; Taraborelli, M; Zeppetella, A; Padulo, J; D'Ottavio, S
2015-10-01
The aim of this paper was to investigate the acute effects of two different initial heart rates intensities when testing the repeated sprint ability (RSA) performances in young soccer players. Since there are many kinds of pre-match warm-ups, we chose to take as an absolute indicator of internal load the heart rate reached at the end of two different warm-up protocols (60 vs. 90% HRmax) and to compare the respective RSA performances. The RSA tests were performed on fifteen male soccer players (age: 17.9±1.5 years) with two sets of ten shuttle-sprints (15+15 m) with a 1:3 exercise to rest ratio, in different days (randomized order) with different HR% (60 & 90% HRmax). In order to compare the different sprint performances a Fatigue Index (FI%) was computed, while the blood lactate concentrations (BLa-) were measured before and after testing, to compare metabolic demand. Significant differences among trials within each sets (P<0.01) were found. Differences between sets were also found, especially comparing the last five trials for each set (Factorial ANOVA; P<0.01), effect size values confirming the relevance of these differences. Although the BLa- after warm-up was higher (36%) between 90% vs. 60% HRmax, after the RSA test the differences were considerably low (7%). Based on physiological information's this methodological approach (testing with initial 90%HRmax) reflects more realistically the metabolic background in which a soccer player operates during a real match. This background may be partially reproduced by warming up protocols that, by duration and metabolic commitment, can reproduce conveniently the physiological conditions encountered in a real game (e.g. HRmax≈85-95%; BLa->4 mmol/L(-1)).
Luedtke, Brandon E; Bosilevac, Joseph M; Harhay, Dayna M; Arthur, Terrance M
2016-04-01
Contamination of beef products by Shiga toxin-producing Escherichia coli is a concern for food safety with a particular subset, the enterohemorrhagic E. coli (EHEC), being the most relevant to human disease. To mitigate food safety risks, preharvest intervention strategies have been implemented with the aim to reduce EHEC in cattle. One class of interventions that has been widely used in feedlots is direct-fed microbials (DFMs), which can contain various dosing rates of probiotic bacteria. Here we compare the use of two different doses of a commercially available DFM on total EHEC load in a commercial feedlot setting. The DFMs used were the standard 10(9) Propionibacterium freudenreichii and 10(6) Lactobacillus acidophilus colony forming units (CFUs)/head/day dose of Bovamine(®) (Nutrition Physiology Company, Guymon, OK) and the higher dose, Bovamine Defend™ (Nutrition Physiology Company), which is dosed at 10(9) P. freudenreichii and 10(9) Lactobacillus acidophilus CFUs/head/day. To analyze the total EHEC fecal concentration, 2200 head of cattle were assigned a DFM feed regimen lasting approximately 5 months. At harvest, 480 head of cattle were sampled using rectoanal mucosal swabs. A quantitative polymerase chain reaction assay targeting ecf1 was used to enumerate the total EHEC fecal concentration for 240 head fed the low-dose DFM and 240 head fed the high-dose DFM. No significant difference (p > 0.05) in the fecal concentration of total EHEC was observed between the two doses. This suggests that using an increased dosage provides no additional reduction in the total EHEC fecal concentration of feedlot cattle compared to the standard dosage.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
What makes the learning of physiology in a PBL medical curriculum challenging? Student perceptions.
Tufts, Mark A; Higgins-Opitz, Susan B
2009-09-01
Physiology is an integral component of any medical curriculum. Traditionally, the learning of physiology has relied heavily on systems-based didactic lectures. In 2001, the Nelson R. Mandela School of Medicine (NRMSM; Durban, South Africa) embarked on a problem-based curriculum in which the learning of physiology was integrated with relevant clinical scenarios. Students are expected to gain an understanding of physiology through self-directed research with only certain aspects being covered in large-group resource sessions (LGRSs). It has gradually become evident that this approach has resulted in significant gaps in students' understanding of basic physiological concepts. A survey of student perceptions of needs for physiology was undertaken to gain a better understanding of their perceived problems and also to inform them of proposed curricular changes. Students were asked to what extent they thought physiology was essential for their understanding of pathology, interpretation of patients' clinical signs and presentation of symptoms, and analysis of laboratory results. Students were also invited to detail the difficulties they experienced in understanding in LGRSs on clinical and physiological topics. The results of the survey indicate that greater interaction of students with experts is needed. In particular, students felt that they lacked the basic conceptual foundations essential for the learning and understanding of physiology, since the difficulties that the students identified are mainly terminological and conceptual in nature.
NASA Technical Reports Server (NTRS)
Vernikos, J.
1996-01-01
The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.
Interpretation of physiological indicators of motivation: Caveats and recommendations.
Richter, Michael; Slade, Kate
2017-09-01
Motivation scientists employing physiological measures to gather information about motivation-related states are at risk of committing two fundamental errors: overstating the inferences that can be drawn from their physiological measures and circular reasoning. We critically discuss two complementary approaches, Cacioppo and colleagues' model of psychophysiological relations and construct validation theory, to highlight the conditions under which these errors are committed and provide guidance on how to avoid them. In particular, we demonstrate that the direct inference from changes in a physiological measure to changes in a motivation-related state requires the demonstration that the measure is not related to other relevant psychological states. We also point out that circular reasoning can be avoided by separating the definition of the motivation-related state from the hypotheses that are empirically tested. Copyright © 2017 Elsevier B.V. All rights reserved.
Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition
NASA Astrophysics Data System (ADS)
Kim, Jonghwa; André, Elisabeth
This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.