Science.gov

Sample records for phytochrome gaf domain

  1. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    PubMed Central

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-01-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility. PMID:27857208

  2. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-11-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.

  3. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  4. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    PubMed Central

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-01-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes. PMID:26679720

  5. Multiple Roles of a Conserved GAF Domain Tyrosine Residue in Cyanobacterial and Plant Phytochromes†

    PubMed Central

    Fischer, Amanda J.; Rockwell, Nathan C.; Jang, Abigail Y.; Ernst, Lauren A.; Waggoner, Alan S.; Duan, Yong; Lei, Hongxing; Lagarias, J. Clark

    2005-01-01

    The phytochrome family of red/far-red photoreceptors has been optimized to support photochemical isomerization of a bound bilin chromophore, a process that triggers a conformational change and modulates biochemical output from the surrounding protein scaffold. Recent studies have established that the efficiency of this photochemical process is profoundly altered by mutation of a conserved tyrosine residue (Tyr176) within the bilin-binding GAF domain of the cyanobacterial phytochrome Cph1 [Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome’s glowing potential, Proc. Natl. Acad. Sci. U.S.A. 101, 17334–17339]. Here, we show that the equivalent mutation in plant phytochromes behaves similarly, indicating that the function of this tyrosine in the primary photochemical mechanism is conserved. Saturation mutagenesis of Tyr176 in Cph1 establishes that no other residue can support comparably efficient photoisomerization. The spectroscopic consequences of Tyr176 mutations also reveal that Tyr176 regulates the conversion of the porphyrin-like conformation of the bilin precursor to a more extended conformation. The porphyrin-binding ability of the Tyr176Arg mutant protein indicates that Tyr176 also regulates the ligand-binding specificity of apophytochrome. On the basis of the hydrogen-bonding ability of Tyr176 substitutions that support the nonphotochemical C15-Z,syn to C15-Z,anti interconversion, we propose that Tyr176 orients the carboxyl side chain of a conserved acidic residue to stabilize protonation of the bilin chromophore. A homology model of the GAF domain of Cph1 predicts a C5-Z,syn, C10-Z,syn, C15-Z,anti configuration for the chromophore and implicates Glu189 as the proposed acidic residue stabilizing the extended conformation, an interpretation consistent with site-directed mutagenesis of this conserved acidic residue. PMID:16285723

  6. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus.

    PubMed Central

    Rockwell, Nathan C.; Njuguna, Stephanie Lane; Roberts, Laurel; Castillo, Elenor; Parson, Victoria L.; Dwojak, Sunshine; Lagarias, J. Clark; Spiller, Susan C.

    2008-01-01

    Phytochromes are widely occurring red/far-red photoreceptors that utilize a linear tetrapyrrole (bilin) chromophore covalently bound within a knotted PAS-GAF domain pair. Cyanobacteria also contain more distant relatives of phytochromes that lack this knot, such as the phytochrome-related cyanobacteriochromes implicated to function as blue/green switchable photoreceptors. In this study, we characterize the cyanobacteriochrome Tlr0924 from the thermophilic cyanobacterium Thermosynechococcus elongatus. Full-length Tlr0924 exhibits blue/green photoconversion across a broad range of temperatures, including physiologically relevant temperatures for this organism. Spectroscopic characterization of Tlr0924 demonstrates that its green-absorbing state is in equilibrium with a labile, spectrally distinct blue-absorbing species. The photochemically generated blue-absorbing state is in equilibrium with another species absorbing at longer wavelengths, giving a total of 4 states. Cys499 is essential for this behavior, because mutagenesis of this residue results in red-absorbing mutant biliproteins. Characterization of the C499D mutant protein by absorbance and CD spectroscopy supports the conclusion that its bilin chromophore adopts a similar conformation to the red-light-absorbing Pr form of phytochrome. We propose a model photocycle in which Z/E photoisomerization of the 15/16 bond modulates formation of a reversible thioether linkage between Cys499 and C10 of the chromophore, providing the basis for the blue/green switching of cyanobacteriochromes. PMID:18549244

  7. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    SciTech Connect

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  8. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    SciTech Connect

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  9. Structural rearrangement accompanying ligand binding in the GAF domain of CodY from Bacillus subtilis

    PubMed Central

    Levdikov, Vladimir M.; Blagova, Elena; Colledge, Vicki L.; Lebedev, Andrey A.; Williamson, David C.; Sonenshein, Abraham L.; Wilkinson, Anthony J

    2011-01-01

    The GAF domain is a simple module widespread in proteins of diverse function including cell signalling proteins and transcription factors. Its structure, typically spanning 150 residues, has three tiers; a basal layer of two or more α-helices, a middle layer of β-pleated sheet and a top layer formed by segments of the polypeptide that connect strands of the β-sheet. In structures of GAF domains in complex with their effectors, these polypeptide segments envelop the ligand enclosing it in a cavity whose base is formed by the β-sheet, so that ligand binding and release must be accompanied by conformational rearrangements of the distal portion of the structure. Descriptions of binding are presently limited by the absence of a GAF domain for which both liganded and unliganded structures are known. Earlier, we solved the crystal structure of the GAF domain of CodY, a branched chain amino acid and GTP responsive regulator of the transcription of stationary phase and virulence genes in Bacillus, in complexes with isoleucine and valine. Here, we report the structure of this domain in its unliganded form, allowing definition of the structural changes accompanying ligand binding. The core of the protein and its dimerisation interface are essentially unchanged in agreement with circular dichroism spectroscopy experiments that show that the secondary structure composition is unperturbed by ligand binding. There is however, extensive refolding of the binding site loops, with up to 15 Å movements of the coiled segment linking β3 and β4, such that in the absence of the ligand, the binding pocket is not formed. The implications of these structural rearrangements for ligand affinity and specificity are discussed. Finally, saturation transfer difference NMR spectroscopy showed binding of isoleucine, but not GTP, to the GAF domain suggesting that the two cofactors do not have a common binding site. PMID:19500589

  10. Characterization of Two Thermostable Cyanobacterial Phytochromes Reveals Global Movements in the Chromophore-binding Domain during Photoconversion*S⃞

    PubMed Central

    Ulijasz, Andrew T.; Cornilescu, Gabriel; von Stetten, David; Kaminski, Steve; Mroginski, Maria Andrea; Zhang, Junrui; Bhaya, Devaki; Hildebrandt, Peter; Vierstra, Richard D.

    2008-01-01

    Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B′, that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. 1H-15N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters. PMID:18480055

  11. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery.

    PubMed

    De Franceschi, Nicola; Wild, Klemens; Schlacht, Alexander; Dacks, Joel B; Sinning, Irmgard; Filippini, Francesco

    2014-01-01

    Endomembrane trafficking is one of the most prominent cytological features of eukaryotes. Given their widespread distribution and specialization, coiled-coil domains, coatomer domains, small GTPases and Longin domains are considered primordial 'building blocks' of the membrane trafficking machineries. Longin domains are conserved across eukaryotes and were likely to be present in the Last Eukaryotic Common Ancestor. The Longin fold is based on the α-β-α sandwich architecture and a unique topology, possibly accounting for the special adaptation to the eukaryotic trafficking machinery. The ancient Per ARNT Sim (PAS) and cGMP-specific phosphodiesterases, Adenylyl cyclases and FhlA (GAF) family domains show a similar architecture, and the identification of prokaryotic counterparts of GAF domains involved in trafficking provides an additional connection for the endomembrane system back into the pre-eukaryotic world. Proteome-wide, comparative bioinformatic analyses of the domains reveal three binding regions (A, B and C) mediating either specific or conserved protein-protein interactions. While the A region mediates intra- and inter-molecular interactions, the B region is involved in binding small GTPases, thus providing an evolutionary connection among major building blocks in the endomembrane system. Finally, we propose that the peculiar interaction surface of the C region of the Longin domain allowed it to extensively integrate into the endomembrane trafficking machinery in the earliest stages of building the eukaryotic cell. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor

    PubMed Central

    Ho, Yew-Seng J.; Burden, Lisa M.; Hurley, James H.

    2000-01-01

    GAF domains are ubiquitous motifs present in cyclic GMP (cGMP)-regulated cyclic nucleotide phosphodiesterases, certain adenylyl cyclases, the bacterial transcription factor FhlA, and hundreds of other signaling and sensory proteins from all three kingdoms of life. The crystal structure of the Saccharomyces cerevisiae YKG9 protein was determined at 1.9 Å resolution. The structure revealed a fold that resembles the PAS domain, another ubiquitous signaling and sensory transducer. YKG9 does not bind cGMP, but the isolated first GAF domain of phosphodiesterase 5 binds with Kd = 650 nM. The cGMP binding site of the phosphodiesterase GAF domain was identified by homology modeling and site-directed mutagenesis, and consists of conserved Arg, Asn, Lys and Asp residues. The structural and binding studies taken together show that the cGMP binding GAF domains form a new class of cyclic nucleotide receptors distinct from the regulatory domains of cyclic nucleotide-regulated protein kinases and ion channels. PMID:11032796

  13. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    SciTech Connect

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.; Eakin, Catherine M.; Rajagopal, Ponni; Brzovic, Peter S.; Beavo, Joseph A.; Klevit, Rachel E.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  14. Targeting PDE10A GAF Domain with Small Molecules: A Way for Allosteric Modulation with Anti-Inflammatory Effects.

    PubMed

    García, Ana M; Brea, José; González-García, Alejandro; Pérez, Concepción; Cadavid, María Isabel; Loza, María Isabel; Martinez, Ana; Gil, Carmen

    2017-09-04

    Phosphodiesterase (PDE) enzymes regulate the levels of cyclic nucleotides, cAMP, and/or cGMP, being attractive therapeutic targets. In order to modulate PDE activity in a selective way, we focused our efforts on the search of allosteric modulators. Based on the crystal structure of the PDE10A GAF-B domain, a virtual screening study allowed the discovery of new hits that were also tested experimentally, showing inhibitory activities in the micromolar range. Moreover, these new PDE10A inhibitors were able to decrease the nitrite production in LPS-stimulated cells, thus demonstrating their potential as anti-inflammatory agents.

  15. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120*

    PubMed Central

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-01-01

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The “as isolated” form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin FeIII heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of −445 and −453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (FeII state) binds both NO and CO. Cysteine coordination of the as isolated FeIII protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  16. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.

    PubMed

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-07-31

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.

  17. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    PubMed Central

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M.

    2012-01-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate. PMID:22983183

  18. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome

    PubMed Central

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Shcherbakova, Daria M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2017-01-01

    Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains. PMID:28481303

  19. Characterization of tobacco expressing functional oat phytochrome. Domains responsible for the rapid degradation of Pfr are conserved between monocots and dicots

    SciTech Connect

    Cherry, J.R.; Vierstra, R.D. ); Hershey, H.P. )

    1991-07-01

    Constitutive expression of a chimeric oat phytochrome gene in tobacco (Nicotiana tabacum) results in the accumulation of a functional 124-kilodalton photoreceptor that markedly alters the phenotype of light-grown tobacco. Here, we provide a detailed phenotypic and biochemical characterization of homozygous tobacco expressing high levels of oat phytochrome. Phenotypic changes include a substantial inhibition of stem elongation, decreased apical dominance, increased leaf chlorophyll content, and delayed leaf senescence. Oat phytochrome synthesized in tobacco is indistinguishable from that present in etiolated oats, having photoreversible difference spectrum maxima at 665 and 730 nanometers, exhibiting negligible dark reversion of phytochrome - far red-absorbing from (Pfr) to phytochrome - red-absorbing form (Pr), and existing as a dimer with an apparent size of approximately 300 kilodaltons. Heterodimers between the oat and tobacco chromoproteins were detected. Endogenous tobacco phytochrome and transgenically expressed oat phytochrome are rapidly degraded in vivo upon photoconversion of Pr to Pfr. Breakdown of both oat and tobacco Pfr is associated with the accumulation of ubiquitin-phytochrome conjugates, suggesting that degradation occurs via the ubiquitin-dependent proteolytic pathway. This result indicates that the factors responsible for selective recognition of Pfr by the ubiquitin pathway are conserved between monocot and dicot phytochromes. More broadly, it demonstrates that the domains(s) within a plant protein responsible for its selective breakdown can be recognized by the degradation machinery of heterologous species.

  20. 2.3 Å X-ray Structure of the Heme-Bound GAF Domain of Sensory Histidine Kinase DosT of Mycobacterium tuberculosis†

    PubMed Central

    Podust, Larissa M.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.

    2009-01-01

    Mycobacterium tuberculosis responds to the changes in environmental conditions through a two-component signaling system that detects reduced O2 tension and NO and CO exposures via the heme-binding GAF domains of two sensory histidine kinases, DosT and DevS, and the transcriptional regulator DosR. We report the first x-ray structure of the DosT heme-bound GAF domain (GAFDosT) in both oxy and deoxy forms determined to a resolution of 2.3 Å. In GAFDosT, heme binds in an orientation orthogonal to that in the PAS domains via a highly conserved motif including invariant H147 as a proximal heme axial ligand. On the distal side, invariant Y169 is in stacking interactions with the heme with its long axis parallel and the plane of the ring orthogonal to the heme plane. In one of the two protein monomers in an asymmetric unit, O2 binds as a second axial ligand to the heme iron, and is stabilized via an H-bond to the OH-group of Y169. The structure reveals two small tunnel-connected cavities and a pore on the protein surface that suggest a potential route for O2 access to the sensing pocket. The limited conformational differences observed between differently heme iron-ligated GAFDosT monomers in the asymmetric unit may result from crystal lattice limitations since atmospheric oxygen binding likely occurs in the crystal as a result of x-ray induced Fe3+ photoreduction during diffraction data collection. Determination of the GAFDosT structure sets up a framework in which to address ligand-recognition, discrimination, and signal propagation schemes in the heme-based GAF domains of biological sensors. PMID:18980385

  1. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

    PubMed

    Rockwell, Nathan C; Martin, Shelley S; Feoktistova, Kateryna; Lagarias, J Clark

    2011-07-19

    Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.

  2. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion.

    PubMed

    Burgie, E Sethe; Wang, Tong; Bussell, Adam N; Walker, Joseph M; Li, Huilin; Vierstra, Richard D

    2014-08-29

    Phytochromes are multidomain photoswitches that drive light perception in plants and microorganisms by coupling photoreversible isomerization of their bilin chromophore to various signaling cascades. How changes in bilin conformation affect output by these photoreceptors remains poorly resolved and might include several species-specific routes. Here, we present detailed three-dimensional models of the photosensing module and a picture of an entire dimeric photoreceptor through structural analysis of the Deinococcus radiodurans phytochrome BphP assembled with biliverdin (BV). A 1.16-Å resolution crystal structure of the bilin-binding pocket in the dark-adapted red light-absorbing state illuminated the intricate network of bilin/protein/water interactions and confirmed the protonation and ZZZssa conformation of BV. Structural and spectroscopic comparisons with the photochemically compromised D207A mutant revealed that substitutions of Asp-207 allow inclusion of cyclic porphyrins in addition to BV. A crystal structure of the entire photosensing module showed a head-to-head, twisted dimeric arrangement with bowed helical spines and a hairpin protrusion connecting the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) and phytochrome-specific (PHY) domains. A key conserved hairpin feature is its anti-parallel, two β-strand stem, which we show by mutagenesis to be critical for BphP photochemistry. Comparisons of single particle electron microscopic images of the full-length BphP dimer in the red light-absorbing state and the photoactivated far-red light-absorbing state revealed a large scale reorientation of the PHY domain relative to the GAF domain, which alters the position of the downstream histidine kinase output module. Together, our data support a toggle model whereby bilin photoisomerization alters GAF/PHY domain interactions through conformational modification of the hairpin, which regulates signaling by impacting the relationship between sister output modules

  3. Novel Photodynamics in Phytochrome & Cyanobacteriochrome Photosensory Proteins

    NASA Astrophysics Data System (ADS)

    Larsen, Delmar

    2015-03-01

    The photodynamics of recently characterized phytochrome and cyanobacteriochrome photoreceptors are discussed. Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but exhibit greater spectral diversity. The excited-state mechanisms underlying the initial photoisomerization in the forward reactions of the cyanobacterial photoreceptor Cph1 from Synechocystis, the RcaE CBCR from Fremyella diplosiphon, and Npr6012g4 CBCR from Nostoc punctiforme were contrasted via multipulse pump-dump-probe transient spectroscopy. A rich excited-state dynamics are resolved involving a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates, and Le Chatelier redistribution. NpR6012g4 exhibits a high quantum yield for its forward photoreaction (40%) that was ascribed to the activity of hidden, productive ground-state intermediates via a ``second chance initiation dynamics'' (SCID) mechanism. This work was supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117).

  4. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis†

    PubMed Central

    Vos, Marten H.; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Luo, Hao; Eaton-Rye, Julian J.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.; Liebl, Ursula

    2011-01-01

    The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding, To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O2, NO and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O2 escape from the heme pocket on the picoseconds timescale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O2 trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O2. We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intra-protein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes. PMID:22142262

  5. Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome A signal transduction.

    PubMed

    Lin, Rongcheng; Teng, Yibo; Park, Hee-Jin; Ding, Lei; Black, Christopher; Fang, Ping; Wang, Haiyang

    2008-10-01

    Phytochrome A is the primary photoreceptor for mediating various far-red light-induced responses in higher plants. We recently showed that Arabidopsis (Arabidopsis thaliana) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), a pair of homologous proteins sharing significant sequence homology to Mutator-like transposases, act as novel transcription factors essential for activating the expression of FHY1 and FHL (for FHY1-like), whose products are required for light-induced phytochrome A nuclear accumulation and subsequent light responses. FHY3, FAR1, and Mutator-like transposases also share a similar domain structure, including an N-terminal C2H2 zinc finger domain, a central putative core transposase domain, and a C-terminal SWIM motif (named after SWI2/SNF and MuDR transposases). In this study, we performed a promoter-swapping analysis of FHY3 and FAR1. Our results suggest that the partially overlapping functions of FHY3 and FAR1 entail divergence of their promoter activities and protein subfunctionalization. To gain a better understanding of the molecular mode of FHY3 function, we performed a structure-function analysis, using site-directed mutagenesis and transgenic approaches. We show that the conserved N-terminal C2H2 zinc finger domain is essential for direct DNA binding and biological function of FHY3 in mediating light signaling, whereas the central core transposase domain and C-terminal SWIM domain are essential for the transcriptional regulatory activity of FHY3 and its homodimerization or heterodimerization with FAR1. Furthermore, the ability to form homodimers or heterodimers largely correlates with the transcriptional regulatory activity of FHY3 in plant cells. Together, our results reveal discrete roles of the multiple domains of FHY3 and provide functional support for the proposition that FHY3 and FAR1 represent transcription factors derived from a Mutator-like transposase(s).

  6. Gene Conversion Transfers the GAF-A Domain of Phosphodiesterase TbrPDEB1 to One Allele of TbrPDEB2 of Trypanosoma brucei

    PubMed Central

    Kunz, Stefan; Luginbuehl, Edith; Seebeck, Thomas

    2009-01-01

    Background Chromosome 9 of Trypanosoma brucei contains two closely spaced, very similar open reading frames for cyclic nucleotide specific phosphodiesterases TbrPDEB1 and TbrPDEB2. They are separated by 2379 bp, and both code for phosphodiesterases with two GAF domains in their N-terminal moieties and a catalytic domain at the C-terminus. Methods and Findings The current study reveals that in the Lister427 strain of T. brucei, these two genes have undergone gene conversion, replacing the coding region for the GAF-A domain of TbrPDEB2 by the corresponding region of the upstream gene TbrPDEB1. As a consequence, these strains express two slightly different versions of TbrPDEB2. TbrPDEB2a represents the wild-type phosphodiesterase, while TbrPDEB2b represents the product of the converted gene. Earlier work on the subcellular localization of TbrPDEB1 and TbrPDEB2 had demonstrated that TbrPDEB1 is predominantly located in the flagellum, whereas TbrPDEB2 partially locates to the flagellum but largely remains in the cell body. The current findings raised the question of whether this dual localization of TbrPDEB2 may reflect the two alleles. To resolve this, TbrPDEB2 of strain STIB247 that is homozygous for TbrPDEB2a was tagged in situ, and its intracellular localization was analyzed. Conclusions The results obtained were very similar to those found earlier with Lister427, indicating that the dual localization of TbrPDEB2 reflects its true function and is not simply due to the presence of the two different alleles. Notably, the gene conversion event is unique for the Lister427 strain and all its derivatives. Based on this finding, a convenient PCR test has been developed that allows the stringent discrimination between Lister-derived strains that are common in many laboratories and other isolates. The technique is likely very useful to resolve questions about potential mix-ups of precious field isolates with the ubiquitous Lister strain. PMID:19513125

  7. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.

    PubMed Central

    Cherry, J R; Hondred, D; Walker, J M; Keller, J M; Hershey, H P; Vierstra, R D

    1993-01-01

    A series of seven carboxy-terminal deletion mutants of oat phytochrome A were stably expressed in transgenic tobacco to localize phytochrome domains involved in chromophore attachment, spectral integrity, photoreversibility between the red light (Pr)- and far-red light (Pfr)-absorbing forms, dimerization, and biological activity. Amino acids necessary for chromophore attachment in vivo were localized to the amino-terminal 398 residues because mutant proteins this small had covalently bound chromophore. Deletion mutants from the carboxy terminus to residue 653 were spectrally indistinguishable from the full-length chromoprotein. In contrast, further truncation to residue 399 resulted in a chromoprotein with a bleached Pfr absorbance spectrum, Pr and Pfr absorbance maxima shifted toward shorter wavelengths, and reduced Pfr to Pr phototransformation efficiency. Thus, residues between 399 ad 652 are required for spectral integrity but are not essential for chromophore attachment. The sequence(s) between residues 919 and 1093 appears to be necessary for dimerization. Carboxy-terminal mutants containing this region behaved as dimers under nondenaturing conditions in vitro, whereas truncations without this region behaved as monomers. None of the plants expressing high levels of deletion mutants lacking the 35 carboxy-terminal amino acids displayed the light-exaggerated phenotype characteristic of plants expressing biologically active phytochrome A, even when the truncated phytochromes were expressed at levels 6- to 15-fold greater than that effective for the full-length chromoprotein. Collectively, these data show that the phytochrome protein contains several separable carboxy-terminal domains required for structure/function and identify a domain within 35 residues of the carboxy terminus that is critical for the biological activity of the photoreceptor in vivo. PMID:8518556

  8. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3

    PubMed Central

    Dalton, Jutta C.; Bätz, Ulrike; Liu, Jason; Curie, Gemma L.; Quail, Peter H.

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5′-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  9. Marine algae and land plants share conserved phytochrome signaling systems.

    PubMed

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C; Martin, Shelley S; Ngan, Chew Yee; Reistetter, Emily N; van Baren, Marijke J; Price, Dana C; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J Clark; Worden, Alexandra Z

    2014-11-04

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  10. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  11. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGES

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; ...

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  12. Mapping-by-Sequencing Identifies HvPHYTOCHROME C as a Candidate Gene for the early maturity 5 Locus Modulating the Circadian Clock and Photoperiodic Flowering in Barley

    PubMed Central

    Pankin, Artem; Campoli, Chiara; Dong, Xue; Kilian, Benjamin; Sharma, Rajiv; Himmelbach, Axel; Saini, Reena; Davis, Seth J; Stein, Nils; Schneeberger, Korbinian; von Korff, Maria

    2014-01-01

    Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing approach applied on the whole-exome capture data from bulked early flowering segregants derived from a backcross of the Bowman(eam5) introgression line. We demonstrate that eam5 disrupts circadian expression of clock genes. Moreover, it interacts with the major photoperiod response gene Ppd-H1 to accelerate flowering under noninductive short days. Our results suggest that HvPHYC participates in transmission of light signals to the circadian clock and thus modulates light-dependent processes such as photoperiodic regulation of flowering. PMID:24996910

  13. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.

    PubMed

    Nagano, Soshichiro; Scheerer, Patrick; Zubow, Kristina; Michael, Norbert; Inomata, Katsuhiko; Lamparter, Tilman; Krauß, Norbert

    2016-09-23

    Agp1 is a canonical biliverdin-binding bacteriophytochrome from the soil bacterium Agrobacterium fabrum that acts as a light-regulated histidine kinase. Crystal structures of the photosensory core modules (PCMs) of homologous phytochromes have provided a consistent picture of the structural changes that these proteins undergo during photoconversion between the parent red light-absorbing state (Pr) and the far-red light-absorbing state (Pfr). These changes include secondary structure rearrangements in the so-called tongue of the phytochrome-specific (PHY) domain and structural rearrangements within the long α-helix that connects the cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) and the PHY domains. We present the crystal structures of the PCM of Agp1 at 2.70 Å resolution and of a surface-engineered mutant of this PCM at 1.85 Å resolution in the dark-adapted Pr states. Whereas in the mutant structure the dimer subunits are in anti-parallel orientation, the wild-type structure contains parallel subunits. The relative orientations between the PAS-GAF bidomain and the PHY domain are different in the two structures, due to movement involving two hinge regions in the GAF-PHY connecting α-helix and the tongue, indicating pronounced structural flexibility that may give rise to a dynamic Pr state. The resolution of the mutant structure enabled us to detect a sterically strained conformation of the chromophore at ring A that we attribute to the tight interaction with Pro-461 of the conserved PRXSF motif in the tongue. Based on this observation and on data from mutants where residues in the tongue region were replaced by alanine, we discuss the crucial roles of those residues in Pr-to-Pfr photoconversion.

  14. Genomewide analysis of phytochrome proteins in the phylum Basidiomycota.

    PubMed

    Lavín, José L; Ramírez, Lucía; Pisabarro, Antonio G; Oguiza, José A

    2015-09-01

    Phytochromes are photoreceptor proteins involved in the detection of the red and far-red regions of the visible light spectrum. Fungal phytochromes are hybrid histidine kinases with a conserved domain architecture composed of an N-terminal photosensory module and a C-terminal regulatory output module that includes the histidine kinase and response regulator receiver domains. In this study, we have analyzed the distribution, domain architecture, and phylogenetic analysis of phytochrome proteins in 47 published genome sequences among the phylum Basidiomycota. Genome analysis revealed that almost every genome of basidiomycetes contained at least one gene encoding a phytochrome protein. Domain architecture of fungal phytochromes was completely conserved in the identified phytochromes of basidiomycetes, and phylogenetic analysis clustered these proteins into clades related with the phylogenetic classification of this fungal phylum.

  15. Unique temperature dependence in the adduct formation between FMN and cysteine S-H group in the LOV2 domain of Adiantum phytochrome3

    NASA Astrophysics Data System (ADS)

    Nozaki, Dai; Iwata, Tatsuya; Tokutomi, Satoru; Kandori, Hideki

    2005-07-01

    In a plant blue-light receptor phototropin, the primary reaction is an adduct formation between the flavin chromophore and a cysteine S-H group. In the case of a LOV2 domain of Adiantum phytochrome3 (phy3-LOV2), we found that Arrhenius plots of the efficiency of the adduct formation provide two kinks at about 190 and 270 K, and a negative activation energy was obtained between the temperatures. They are close to the transition temperatures of protein structural changes observed by the low-temperature difference FTIR spectroscopy. We concluded that the observed temperature dependence of the reaction efficiency in a restricted protein environment originates from protein fluctuation that mainly reflects secondary structure.

  16. Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy.

    PubMed

    Iwata, Tatsuya; Nozaki, Dai; Tokutomi, Satoru; Kagawa, Takatoshi; Wada, Masamitsu; Kandori, Hideki

    2003-07-15

    Phototropin (Phot) is a blue-light receptor in plants. The molecule has two FMN (flavin mononucleotide) binding domains named LOV (light-, oxygen-, and voltage-sensing), which is a subset of the PAS (Per-Arnt-Sim) superfamily. Illumination of the phot-LOV domains in the dark state (D447) produces a covalent C(4a) flavin-cysteinyl adduct (S390) via a triplet excited state (L660), which reverts to D447 in the dark. In this work, we studied the light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 (phy3), which is a fusion protein of phot containing the phytochrome chromophoric domain, by low-temperature UV-visible and FTIR spectroscopy. UV-visible spectroscopy detected only one intermediate state, S390, in the temperature range from 77 to 295 K, indicating that the adduct is produced even at temperatures as low as 77 K, although a portion of D447 cannot be converted to S390 at low temperatures possibly because of motional freezing. In the whole temperature range, FTIR spectra in the S-H stretching frequency region showed that Cys966 of phy3-LOV2 is protonated in D447 and unprotonated on illumination, supporting adduct formation. The pK(a) of the S-H group in D447 is estimated to be >10. FTIR spectra also showed the light-induced appearance of a positive peak around 3621 cm(-1) in the whole temperature range, indicating that adduct formation accompanies rearrangement of a hydrogen bond of a water molecule(s), which can be either water25, water45, or both, near the chromophore. In contrast to the weak temperature dependence of the spectral changes in the UV-visible absorption and the FTIR of both S-H and O-H stretching bands, light-induced changes in the amide I vibration that probes protein backbone structure vary significantly with the increase in temperature. The spectral changes suggest that light excitation of FMN loosens the local structure around it, particularly in turns, in the early stages and that another change subsequently takes

  17. Infrared emission spectrum of GaF

    NASA Astrophysics Data System (ADS)

    Uehara, Hiromichi; Horiai, Koui; Nakagawa, Kuniaki; Suguro, Hiroshi

    1991-04-01

    The infrared emission spectrum of Δ v=1 bands of GaF has been observed at 1000°C with a resolution of 0.1 cm -1. The v=1-0 to 5-4 vibration-rotation bands of 69GaF and the v=1-0 to 4-3 bands of 71GaF were assigned in the wavenumber range between 500 and 645 cm -1. The analysis has led to a set of values of eight Dunham coefficients, Y10, Y20, Y30, Y01, Y11, Y21, Y02 and Y12 of 69GaF, Y10 and Y20 were determined to be 622.367(11) and -3.3049(42) cm -1, respectively, with twice the standard errors in parentheses. The infrared diode-laser spectrum of GaF has also been observed and the assignment of some spectral lines is shown.

  18. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.

    PubMed Central

    Boylan, M T; Quail, P H

    1991-01-01

    To develop a model plant system for efficient functional analysis of mutagenized phytochrome polypeptides, we have overexpressed oat phytochrome A in Arabidopsis thaliana. R1 seedlings from selfed primary transformants segregated for hypocotyl length, when grown in the light, with a ratio of 3 short to 1 of normal length. When homozygous lines were established from these two size classes, accumulation of immunologically detectable oat phytochrome cosegregated with the short-hypocotyl trait. The short-hypocotyl seedlings contained substantially more spectrally active phytochrome than their normal-sized siblings, indicating that the introduced oat protein was photoreversible. The short-hypocotyl phenotype was strictly light-dependent, since no morphological effects of phytochrome overexpression could be seen in etiolated seedlings. Overexpression of only the chromophore-bearing, N-terminal domain of phytochrome A did not induce short hypocotyls in light-grown seedlings, indicating that additional sequence is essential for photoreceptor function. Similarly, overexpression of a full-length sequence mutated at the chromophore attachment site had no effect on phenotype, indicating the absence of any detectable dominant negative effect of the chromophoreless polypeptide on the activity of endogenous Arabidopsis phytochrome. Thus, the readily scorable short-hypocotyl phenotype of Arabidopsis seedlings overexpressing phytochrome A provides a simple visual assay for rapidly monitoring the biological activity of mutagenized phytochrome A polypeptides. Images PMID:11607244

  19. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle.

    PubMed

    Narikawa, Rei; Enomoto, Gen; Ni-Ni-Win; Fushimi, Keiji; Ikeuchi, Masahiko

    2014-08-12

    Cyanobacteriochromes (CBCRs) form a large, spectrally diverse family of photoreceptors (linear tetrapyrrole covalently bound via a conserved cysteine) that perceive ultraviolet to red light. The underlying mechanisms are reasonably well understood with, in certain cases, reversible formation of an adduct between a second cysteine and the chromophore accounting, in part, for their spectral diversity. These CBCRs are denoted as dual-Cys CBCRs, and most such CBCRs had been shown to reversibly absorb blue and green light. Herein, we report the structural and mechanistic characterization of a new type of dual-Cys CBCR, AM1_1186, which exhibits reversible photoconversion between a red-absorbing dark state (λmax = 641 nm) and a blue-absorbing photoproduct (λmax = 416 nm). The wavelength separation of AM1_1186 photoconversion is the largest found to date for a CBCR. In addition to one well-conserved cysteine responsible for covalent incorporation of the chromophore into the apoprotein, AM1_1186 contains a second cysteine in a unique position of its photosensory domain, which would be more properly classified as a red/green CBCR according to its sequence. Carboxyamidomethylation and mutagenesis of the cysteines revealed that the second cysteine forms an adduct with the tetrapyrrole, the phycocyanobilin, that can be reversed under blue light. The proline immediately upstream of this cysteine appears to determine the rate at which the cysteinylation following photoexcitation of the dark state chromophore can occur. We propose a possible reaction scheme and color-tuning mechanism for AM1_1186 in terms of its structure and its place in a phylogenetic tree.

  20. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes

    PubMed Central

    Stepanenko, Olesya V.; Baloban, Mikhail; Bublikov, Grigory S.; Shcherbakova, Daria M.; Stepanenko, Olga V.; Turoverov, Konstantin K.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.

    2016-01-01

    Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs. PMID:26725513

  1. A Small GTPase Activator Protein Interacts with Cytoplasmic Phytochromes in Regulating Root Development*

    PubMed Central

    Shin, Dong Ho; Cho, Man-Ho; Kim, Tae-Lim; Yoo, Jihye; Kim, Jeong-Il; Han, Yun-Jeong; Song, Pill-Soon; Jeon, Jong-Seong; Bhoo, Seong Hee; Hahn, Tae-Ryong

    2010-01-01

    Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis. PMID:20551316

  2. Phytochrome in photosynthetically competent plants: characterization by monoclonal antibodies. Progress report

    SciTech Connect

    Pratt, L.H.

    1985-01-01

    New monoclonal antibodies have been prepared to 124-kdalton phytochrome from etiolated oats, to phytochrome from etiolated peas, and to alkaline phosphatase. Simultaneously, progress has been made in improving methodologies for purification of phytochrome from green oats. Mice have been immunized with phytochrome electrophoretically purified from green oats. Methodologies needed to perform immunizations in vitro have been adapted to our purposes and screening protocols needed to identify antibodies to phytochrome from green oats are being refined. Forty-two rabbit antisera to phytochrome have been screened for their ability to immunoprecipitate phytochrome from green oats. The data are consistent with the hypothesis that green-oat phytochrome may be a minor component of the phytochrome isolated from etiolated oats. In addition, our panel of monoclonal antibodies has been screened for their ability to bind to phytochrome from green oats. Two that do so (oat-9 and oat-16) have been identified and characterized. A third (pea-25) has only recently been identified and is presently under intense investigation. Oat-9 and oat-16 apparently bind to the same domain on phytochrome, which is located near the site of chromophore attachment. They bind by ELISA to Pfr with greater affinity than to Pr. Pea-25 binds to phytochrome on immunoblots of sodium dodecyl sulfate, polyacrylamide gels. With this antibody it has been possible to determine that phytochrome from green oats appears to be identical in size to that obtained from etiolated oats. Data have also been obtained to indicate that a relatively small, but highly significant, proportion of the phytochrome obtained from green peas is immunochemically distinct from that obtained from etiolated peas. It thus appears that the observations made with green versus etiolated oats might represent a general phenomenon.

  3. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1991-01-01

    Major improvements have been made in the purification of green-oat phytochrome. An effective protease inhibitor has been incorporated, the scale of preparations has been increased greatly, an immunodominant contaminant has been eliminated, and the extent of purification has been increased by at least a factor of ten. Five new MAbs and rabbit PAbs to green-oat phytochrome, as well as rabbit PAbs to a synthetic, putative green-oat phytochrome peptide, have been produced and characterized, together with two MAbs to green-oat phytochrome that had been identified previously. Our earlier hypothesis that green-oat phytochrome itself consists of two types was found to be true. One type of green-oat phytochrome has an apparent monomer size of 125 kDa while the other is 123 kDa. The latter undergoes a Zn[sup 2+]-induced mobility shift during SDS PAGE and the two phytochromes are immunochemically distinct from one another. Affinity columns prepared with MAbs to green-oat phytochrome have been used to purify 125-kDa green-oat phytochrome to near homogeneity. A proteolytically derived peptide has been isolated from immunopurified green-oat phytochrome and 19 residues have been determined by microsequencing. The results verify that in monocotyledons as well as dicotyledons green- and etiolated-oat phytochromes derive from different genes.

  4. Phytochrome chromophore biosynthesis. [Avena sativa

    SciTech Connect

    Elich, T.D.; Lagarias, J.C.

    1987-06-01

    Etiolated Avena sativa L. seedlings grown in the presence of gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) contained reduced levels of phytochrome as shown by spectrophotometric and immunochemical assays. Photochromic phytochrome levels in gabaculine-grown plants were estimated to be 20% of control plants, while immunoblot analysis showed that the phytochrome protein moiety was present at approximately 50% of control levels. Gabaculine-grown seedlings administered either 5-aminolevulinic acid or biliverdin exhibited a rapid increase of spectrophotometrically detectable phytochrome. Phytochrome concentrations estimated immunochemically did not similarly increase throughout treatment with either compound. Similar experiments with 5-amino(4-/sup 14/C) levulinic acid showed radiolabeling of phytochrome with kinetics that paralleled the spectrally detected increase. These results are consistent with (a) the intermediacy of both 5-aminolevulinic acid and biliverdin in the biosynthetic pathway of the phytochrome chromophore and (b) the lack of coordinate regulation of chromophore and apoprotein synthesis in Ayena seedlings.

  5. 42 CFR 414.26 - Determining the GAF.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Determining the GAF. 414.26 Section 414.26 Public... § 414.26 Determining the GAF. CMS establishes a GAF for each service in each fee schedule area. (a... fee schedule areas as determined under § 414.22(a) and the national average of that work effort. (2...

  6. Phytochrome in photosynthetically competent plants characterization by monoclonal antibodies: Progress report

    SciTech Connect

    Pratt, L.H.

    1987-03-01

    It is evident that phytochrome in green oats differs more markedly from that in etiolated oats than could have been anticipated. More effort has gone into characterization of green-oat phytochrome, including elimination of likely artifacts that might have been responsible for the observed differences with etiolated-oat phytochrome, and into the generation of new probes for green-oat phytochrome. The liability of green-oat phytochrome has increased the difficulty of this work. Immunochemical differences between etiolated- and green-oat phytochrome have been elucidated. A domain on green-oat phytochrome that undergoes a change upon phototransformation of at least etiolated-oat phytochrome has been discovered. A lambda gt11 cDNA library has been prepared from size-enriched poly(A)/sup +/-mRNA isolated from green oat shoots and has been screened immunochemically. An amplified ELISA protocol suitable for screening hybridoma supernatants against crude green-oat phytochrome preparations has been developed. Monoclonal antibodies directed to green-oat phytochrome have been identified. 5 refs.

  7. Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state.

    PubMed

    Heyes, Derren J; Khara, Basile; Sakuma, Michiyo; Hardman, Samantha J O; O'Cualain, Ronan; Rigby, Stephen E J; Scrutton, Nigel S

    2012-01-01

    Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel 'head-to-head' arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of

  8. Phytochrome functions in Arabiopsis development

    USDA-ARS?s Scientific Manuscript database

    Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental pro...

  9. Phytochrome functions in Arabidopsis development

    USDA-ARS?s Scientific Manuscript database

    Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental pro...

  10. Arabidopsis thaliana life without phytochromes

    PubMed Central

    Strasser, Bárbara; Sánchez-Lamas, Maximiliano; Yanovsky, Marcelo J.; Casal, Jorge J.; Cerdán, Pablo D.

    2010-01-01

    Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal. PMID:20176939

  11. Phytochrome diversity in green plants and the origin of canonical plant phytochromes.

    PubMed

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J; Villarreal, Juan Carlos; Stevenson, Dennis W; Graham, Sean W; Wong, Gane Ka-Shu; Pryer, Kathleen M; Mathews, Sarah

    2015-07-28

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.

  12. Phytochrome diversity in green plants and the origin of canonical plant phytochromes

    PubMed Central

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J.; Villarreal, Juan Carlos; Stevenson, Dennis W.; Graham, Sean W.; Wong, Gane Ka-Shu; Pryer, Kathleen M.; Mathews, Sarah

    2015-01-01

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. PMID:26215968

  13. Phytochrome C is a key factor controlling long-day flowering in barley.

    PubMed

    Nishida, Hidetaka; Ishihara, Daisuke; Ishii, Makoto; Kaneko, Takuma; Kawahigashi, Hiroyuki; Akashi, Yukari; Saisho, Daisuke; Tanaka, Katsunori; Handa, Hirokazu; Takeda, Kazuyoshi; Kato, Kenji

    2013-10-01

    The spring-type near isogenic line (NIL) of the winter-type barley (Hordeum vulgare ssp. vulgare) var. Hayakiso 2 (HK2) was developed by introducing VERNALIZATION-H1 (Vrn-H1) for spring growth habit from the spring-type var. Indo Omugi. Contrary to expectations, the spring-type NIL flowered later than winter-type HK2. This phenotypic difference was controlled by a single gene, which cosegregated only with phytochrome C (HvPhyC) among three candidates around the Vrn-H1 region (Vrn-H1, HvPhyC, and CASEIN KINASE IIα), indicating that HvPhyC was the most likely candidate gene. Compared with the late-flowering allele HvPhyC-l from the NIL, the early-flowering allele HvPhyC-e from HK2 had a single nucleotide polymorphism T1139C in exon 1, which caused a nonsynonymous amino acid substitution of phenylalanine at position 380 by serine in the functionally essential GAF (3', 5'-cyclic-GMP phosphodiesterase, adenylate cyclase, formate hydrogen lyase activator protein) domain. Functional assay using a rice (Oryza sativa) phyA phyC double mutant line showed that both of the HvPhyC alleles are functional, but HvPhyC-e may have a hyperfunction. Expression analysis using NILs carrying HvPhyC-e and HvPhyC-l (NIL [HvPhyC-e] and NIL [HvPhyC-l], respectively) showed that HvPhyC-e up-regulated only the flowering promoter FLOWERING LOCUS T1 by bypassing the circadian clock genes and flowering integrator CONSTANS1 under a long photoperiod. Consistent with the up-regulation, NIL (HvPhyC-e) flowered earlier than NIL (HvPhyC-l) under long photoperiods. These results implied that HvPhyC is a key factor to control long-day flowering directly.

  14. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  15. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes.

    PubMed

    Nagano, Soshichiro

    2016-03-01

    Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.

  16. Comparative Phytochrome Immunochemistry as Assayed by Antisera against Both Monocotyledonous and Dicotyledonous Phytochrome 123

    PubMed Central

    Cordonnier, Marie-Michèle; Pratt, Lee H.

    1982-01-01

    Preparation and characterization of antisera against lettuce (Lactuca sativa L., cv. Grand Rapids) and pea (Pisum sativum L., cv. Alaska) phytochrome is described. These antisera, together with previously obtained antisera against zucchini (Cucurbita pepo L., cv. Black Beauty) and oat (Avena sativa L., cv. Garry) phytochrome, were used to compare by Ouchterlony double immunodiffusion phytochrome isolated from etiolated lettuce, pea, bean (Phaseolus vulgaris L., cv. Taylor Horticultural Bush), zucchini, oat and rye (Secale cereale L., cv. Balbo) seedlings. Cross reactivity between monocotyledonous phytochrome and antidicotyledonous-phytochrome serum and between dicotyledonous phytochrome and antimonocotyledonous-phytochrome serum was always weak or not perceptible by this assay. Among the four dicotyledonous phytochromes examined, pea and bean were the most similar immunochemically as anticipated. Pea and lettuce phytochrome somewhat unexpectedly also exhibited similar immunochemical reactivity. Zucchini phytochrome by contrast was immunochemically distinct from pea, bean, and lettuce phytochrome, although it did react with all three antidicotyledonous-phytochrome sera. Initial attempts to identify immunoglobulins that would recognize phytochrome regardless of its source indicated that they may exist. Such immunoglobulins are of interest because they might react with one or more determinants that could be part of an active site of phytochrome. These immunoglobulins, once isolated, could thus serve as a potential probe for the active site of phytochrome. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:16662599

  17. Phytochromes in photosynthetically competent plants. Final report

    SciTech Connect

    Pratt, L.H.

    1991-12-31

    Major improvements have been made in the purification of green-oat phytochrome. An effective protease inhibitor has been incorporated, the scale of preparations has been increased greatly, an immunodominant contaminant has been eliminated, and the extent of purification has been increased by at least a factor of ten. Five new MAbs and rabbit PAbs to green-oat phytochrome, as well as rabbit PAbs to a synthetic, putative green-oat phytochrome peptide, have been produced and characterized, together with two MAbs to green-oat phytochrome that had been identified previously. Our earlier hypothesis that green-oat phytochrome itself consists of two types was found to be true. One type of green-oat phytochrome has an apparent monomer size of 125 kDa while the other is 123 kDa. The latter undergoes a Zn{sup 2+}-induced mobility shift during SDS PAGE and the two phytochromes are immunochemically distinct from one another. Affinity columns prepared with MAbs to green-oat phytochrome have been used to purify 125-kDa green-oat phytochrome to near homogeneity. A proteolytically derived peptide has been isolated from immunopurified green-oat phytochrome and 19 residues have been determined by microsequencing. The results verify that in monocotyledons as well as dicotyledons green- and etiolated-oat phytochromes derive from different genes.

  18. Synthetic Studies in Phytochrome Chemistry

    PubMed Central

    Jacobi, Peter A.; Adel Odeh, Imad M.; Buddhu, Subhas C.; Cai, Guolin; Rajeswari, Sundaramoorthi; Fry, Douglas; Zheng, Wanjun; DeSimone, Robert W.; Guo, Jiasheng; Coutts, Lisa D.; Hauck, Sheila I.; Leung, Sam H.; Ghosh, Indranath; Pippin., Douglas

    2008-01-01

    An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1. PMID:18633455

  19. Ultrafast Red Light Activation of Synechocystis Phytochrome Cph1 Triggers Major Structural Change to Form the Pfr Signalling-Competent State

    PubMed Central

    Heyes, Derren J.; Khara, Basile; Sakuma, Michiyo; Hardman, Samantha J. O.; O'Cualain, Ronan; Rigby, Stephen E. J.; Scrutton, Nigel S.

    2012-01-01

    Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel ‘head-to-head’ arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of

  20. Structural photoactivation of a full-length bacterial phytochrome

    PubMed Central

    Björling, Alexander; Berntsson, Oskar; Lehtivuori, Heli; Takala, Heikki; Hughes, Ashley J.; Panman, Matthijs; Hoernke, Maria; Niebling, Stephan; Henry, Léocadie; Henning, Robert; Kosheleva, Irina; Chukharev, Vladimir; Tkachenko, Nikolai V.; Menzel, Andreas; Newby, Gemma; Khakhulin, Dmitry; Wulff, Michael; Ihalainen, Janne A.; Westenhoff, Sebastian

    2016-01-01

    Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes. PMID:27536728

  1. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  2. High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution

    SciTech Connect

    Wagner, Jeremiah R.; Zhang, Junrui; Brunzelle, Joseph S.; Vierstra, Richard D.; Forest, Katrina T.

    2010-03-08

    Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IX{alpha}. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45 {angstrom} resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3{sup 2} carbon of biliverdin to Cys{sup 24}, the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.

  3. 42 CFR 414.26 - Determining the GAF.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Determining the GAF. 414.26 Section 414.26 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Physicians and Other...

  4. 42 CFR 414.26 - Determining the GAF.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Determining the GAF. 414.26 Section 414.26 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Physicians and...

  5. Phytochrome C Is A Key Factor Controlling Long-Day Flowering in Barley1[W

    PubMed Central

    Nishida, Hidetaka; Ishihara, Daisuke; Ishii, Makoto; Kaneko, Takuma; Kawahigashi, Hiroyuki; Akashi, Yukari; Saisho, Daisuke; Tanaka, Katsunori; Handa, Hirokazu; Takeda, Kazuyoshi; Kato, Kenji

    2013-01-01

    The spring-type near isogenic line (NIL) of the winter-type barley (Hordeum vulgare ssp. vulgare) var. Hayakiso 2 (HK2) was developed by introducing VERNALIZATION-H1 (Vrn-H1) for spring growth habit from the spring-type var. Indo Omugi. Contrary to expectations, the spring-type NIL flowered later than winter-type HK2. This phenotypic difference was controlled by a single gene, which cosegregated only with phytochrome C (HvPhyC) among three candidates around the Vrn-H1 region (Vrn-H1, HvPhyC, and CASEIN KINASE IIα), indicating that HvPhyC was the most likely candidate gene. Compared with the late-flowering allele HvPhyC-l from the NIL, the early-flowering allele HvPhyC-e from HK2 had a single nucleotide polymorphism T1139C in exon 1, which caused a nonsynonymous amino acid substitution of phenylalanine at position 380 by serine in the functionally essential GAF (3′, 5′-cyclic-GMP phosphodiesterase, adenylate cyclase, formate hydrogen lyase activator protein) domain. Functional assay using a rice (Oryza sativa) phyA phyC double mutant line showed that both of the HvPhyC alleles are functional, but HvPhyC-e may have a hyperfunction. Expression analysis using NILs carrying HvPhyC-e and HvPhyC-l (NIL [HvPhyC-e] and NIL [HvPhyC-l], respectively) showed that HvPhyC-e up-regulated only the flowering promoter FLOWERING LOCUS T1 by bypassing the circadian clock genes and flowering integrator CONSTANS1 under a long photoperiod. Consistent with the up-regulation, NIL (HvPhyC-e) flowered earlier than NIL (HvPhyC-l) under long photoperiods. These results implied that HvPhyC is a key factor to control long-day flowering directly. PMID:24014575

  6. Phytochrome coordinates Arabidopsis shoot and root development.

    PubMed

    Salisbury, Frances J; Hall, Anthony; Grierson, Claire S; Halliday, Karen J

    2007-05-01

    The phytochrome family of photoreceptors are potent regulators of plant development, affecting a broad range of responses throughout the plant life cycle, including hypocotyl elongation, leaf expansion and apical dominance. The plant hormone auxin has previously been linked to these phytochrome-mediated responses; however, these studies have not identified the molecular mechanisms that underpin such extensive phytochrome and auxin cross-talk. In this paper, we show that phytochrome regulates the emergence of lateral roots, at least partly by manipulating auxin distribution within the seedling. Thus, shoot-localized phytochrome is able to act over long distances, through manipulation of auxin, to regulate root development. This work reveals an important role for phytochrome as a coordinator of shoot and root development, and provides insights into how phytochrome is able to exert such a powerful effect on growth and development. This new link between phytochrome and auxin may go some way to explain the extensive overlap in responses mediated by these two developmental regulators.

  7. Photoacoustic and fluorescent imaging GAF2 photoswitchable chromoproteins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chee, Ryan K.; Li, Yan; Paproski, Robert J.; Campbell, Robert E.; Zemp, Roger J.

    2017-03-01

    Molecular photoacoustic imaging is hindered by hemoglobin background signal. Photoswitchable chromoproteins can be used to obtain images with significantly reduced background signal. Molecular imaging of multiple biological processes via multiple chromoprotiens is difficult due to overlapping imaging spectra. Using a new rate-of-change imaging methodology, we can obtain molecular images with multiple chromoprotiens with overlapping imaging spectra. We also present a new photoswitchable chromoprotein, GAF2, which is significantly smaller than the BphP1 which has shown promise for photoswitchable photoacoustic imaging [Yao et al., Nat. Meth. 13, 67-73 (2016)]. We use BphP1 and GAF2 with photoacoustic (Vevo LAZR, Fujifilm Visualsonics Inc) and fluorescence (In vivo Xtreme, Bruker) imaging systems to show background-free multiplexed images. We image before, after, and during photoconversion to obtain background-free rate-of-change images and compare our results to difference imaging and spectral demixing. After phantom imaging, we inject mice with different chromoprotein-expressing E. coli bacteria to show multiplexed images of bacterial infections. We show distinguishable differences in the rate-of-change between GAF2 and BphP1. We obtain rate-of-change feasibility images and in vivo images in mice showing the ability to differentiate between GAF2 and BphP1 even though they are spectrally similar. We photoconvert both GAF2 and BphP1 using 550nm and 735nm light. Phantom studies suggest a 10-20dB improvement in the rate-of-change and difference images in comparison to images with background. Multiplexed background-free molecular imaging using chromoproteins could prove to be a promising new imaging methodology especially when combined with spectral demixing.

  8. Intramolecular co-action of two independent photosensory modules in the fern phytochrome 3.

    PubMed

    Kanegae, Takeshi

    2015-01-01

    Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.

  9. Bottom-up Assembly of the Phytochrome Network

    PubMed Central

    Sánchez-Lamas, Maximiliano; Lorenzo, Christian D.; Cerdán, Pablo D.

    2016-01-01

    Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues. PMID:27820825

  10. A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1

    PubMed Central

    Nozue, Kazunari; Kanegae, Takeshi; Imaizumi, Takato; Fukuda, Shunsuke; Okamoto, Haruko; Yeh, Kuo-Chen; Lagarias, J. Clark; Wada, Masamitsu

    1998-01-01

    In plant photomorphogenesis, it is well accepted that the perception of red/far-red and blue light is mediated by distinct photoreceptor families, i.e., the phytochromes and blue-light photoreceptors, respectively. Here we describe the discovery of a photoreceptor gene from the fern Adiantum that encodes a protein with features of both phytochrome and NPH1, the putative blue-light receptor for second-positive phototropism in seed plants. The fusion of a functional photosensory domain of phytochrome with a nearly full-length NPH1 homolog suggests that this polypeptide could mediate both red/far-red and blue-light responses in Adiantum normally ascribed to distinct photoreceptors. PMID:9861055

  11. Kinetically Distinguishable Populations of Phytochrome 1

    PubMed Central

    Purves, William K.; Briggs, Winslow R.

    1968-01-01

    Two or more kinetically distinguishable populations of phytochrome molecules were observed in living tissues of oat, pea, maize, and cauliflower, as well as in extracts of oat. At least 3 different populations occurred in cauliflower florets, while 2 were observed in each of the other species. In extracted oat phytochrome, the relative proportions of the 2 forms remained constant during successive stages of purification. The physiological significance of this multiplicity of forms remains unclear. PMID:16656909

  12. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A.

    PubMed

    Song, Chen; Essen, Lars-Oliver; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2012-05-01

    Despite extensive study, the molecular structure of the chromophore-binding pocket of phytochrome A (phyA), the principal photoreceptor controlling photomorphogenesis in plants, has not yet been successfully resolved. Here, we report a series of two-dimensional (2-D) magic-angle spinning solid-state NMR experiments on the recombinant N-terminal, 65-kDa PAS-GAF-PHY light-sensing module of phytochrome A3 from oat (Avena sativa), assembled with uniformly 13C- and 15N-labeled phycocyanobilin (u-[13C,15N]-PCB-As.phyA3). The Pr state of this protein was studied regarding the electronic structure of the chromophore and its interactions with the proximal amino acids. Using 2-D 13C-13C and 1H-15N experiments, a complete set of 13C and 15N assignments for the chromophore were obtained. Also, a large number of 1H-13C distance restraints between the chromophore and its binding pocket were revealed by interfacial heteronuclear correlation spectroscopy. 13C doublings of the chromophore A-ring region and the C-ring carboxylate moiety, together with the observation of two Pr isoforms, Pr-I and Pr-II, demonstrate the local mobility of the chromophore and the plasticity of its protein environment. It appears that the interactions and dynamics in the binding pocket of phyA in the Pr state are remarkably similar to those of cyanobacterial phytochrome (Cph1). The N-terminus of the region modeled (residues 56-66 of phyA) is highly mobile. Differences in the regulatory processes involved in plant and Cph1 phytochromes are discussed.

  13. Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha

    PubMed Central

    Inoue, Keisuke; Nishihama, Ryuichi; Kataoka, Hideo; Hosaka, Masashi; Manabe, Ryo; Nomoto, Mika; Tada, Yasuomi; Kohchi, Takayuki

    2016-01-01

    Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana. Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF. These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution. PMID:27252292

  14. Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha.

    PubMed

    Inoue, Keisuke; Nishihama, Ryuichi; Kataoka, Hideo; Hosaka, Masashi; Manabe, Ryo; Nomoto, Mika; Tada, Yasuomi; Ishizaki, Kimitsune; Kohchi, Takayuki

    2016-06-01

    Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Phytochrome regulation of branching in Arabidopsis.

    PubMed

    Finlayson, Scott A; Krishnareddy, Srirama R; Kebrom, Tesfamichael H; Casal, Jorge J

    2010-04-01

    The red light:far-red light ratio perceived by phytochromes controls plastic traits of plant architecture, including branching. Despite the significance of branching for plant fitness and productivity, there is little quantitative and mechanistic information concerning phytochrome control of branching responses in Arabidopsis (Arabidopsis thaliana). Here, we show that in Arabidopsis, the negative effects of the phytochrome B mutation and of low red light:far-red light ratio on branching were largely due to reduced bud outgrowth capacity and an increased degree of correlative inhibition acting on the buds rather than due to a reduced number of leaves and buds available for branching. Phytochrome effects on the degree of correlative inhibition required functional BRANCHED1 (BRC1), BRC2, AXR1, MORE AXILLARY GROWTH2 (MAX2), and MAX4. The analysis of gene expression in selected buds indicated that BRC1 and BRC2 are part of different gene networks. The BRC1 network is linked to the growth capacity of specific buds, while the BRC2 network is associated with coordination of growth among branches. We conclude that the branching integrators BRC1 and BRC2 are necessary for responses to phytochrome, but they contribute differentially to these responses, likely acting through divergent pathways.

  16. Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement.

    PubMed

    Uenaka, Hidetoshi; Kadota, Akeo

    2007-09-01

    Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.

  17. Light-induced import of the chromoprotein, phytochrome, into mitochondria

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.; Roux, S. J.

    1986-01-01

    Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.

  18. Light-induced import of the chromoprotein, phytochrome, into mitochondria

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.; Roux, S. J.

    1986-01-01

    Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.

  19. Phytochrome, plant growth and flowering

    SciTech Connect

    King, R.W.; Bagnall, D.J.

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  20. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  1. Laser cooling of BH and GaF: insights from an ab initio study.

    PubMed

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  2. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  3. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  4. Characterization of Phytochrome Interacting Factors from the Moss Physcomitrella patens Illustrates Conservation of Phytochrome Signaling Modules in Land Plants.

    PubMed

    Possart, Anja; Xu, Tengfei; Paik, Inyup; Hanke, Sebastian; Keim, Sarah; Hermann, Helen-Maria; Wolf, Luise; Hiß, Manuel; Becker, Claude; Huq, Enamul; Rensing, Stefan A; Hiltbrunner, Andreas

    2017-02-01

    Across the plant kingdom, phytochrome (PHY) photoreceptors play an important role during adaptive and developmental responses to light. In Arabidopsis thaliana, light-activated PHYs accumulate in the nucleus, where they regulate downstream signaling components, such as phytochrome interacting factors (PIFs). PIFs are transcription factors that act as repressors of photomorphogenesis; their inhibition by PHYs leads to substantial changes in gene expression. The nuclear function of PHYs, however, has so far been investigated in only a few non-seed plants. Here, we identified putative target genes of PHY signaling in the moss Physcomitrella patens and found light-regulated genes that are putative orthologs of PIF-controlled genes in Arabidopsis. Phylogenetic analyses revealed that an ancestral PIF-like gene was already present in streptophyte algae, i.e., before the water-to-land transition of plants. The PIF homologs in the genome of P. patens resemble Arabidopsis PIFs in their protein domain structure, molecular properties, and physiological effects, albeit with notable differences in the motif-dependent PHY interaction. Our results suggest that P. patens PIFs are involved in PHY signaling. The PHY-PIF signaling node that relays light signals to target genes has been largely conserved during land plant evolution, with evidence of lineage-specific diversification.

  5. Mutant Screen Distinguishes between Residues Necessary for Light-Signal Perception and Signal Transfer by Phytochrome B

    USDA-ARS?s Scientific Manuscript database

    The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651–amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals...

  6. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A.

    PubMed

    Gärtner, W; Hill, C; Worm, K; Braslavsky, S E; Schaffner, K

    1996-03-15

    N-Terminal deletion mutants of the plant photoreceptor phytochrome, additionally truncated at two different positions at their C-terminal ends, were expressed both in Escherichia coli and in yeast (Pichia pastoris) and converted into chromoproteins upon chromophore incorporation. The start and end positions of the cDNA employed (phyA from oat) mimic the positions of tryptic cleavage (deletion of the first 64 amino acids, and stop codons after amino acid positions 425 or 595, generating 39-kDa and 59-kDa peptides, respectively. The absorption properties and photochromicity upon red/far-red irradiation of these mutants were compared with their tryptic counterparts derived from native oat phytochrome and with recombinant products possessing intact N-termini, but C-terminal positions identical to those of the corresponding tryptic fragments (45-kDa and 65-kDa peptides). All recombinant 65-kDa and 59kDa peptides bound the chromophore after expression and showed the appropriate absorption spectra of the Pr and the Pfr forms. The smaller chromopeptides (45-kDa and 39-kDa) behaved differently depending on the expression system employed. E. coli-derived peptides exhibited a phytochrome-like difference spectrum only when the intact N-terminus was present (45-kDa product). The recombinant 39-kDa peptide from E. coli was incapable of chromophore binding whereas the identical peptide sequence expressed by P. pastoris formed a chromoprotein with phycocyanobilin. This recombinant phytochrome fragment exhibited a difference spectrum (Pr-Pfr) with an even larger Pfr absorption band than the comparable tryptic 39-kDa fragment. Selectivity of chromophore incorporation and spectral properties suggest that interactions between protein domains of phytochrome control the protein folding and the Pr/Pfr absorption characteristics. Evidently, trypsin digestion down to the 39-kDa fragment affects protein conformation also in terms of Pfr conservation.

  7. De Novo Synthesis of Phytochrome in Pumpkin Hooks 1

    PubMed Central

    Quail, P. H.; Schäfer, E.; Marmé, D.

    1973-01-01

    Phytochrome becomes density labeled in the hook of pumpkin (Cucurbita pepo L.) seedlings grown in the dark on D2O, indicating that the protein moiety of the pigment is synthesized de novo during development. Red light causes a rapid decline of the total phytochrome level in the hook of etiolated seedlings but upon return to the dark, phytochrome again accumulates. These newly appearing molecules are also synthesized de novo. Newly synthesized phytochrome in both dark-grown and red-irradiated seedlings is in the red-absorbing form. Turnover of the red-absorbing form is indicated by the density labeling of phytochrome during a period when the total phytochrome level in the hook of dark-grown seedlings remains constant. However, it was not possible to determine whether this results from intracellular turnover or turnover of the whole cell population during hook growth. PMID:16658511

  8. Role of calcium ions in phytochrome responses: an update

    NASA Technical Reports Server (NTRS)

    Roux, S. J.; Wayne, R. O.; Datta, N.

    1986-01-01

    Recent findings related to the role of calcium ions in phytochrome responses are reviewed and summarized. Hypotheses tested are the activation of calmodulin by light-regulated Ca2+ transport in cells and the photoinduction of calmodulin-activated enzyme activities. Discussion focuses on evidence that Ca2+ helps to regulate phytochrome responses, calcium requirements for photoinduced spore germination in the fern Onoclea, Ca2+ fluxes and phytochrome function in the alga Mougeotia, calmodulin antagonist blocking of red-light stimulated chloroplast rotation, the role of phosphorylation in calmodulin-regulated responses, and phytochrome regulation of nuclear protein phosphorylation.

  9. Evolutionary origin of phytochrome responses and signaling in land plants.

    PubMed

    Inoue, Keisuke; Nishihama, Ryuichi; Kohchi, Takayuki

    2017-01-18

    Phytochromes comprise one of the major photoreceptor families in plants, and they regulate many aspects of plant growth and development throughout the plant life cycle. A canonical land plant phytochrome originated in the common ancestor of streptophytes. Phytochromes have diversified in seed plants and some basal land plants because of lineage-specific gene duplications that occurred during the course of land plant evolution. Molecular genetic analyses using Arabidopsis thaliana suggested that there are two types of phytochromes in angiosperms, light-labile type I and light-stable type II, which have different signaling mechanisms and which regulate distinct responses. In basal land plants, little is known about molecular mechanisms of phytochrome signaling, although red light/far-red photoreversible physiological responses and the distribution of phytochrome genes are relatively well documented. Recent advances in molecular genetics using the moss Physcomitrella patens and the liverwort Marchantia polymorpha revealed that basal land plants show far-red-induced responses and that the establishment of phytochrome-mediated transcriptional regulation dates back to at least the common ancestor of land plants. In this review, we summarize our knowledge concerning functions of land plant phytochromes, especially in basal land plants, and discuss subfunctionalization/neofunctionalization of phytochrome signaling during the course of land plant evolution. © 2017 John Wiley & Sons Ltd.

  10. Phytochrome from green plants: assay, purification, and characterization

    SciTech Connect

    Quail, P.H.

    1983-01-01

    Phytochrome from the chlorophyllous cells of light-grown higher plants and green algae has been isolated and characterized. We have developed a simple procedure that separates chlorophyll from phytochrome in crude extracts from green tissue thus permitting spectral measurement of the phytochrome in such extracts for the first time. Spectral and immunochemical analysis of phytochrome from green oat tissue indicates the presence of two distinct species of the molecule: a minority species (approx. 20%) that is recognized by antibodies directed against phytochrome from etiolated tissue and that has an apparent molecular mass of 124 kilodaltons (kD), the same as that of the native molecule from etiolated tissue; and a majority species (approx. 80%) that is not recognized by anti-etiolated tissue phytochrome Ig and has a Pr absorbance maximum some 14 nm shorter than its etiolated tissue counterpart. Mixing experiments have established that these different molecular species preexist in the green cell and are not the results of posthomogenization modifications. Attempts to purify the phytochrome from green tissue by immunoaffinity chromatography have been thwarted by the lack of immunological cross-reactivity referred to. We have begun to identify monoclonal antibodies specific for antigenic sites distributed throughout the length of the etiolated-tissue phytochrome polypeptide. Axenic cultures of the alga Mesotaenium have been established and preliminary spectral analysis of phytochrome isolated from these cells has been carried out.

  11. Role of calcium ions in phytochrome responses: an update

    NASA Technical Reports Server (NTRS)

    Roux, S. J.; Wayne, R. O.; Datta, N.

    1986-01-01

    Recent findings related to the role of calcium ions in phytochrome responses are reviewed and summarized. Hypotheses tested are the activation of calmodulin by light-regulated Ca2+ transport in cells and the photoinduction of calmodulin-activated enzyme activities. Discussion focuses on evidence that Ca2+ helps to regulate phytochrome responses, calcium requirements for photoinduced spore germination in the fern Onoclea, Ca2+ fluxes and phytochrome function in the alga Mougeotia, calmodulin antagonist blocking of red-light stimulated chloroplast rotation, the role of phosphorylation in calmodulin-regulated responses, and phytochrome regulation of nuclear protein phosphorylation.

  12. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    DOE PAGES

    Edlund, Petra; Takala, Heikki; Claesson, Elin; ...

    2016-10-19

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less

  13. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    SciTech Connect

    Edlund, Petra; Takala, Heikki; Claesson, Elin; Henry, Léocadie; Dods, Robert; Lehtivuori, Heli; Panman, Matthijs; Pande, Kanupriya; White, Thomas; Nakane, Takanori; Berntsson, Oskar; Gustavsson, Emil; Båth, Petra; Modi, Vaibhav; Roy-Chowdhury, Shatabdi; Zook, James; Berntsen, Peter; Pandey, Suraj; Poudyal, Ishwor; Tenboer, Jason; Kupitz, Christopher; Barty, Anton; Fromme, Petra; Koralek, Jake D.; Tanaka, Tomoyuki; Spence, John; Liang, Mengning; Hunter, Mark S.; Boutet, Sebastien; Nango, Eriko; Moffat, Keith; Groenhof, Gerrit; Ihalainen, Janne; Stojković, Emina A.; Schmidt, Marius; Westenhoff, Sebastian

    2016-10-19

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.

  14. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    PubMed Central

    Edlund, Petra; Takala, Heikki; Claesson, Elin; Henry, Léocadie; Dods, Robert; Lehtivuori, Heli; Panman, Matthijs; Pande, Kanupriya; White, Thomas; Nakane, Takanori; Berntsson, Oskar; Gustavsson, Emil; Båth, Petra; Modi, Vaibhav; Roy-Chowdhury, Shatabdi; Zook, James; Berntsen, Peter; Pandey, Suraj; Poudyal, Ishwor; Tenboer, Jason; Kupitz, Christopher; Barty, Anton; Fromme, Petra; Koralek, Jake D.; Tanaka, Tomoyuki; Spence, John; Liang, Mengning; Hunter, Mark S.; Boutet, Sebastien; Nango, Eriko; Moffat, Keith; Groenhof, Gerrit; Ihalainen, Janne; Stojković, Emina A.; Schmidt, Marius; Westenhoff, Sebastian

    2016-01-01

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX. PMID:27756898

  15. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Edlund, Petra; Takala, Heikki; Claesson, Elin; Henry, Léocadie; Dods, Robert; Lehtivuori, Heli; Panman, Matthijs; Pande, Kanupriya; White, Thomas; Nakane, Takanori; Berntsson, Oskar; Gustavsson, Emil; Båth, Petra; Modi, Vaibhav; Roy-Chowdhury, Shatabdi; Zook, James; Berntsen, Peter; Pandey, Suraj; Poudyal, Ishwor; Tenboer, Jason; Kupitz, Christopher; Barty, Anton; Fromme, Petra; Koralek, Jake D.; Tanaka, Tomoyuki; Spence, John; Liang, Mengning; Hunter, Mark S.; Boutet, Sebastien; Nango, Eriko; Moffat, Keith; Groenhof, Gerrit; Ihalainen, Janne; Stojković, Emina A.; Schmidt, Marius; Westenhoff, Sebastian

    2016-10-01

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.

  16. Red Light-enhanced Phytochrome Pelletability

    PubMed Central

    Pratt, Lee H.; Marmé, Dieter

    1976-01-01

    Red light-enhanced pelletability of phytochrome was observed in extracts of all 11 plants tested: Avena sativa L., Secale cereale L., Zea mays L., Cucurbita pepo L., Sinapis alba L., Pisum sativum L., Helianthus anuus L., Raphanus sativus L., Glycine max (L.) Merr., Phaseolus vulgaris L., and Lupinus albus L. This enhanced pelletability was observed in all 11 plants following in situ irradiation (in vivo binding) but only in Sinapis and Cucurbita after irradiation of crude extracts (in vitro binding). In vivo binding was not strongly dependent upon pH and, with few exceptions, was not markedly sensitive to high salt concentration, whereas in vitro binding was completely reversed by both high pH and high salt concentration. However, both binding phenomena were observed only with a divalent cation in the extract buffer. In vivo binding was further characterized using Avena which showed an increase in pelletability from less than 10% in dark control extracts to more than 60% in extracts of red light-irradiated shoots. The half-life for binding was 40 seconds at 0.5 C and was strongly temperature-dependent, binding being complete within 5 to 10 sec at 22 C. If pelletable phytochrome in the far red-absorbing form was photoconverted back to the red-absorbing form in situ, phytochrome was released from the pelletable condition with a half-life of 25 minutes at 25 C and 100 minutes at both 13 C and 3 C. No cooperativity in red light-enhanced pelletability with respect to phytochrome-far red-absorbing form was observed. PMID:16659745

  17. Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromophore

    SciTech Connect

    Lagarias, J. Clark; Rapoport, Henry

    1980-07-01

    The isolation and chromatographic purification of chromophore-containing peptides from the PR form of phytochrome treated with pepsin and thermolysin are described. From the amino acid sequence and 1H NMR spectral analysis of phytochromobiliundeca peptide (2), the structure of the PR phytochrome chromophore and the nature of the thioether linkage joining pigment to peptide have been established. Furthermore, confirmatory evidence was obtained from similar analysis of phytochromobilioctapeptide (3). The implications of this structural assignment with respect to the mechanism of the PR to PFR phototransformation are considered.

  18. Genetics of Germination-Arrest Factor (GAF) production by Pseudomonas fluorescens WH6: Identification of a gene cluster essential for GAF biosynthesis.

    USDA-ARS?s Scientific Manuscript database

    The genetic basis of the biosynthesis of the Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated in the present study. In addition to its ability to inhibit the germination of a wide range of grass...

  19. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis.

    PubMed

    Kanegae, Takeshi; Kimura, Izumi

    2015-08-01

    In the fern Adiantum capillus-veneris, the phototropic response of the protonemal cells is induced by blue light and partially inhibited by subsequent irradiation with far-red light. This observation strongly suggests the existence of a phytochrome that mediates this blue/far-red reversible response; however, the phytochrome responsible for this response has not been identified. PHY3/NEO1, one of the three phytochrome genes identified in Adiantum, encodes a chimeric photoreceptor composed of both a phytochrome and a phototropin domain. It was demonstrated that phy3 mediates the red light-dependent phototropic response of Adiantum, and that phy3 potentially functions as a phototropin. These findings suggest that phy3 is the phytochrome that mediates the blue/far-red response in Adiantum protonemata. In the present study, we expressed Adiantum phy3 in a phot1 phot2 phototropin-deficient Arabidopsis line, and investigated the ability of phy3 to induce phototropic responses under various light conditions. Blue light irradiation clearly induced a phototropic response in the phy3-expressing transgenic seedlings, and this effect was fully inhibited by simultaneous irradiation with far-red light. In addition, experiments using amino acid-substituted phy3 indicated that FMN-cysteinyl adduct formation in the light, oxygen, voltage (LOV) domain was not necessary for the induction of blue light-dependent phototropism by phy3. We thus demonstrate that phy3 is the phytochrome that mediates the blue/far-red reversible phototropic response in Adiantum. Furthermore, our results imply that phy3 can function as a phototropin, but that it acts principally as a phytochrome that mediates both the red/far-red and blue/far-red light responses. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Mechanistic duality of transcription factor function in phytochrome signaling

    USDA-ARS?s Scientific Manuscript database

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  1. The Protein Phosphatase 7 Regulates Phytochrome Signaling in Arabidopsis

    PubMed Central

    Genoud, Thierry; Treviño Santa Cruz, Marcela; Kulisic, Tea; Sparla, Francesca; Fankhauser, Christian; Métraux, Jean-Pierre

    2008-01-01

    The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems. PMID:18628957

  2. Mechanism for the selective conjugation of ubiquitin to phytochrome

    SciTech Connect

    Vierstra, R.D.

    1990-01-01

    The goal of this project is to understand at the molecular level how phytochrome functions and how intracellular proteins are degraded. Phytochrome is marked for degradation by covalent attachment of ubiquitin. Ubiquitin-phytochrome conjugates (UbP) were characterized with respect to formation kinetics, subcellular localization and site of ubiquitin attachment. UbP appears to be a general phenomenon during phytochrome degradation in a variety of species. UbP was isolated from oat seedlings and characterized. Residues 747-830 of phytochrome have been identified as a possible attachment site for ubiquitin. By placing the gene for etiolated phytochrome in tobacco we have created a transgenic system for over expressing phytochrome. The effects of this over expression are described, and it appears that tobacco degrades this foreign protein through formation of UbP. We have created a series of site-directed mutants of the oat phytochrome gene, and are in the process of characterizing them to determine sequence requirements for ubiquination. 8 refs., 1 fig. (MHB)

  3. In vivo measurement of phytochrome in tomato fruit.

    PubMed

    Jen, J J

    1977-04-01

    Presence of phytochrome in two kinds of tomatoes (Lycopersicon esculentum Mill.), the yellow lutescent strain and cherry tomatoes (L. esculentum Mill. var. cerasiformecv. Red Cherry), was established by measuring the absorption difference spectra of the whole fruit after irradiation with red and with far red light. Phytochrome content was determined in yellow lutescent tomatoes and decreased gradually during the ripening period.

  4. Overexpression of Arabidopsis phytochrome B inhibits phytochrome A function in the presence of sucrose.

    PubMed

    Short, T W

    1999-04-01

    Overexpression of phytochrome B (phyB) in Arabidopsis has previously been demonstrated to result in dominant negative interference of phytochrome A (phyA)-mediated hypocotyl growth inhibition in far-red (FR) light. This phenomenon has been examined further in this study and has been found to be dependent on the FR fluence rate and on the availability of metabolizable sugars in the growth medium. Poorly metabolized sugars capable of activating the putative hexokinase sensory function were not effective in eliciting the phytochrome interference response. Overexpressed phyB lacking the chromophore-binding site was also effective at inhibiting the phyA response, especially at higher fluence rates of FR. Overexpressed phyB produces the dominant negative phenotype without any apparent effect on phyA abundance or degradation. It is possible that phyA and phyB interact with a common reaction partner but that either the energy state of the cell or a separate sugar-signaling mechanism modulates the phytochrome-signaling interactions.

  5. Vibrational-rotational spectra of GaF and global multi-isotopologue analysis

    NASA Astrophysics Data System (ADS)

    Uehara, Hiromichi; Horiai, Koui; Katsuie, Shunsuke

    2016-07-01

    In total, 521 vibrational-rotational spectral lines of the Δv = 1 transitions of 69GaF and 71GaF up to bands v = 5-4 and 4-3, respectively, were recorded in emission with a Fourier-transform spectrometer at unapodized resolution 0.010 cm-1 in range 625-660 cm-1. The response of a HgCdTe detector enforced the lower limit, 625 cm-1. To calibrate accurately the spectral lines, the absorption spectrum of CO2 was simultaneously recorded, using dual sample cells, to serve as wavenumber standards. A set of 782 spectral lines comprising all present vibrational-rotational spectra of 69GaF and 71GaF, the reported laser-diode measurements of the Δv = 1 band sequence and the reported rotational spectra was subjected to a global multi-isotopologue analysis through fitting with 11 isotopically invariant, irreducible molecular parameters in a single set. Normalized standard deviation 1.093 indicates a satisfactory fit. For the effects of the breakdown of the Born-Oppenheimer approximation on GaF, the values of non-Born-Oppenheimer parameters ΔBGa, ΔωGa and r1qGa(=r1qF) are experimentally determined for the first time. To facilitate the calculations or predictions of spectral frequencies, the values of the Dunham coefficients of 24 Yij and 81 band parameters for both 69GaF and 71GaF were back-calculated with uncertainties using the 11 evaluated molecular parameters. To date, various types of effective Be, re, ωe, and k have been reported for GaF. Because, in the present work, Dunham coefficients Yij are algebraically expressed with the genuine Be, ωe, ai (i = 1, …) and the non-Born-Oppenheimer correction parameters, the exact expressions for the physical significance of effective quantities are derivable. The various effective quantities of Be, re, ωe and k calculated with these expressions for the physical significance and the determined values of the fitted parameters of GaF agree satisfactorily with the reported values. The physical significance of the conventional

  6. Phytochrome in photosynthetically competent plants characterization by monoclonal antibodies. Progress report

    SciTech Connect

    Pratt, L.H.

    1986-01-01

    Detailed information concerning the physicochemical properties of phytochrome is sought, but since only trace quantities are present in plant tissues, it is extremely labile to modification in crude plant extracts, efficient and sensitive methods for its purification and characterization will be required. Towards this end immune serums directed towards oat phytochrome have been prepared. Unfortunately the phytochrome in green oats is immunochemically distinct from phytochrome in etiolated oats. Consequently, effort has been directed at preparation of monoclonal antibodies for green-oat phytochrome.

  7. Regulation of phytochrome message abundance in root caps of maize

    NASA Technical Reports Server (NTRS)

    Johnson, E. M.; Pao, L. I.; Feldman, L. J.

    1991-01-01

    In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochrome-mediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps is not known.

  8. Oat Phytochrome Is Biologically Active in Transgenic Tomatoes.

    PubMed

    Boylan, M. T.; Quail, P. H.

    1989-08-01

    To determine the functional homology between phytochromes from evolutionarily divergent species, we used the cauliflower mosaic virus 35S promoter to express a monocot (oat) phytochrome cDNA in a dicot plant (tomato). Immunoblot analysis shows that more than 50% of the transgenic tomato plants synthesize the full-length oat phytochrome polypeptide. Moreover, leaves of light-grown transgenic plants contain appreciably less oat phytochrome than leaves from dark-adapted plants, and etiolated R1 transgenic seedlings have higher levels of spectrally active phytochrome than wild-type tomato seedlings in direct proportion to the level of immunochemically detectable oat polypeptide present. These data suggest that the heterologous oat polypeptide carries a functional chromophore, allowing reversible photoconversion between the two forms of the molecule, and that the far-red absorbing form (Pfr) is recognized and selectively degraded by the Pfr-specific degradative machinery in the dicot cell. The overexpression of oat phytochrome has pleiotropic, phenotypic consequences at all major phases of the life cycle. Adult transgenic tomato plants expressing high levels of the oat protein tend to be dwarfed, with dark green foliage and fruits. R1 transgenic seedlings have short hypocotyls with elevated anthocyanin contents. We conclude that a monocot phytochrome can be synthesized and correctly processed to a biologically active form in a dicot cell, and that the transduction pathway components that interact with the photoreceptor are evolutionarily conserved.

  9. Selective inhibition of Erwinia amylovora by the herbicidally-active Germination-Arrest Factor (GAF) produced by Pseudomonas bacteria

    USDA-ARS?s Scientific Manuscript database

    Aims: The Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. The present study was undertaken to determine if GAF has antimicrobial activity in addition to it...

  10. The Arabidopsis Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels

    USDA-ARS?s Scientific Manuscript database

    We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light–absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF...

  11. Structure-guided Engineering Enhances a Phytochrome-based Infrared Fluorescent Protein*

    PubMed Central

    Auldridge, Michele E.; Satyshur, Kenneth A.; Anstrom, David M.; Forest, Katrina T.

    2012-01-01

    Phytochrome is a multidomain dimeric red light photoreceptor that utilizes a chromophore-binding domain (CBD), a PHY domain, and an output module to induce cellular changes in response to light. A promising biotechnology tool emerged when a structure-based substitution at Asp-207 was shown to be an infrared fluorophore that uses a biologically available tetrapyrrole chromophore. We report multiple crystal structures of this D207H variant of the Deinococcus radiodurans CBD, in which His-207 is observed to form a hydrogen bond with either the tetrapyrrole A-ring oxygen or the Tyr-263 hydroxyl. Based on the implications of this duality for fluorescence properties, Y263F was introduced and shown to have stronger fluorescence than the original D207H template. Our structures are consistent with the model that the Y263F change prevents a red light-induced far-red light absorbing phytochrome chromophore configuration. With the goal of decreasing size and thereby facilitating use as a fluorescent tag in vivo, we also engineered a monomeric form of the CBD. Unexpectedly, photoconversion was observed in the monomer despite the lack of a PHY domain. This observation underscores an interplay between dimerization and the photochemical properties of phytochrome and suggests that the monomeric CBD could be used for further studies of the photocycle. The D207H substitution on its own in the monomer did not result in fluorescence, whereas Y263F did. Combined, the D207H and Y263F substitutions in the monomeric CBD lead to the brightest of our variants, designated Wisconsin infrared phytofluor (Wi-Phy). PMID:22210774

  12. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochrome and phycocyanin chromophores

    SciTech Connect

    Farrens, D.L.; Holt, R.E.; Rospendowski, B.N.; Song, Pillsoon; Cotton, T.M. )

    1989-12-20

    Surface-enhanced resonance Raman scattering (SERRS) spectra of phytochrome at 77 K are reported. The spectra reveal significant differences between Pr and Pfr forms of phytochrome. SERRS spectra of C-phycocyanin Z,Z,Z- and Z,Z,E-chromopeptide isomers at 77 K are also reported. The phycocyanin chromopeptide studies are used to provide a basis for interpreting the phytochrome SERRS spectra. The spectra indicate that photoisomerization of chromophores from C-phycocyanin chromopeptides (from a Z,Z,Z to a Z,Z,E configuration) is detectable with SERRS.

  13. Phytochrome B inhibits binding of Phytochrome-Interacting Factors to their target promoters

    PubMed Central

    Park, Eunae; Park, Jeongmoo; Kim, Junghyun; Nagatani, Akira; Lagarias, J. Clark; Choi, Giltsu

    2012-01-01

    Summary Phytochromes are red and far-red light receptors in plants that mediate critical responses to light throughout the life cycle. They achieve this in part by targeting negatively acting bHLH transcription factors called phytochrome-interacting factors (PIFs) for degradation within the nucleus. It is not known, however, if protein degradation is the primary mechanism by which phytochromes inhibit these repressors of photomorphogenesis. Here, we use ChIP analysis to show that phyB inhibits the regulatory activity of PIF1 and PIF3 by releasing them from their DNA targets. The N-terminal fragment of phyB (NG-GUS-NLS; NGB) also inhibits the binding of PIF3 to its target promoters. Unlike the full-length phyB, however, NGB does not promote PIF3 degradation, establishing the activity of NGB reflects its ability to inhibit PIFs’ binding to DNA. We further show that Pfr forms of both full-length phyB and NGB inhibit the DNA binding of PIF1 and PIF3 in vitro. Taken together, our results indicate that phyB inhibition of PIF function involves two separate processes, sequestration and protein degradation. PMID:22849408

  14. Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A.

    PubMed

    Appenroth, Klaus J; Lenk, Gabriele; Goldau, Lydia; Sharma, Rameshwar

    2006-04-01

    Lycopersicon esculentum seeds germinate after rehydration in complete darkness. This response was inhibited by a far-red light (FR) pulse, and the inhibition was reversed by a red light (R) pulse. Comparison of germination in phytochrome-deficient mutants (phyA, phyB1, phyB2, phyAB1, phyB1B2 and phyAB1B2) showed that phytochrome B2 (PhyB2) mediates both responses. The germination was inhibited by strong continuous R (38 micromol m(-2) s(-1)), whereas weak R (28 nmol m(-2) s(-1)) stimulated seed germination. Hourly applied R pulses of the same photon fluence partially replaced the effect of strong continuous R. This response was called 'antagonistic' because it counteracts the low fluence response (LFR) induced by a single R pulse. This antagonistic response might be an adaptation to a situation where the seeds sit on the soil surface in full sunlight (adverse for germination), while weak R might reflect that situation under a layer of soil. Unexpectedly, the effects of continuous R or repeated R pulses were mediated by phytochrome A (PhyA). We therefore suggest that low levels of PhyA in its FR-absorbing form (Pfr) cause inhibition of seed germination produced either by extended R irradiation (by degradation of PhyA-Pfr) or by extended FR irradiation [keeping a low Pfr/R-absorbing form (Pr) ratio].

  15. Surface dose measurements with GafChromic EBT film for 6 and 18MV photon beams.

    PubMed

    Bilge, Hatice; Cakir, Aydin; Okutan, Murat; Acar, Hilal

    2009-06-01

    The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39%+/-2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32%+/-2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm(2) field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within +/-3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.

  16. An Analysis of Phytochrome-mediated Anthocyanin Synthesis

    PubMed Central

    Lange, H.; Shropshire, W.; Mohr, H.

    1971-01-01

    Phytochrome (far red form) alone can mediate anthocyanin synthesis in the mustard seedling (Sinapis alba L.). Complete photoreversibility and reciprocity, for both red and far red light exposures over a period of at least 5 minutes, demonstrate this phytochrome involvement. The duration of the initial lag-phase is constant (about 3 hours at 25 C) for seedlings more than 30 hours old and is specific for the system, being independent of the dose or quality of light. Since a complete reversal by far red of a red light induction is possible only during a 5 minute period, phytochrome (far red form) obviously mediates anthocyanin synthesis during the lag-phase although the actual synthesis of pigment can proceed only after the lag-phase is overcome. We suggest that phytochrome (far red form) exerts a double function during the initial lag-phase. It mediates both the build up of a biosynthetic potential (“capacity”) and anthocyanin synthesis. However, the sequence of events leading to anthocyanin is arrested at some intermediate stage until this “capacity” is built up after 3 hours. Once “capacity” is achieved it does not decay readily. Therefore, no significant “secondary lag-phase” occurs if the seedling, under appropriate conditions, is reirradiated after an intervening dark period. The rate or extent of synthesis for both anthocyanin and lipoxygenase, previously reported (32), are functions of the amount of phytochrome (far red form). No “phytochrome paradoxes,” i.e., nonrational relationships between the amount of phytochrome (far red form) and rate or extent of response, were detected. This fact suggests that the mustard seedling is especially well suited for investigating the biophysical and molecular mechanisms of phytochrome action. PMID:16657678

  17. Phytochrome from green plants: Assay, purification, and characterization

    SciTech Connect

    Quail, P.H. . Dept. of Plant and Soil Biology Agricultural Research Service, Albany, CA . Plant Gene Expression Center)

    1991-06-10

    This funding period was directed at developing an in-depth molecular analysis of the low-abundance, 118,000 M{sub r} green-tissue phytochrome that had at that time been relatively recently identified as being distinct from the better characterized 124,000 M{sub r} phytochrome abundant in etiolated tissue. The specific objectives as stated in the original proposal were: (1) To generate monoclonal antibodies specific to the 118,000 M{sub r} green-tissue phytochrome. (2) To develop additional and improved procedures to permit progress toward the ultimate goal of purifying green-tissue phytochrome to homogeneity. (3) To initiate an alternative approach to determining the structural properties of green-tissue phytochrome by isolating and sequencing cDNA cones representing the 118,000 M{sub r} green-tissue polypeptide in Avena. This approach is based on and will test hypothesis that the 118,000 M{sub r} polypeptide is encoded by a gene(s) distinct from those encoding etiolated-tissue 124,000 M{sub r} phytochrome. (4) To utilize any such 118,000 M{sub r} phytochrome specific cDNA clones as hybridization probes to begin to investigate the structure, organization, and regulation of the corresponding gene(s) in Avena. (5) To begin to investigate the possible presence in other higher plant and algal species of sequences homologous to the 118,000 M{sub r} Avena polypeptide using the Avena clones at hybridization probes. Most of these objectives have been accomplished, at least in principle, although the major breakthrough establishing that phytochrome is encoded by a multigene family came from the use of Arabidopsis rather than Avena. Similarly, much of the characterization subsequent to this discovery has been performed in Arabidopsis and rise as model dicot and monocot systems, respectively, rather than Avena. 13 refs., 9 figs.

  18. Phytochromes: An Atomic Perspective on Photoactivation and Signaling

    PubMed Central

    Burgie, E. Sethe

    2014-01-01

    The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents. PMID:25480369

  19. Structure and expression of maize phytochrome family homeologs.

    PubMed Central

    Sheehan, Moira J; Farmer, Phyllis R; Brutnell, Thomas P

    2004-01-01

    To begin the study of phytochrome signaling in maize, we have cloned and characterized the phytochrome gene family from the inbred B73. Through DNA gel blot analysis of maize genomic DNA and BAC library screens, we show that the PhyA, PhyB, and PhyC genes are each duplicated once in the genome of maize. Each gene pair was positioned to homeologous regions of the genome using recombinant inbred mapping populations. These results strongly suggest that the duplication of the phytochrome gene family in maize arose as a consequence of an ancient tetraploidization in the maize ancestral lineage. Furthermore, sequencing of Phy genes directly from BAC clones indicates that there are six functional phytochrome genes in maize. Through Northern gel blot analysis and a semiquantitative reverse transcriptase polymerase chain reaction assay, we determined that all six phytochrome genes are transcribed in several seedling tissues. However, expression from PhyA1, PhyB1, and PhyC1 predominate in all seedling tissues examined. Dark-grown seedlings express higher levels of PhyA and PhyB than do light-grown plants but PhyC genes are expressed at similar levels under light and dark growth conditions. These results are discussed in relation to phytochrome gene regulation in model eudicots and monocots and in light of current genome sequencing efforts in maize. PMID:15280251

  20. Spectrophotometric phytochrome measurements in light-grown Avena sativa L.

    PubMed

    Jabben, M; Deitzer, G F

    1978-01-01

    Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (τ1/2 ≈ 2 h) but reached a stable low level (≈2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.

  1. TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1

    PubMed Central

    Laor, Dana; Cohen, Adiel; Kupiec, Martin

    2015-01-01

    ABSTRACT The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. PMID:26152587

  2. Collecting Information for Rating Global Assessment of Functioning (GAF): Sources of Information and Methods for Information Collection.

    PubMed

    I H, Monrad Aas

    2014-11-01

    Global Assessment of Functioning (GAF) is an assessment instrument that is known worldwide. It is widely used for rating the severity of illness. Results from evaluations in psychiatry should characterize the patients. Rating of GAF is based on collected information. The aim of the study is to identify the factors involved in collecting information that is relevant for rating GAF, and gaps in knowledge where it is likely that further development would play a role for improved scoring. A literature search was conducted with a combination of thorough hand search and search in the bibliographic databases PubMed, PsycINFO, Google Scholar, and Campbell Collaboration Library of Systematic Reviews. Collection of information for rating GAF depends on two fundamental factors: the sources of information and the methods for information collection. Sources of information are patients, informants, health personnel, medical records, letters of referral and police records about violence and substance abuse. Methods for information collection include the many different types of interview - unstructured, semi-structured, structured, interviews for Axis I and II disorders, semistructured interviews for rating GAF, and interviews of informants - as well as instruments for rating symptoms and functioning, and observation. The different sources of information, and methods for collection, frequently result in inconsistencies in the information collected. The variation in collected information, and lack of a generally accepted algorithm for combining collected information, is likely to be important for rated GAF values, but there is a fundamental lack of knowledge about the degree of importance. Research to improve GAF has not reached a high level. Rated GAF values are likely to be influenced by both the sources of information used and the methods employed for information collection, but the lack of research-based information about these influences is fundamental. Further development of

  3. Collecting Information for Rating Global Assessment of Functioning (GAF): Sources of Information and Methods for Information Collection

    PubMed Central

    Aas, I. H. Monrad

    2014-01-01

    Introduction: Global Assessment of Functioning (GAF) is an assessment instrument that is known worldwide. It is widely used for rating the severity of illness. Results from evaluations in psychiatry should characterize the patients. Rating of GAF is based on collected information. The aim of the study is to identify the factors involved in collecting information that is relevant for rating GAF, and gaps in knowledge where it is likely that further development would play a role for improved scoring. Methods: A literature search was conducted with a combination of thorough hand search and search in the bibliographic databases PubMed, PsycINFO, Google Scholar, and Campbell Collaboration Library of Systematic Reviews. Results: Collection of information for rating GAF depends on two fundamental factors: the sources of information and the methods for information collection. Sources of information are patients, informants, health personnel, medical records, letters of referral and police records about violence and substance abuse. Methods for information collection include the many different types of interview – unstructured, semi-structured, structured, interviews for Axis I and II disorders, semistructured interviews for rating GAF, and interviews of informants – as well as instruments for rating symptoms and functioning, and observation. The different sources of information, and methods for collection, frequently result in inconsistencies in the information collected. The variation in collected information, and lack of a generally accepted algorithm for combining collected information, is likely to be important for rated GAF values, but there is a fundamental lack of knowledge about the degree of importance. Conclusions: Research to improve GAF has not reached a high level. Rated GAF values are likely to be influenced by both the sources of information used and the methods employed for information collection, but the lack of research-based information about these

  4. Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors.

    PubMed

    Kim, Keunhwa; Shin, Jieun; Lee, Sang-Hee; Kweon, Hee-Seok; Maloof, Julin N; Choi, Giltsu

    2011-01-25

    Phytochromes are red and far-red light photoreceptors that regulate various aspects of plant development. One of the less-understood roles of phytochromes is the inhibition of hypocotyl negative gravitropism, which refers to the loss of hypocotyl gravitropism and resulting random growth direction in red or far-red light. This light response allows seedlings to curve toward blue light after emergence from the soil and enhances seedling establishment in the presence of mulch. Phytochromes inhibit hypocotyl negative gravitropism by inhibiting four phytochrome-interacting factors (PIF1, PIF3, PIF4, PIF5), as shown by hypocotyl agravitropism of dark-grown pif1 pif3 pif4 pif5 quadruple mutants. We show that phytochromes inhibit negative gravitropism by converting starch-filled gravity-sensing endodermal amyloplasts to other plastids with chloroplastic or etioplastic features in red or far-red light, whereas PIFs promote negative gravitropism by inhibiting the conversion of endodermal amyloplasts to etioplasts in the dark. By analyzing transgenic plants expressing PIF1 with an endodermis-specific SCARECROW promoter, we further show that endodermal PIF1 is sufficient to inhibit the conversion of endodermal amyloplasts to etioplasts and hypocotyl negative gravitropism of the pif quadruple mutant in the dark. Although the functions of phytochromes in gravitropism and chloroplast development are normally considered distinct, our results indicate that these two functions are closely related.

  5. Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors

    PubMed Central

    Kim, Keunhwa; Shin, Jieun; Lee, Sang-Hee; Kweon, Hee-Seok; Maloof, Julin N.; Choi, Giltsu

    2011-01-01

    Phytochromes are red and far-red light photoreceptors that regulate various aspects of plant development. One of the less-understood roles of phytochromes is the inhibition of hypocotyl negative gravitropism, which refers to the loss of hypocotyl gravitropism and resulting random growth direction in red or far-red light. This light response allows seedlings to curve toward blue light after emergence from the soil and enhances seedling establishment in the presence of mulch. Phytochromes inhibit hypocotyl negative gravitropism by inhibiting four phytochrome-interacting factors (PIF1, PIF3, PIF4, PIF5), as shown by hypocotyl agravitropism of dark-grown pif1 pif3 pif4 pif5 quadruple mutants. We show that phytochromes inhibit negative gravitropism by converting starch-filled gravity-sensing endodermal amyloplasts to other plastids with chloroplastic or etioplastic features in red or far-red light, whereas PIFs promote negative gravitropism by inhibiting the conversion of endodermal amyloplasts to etioplasts in the dark. By analyzing transgenic plants expressing PIF1 with an endodermis-specific SCARECROW promoter, we further show that endodermal PIF1 is sufficient to inhibit the conversion of endodermal amyloplasts to etioplasts and hypocotyl negative gravitropism of the pif quadruple mutant in the dark. Although the functions of phytochromes in gravitropism and chloroplast development are normally considered distinct, our results indicate that these two functions are closely related. PMID:21220341

  6. A CHASE3/GAF sensor hybrid histidine kinase BmsA modulates biofilm formation and motility in Pseudomonas alkylphenolica.

    PubMed

    Lee, Kyoung; Ha, Gwang Su; Veeranagouda, Yaligara; Seo, Young-Su; Hwang, Ingyu

    2016-11-01

    Pseudomonas alkylphenolica is an important strain in the biodegradation of toxic alkylphenols and mass production of bioactive polymannuronate polymers. This strain forms a diverse, 3D biofilm architecture, including mushroom-like aerial structures, circular pellicles and surface spreading, depending on culture conditions. A mutagenesis and complementation study showed that a predicted transmembrane kinase, PSAKL28_21690 (1164 aa), harbouring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic GAF, histidine kinase and three CheY-like response regulator domains, plays a positive role in the formation of the special biofilm architecture and a negative role in swimming activity. In addition, the gene, named here as bmsA, is co-transcribed with three genes encoding proteins with CheR (PSAKL28_21700) and CheB (PSAKL28_21710) domains and response regulator and histidine kinase domains (PSAKL28_21720). This gene cluster is thus named bmsABCD and is found widely distributed in pseudomonads and other bacteria. Deletion of the genes in the cluster, except forbmsA, did not result in changes in biofilm-related phenotypes. The RNA-seq analysis showed that the expression of genes coding for flagellar synthesis was increased when bmsA was mutated. In addition, the expression of rsmZ, which is one of final targets of the Gac regulon, was not significantly altered in the bmsA mutant, and overexpression of bmsA in the gacA mutant did not produce the WT phenotype. These results indicate that the sensory Bms regulon does not affect the upper cascade of the Gac signal transduction pathway for the biofilm-related phenotypes in P. alkylphenolica.

  7. Calcium requirement of phytochrome-mediated fern-spore germination: no direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1989-01-01

    Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations > or = 10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of phytochrome.

  8. Calcium requirement of phytochrome-mediated fern-spore germination: no direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1989-01-01

    Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations > or = 10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of phytochrome.

  9. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner.

    PubMed

    Fukazawa, Jutarou; Ito, Takeshi; Kamiya, Yuji; Yamaguchi, Shinjiro; Takahashi, Yohsuke

    2015-01-01

    Gibberellins (GAs) are important phytohormones for plant growth and development. DELLAs are members of the plant-specific GRAS protein family and act as repressors of GA signaling. DELLAs are rapidly degraded in the presence of GAs. GA-GID1-DELLA complexes are recognized and ubiquitinated by the SCF(SLY) complex. The sleepy1 (sly1) F-box mutant exhibits dwarfism and low-germination phenotypes due to high accumulation of DELLAs. Overexpression of GID1 in the sly1 mutant partially rescues these phenotypes without degradation of DELLAs suggesting that proteolysis independent regulation of DELLAs exists in GA signaling. But the molecular mechanisms of non-proteolytic regulation of DELLA are largely unknown. Recently we identified a DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 also interacts with co-repressor TOPLESS RELATED (TPR) in nuclei. DELLAs and TPR act as coactivator and corepressor of GAF1, respectively. GAs converts the GAF1 complex from transcriptional activator to repressor via degradation of DELLAs. The overexpression of ΔPAM, lacking of DELLAs binding region of GAF1, partially rescue dwarf phenotypes of GA deficient or GA insensitive mutant. In this study, we investigate the relationship between non-proteolytic regulation of DELLAs and GA signaling via DELLA-GAF1 complex using modified yeast two-hybrid system.

  10. An ab initio study of the ground and valence excited states of GaF

    NASA Astrophysics Data System (ADS)

    Yang, Xinzheng; Lin, Meirong; Zhang, Baozheng

    2004-03-01

    Ab initio calculations on the ground and valence excited states of the GaF molecule have been performed by using the internally contracted multireference electronic correlation methods (MR-CISD, MR-CISD+Q, and MR-AQCC) with entirely uncontracted all-electronic basis sets and Douglas-Kroll scalar relativistic correction. The potential energy curves of all valence states and the spectroscopic constants of bound states are fitted. It is the first time that the 12 valence Λ-S states of GaF molecule and all of the 23 Ω states generated from the former are studied in a theoretical way. Calculation results well reproduce most of the experimental data. The effects of the size-extensivity correction and the avoided crossing rule between Ω states of the same symmetry are analyzed. The transition properties of the A 3Π0+, B 3Π1, C 1Π1, and 3Σ1+ states are predicted, including the transition dipole moments, the Franck-Condon factors and the radiative lifetimes. The radiative lifetime of the C 1Π1 state of GaF molecule is of the order of nanosecond, implying that it is a rather short-live state. The lifetimes of the B 3Π1 and 3Σ1+ states are of the order of microsecond, while the lifetime of the A 3Π0+ state are the order of millisecond.

  11. Phytochrome-mediated regulation of plant respiration and photorespiration.

    PubMed

    Igamberdiev, Abir U; Eprintsev, Alexander T; Fedorin, Dmitry N; Popov, Vasily N

    2014-02-01

    The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone-insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non-coupled pathways become activated. Phytochrome-mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf). © 2013 John Wiley & Sons Ltd.

  12. Molecular mechanisms of phytochrome signal transduction in higher plants.

    PubMed

    Chu, Li-Ye; Shao, Hong-Bo; Li, Mao-Yau

    2005-11-10

    Phytochromes in higher plants play a great role in development, responses to environmental stresses and signal transduction, which are the fundamental principles for higher plants to be adapted to changing environment. Deep and systematic understanding of the phytochrome in higher plants is of crucial importance to molecular biology, purposeful improvement of environment in practice, especially molecular mechanism by which higher plants perceive UV-B stress. The last more than 10 years have seen rapid progress in this field with the aid of a combination of molecular, genetic and cell biological approaches. No doubt, what is the most important, is the application of Arabidopsis experimental system and the generation of various mutants regarding phytochromes (phy A-E). Increasing evidence demonstrates that phytochrome signaling transduction constitutes a highly ordered multidimensional network of events. Some phytochromes and signaling intermediates show light-dependent nuclear-cytoplasmic partitioning, which implies that early signaling events take place in the nucleus and that subcellular localization patterns most probably represent an important signaling control point. The main subcellular localization includes nucleus, cytosol and chloroplasts, respectively. Additionally, proteasome-mediated degradation of signaling intermediates most possibly function in concert with subcellular partitioning events as an integrated checkpoint. What higher plants do in this way is to execute accurate responses to the changes in the light environment on the basis of interconnected subcellular organelles. By integrating the available data, at the molecular level and from the angle of eco-environment, we should be able to construct a solid foundation for further dissection of phytochrome signaling transduction in higher plants.

  13. In Vivo Phytochrome Reversion in Immature Tissue of the Alaska Pea Seedling 1

    PubMed Central

    McArthur, James A.; Briggs, Winslow R.

    1971-01-01

    Reversion of far red-absorbing phytochrome to red-absorbing phytochrome without phytochrome destruction (that is, without loss of absorbancy and photoreversibility) occurs in the following tissues of etiolated Alaska pea seedlings (Pisum sativum L.): young radicles (24 hours after start of imbibition), young epicotyls (48 hours after start of imbibition), and the juvenile region of the epicotyl immediately subjacent to the plumule in older epicotyls. Reversion occurs rapidly in the dark during the first 30 minutes following initial phototransformation of red-absorbing phytochrome to far red-absorbing phytochrome. If these tissues are illuminated continuously with red light for 30 minutes, the total amount of phytochrome remains unchanged. Beyond 30 minutes after a single phototransformation or after the start of continuous red irradiation, phytochrome destruction commences. In young radicles, sodium azide inhibits this destruction, but does not affect reversion. In older tissues in which far red-absorbing phytochrome destruction begins immediately upon phototransformation, strong evidence for simultaneous far red-absorbing phytochrome reversion is obtained from comparison of far red-absorbing phytochrome loss in the dark following a single phototransformation with far red-absorbing phytochrome loss under continuous red light. PMID:16657731

  14. The Phytochrome B/Phytochrome C Heterodimer Is Necessary for Phytochrome C-Mediated Responses in Rice Seedlings

    PubMed Central

    Takano, Makoto

    2014-01-01

    Background PhyC levels have been observed to be markedly lower in phyB mutants than in Arabidopsis or rice wild type etiolated seedlings, but the mechanism of this phenomenon has not been fully elucidated. Results In the present study, we investigated the mechanism by which phyB affects the protein concentration and photo-sensing abilities of phyC and demonstrated that rice phyC exists predominantly as phyB/phyC heterodimers in etiolated seedlings. PHYC-GFP protein was detected when expressed in phyA phyC mutants, but not in phyA phyB mutants, suggesting that phyC requires phyB for its photo-sensing abilities. Interestingly, when a mutant PHYB gene that has no chromophore binding site, PHYB(C364A), was introduced into phyB mutants, the phyC level was restored. Moreover, when PHYB(C364A) was introduced into phyA phyB mutants, the seedlings exhibited de-etiolation under both far-red light (FR) and red light (R) conditions, while the phyA phyB mutants were blind to both FR and R. These results are the first direct evidence that phyC is responsible for regulating seedling de-etiolation under both FR and R. These findings also suggest that phyB is indispensable for the expression and function of phyC, which depends on the formation of phyB/phyC heterodimers. Significance The present report clearly demonstrates the similarities and differences in the properties of phyC between Arabidopsis and rice and will advance our understanding of phytochrome functions in monocots and dicots. PMID:24853557

  15. Phytochrome-Regulated PIL1 Derepression is Developmentally Modulated

    USDA-ARS?s Scientific Manuscript database

    We define the photoresponsiveness, during seedling de-etiolation, of PHYTOCHROME-INTERACTING FACTOR 3-LIKE 1 (PIL1), initially identified by microarray analysis as an early-response gene that is robustly repressed by first exposure to light. We show that PIL1 mRNA abundance declines rapidly, with a ...

  16. Mechanism for the selective conjugation of ubiquitin to phytochrome

    SciTech Connect

    Vierstra, R.D.

    1989-01-01

    The long term goal of this project is to understand at the molecular level how intracellular proteins are degraded. The purpose of this research is to characterize the form-dependent degradation of phytochrome as a model system for the study of selective protein breakdown. Phytochrome exists in two photo-interconveretible forms, a red-absorbing Pr form and a far-red absorbing Pfr form. Recent evidence indicates that selective breakdown of phytochrome in etiolated oat seedlings occurs by a ubiquitin-dependent proteolytic pathway. Ubiquitin is a 76 amino acid eukaryotic protein that is covalently ligated to proteins destined for catabolism and serves as recognition signal for proteases specific for ubiquitin-protein conjugates. In an attempt to understand why Pfr and not Pr is recognized by the ubiquitin pathway, we have characterized ubiquitin-phytochrome conjugates (Ub-P) with respect to their kinetics of accumulation, localization within the cell, and sites of ubiquitin attachment. We also examined Pfr degradation in etiolated seedlings from a variety of other plant species (corn, rye, pea and zucchini squash) for their ability to form Ub-P during Pfr degradation. 4 refs.

  17. Regulation of brassinosteroid responses by phytochrome B in rice.

    PubMed

    Jeong, Dong-Hoon; Lee, Shinyoung; Kim, Song Lim; Hwang, Ildoo; An, Gynheung

    2007-05-01

    Plant growth and development are coordinately controlled by environmental signals and internal factors. Light signals, mediated by phytochromes, regulate photomorphogenesis by interacting with endogenous programmes that involve multiple phytohormones. Brassinosteroids (BRs) are a group of growth-promoting phytohormones with a crucial role in the light-dependent development of plants. However, the interaction between light-signalling pathways and BR signalling is not well understood. Here, we examined the responses of lamina joint inclination and coleoptile elongation to exogenous brassinolide (BL) under light or dark conditions. Both responses were more pronounced under darkness, implying that BR signalling is inhibited by light. To elucidate which phytochrome is involved in this interaction, we isolated rice phytochrome-deficient mutants (osphyA, osphyB and osphyC) from a T-DNA insertional population. Whereas the osphyA and osphyC knockout mutants did not differ from the wild-type plants in their BL responses, osphyB mutants were more sensitive. In addition, RT-PCR analysis revealed enhanced expression of BR-inducible genes and decreased transcript levels of BR-biosynthetic genes in osphyB plants. These results suggest that Phytochrome B acts as a negative regulator of BL-regulated growth and development processes in rice.

  18. Phytochrome-mediated Carotenoids Biosynthesis in Ripening Tomatoes.

    PubMed

    Thomas, R L; Jen, J J

    1975-09-01

    Red light induced and far red light inhibited carotenoid biosynthesis in ripening tomatoes (Lycopersicon esculentum Mill.) when compared to controls kept in the dark. Red illumination following far red illumination reversed the inhibitory action of far red light on carotenoid biosynthesis, suggesting a phytochrome-mediated process. Quantitation of individual carotenoids favored the hypothesis of two separate carotenoid biosynthetic pathways in tomatoes.

  19. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to Pisum and Avena phytochrome

    SciTech Connect

    Cordonnier, M.M.; Greppin, H.; Pratt, L.H.

    1984-01-01

    Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome - red-absorbing form and phytochrome - far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action. 27 references, 3 figures, 1 table.

  20. Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.

    PubMed

    Goyal, Anupama; Karayekov, Elizabeth; Galvão, Vinicius Costa; Ren, Hong; Casal, Jorge J; Fankhauser, Christian

    2016-12-19

    Phototropism is an asymmetric growth response enabling plants to optimally position their organs. In flowering plants, the phototropin (phot) blue light receptors are essential to detect light gradients. In etiolated seedlings, the phototropic response is enhanced by the red/far-red (R/FR)-sensing phytochromes (phy) with a predominant function of phyA. In this study, we analyzed the influence of the phytochromes on phototropism in green (de-etiolated) Arabidopsis seedlings. Our experiments in the laboratory and outdoors revealed that, in open environments (high R/FR ratio), phyB inhibits phototropism. In contrast, under foliar shade, where access to direct sunlight becomes important, the phototropic response was strong. phyB modulates phototropism, depending on the R/FR ratio, by controlling the activity of three basic-helix-loop-helix (bHLH) transcription factors of the PHYTOCHROME INTERACTING FACTORs (PIFs) family. Promotion of phototropism depends on PIF-mediated induction of several members of the YUCCA gene family, leading to auxin production in the cotyledons. Our study identifies PIFs and YUCCAs as novel molecular players promoting phototropism in photoautotrophic, but not etiolated, seedlings. Moreover, our findings reveal fundamental differences in the phytochrome-phototropism crosstalk in etiolated versus green seedlings. We propose that in natural conditions where the light environment is not homogeneous, the uncovered phytochrome-phototropin co-action is important for plants to adapt their growth strategy to optimize photosynthetic light capture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. PHYTOCHROME KINASE SUBSTRATE4 Modulates Phytochrome-Mediated Control of Hypocotyl Growth Orientation1[W][OA

    PubMed Central

    Schepens, Isabelle; Boccalandro, Hernán E.; Kami, Chitose; Casal, Jorge J.; Fankhauser, Christian

    2008-01-01

    Gravity and light are major factors shaping plant growth. Light perceived by phytochromes leads to seedling deetiolation, which includes the deviation from vertical hypocotyl growth and promotes hypocotyl phototropism. These light responses enhance survival of young seedlings during their emergence from the soil. The PHYTOCHROME KINASE SUBSTRATE (PKS) family is composed of four members in Arabidopsis (Arabidopsis thaliana): PKS1 to PKS4. Here we show that PKS4 is a negative regulator of both phytochrome A- and B-mediated inhibition of hypocotyl growth and promotion of cotyledon unfolding. Most prominently, pks4 mutants show abnormal phytochrome-modulated hypocotyl growth orientation. In dark-grown seedlings hypocotyls change from the original orientation defined by seed position to the upright orientation defined by gravity and light reduces the magnitude of this shift. In older seedlings with the hypocotyls already oriented by gravity, light promotes the deviation from vertical orientation. Based on the characterization of pks4 mutants we propose that PKS4 inhibits changes in growth orientation under red or far-red light. Our data suggest that in these light conditions PKS4 acts as an inhibitor of asymmetric growth. This hypothesis is supported by the phenotype of PKS4 overexpressers. Together with previous findings, these results indicate that the PKS family plays important functions during light-regulated tropic growth responses. PMID:18390804

  2. A novel Phytochrome B allele in Arabidopsis thaliana exhibits partial mutant phenotype: a short deletion in N-terminal extension reduces Phytochrome B activity

    USDA-ARS?s Scientific Manuscript database

    During analysis of a line possessing a Phytochrome A epiallele (phyA'), a partial Phytochrome B-deficient phenotype was observed, consisting of lengthened hypocotyls in seedlings grown under constant white light or red light (660 nm). The observed hypocotyls were twice the length (8 mm) of wild-typ...

  3. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes*

    PubMed Central

    Takala, Heikki; Björling, Alexander; Linna, Marko; Westenhoff, Sebastian; Ihalainen, Janne A.

    2015-01-01

    Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes. PMID:25971964

  4. Cyanobacterial phytochrome Cph2 is a negative regulator in phototaxis toward UV-A.

    PubMed

    Moon, Yoon-Jung; Kim, Soo Youn; Jung, Kwang-Hwan; Choi, Jong-Soon; Park, Young Mok; Chung, Young-Ho

    2011-01-21

    We investigated the wavelength dependence and photon-fluence rate response relationship for phototaxis of wild-type and a cyanobacterial phytochrome 2 (cph2) mutant in cyanobacterium Synechocystis sp. PCC 6803. Compared to wild-type, the cph2 mutant exhibited maximal activity for positive phototaxis at the near-UV spectral range. Two cysteine to serine substitutions in two chromophore-binding domains showed a similar cph2 mutant phenotype under UV-A. Epistasis of a pixJ mutation over a cph2 mutation implied that pixJ gene acts downstream of the cph2 gene with respect to UV-A-induced positive phototaxis. Therefore, we suggest that Cph2 is essential for the inhibition of positive phototaxis toward UV-A. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa.

    PubMed Central

    Lissemore, J L; Quail, P H

    1988-01-01

    We have examined phytochrome-regulated transcription of phytochrome (phy) and chlorophyll a/b binding protein (cab) genes in dark-grown Avena seedlings by using run-on transcription in isolated nuclei. Kinetic analysis of phy transcription following pulse-light treatments to produce various amounts of Pfr, the active form of phytochrome, leads to these conclusions. (i) Transcription decreases rapidly (discernible within 5 min) after Pfr formation, reaching an essentially undetectable level by 1 h. (ii) The response is very sensitive; less than 1% Pfr is sufficient to produce maximum feedback repression over the first 30 min. (iii) The duration of transcriptional repression is proportional to the Pfr concentration; derepression begins once the concentration falls below some saturation level because of degradation of Pfr. Concurrent analysis of cab transcription leads to these conclusions. (i) After Pfr formation, transcription increases approximately 10-fold by 3 h, but this response is not detectable until after a 30-min lag. (ii) Detectable induction of cab requires a greater than 30-fold-higher Pfr level than is needed to repress phy expression. (iii) Transcription returns to the preirradiation level considerably sooner than does phy transcription (less than 12 h versus greater than 24 h respectively), indicating that a high level of Pfr is needed to sustain the increased transcription of cab. Taken together, these results suggest that differences in the phytochrome signal transduction pathway are responsible for the distinct patterns of regulation of these genes. Full repression of phy occurs even when protein synthesis is inhibited greater than 90% by cycloheximide and chloramphenicol. In conjunction with the rapidity of the response to Pfr, this result provides evidence that feedback repression of phy gene transcription does not require expression of an intervening regulatory gene(s). Thus, phy is the first gene for which there is evidence for direct control

  6. Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa.

    PubMed

    Lissemore, J L; Quail, P H

    1988-11-01

    We have examined phytochrome-regulated transcription of phytochrome (phy) and chlorophyll a/b binding protein (cab) genes in dark-grown Avena seedlings by using run-on transcription in isolated nuclei. Kinetic analysis of phy transcription following pulse-light treatments to produce various amounts of Pfr, the active form of phytochrome, leads to these conclusions. (i) Transcription decreases rapidly (discernible within 5 min) after Pfr formation, reaching an essentially undetectable level by 1 h. (ii) The response is very sensitive; less than 1% Pfr is sufficient to produce maximum feedback repression over the first 30 min. (iii) The duration of transcriptional repression is proportional to the Pfr concentration; derepression begins once the concentration falls below some saturation level because of degradation of Pfr. Concurrent analysis of cab transcription leads to these conclusions. (i) After Pfr formation, transcription increases approximately 10-fold by 3 h, but this response is not detectable until after a 30-min lag. (ii) Detectable induction of cab requires a greater than 30-fold-higher Pfr level than is needed to repress phy expression. (iii) Transcription returns to the preirradiation level considerably sooner than does phy transcription (less than 12 h versus greater than 24 h respectively), indicating that a high level of Pfr is needed to sustain the increased transcription of cab. Taken together, these results suggest that differences in the phytochrome signal transduction pathway are responsible for the distinct patterns of regulation of these genes. Full repression of phy occurs even when protein synthesis is inhibited greater than 90% by cycloheximide and chloramphenicol. In conjunction with the rapidity of the response to Pfr, this result provides evidence that feedback repression of phy gene transcription does not require expression of an intervening regulatory gene(s). Thus, phy is the first gene for which there is evidence for direct control

  7. A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum.

    PubMed

    Starostzik, C; Marwan, W

    1995-08-14

    Phytochrome is a ubiquitous photoreceptor in plants that controls a variety of responses to light, including gene expression, differential cell growth and intracellular movement of organelles. All phytochromes analysed so far are reversibly interconverted by light between an inactive and an active conformation, each of which has a different and characteristic absorbance spectrum. Based on photophysiological measurements we provide evidence, that a photoreceptor with these unique properties of phytochrome triggers sporulation in the true slime mould Physarum polycephalum.

  8. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity1[OPEN

    PubMed Central

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira

    2016-01-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  9. Negative regulation of Germination-Arrest Factor (GAF) production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens WH6 secretes a Germination-Arrest Factor (GAF) that we have previously identified as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weed species and selectively inhibits growth of the bacterial plant pathogen Erwinia amylo...

  10. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon.

    PubMed

    Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Hirose, Yuu; Ikeuchi, Masahiko; Lagarias, J Clark; Larsen, Delmar S

    2013-11-19

    Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but they exhibit greater spectral diversity. Different CBCR subfamilies have been described, with spectral sensitivity varying across the near-ultraviolet and throughout the visible spectrum, but all known CBCRs utilize photoisomerization of the bilin 15,16-double bond as the primary photochemical event. The first CBCR discovered was RcaE, responsible for tuning light harvesting to the incident color environment (complementary chromatic adaptation) in Fremyella diplosiphon. The green/red RcaE photocycle has recently been described in detail. We now extend this analysis by examining femtosecond photodynamics using ultrafast transient absorption techniques with broadband detection and multicomponent global analysis. Excited-state dynamics in both directions are significantly slower than those recently published for the red/green CBCR NpR6012g4. In the forward reaction, the primary Lumi-G photoproduct arises from the longer-lived excited-state populations, leading to a low photoproduct quantum yield. Using dual-excitation wavelength interleaved pump-probe spectroscopy, we observe multiphasic excited-state dynamics in the forward reaction ((15Z)Pg → (15E)Pr), which we interpret as arising from ground-state inhomogeneity with different tautomers of the PCB chromophore. The reverse reaction ((15E)Pr → (15Z)Pg) is characterized via pump-probe spectroscopy and also exhibits slow excited-state decay dynamics and a low photoproduct yield. These results provide the first description of excited-state dynamics for a green/red CBCR.

  11. Drosophila BTB/POZ domains of "ttk group" can form multimers and selectively interact with each other.

    PubMed

    Bonchuk, Artem; Denisov, Stepan; Georgiev, Pavel; Maksimenko, Oksana

    2011-09-23

    The BTB (bric-a-brac, tramtrack and broad complex)/POZ (poxvirus and zinc finger) domain is a conserved protein-protein interaction motif contained in a variety of transcription factors involved in development, chromatin remodeling, insulator activity, and carcinogenesis. All well-studied mammalian BTB domains form obligate homodimers and, rarely, tetramers. Only the BTB domain of the Drosophila GAGA factor (GAF) has been shown to exist as higher-order multimers. The BTB domain of GAF belongs to the "ttk group" that contains several highly conserved sequences not found in other BTB domains. Here, we have shown by size-exclusion chromatography, chemical cross-linking, and nondenaturing PAGE that four additional BTB domains of the ttk group-Batman, Mod(mdg4), Pipsqueak, and Tramtrack-can form multimers, like GAF. Interestingly, the BTB domains of GAF and Batman have formed a wide range of complexes and interacted in the yeast two-hybrid assay with other BTB domains tested. In contrast, the BTB domains of Mod(mdg4), Pipsqueak, and Tramtrack have formed stable high-order multimer complexes and failed to interact with each other. The BTB domain of Drosophila CP190 protein does not belong to the ttk group. This BTB domain has formed stable dimers and has not interacted with domains of the ttk group. Previously, it was suggested that GAF oligomerization into higher-order complexes facilitates long-range activation by providing a protein bridge between an enhancer and a promoter. Unexpectedly, experiments in the Drosophila model system have not supported the role of GAF in organization of long-distance interaction between the yeast GAL4 activator and the white promoter.

  12. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions.

    PubMed

    Lamparter, Tilman

    2006-03-16

    Phytochromes are photoreceptors, discovered in plants, that control a wide variety of developmental processes. They have also been found in bacteria and fungi, but for many species their biological role remains obscure. This work concentrates on the phytochrome system of Agrobacterium tumefaciens, a non-photosynthetic soil bacterium with two phytochromes. To identify proteins that might share common functions with phytochromes, a co-distribution analysis was performed on the basis of protein sequences from 138 bacteria. A database of protein sequences from 138 bacteria was generated. Each sequence was BLASTed against the entire database. The homolog distribution of each query protein was then compared with the homolog distribution of every other protein (target protein) of the same species, and the target proteins were sorted according to their probability of co-distribution under random conditions. As query proteins, phytochromes from Agrobacterium tumefaciens, Pseudomonas aeruginosa, Deinococcus radiodurans and Synechocystis PCC 6803 were chosen along with several phytochrome-related proteins from A. tumefaciens. The Synechocystis photosynthesis protein D1 was selected as a control. In the D1 analyses, the ratio between photosynthesis-related proteins and those not related to photosynthesis among the top 150 in the co-distribution tables was > 3:1, showing that the method is appropriate for finding partner proteins with common functions. The co-distribution of phytochromes with other histidine kinases was remarkably high, although most co-distributed histidine kinases were not direct BLAST homologs of the query protein. This finding implies that phytochromes and other histidine kinases share common functions as parts of signalling networks. All phytochromes tested, with one exception, also revealed a remarkably high co-distribution with glutamate synthase and methionine synthase. This result implies a general role of bacterial phytochromes in ammonium

  13. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  14. Use of GafChromic film to diagnose laser generated proton beams

    SciTech Connect

    Hey, D. S.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Freeman, R. R.; Van Woerkom, L. D.; Castaneda, C. M.

    2008-05-15

    A calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratory's 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy. The film was digitized with a scanning microdensitometer with which it was scanned twice with two different filters to increase the film's effective dynamic range. We demonstrate how this calibrated film can be used to measure the spectrum and total energy of a laser generated proton beam. This technique was applied to an experiment on the 10 J, 100 fs Callisto laser at Lawrence Livermore National Laboratory. The resulting proton spectrum was compared to that obtained by simultaneous measurement of Ti nuclear activation; the two methods give the same proton beam slope temperature and agree in number of protons to within 27%.

  15. Genetic Dissection of Morphometric Traits Reveals That Phytochrome B Affects Nucleus Size and Heterochromatin Organization in Arabidopsis thaliana

    PubMed Central

    Snoek, Basten L.; Pavlova, Penka; Tessadori, Federico; Peeters, Anton J. M.; Bourbousse, Clara; Barneche, Fredy; de Jong, Hans; Fransz, Paul F.; van Zanten, Martijn

    2017-01-01

    Microscopically visible chromatin is partitioned into two major components in Arabidopsis thaliana nuclei. On one hand, chromocenters are conspicuous foci of highly condensed “heterochromatic” domains that contain mostly repeated sequences. On the other hand, less condensed and gene-rich “euchromatin” emanates from these chromocenters. This differentiation, together with the dynamic nature of chromatin compaction in response to developmental and environmental stimuli, makes Arabidopsis a powerful system for studying chromatin organization and dynamics. Heterochromatin dynamics can be monitored by measuring the Heterochromatin Index, i.e., the proportion of nuclei displaying well-defined chromocenters, or the DNA fraction of chromocenters (relative heterochromatin fraction). Both measures are composite traits, thus their values represent the sum of effects of various underlying morphometric properties. We exploited genetic variation between natural occurring accessions to determine the genetic basis of individual nucleus and chromocenter morphometric parameters (area, perimeter, density, roundness, and heterogeneity) that together determine chromatin compaction. Our novel reductionist genetic approach revealed quantitative trait loci (QTL) for all measured traits. Genomic colocalization among QTL was limited, which suggests a complex genetic regulation of chromatin compaction. Yet genomic intervals of QTL for nucleus size (area and perimeter) both overlap with a known QTL for heterochromatin compaction that is explained by natural polymorphism in the red/far-red light and temperature receptor Phytochrome B. Mutant analyses and genetic complementation assays show that Phytochrome B is a negative regulator of nucleus size, revealing that perception of climatic conditions by a Phytochrome-mediated hub is a major determinant for coordinating nucleus size and heterochromatin compaction. PMID:28592555

  16. Two 10-bp regions are critical for phytochrome regulation of a Lemna gibba Lhcb gene promoter.

    PubMed Central

    Kehoe, D M; Degenhardt, J; Winicov, I; Tobin, E M

    1994-01-01

    Two small regions of the promoter of an Lhcb gene encoding a light-harvesting chlorophyll a/b protein were identified as essential in conferring phytochrome responsiveness by using a transient expression assay. Initially, 5' deletion analysis of cabAB19, an Lhcb2 gene of Lemna, showed that sequences within the region from -174 to -104 relative to the start of transcription were necessary for phytochrome regulation. Internal deletion and substitution mutants were used to demonstrate that no additional phytochrome-responsive regions exist between -1600 and -174 in this promoter. A 171-bp fragment of the promoter extending from -239 to -69 was sufficient to impart phytochrome responsiveness to a minimal ubiquitin promoter that was not itself regulated by light. Specific binding of Lemna proteins to the region necessary for phytochrome responsiveness was demonstrated using in vitro polyacrylamide gel mobility shift assays and 1,10-phenanthroline copper ion footprinting. Further analysis of the region from -174 to -104 demonstrated that mutations in two separate 10-bp sequences, from -134 to -125 and from -114 to -105, could abolish phytochrome responsiveness; thus, there are two unique regions that are necessary for phytochrome regulation of this gene. One of these regions contains a CCAAT motif and the other a GATA motif. These motifs are conserved in the promoters of many Lhcb genes and may be important elements in the phytochrome responsiveness of this gene family. PMID:7919982

  17. Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling

    USDA-ARS?s Scientific Manuscript database

    Following light-induced nuclear translocation, the phytochromes induce changes in gene expression to regulate plant development. PIF3 and other PIFs (phytochrome-interacting factors), members of the bHLH (basic helix–loop–helix) family of transcriptional regulators, interact specifically with the ac...

  18. Involvement of Ethylene in Phytochrome-mediated Carotenoid Synthesis 1

    PubMed Central

    Kang, Bin G.; Burg, Stanley P.

    1972-01-01

    Accumulation of carotenoid pigments in the shoot apex of etiolated pea (Pisum sativum cv. Alaska) seedlings is completely prevented by ethylene. Under certain conditions carotenoid synthesis is normally controlled by endogenously produced ethylene. The gas completely inhibits carotenoid synthesis induced either by continuous white light or brief illumination with red light, but only partially inhibits light-induced chlorophyll formation. Far red illumination followed by red illumination reverses the action of red light on carotenoid synthesis. Red light-induced carotenogenesis is partly or wholly caused by phytochrome-mediated inhibition of ethylene biosynthesis. PMID:16658014

  19. An assessment of GafChromic film for measuring 50 kV and 100 kV percentage depth dose curves.

    PubMed

    Fletcher, Claire Lesley; Mills, John A

    2008-06-07

    Percentage depth dose (PDD) curves were obtained for 50 kV and 100 kV x-rays on a Gulmay Medical D3000 DXR unit. Different dosimetry systems were compared including a Scanditronix Wellhofer small volume cylindrical ion chamber, a Wellhofer photon PFD diode, a PTW soft x-ray parallel plate chamber (N23342) and two types of radiochromic film: GafChromic EBT and GafChromic MD55. The PDD curves were also compared to BEAMnrc Monte Carlo predictions. GafChromic film was found to be a valid choice of dosimeter for measuring percentage depth dose curves at 100 kV and 50 kV. All the dosimeters showed agreement with predictions at depths greater than 10 mm, while near the surface GafChromic film and PFD diodes give the best agreement to Monte Carlo values.

  20. A spectroscopic study of the chromatic properties of GafChromic™EBT3 films

    SciTech Connect

    Callens, M. Van Den Abeele, K.; Crijns, W.; Depuydt, T.; Haustermans, K.; Simons, V.; De Wolf, I.; Maes, F.; D’Agostino, E.; Wevers, M.; Pfeiffer, H.

    2016-03-15

    Purpose: This work provides an interpretation of the chromatic properties of GafChromic™EBT3 films based on the chemical nature of the polydiacetylene (PDA) molecules formed upon interaction with ionizing radiation. The EBT3 films become optically less transparent with increasing radiation dose as a result of the radiation-induced polymerization of diacetylene monomers. In contrast to empirical quantification of the chromatic properties, less attention has been given to the underlying molecular mechanism that induces the strong decrease in transparency. Methods: Unlaminated GafChromic™EBT3 films were irradiated with a 6 MV photon beam to dose levels up to 20 Gy. The optical absorption properties of the films were investigated using visible (vis) spectroscopy. The presence of PDA molecules in the active layer of the EBT3 films was investigated using Raman spectroscopy, which probes the vibrational modes of the molecules in the layer. The vibrational modes assigned to PDA’s were used in a theoretical vis-absorption model to fit our experimental vis-absorption spectra. From the fit parameters, one can assess the relative contribution of different PDA conformations and the length distribution of PDA’s in the film. Results: Vis-spectroscopy shows that the optical density increases with dose in the full region of the visible spectrum. The Raman spectrum is dominated by two vibrational modes, most notably by the ν(C≡C) and the ν(C=C) stretching modes of the PDA backbone. By fitting the vis-absorption model to experimental spectra, it is found that the active layer contains two distinct PDA conformations with different absorption properties and reaction kinetics. Furthermore, the mean PDA conjugation length is found to be 2–3 orders of magnitude smaller than the crystals PDA’s are embedded in. Conclusions: Vis- and Raman spectroscopy provided more insight into the molecular nature of the radiochromic properties of EBT3 films through the identification of

  1. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore

    PubMed Central

    Tang, Kun; Ding, Wen-Long; Höppner, Astrid; Zhao, Cheng; Zhang, Lun; Hontani, Yusaku; Kennis, John T. M.; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2015-01-01

    Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, LCM. The chromophore domain of LCM forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in LCM by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of LCM. Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution. PMID:26669441

  2. Characterization of GafChromic XR-RV2 film and comparator strip using a flatbed scanner in reflection mode

    SciTech Connect

    Mendoza-Moctezuma, A. I.

    2010-12-07

    Interventional cardiology procedures are an effective alternative for the reestablishment of correct sanguineous circulation in the heart. However, this kind of procedures exposes to the patients to a relatively high radiation doses. Usually, the surface peak skin dose is evaluated using a visual scale with a comparator strip, nevertheless, even if the comparator strip provides a simple and quick method for estimating the dose it has an uncertainty of {+-}25%. For this reason, a better evaluation method is needed. The objective of our project is to determine the surface peak skin dose of interventional cardiology procedures using GafChromic XR-RV2 film together with a commercial flatbed scanner in reflection mode. Here we report a protocol to handle GafChromic XR-RV2 film using a commercial flat bed scanner in reflection mode aiming at an uncertainty of {+-}3%.

  3. Characterization of GafChromic XR-RV2 film and comparator strip using a flatbed scanner in reflection mode

    NASA Astrophysics Data System (ADS)

    Mendoza-Moctezuma, A. I.; Aguilar, J. García; García-Garduño, O. A.

    2010-12-01

    Interventional cardiology procedures are an effective alternative for the reestablishment of correct sanguineous circulation in the heart. However, this kind of procedures exposes to the patients to a relatively high radiation doses. Usually, the surface peak skin dose is evaluated using a visual scale with a comparator strip, nevertheless, even if the comparator strip provides a simple and quick method for estimating the dose it has an uncertainty of ±25%. For this reason, a better evaluation method is needed. The objective of our project is to determine the surface peak skin dose of interventional cardiology procedures using GafChromic XR-RV2 film together with a commercial flatbed scanner in reflection mode. Here we report a protocol to handle GafChromic XR-RV2 film using a commercial flat bed scanner in reflection mode aiming at an uncertainty of ±3%.

  4. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice

    PubMed Central

    Takano, Makoto; Inagaki, Noritoshi; Xie, Xianzhi; Kiyota, Seiichiro; Baba-Kasai, Akiko; Tanabata, Takanari; Shinomura, Tomoko

    2009-01-01

    Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice. PMID:19706555

  5. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light.

    PubMed

    Jones, Matthew Alan; Hu, Wei; Litthauer, Suzanne; Lagarias, J Clark; Harmer, Stacey Lynn

    2015-09-01

    The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy.

  6. The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome.

    PubMed

    Parks, B M; Jones, A M; Adamse, P; Koornneef, M; Kendrick, R E; Quail, P H

    1987-03-01

    The aurea locus mutant (au (w)) of tomato contains less than 5% of the level of phytochrome in wild-type tissue as measured by in vivo difference spectroscopy. Immunoblot analysis using antibodies directed against etiolated-oat phytochrome demonstrates that crude extracts of etiolated mutant tissue are deficient in a major immunodetectable protein (116 kDa) normally present in the parent wild type. Analyses of wild-type tissue extracts strongly indicate that the 116-kDa protein is phytochrome by showing that this protein: a) is degraded more rapidly in vitro after a brief far-red irradiation than after a brief red irradiation (Vierstra RD, Quail PH, Planta 156: 158-165, 1982); b) contains a covalently bound chromophore as detected by Zn-chromophore fluorescence on nitrocellulose blots; and c) has an apparent molecular mass comparable to phytochrome from other species on size exclusion chromatography under non-denaturing conditions. The demonstration that the aurea mutant is deficient in this 116-kDa phytochrome indicates that the lack of spectrally detectable phytochrome in this mutant is the result of a lesion which affects the abundance of the phytochrome molecule as opposed to its spectral integrity.

  7. X-ray derived experimental charge density distribution in GaF3 and VF3 solid systems

    NASA Astrophysics Data System (ADS)

    Sujatha, K.; Israel, S.; Anzline, C.; Niranjana Devi, R.; Sheeba, R. A. J. R.

    2016-09-01

    The electronic structure and bonding features of metal and transition metal fluorides in low oxidation states, GaF3 and VF3, have been studied from precise single crystal X-ray diffraction data using multipole and maximum entropy methods. The topology of the charge density is analyzed and the (3,-1) bond critical points are determined. Existences of ionic nature of bonding in low valent fluorine compounds are clearly evident. The spherical core of metal atom and aspherical or twisted core of transition metal atom reveal the fact that GaF3 is much more rigid than VF3. Aspherical cores of the polarized ligand atoms are also visible in the two-dimensional density distribution pictures. The true valence charge density surfaces with encapsulating the atomic basins maps are elucidated. An elongated saddle with mid-bond density of 0.6191 e/Å3, observed in the compound VF3, shows that its lattice is less rigid and has more ionic character than GaF3.

  8. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation.

    PubMed

    Duarte, Fabiana M; Fuda, Nicholas J; Mahat, Dig B; Core, Leighton J; Guertin, Michael J; Lis, John T

    2016-08-01

    The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes.

  9. Genetic Evidence That the Red-Absorbing Form of Phytochrome B Modulates Gravitropism in Arabidopsis thaliana.

    PubMed Central

    Liscum, E.; Hangarter, R. P.

    1993-01-01

    Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development. PMID:12231913

  10. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.

    PubMed

    Kami, Chitose; Hersch, Micha; Trevisan, Martine; Genoud, Thierry; Hiltbrunner, Andreas; Bergmann, Sven; Fankhauser, Christian

    2012-02-01

    Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.

  11. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  12. Neutron response of GafChromic® EBT2 film.

    PubMed

    Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei

    2013-03-07

    Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a (60)Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.

  13. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    USDA-ARS?s Scientific Manuscript database

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  14. X-ray Radiation Induces Deprotonation of the Bilin Chromophore in Crystalline D. Radiodurans Phytochrome

    SciTech Connect

    Li, Feifei; Burgie, E. Sethe; Yu, Tao; Heroux, Annie; Schatz, George C.; Vierstra, Richard D.; Orville, Allen M.

    2015-02-04

    We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. Furthermore, these results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.

  15. “Disaggregation” of Phytochrome in Vitro—A Consequence of Proteolysis 1

    PubMed Central

    Gardner, Gary; Pike, Carl S.; Rice, Harbert V.; Briggs, Winslow R.

    1971-01-01

    The relationship between a large molecular weight (9S) and a small molecular weight (4.5S, 60,000 molecular weight) species of phytochrome was examined to determine if the larger species was an aggregate of the smaller. Alterations of pH, salt concentration, or phytochrome concentration did not cause any observable formation of the large form from the small form. However, in partially purified phytochrome extracts from Secale cereale L. and Avena sativa L., the large form was converted to the small form over time at 4 C in the dark. This breakdown was inhibitable by the protease inhibitor phenylmethanesulfonyl fluoride. When highly purified large molecular weight rye phytochrome was incubated with a neutral protease isolated from etiolated oat shoots, the large phytochrome was converted to the small form without qualitative visible absorbancy changes. The effect of the oat protease could be mimicked by a wide variety of commercial endopeptidases, including trypsin. Examination of the trypsin-induced breakdown on sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that as the size of the photoreversible unit changes from large to small, the size of its constituent polypeptide chains is reduced from 120,000 to 62,000 molecular weight. These experiments provide evidence that the endogenous breakdown observed in extracts is a result of contaminant protease and, consequently, that the small molecular weight species of phytochrome is an artifact due to proteolysis. Images PMID:16657862

  16. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time.

    PubMed

    Fragoso, Variluska; Oh, Youngjoo; Kim, Sang-Gyu; Gase, Klaus; Baldwin, Ian Thomas

    2017-03-01

    Phytochromes mainly function in photoautotrophic organisms to adjust growth in response to fluctuating light signals. The different isoforms of plant phytochromes often display both conserved and divergent roles, presumably to fine-tune plant responses to environmental signals and optimize fitness. Here we describe the distinct, yet partially redundant, roles of phytochromes NaPHYA, NaPHYB1 and NaPHYB2 in a wild tobacco species, Nicotiana attenuata using RNAi-silenced phytochrome lines. Consistent with results reported from other species, silencing the expression of NaPHYA or NaPHYB2 in N. attenuata had mild or no influence on plant development as long as NaPHYB1 was functional; whereas silencing the expression of NaPHYB1 alone strongly altered flowering time and leaf morphology. The contribution of NaPHYB2 became significant only in the absence of NaPHYB1; plants silenced for both NaPHYB1 and NaPHYB2 largely skipped the rosette-stage of growth to rapidly produce long, slender stalks that bore flowers early: hallmarks of the shade-avoidance responses. The phenotyping of phytochrome-silenced lines, combined with sequence and transcript accumulation analysis, suggest the independent functional diversification of the phytochromes, and a dominant role of NaPHYB1 and NaPHYB2 in N. attenuata's vegetative and reproductive development. © 2016 Institute of Botany, Chinese Academy of Sciences.

  17. PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant.

    PubMed

    Xu, Tengfei; Hiltbrunner, Andreas

    2017-10-06

    Phytochromes are red/far-red light receptors in plants involved in the regulation of growth and development in response to changes in the ambient environment. An important mode of action of plant phytochromes depends on their light-regulated relocation from the cytosol into the nucleus and control of gene expression; in addition, there is also evidence for a cytosolic or plasma membrane associated function of phytochromes in different species. The PHYTOCHROME INTERACTING FACTORs (PIFs) form a subgroup of the bHLH transcription factors and it is well established that PIFs are key components of phytochrome downstream signalling in the nucleus of seed plants. Recent studies identified members of the PIF family also in the liverwort Marchantia polymorpha and the moss Physcomitrella patens. Here, we show that all four potential PIF homologs from Physcomitrella have PIF function when expressed in the Arabidopsis pifQ mutant, which is deficient in multiple PIFs. We propose that PIFs are ancient components of nuclear phytochrome signalling that have emerged in the last common ancestor of today's land plants.

  18. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana.

    PubMed

    Yang, Y Y; Nagatani, A; Zhao, Y J; Kang, B J; Kendrick, R E; Kamiya, Y

    1995-10-01

    Experiments were carried out to explore the involvement of gibberellins (GAs) in the light-induced germination of Arabidopsis thaliana (L.) Heynh, using wild type (WT) and phytochrome-deficient mutants (phyA, phyB and phyAphyB deficient in phytochrome A, B and A plus B, respectively). Seed germination of WT and phytochrome-deficient mutants was inhibited by uniconazole (an inhibitor of an early step in biosynthesis of GA, the oxidation of ent-kaurene) and prohexadione (an inhibitor of late steps, namely, 2 beta- and 3 beta-hydroxylation). This inhibition was overcome by simultaneous application of 10(-5) M GA4. The relative activity of GAs for promoting germination of uniconazole-treated seeds was GA4 > GA1 = GA9 > GA20. The wild type and the phyA and phyB mutants had an increased response to a red light pulse in the presence of GA1, GA4, GA9, GA20 and GA24 but there were no significant differences in activity of each GA between the mutants. Therefore, neither phytochrome A nor hytochrome B appears to regulate GA biosynthesis from GA12 to GA4 during seed germination, since the conversion of GA12 to GA9 is regulated by one enzyme (GA 20-oxidase). However, GA responsiveness appears to be regulated by phytochromes other than phytochromes A and B, since the phyAphyB double mutant retains the photoreversible increased response to GAs after a red light pulse.

  19. Regulation of Phytochrome Message Abundance in Root Caps of Maize 1

    PubMed Central

    Johnson, Ellen M.; Pao, Lily I.; Feldman, Lewis J.

    1991-01-01

    In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochromemediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps in not known. Images Figure 1 Figure 2 Figure 6 PMID:11537488

  20. Engineering of bacterial phytochromes for in vivo imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verkhusha, Vladislav; Shcherbakova, Daria M.; Kaberniuk, Andrii A.; Baloban, Mikhail

    2017-03-01

    Genetically encoded probes with absorbance and fluorescence spectra within a near-infrared tissue transparency window are preferable for deep-tissue imaging. On the basis of bacterial phytochromes we engineered several types of near-infrared absorbing probes for photoacoustic tomography and fluorescent probes for purely optical imaging. They can be used as protein and cell labels and as building blocks for biosensors. The probes enabled imaging of tumors and metastases, protein-protein interactions, RNA visualization, detection of apoptosis, cellular metabolites, signaling pathways and cell proliferation. The developed probes allow non-invasive visualization of biological processes across scales, from super-resolution microscopy to tissue and whole-body animal imaging.

  1. Conformational Homogeneity in the Pr Isomer of Phytochrome Cph1.

    PubMed

    Bizimana, Laurie A; Epstein, Jordan; Brazard, Johanna; Turner, Daniel B

    2017-03-30

    Numerous time-resolved studies of the Pr to Pfr photoisomerization in phytochrome Cph1 have revealed multiphasic excited-state decay kinetics. It remains unclear whether these kinetics arise from multiple ground-state conformational subpopulations or from a single ground-state conformation that undergoes an excited-state photoisomerization process-either branching on the excited state or relaxing through multiple sequential intermediates. Many studies have attempted to resolve this debate by fitting the measured dynamics to proposed kinetic models, arriving at different conclusions. Here we probe spectral signatures of ground-state heterogeneity of Pr. Two-dimensional electronic spectra display negligible inhomogeneous line broadening, and vibrational coherence spectra extracted from transient absorption measurements do not contain nodes and phase shifts at the fluorescence maximum. These spectroscopic results support the homogeneous model, in which the primary photochemical transformation of Pr to Lumi-R occurs adiabatically on the excited-state potential energy surface.

  2. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

    PubMed

    Krishna Reddy, Srirama; Finlayson, Scott A

    2014-03-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.

  3. Conditional Circadian Regulation of PHYTOCHROME A Gene Expression

    PubMed Central

    Hall, Anthony; Kozma-Bognár, László; Tóth, Réka; Nagy, Ferenc; Millar, Andrew J.

    2001-01-01

    The phytochrome photoreceptors and the circadian clock control many of the same developmental processes, in all organs and throughout the growth of Arabidopsis plants. Phytochrome A (phyA) provides light input signals to entrain the circadian clock. The clock is known to rhythmically regulate its light input pathway, so we tested rhythmic regulation of phyA, using transgenic plants carrying a PHYA promoter fusion to the luciferase reporter (PHYA:LUC). We provide the first images of LUC activity with subcellular resolution in intact tissue. PHYA transcription and the accumulation of all three PHYA mRNAs were indeed clock controlled. PHYA is expressed throughout the seedling, so we tested whether circadian rhythms were observed in all PHYA-expressing organs and whether the rhythms were autonomously controlled by each organ. In contrast to our previous results using other clock controlled genes, the rhythmic pattern of PHYA expression varied markedly among isolated organs and between isolated organs and intact plants. High-amplitude rhythms were maintained for many days in isolated leaves in darkness, whereas the leaves of intact plants rapidly lost rhythmicity. Wounding the leaves of intact plants had no effect. The rhythmic pattern of PHYA expression is not organ autonomous but depends upon the physical continuity or isolation of the rhythmic tissues, consistent with the presence of a transmitted signal that controls the overt expression of circadian rhythms without necessarily affecting the underlying clock. A circadian system might be present in most, if not all, plant cells, but its effect on intracellular rhythms can be controlled by supracellular signaling. PMID:11743124

  4. Does a web-based feedback training program result in improved reliability in clinicians' ratings of the Global Assessment of Functioning (GAF) Scale?

    PubMed

    Støre-Valen, Jakob; Ryum, Truls; Pedersen, Geir A F; Pripp, Are H; Jose, Paul E; Karterud, Sigmund

    2015-09-01

    The Global Assessment of Functioning (GAF) Scale is used in routine clinical practice and research to estimate symptom and functional severity and longitudinal change. Concerns about poor interrater reliability have been raised, and the present study evaluated the effect of a Web-based GAF training program designed to improve interrater reliability in routine clinical practice. Clinicians rated up to 20 vignettes online, and received deviation scores as immediate feedback (i.e., own scores compared with expert raters) after each rating. Growth curves of absolute SD scores across the vignettes were modeled. A linear mixed effects model, using the clinician's deviation scores from expert raters as the dependent variable, indicated an improvement in reliability during training. Moderation by content of scale (symptoms; functioning), scale range (average; extreme), previous experience with GAF rating, profession, and postgraduate training were assessed. Training reduced deviation scores for inexperienced GAF raters, for individuals in clinical professions other than nursing and medicine, and for individuals with no postgraduate specialization. In addition, training was most beneficial for cases with average severity of symptoms compared with cases with extreme severity. The results support the use of Web-based training with feedback routines as a means to improve the reliability of GAF ratings performed by clinicians in mental health practice. These results especially pertain to clinicians in mental health practice who do not have a masters or doctoral degree.

  5. Detection of phytochrome-like genes from Rhazya stricta (Apocynaceae) using de novo genome assembly.

    PubMed

    Sabir, Jamal S M; Baeshen, Nabih A; Shokry, Ahmed M; Gadalla, Nour O; Edris, Sherif; Mutwakil, Mohammed H; Ramadan, Ahmed M; Atef, Ahmed; Al-Kordy, Magdy A; Abuzinadah, Osama A; El-Domyati, Fotouh M; Jansen, Robert K; Bahieldin, Ahmed

    2013-01-01

    Phytochrome-like genes in the wild plant species Rhazya stricta Decne were characterized using a de novo genome assembly of next generation sequence data. Rhazya stricta contains more than 100 alkaloids with multiple pharmacological properties, and leaf extracts have been used to cure chronic rheumatism, to treat tumors, and in the treatment of several other diseases. Phytochromes are known to be involved in the light-regulated biosynthesis of some alkaloids. Phytochromes are soluble chromoproteins that function in the absorption of red and far-red light and the transduction of intracellular signals during light-regulated plant development. De novo assembly of the nuclear genome of R. stricta recovered 45,641 contigs greater than 1000bp long, which were used in constructing a local database. Five sequences belonging to Arabidopsis thaliana phytochrome gene family (i.e., AtphyABCDE) were used to identify R. stricta contigs with phytochrome-like sequences using BLAST. This led to the identification of three contigs with phytochrome-like sequences covering AtphyA-, AtphyC- and AtphyE-like full-length genes. Annotation of the three sequences showed that each contig consists of one phytochrome-like gene with three exons and two introns. BLASTn and BLASTp results indicated that RsphyA mRNA and protein sequences had homologues in Wrightia coccinea and and Solanum tuberosum, respectively. RsphyC-like mRNA and protein sequence were homologous to Vitis vinifera and Vitis riparia. RsphyE-like mRNA coding and protein sequences were homologous to Ipomoea nil. Multiple-sequence alignment of phytochrome proteins indicated a homology with 30 sequences from 23 different species of flowering plants. Phylogenetic analysis confirmed that each R. stricta phytochrome gene is related to the same phytochrome gene of other flowering plants. It is proposed that the absence of phyB gene in R. stricta is due to RsphyA gene taking over the role of phyB.

  6. Phytochrome regulation of phytochrome A mRNA levels in the model short-day-plant Pharbitis nil.

    PubMed

    Carter, C E; Szmidt-Jaworska, A; Hughes, M; Thomas, B; Jackson, S

    2000-04-01

    The exposure of dark-grown Pharbitis nil seedlings to continuous R induces a rapid decrease in PHYA mRNA abundance with a half-life of about 2 h. A 5 min R pulse also induces this decline, and the effect is partially reversible by subsequent FR irradiation, confirming that the regulation of expression is mediated via the Pfr form of a phytochrome. When de-etiolated seedlings are returned to darkness after a W photoperiod, PHYA mRNA slowly reaccumulates from 20% to 50% of the dark level within 24 h. The rate of reaccumulation is greatly accelerated by the removal of Pfr with a FR pulse, resulting in reaccumulation to 100% within approximately 11 h. Without FR irradiation PHYA mRNA expression remains fully repressed for at least 11 h after the end of the photoperiod, suggesting that the controlling Pfr is highly stable.

  7. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  8. Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis

    PubMed Central

    Chen, Yu-Rong; Su, Yi-shin; Tu, Shih-Long

    2012-01-01

    The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). It was shown that LONG HYPOCOTYL 2 (HY2) is the only FDBR in flowering plants producing the phytochromobilin (PΦB) for phytochromes. However, in the moss Physcomitrella patens, we found a second FDBR that catalyzes the formation of phycourobilin (PUB), a tetrapyrrole pigment usually found as the protein-bound form in cyanobacteria and red algae. Thus, we named the enzyme PUB synthase (PUBS). Severe photomorphogenic phenotypes, including the defect of phytochrome-mediated phototropism, were observed in Physcomitrella patens when both HY2 and PUBS were disrupted by gene targeting. This indicates HY2 and PUBS function redundantly in phytochrome-mediated responses of nonvascular plants. Our studies also show that functional PUBS orthologs are found in selected lycopod and chlorophyte genomes. Using mRNA sequencing for transcriptome profiling, we demonstrate that expression of the majority of red-light-responsive genes are misregulated in the pubs hy2 double mutant. These studies showed that moss phytochromes rapidly repress expression of genes involved in cell wall organization, transcription, hormone responses, and protein phosphorylation but activate genes involved in photosynthesis and stress signaling during deetiolation. We propose that, in nonvascular plants, HY2 and PUBS produce structurally different but functionally similar chromophore precursors for phytochromes. Holophytochromes regulate biological processes through light signaling to efficiently reprogram gene expression for vegetative growth in the light. PMID:22566621

  9. Prevention of Action of Far-Red-Absorbing Phytochrome in Rumex crispus L. Seeds by Ethanol.

    PubMed

    Taylorson, R B

    1984-02-01

    Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to >/= 0.3 molar 2-propanol during a 2-day 20 degrees C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10 degrees C instead of 20 degrees C, or may be overcome by transferring ethanol-pretreated seeds to 10 degrees C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40 degrees C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting.

  10. Prevention of Action of Far-Red-Absorbing Phytochrome in Rumex crispus L. Seeds by Ethanol

    PubMed Central

    Taylorson, Ray B.

    1984-01-01

    Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to ≥ 0.3 molar 2-propanol during a 2-day 20°C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10°C instead of 20°C, or may be overcome by transferring ethanol-pretreated seeds to 10°C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40°C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting. PMID:16663401

  11. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway.

    PubMed

    Hopkins, Jane A; Kiss, John Z

    2012-07-01

    Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism. Copyright © Physiologia Plantarum 2012.

  12. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    PubMed Central

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  13. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.

    PubMed

    Chernov, Konstantin G; Redchuk, Taras A; Omelina, Evgeniya S; Verkhusha, Vladislav V

    2017-04-12

    Phytochrome photoreceptors absorb far-red and near-infrared (NIR) light and regulate light responses in plants, fungi, and bacteria. Their multidomain structure and autocatalytic incorporation of linear tetrapyrrole chromophores make phytochromes attractive molecular templates for the development of light-sensing probes. A subclass of bacterial phytochromes (BphPs) utilizes heme-derived biliverdin tetrapyrrole, which is ubiquitous in mammalian tissues, as a chromophore. Because biliverdin possesses the largest electron-conjugated chromophore system among linear tetrapyrroles, BphPs exhibit the most NIR-shifted spectra that reside within the NIR tissue transparency window. Here we analyze phytochrome structure and photochemistry to describe the molecular mechanisms by which they function. We then present strategies to engineer BphP-based NIR fluorescent proteins and review their properties and applications in modern imaging technologies. We next summarize designs of reporters and biosensors and describe their use in the detection of protein-protein interactions, proteolytic activities, and posttranslational modifications. Finally, we provide an overview of optogenetic tools developed from phytochromes and describe their use in light-controlled cell signaling, gene expression, and protein localization. Our review provides guidelines for the selection of NIR probes and tools for noninvasive imaging, sensing, and light-manipulation applications, specifically focusing on probes developed for use in mammalian cells and in vivo.

  14. Evidence for involvement of phytochrome in tumor development on plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1988-01-01

    The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and far-red irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.

  15. Phytochrome A increases tolerance to high evaporative demand.

    PubMed

    Auge, Gabriela Alejandra; Rugnone, Matías Leandro; Cortés, Leandro Emanuel; González, Carina Verónica; Zarlavsky, Gabriela; Boccalandro, Hernán Esteban; Sánchez, Rodolfo Augusto

    2012-10-01

    Stresses resulting from high transpiration demand induce adjustments in plants that lead to reductions of water loss. These adjustments, including changes in water absorption, transport and/or loss by transpiration, are crucial to normal plant development. Tomato wild type (WT) and phytochrome A (phyA)-mutant plants, fri1-1, were exposed to conditions of either low or high transpiration demand and several morphological and physiological changes were measured during stress conditions. Mutant plants rapidly wilted compared to WT plants after exposure to high evaporative demand. Root size and hydraulic conductivity did not show significant differences between genotypes, suggesting that water absorption and transport through this organ could not explain the observed phenotype. Moreover, stomatal density was similar between genotypes, whereas transpiration and stomatal conductance were both lower in mutant than in WT plants. This was accompanied by a lower stem-specific hydraulic conductivity in mutant plants, which was associated to lower xylem vessel number and transversal area in fri1-1 plants, producing a reduction in water supply to the leaves, which rapidly wilted under high evaporative demand. PhyA signaling might facilitate the adjustment to environments differing widely in water evaporative demand in part through the modulation of xylem dimensions. Copyright © Physiologia Plantarum 2012.

  16. Morphological Responses of Wheat to Changes in Phytochrome Photoequilibrium 1

    PubMed Central

    Barnes, Charles; Bugbee, Bruce

    1991-01-01

    Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium ([unk]) values of 0.81, 0.55, and 0.33. Plants grown at [unk] values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at [unk] of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of [unk], and leaf sheaths, but not leaf lamina, were longer at lower [unk]. Dry-mass accumulation was not affected by different levels of [unk]. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01). PMID:11538375

  17. Morphological responses of wheat to changes in phytochrome photoequilibrium

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Bugbee, B.

    1991-01-01

    Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium (phi) values of 0.81, 0.55, and 0.33. Plants grown at phi values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at phi of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of phi, and leaf sheaths, but not leaf lamina, were longer at lower phi. Dry-mass accumulation was not affected by different levels of phi. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01).

  18. Evidence for involvement of phytochrome in tumor development on plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1988-01-01

    The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and far-red irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.

  19. Morphological responses of wheat to changes in phytochrome photoequilibrium

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Bugbee, B.

    1991-01-01

    Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium (phi) values of 0.81, 0.55, and 0.33. Plants grown at phi values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at phi of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of phi, and leaf sheaths, but not leaf lamina, were longer at lower phi. Dry-mass accumulation was not affected by different levels of phi. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01).

  20. Evidence for involvement of phytochrome in tumor development on plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1988-01-01

    The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and far-red irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.

  1. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture.

    PubMed

    Ulijasz, Andrew T; Vierstra, Richard D

    2011-10-01

    Phytochromes are nature's primary photoreceptors dedicated to detecting the red and far-red regions of the visible light spectrum, a region also essential for photosynthesis and thus crucial to the survival of plants and other photosynthetic organisms. Given their roles in measuring competition and diurnal/seasonal light fluctuations, understanding how phytochromes work at the molecular level would greatly aid in engineering crop plants better suited to specific agricultural settings. Recently, scientists have determined the three-dimensional structures of prokaryotic phytochromes, which now provide clues as to how these modular photoreceptors might work at the atomic level. The models point toward a largely unifying mechanism whereby novel knot, hairpin, and dimeric interfaces transduce photoreversible bilin isomerization into protein conformational changes that alter signal output. Published by Elsevier Ltd.

  2. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via

  3. FHY3 and FAR1 Act Downstream of Light Stable Phytochromes

    PubMed Central

    Siddiqui, Hamad; Khan, Safina; Rhodes, Bruce M.; Devlin, Paul F.

    2016-01-01

    FHY3 and FAR1 are positively acting transcription factors that directly regulate expression of a number of target genes in Arabidopsis thaliana. Here, we looked at the regulation of one specific target gene, ELF4. We demonstrate that the action of FHY3 and FAR1 in upregulation of ELF4 is light dependent. Furthermore, although FHY3 and FAR1 have been exclusively characterized as components of the phytochrome A signaling pathway because of their importance in regulating expression of phyA nuclear importers, we show that, as transcription factors in their own right, FHY3 and FAR1 act downstream of light stable phytochromes, phyB, phyD, and phyE. We demonstrate that light stable phytochrome acts in a red/far-red reversible manner to regulate the level of FHY3 protein. We also observed that ELF4 shows specific FHY3 and FAR1-mediated light induction in the evening and we show that regulation by light stable phytochromes at this time is important as it allows the plant to maintain normal ELF4 expression beyond dusk when the day length shortens, something which would not be possible through light labile phytochrome action. Without FHY3 and FAR1, ELF4 expression falls rapidly at dusk and in short days this results in an early drop in ELF4 expression, accompanied by a de-repression of an ELF4 target gene later in the night. Our results, therefore, demonstrate an important role for FHY3 and FAR1 as mediators of light stable phytochrome signaling. PMID:26941752

  4. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant.

    PubMed

    Behringer, F J; Lomax, T L

    1999-05-01

    The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri1 and tri1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.

  5. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri1 and tri1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.

  6. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri1 and tri1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.

  7. Using GafChromic film to estimate the effective dose from dental cone beam CT and panoramic radiography.

    PubMed

    Al-Okshi, A; Nilsson, M; Petersson, A; Wiese, M; Lindh, C

    2013-01-01

    To demonstrate the feasibility of GafChromic(®) XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT (CBCT) units and to compare the doses from examinations of three common dental clinical situations. A second aim was to compare the radiation doses for three digital panoramic units with the doses for the CBCT units. The CBCT units used were Veraviewepocs 3De(®) (J Morita MFG Corp., Kyoto, Japan), ProMax(®) 3D (Planmeca, Helsinki, Finland) and NewTom VGi(®) (Quantitative Radiology, Verona, Italy). GafChromic XR-QA2 films were placed between the selected layers of the head and neck of a tissue-equivalent human skull (RANDO(®) phantom; The Phantom Laboratory, Salem, NY). The exposure parameters were set using the automatic exposure control function of the units. Depending on the availability, medium and smaller field of view (FOV) scanning modes were used. The effective dose was estimated using the 2007 International Commission on Radiological Protection formalism. The lowest effective dose of a CBCT unit was observed for ProMax 3D, FOV 4 × 5 cm (10 μSv), the highest for NewTom VGi, FOV 8 × 8 cm-high resolution (129 μSv). The range of effective doses for digital panoramic machines measured was 8-14 μSv. This study demonstrates the feasibility of using radiochromic films for dental CBCT and panoramic dosimetry.

  8. Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development.

    PubMed

    Moshe, Arbel; Kaplan, Tommy

    2017-07-04

    The protein Zelda was shown to play a key role in early Drosophila development, binding thousands of promoters and enhancers prior to maternal-to-zygotic transition (MZT), and marking them for transcriptional activation. Recently, we showed that Zelda acts through specific chromatin patterns of histone modifications to mark developmental enhancers and active promoters. Intriguingly, some Zelda sites still maintain these chromatin patterns in Drosophila embryos lacking maternal Zelda protein. This suggests that additional Zelda-like pioneer factors may act in early fly embryos. We developed a computational method to analyze and refine the chromatin landscape surrounding early Zelda peaks, using a multichannel spectral clustering. This allowed us to characterize their chromatin patterns through MZT (mitotic cycles 8-14). Specifically, we focused on H3K4me1, H3K4me3, H3K18ac, H3K27ac, and H3K27me3 and identified three different classes of chromatin signatures, matching "promoters," "enhancers" and "transiently bound" Zelda peaks. We then further scanned the genome using these chromatin patterns and identified additional loci-with no Zelda binding-that show similar chromatin patterns, resulting with hundreds of Zelda-independent putative enhancers. These regions were found to be enriched with GAGA factor (GAF, Trl) and are typically located near early developmental zygotic genes. Overall our analysis suggests that GAF, together with Zelda, plays an important role in activating the zygotic genome. As we show, our computational approach offers an efficient algorithm for characterizing chromatin signatures around some loci of interest and allows a genome-wide identification of additional loci with similar chromatin patterns.

  9. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics.

    PubMed

    Chen, Yu; Zhang, Juan; Luo, Juan; Tu, Jun-Ming; Zeng, Xiao-Li; Xie, Jie; Zhou, Ming; Zhao, Jing-Quan; Scheer, Hugo; Zhao, Kai-Hong

    2012-01-01

    Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max)  = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. Demonstration of transcriptional regulation of specific genes by phytochrome action

    PubMed Central

    Silverthorne, Jane; Tobin, Elaine M.

    1984-01-01

    We have developed an in vitro transcription system that uses nuclei isolated from Lemna gibba G-3. The in vitro transcripts include sequences homologous to hybridization probes for the small subunit of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39], the light-harvesting chlorophyll a/b-protein, and rRNA. Light-harvesting chlorophyll a/b-protein sequences are transcribed to a greater extent in nuclei isolated from plants grown in darkness with 2 min of red light every 8 hr than in nuclei isolated from dark-treated plants. Furthermore, the amount of these transcripts measured in plants given a single minute of red light after dark treatment is increased over the amount measured in dark-treated plants. The effect of red light is at least partially reversible by 10 min of far-red light given immediately after the red light pulse. Transcription of both rRNA and small subunit sequences is also stimulated by a single minute of red light as compared to dark-treated tissue. However, the relative magnitudes of the increases compared to the dark levels are smaller than the increase seen for the chlorophyll a/b-protein, possibly because of the higher level of transcription of these sequences in the dark. The effect of red light on the transcription of small subunit and rRNA sequences is also reversible by immediate treatment with 10 min of far-red light. Pulse chase studies of dark-treated nuclei for up to 110 min do not show substantial turnover of in vitro labeled small subunit and chlorophyll a/b-protein transcripts. We therefore conclude that phytochrome action has induced specific changes in transcription of these genes. Images PMID:16593420

  11. Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of the aurea mutant of tomato.

    PubMed

    Sharma, R; López-Juez, E; Nagatani, A; Furuya, M

    1993-12-01

    The contents of spectrophotometrically measurable phytochrome A (PhyA) and phytochrome B (PhyB) and the corresponding immunochemically detectable apoproteins (PHYA and PHYB) were examined in dark- and light-grown tissues of the aurea mutant of tomato and its wild-type (WT). The amount of PHYA in etiolated aurea seedlings was found to be about 20% of that in the WT; this PHYA showed no photo-reversible changes in absorbance, no downregulation of the level of PHYA in light-grown seedlings, and no differential proteolysis of Pr and Pfr species in vitro which was seen in the case of the WT. By contrast, the amount of PHYB in aurea seedlings was not significantly different from that in WT seedlings. Phytochrome isolated from green leaves of the aurea mutant and purified by ion-exchange chromatography showed a red/far-red reversible spectral change, and its elution profile during chromatography was essentially similar to that of PHYB. The results indicate that aurea is a mutant that is deficient in photoactive PhyA at the etiolated stage, when it contains a spectrally inactive PHYA. However, the mutant contains spectrally active PhyB in its green tissue as does the WT.

  12. The phytochrome family: dissection of functional roles and signalling pathways among family members.

    PubMed Central

    Quail, P H

    1998-01-01

    There is considerable evidence that individual members of the five-membered phytochrome family of photoreceptors in Arabidopsis have differential functional roles in controlling plant photomorphogenesis. Emerging genetic evidence suggests that this differential activity may involve initially separate signalling pathway branches specific to individual family members. PMID:9800202

  13. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.

    PubMed

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M; Ecker, Joseph R; Liscum, Emmanuel; Fankhauser, Christian

    2006-06-27

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

  14. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism

    PubMed Central

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V.; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M.; Ecker, Joseph R.; Liscum, Emmanuel; Fankhauser, Christian

    2006-01-01

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1–PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families. PMID:16777956

  15. The discovery of phytochrome: unlocking the secrets of plants and their connection to light

    USDA-ARS?s Scientific Manuscript database

    The US Department of Agriculture (USDA), Beltsville Agricultural Research Center in Beltsville, Maryland USA was recently designated an American Chemical Society National Historic Chemical Landmark for the seminal work of USDA scientists in the discovery of phytochrome, the ubiquitous plant pigment ...

  16. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation

    USDA-ARS?s Scientific Manuscript database

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcriptio...

  17. [Role of phytochrome in organ formation processes in Cucumis sativus L].

    PubMed

    Sysoeva, M I; Marovskaia, E F

    2013-01-01

    The role of phytochrome B in the organogenesis process in the apical and axillary shoot meristems during early ontogenesis stages in cucumber Cucumis sativus L. at photoperiods (day/night) 10/14, 16/8 h, and continuous light in comparison with wild type plants and phytochrome B-deficient mutant (lh-mutant) was investigated. In mutant phytochrome B, deficiency caused inhibition of initiation of leaves both in the leading shoot and off-shoots and increased the number of flower buds (IV stage of organogenesis). With continuous light, the number of off-shoots and flowers during stage IV of organogenesis in wild-type plants increased twofold in comparison with the mutant. Short-term temperature drops did not induce floral ontogenesis in mutants but increased the number of off-shoots in both experimental variants during a long photoperiod and continuous light situations. We propose that phytochrome B, by increasing the compactness of chromatin, may facilitate coordination of ontogenesis processes with changing environmental conditions.

  18. Light-mediated seed germination: connecting phytochrome B to gibberellic acid.

    PubMed

    Neff, Michael M

    2012-04-17

    In this issue of Developmental Cell, Cho et al. (2012) uncover the mechanisms linking the light-regulated trigger and hormone-mediated induction of seed germination in Arabidopsis. When phytochrome B is activated by red light, seed germination is promoted by epigenetic transcriptional activation of gibberellic acid biosynthetic enzymes via histone demethylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia julibrissin and Some Other Legumes 12

    PubMed Central

    Hillman, William S.; Koukkari, Willard L.

    1967-01-01

    Participation of phytochrome is evident in the nyctinastic response of leaves of Albizzia julibrissin (silk-tree), Albizzia lophantha, Leucaena glauca, Poinciana gilliesi and Calliandra inequilatera; closure of excised pairs of pinnules upon darkening is rapid following red illumination and slow following far-red. Under good conditions the difference is obvious within 10 minutes. These observations confirm a report by Fondeville, Borthwick, and Hendricks on the sensitive plant, Mimosa pudica, but indicate that the effect bears no necessary relationship to the anomalous sensitivity of Mimosa. In A. julibrissin, phytochrome control is marked in experiments conducted early in the daily 12-hour light period and appears absent, or nearly so, toward the end of the light period, perhaps due to interaction with an endogenous circadian rhythm. Effects of leaf maturity and of the position of a pinnule-pair within a leaf are also evident. These results are not easily reconciled with hypotheses of phytochrome action through gene activation and nucleic acid synthesis, but are consistent with hypotheses based on permeability changes and membrane properties. The magnitude and reproducibility of the response in A. julibrissin suggest its use as a laboratory exercise; this and related systems should prove valuable for eventual identification of the mechanism of phytochrome action. Images PMID:16656671

  20. Ca2+ transport in plant cells and mechanisms of transformation of phytochrome-induced photosignals

    NASA Astrophysics Data System (ADS)

    Volotovski, Igor D.

    1995-01-01

    The recent data on the influence of phytochrome on the efficiency of Ca2+ translocation across the membranes of oat protoplasts are given. Ca2+ uptake in the protoplasts was shown to be influenced by the red light (R) illumination. This effect was reverted by the following far-red light (FR) illumination. To elucidate the sensitivity to phytochrome-controlling action the screening between the mechanisms of Ca2+ transport across the plasma membranes of oat protoplasts, Na+/Ca2+ and Ca2+/H+ exchangers, Ca2+-pump and Ca2+-channel was done. It was established that phytochrome modulated the activity of Na+/Ca2+-exchanger and Ca2+-pump. The light-mediated oscillations of cytoplasmic Ca2+ concentration in the oat protoplasts were demonstrated using fluorescence probe quin2 loaded into the cells and laser monitoring of fluorescence signal. The evidences were obtained that the oscillations were not the result of the elevation of cytoplasmic Ca2+ concentration and had no connection with Ca2+ pool of mitochondria. The possibility of the relation between the Ca2+ oscillations and phosphoinositide metabolism in plant cell membranes is analyzed. The mechanisms of transformation of primary phytochrome signal into biological effects were discussed.

  1. Light-Stimulated Cotyledon Expansion in Arabidopsis Seedlings (The Role of Phytochrome B).

    PubMed Central

    Neff, M. M.; Van Volkenburgh, E.

    1994-01-01

    Leaf and cotyledon expansion in dicotyledonous plants is a light-dependent developmental process. The unique role of phytochrome B has been tested by investigating expansion of cotyledons in wild-type and phytochrome-deficient mutants of Arabidopsis thaliana (L.) Heynh. A relatively rapid method for measuring cotyledon area was developed to quantify growth in large populations (average n [greater than or equal to] 100) of wild-type or mutant seedlings under different light and chemical treatments. Three-day-old wild-type (La-er) Arabidopsis seedlings, grown in saturating, low-fluence red light (2-4 [mu]mol m-2 s-1), showed a >250% increase in cotyledon area after 48 h of bright-red light when compared with the phytochrome mutants hy1, hy2, and hy3. An increase in epidermal cell area was observed in wild-type cotyledons but not in hy3, indicating that light-stimulated growth is due in part to cell expansion. The mutant phenotype was rescued by feeding the chromophore precursor biliverdin to the chromophore biosynthesis mutants hy1 and hy6. This treatment did not rescue the hy3 mutant. Since the hy3 lesion is specific to phytochrome B, we conclude that this pigment is involved in the enhancement of cotyledon cell expansion in bright-red light. PMID:12232145

  2. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor.

    PubMed

    Hiltbrunner, Andreas; Tscheuschler, Anke; Viczián, András; Kunkel, Tim; Kircher, Stefan; Schäfer, Eberhard

    2006-08-01

    The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.

  3. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back.

    PubMed

    Montgomery, Beronda L

    2016-01-01

    Light exposure results in distinct responses in specific seedling tissues during photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as development and elongation of roots, whereas light inhibits elongation of hypocotyls. For distinct plant responses such as shade avoidance, far-red light or shifts in spectral light quality similarly have disparate impacts on distinct plant tissues, resulting in elongation of stems or petioles and a reduction in growth of leaf blades for many species. The physiological bases of such tissue- and organ-specific light responses were initially studied using localized irradiation of specific tissues and organs, or irradiation of dissected plant parts. These historical approaches were used to identify spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive phytochromes have been the most widely studied among photoreceptors in this regard. Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-specific light responses were identified, the underlying signaling networks responsible for mediating the observed responses have not been well defined. Recent approaches used to investigate the molecular bases of spatiotemporal light responses include selective irradiation of plants harboring mutations in specific photoreceptors, tissue-specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds, or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive integration of such approaches for regulating the availability of localized pools of phytochromes with the use of transcriptomic or proteomic analyses for assessing the genes or proteins which these spatially discrete pools of phytochrome regulate is yielding emergent insight into the molecular bases of spatiotemporal phytochrome signaling pathways responsible for regulating

  4. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception.

    PubMed

    Husaineid, Said S H; Kok, Rosan A; Schreuder, Marielle E L; Hanumappa, Mamatha; Cordonnier-Pratt, Marie-Michèle; Pratt, Lee H; van der Plas, Linus H W; van der Krol, Alexander R

    2007-01-01

    Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling pathways in tomato. Western blot analysis confirmed the elevated phytochrome protein levels in dark-grown seedlings of the respective PHY overexpressing (PHYOE) lines. Exposure to 4 h of red light resulted in a decrease in phytochrome A protein level in the PHYAOE lines, indicating that the chromophore availability is not limiting for assembly into holoprotein and that the excess of phytochrome A protein is also targeted for light-regulated destruction. The elongation and anthocyanin accumulation responses of plants grown under white light, red light, far-red light, and end-of-day far-red light were used for characterization of selected PHYOE lines. In addition, the anthocyanin accumulation response to different fluence rates of red light of 4-d-old dark-grown seedlings was studied. The elevated levels of phyA in the PHYAOE lines had little effect on seedling and adult plant phenotype. Both PHYAOE in the phyA mutant background and PHYB2OE in the double-mutant background rescued the mutant phenotype, proving that expression of the transgene results in biologically active phytochrome. The PHYB1OE lines showed mild effects on the inhibition of stem elongation and anthocyanin accumulation and little or no effect on the red light high irradiance response. By contrast, the PHYB2OE lines showed a strong inhibition of elongation, enhancement of anthocyanin accumulation, and a strong amplification of the red light high irradiance response.

  5. Properties of a Polycation-Stimulated Protein Kinase Associated with Purified Avena Phytochrome 1

    PubMed Central

    Wong, Yum-Shing; McMichael, Robert W.; Lagarias, J. Clark

    1989-01-01

    ATP-dependent polycation-stimulated phosphorylation of highly purified phytochrome preparations from etiolated Avena seedlings has been reported previously (Y-S Wong, H-C Cheng, DA Walsh, JC Lagarias [1986] J Biol Chem 261: 12089-12097). In this study, we present a more detailed description of the properties of this protein kinase based on the analysis of over 30 different Avena phytochrome preparations. ATP-dependent phosphorylation of phytochrome was strongly stimulated by a wide range of polycationic molecules, including synthetic and natural polypeptides as well as nonpeptide cationic polymers. Many of the compounds known to stimulate other known protein kinases (i.e., cyclic nucleotides, Ca2+, calmodulin, diacylglycerol, phospholipids) were either inhibitory or nonstimulatory. Among the polycations, histone H1, polylysine, and polybrene were the most effective, giving average stimulations of four- to sevenfold. Polycation-stimulated protein phosphorylation was inhibited by elevated ionic strength; of the salts examined, magnesium pyrophosphate was a particularly potent inhibitor of the kinase activity. MgATP was preferred as the phosphoryl donor to either MgGTP or magnesium pyrophosphate. The Km for MgATP was estimated to be 30 micromolar when histone H1 was used as a protein substrate. The Pr form of phytochrome was always a better substrate than the Pfr form regardless of the polycation present. Polylysine-stimulated, phytochrome(preparation)-dependent phosphorylation of purified maize phosphoenolpyruvate carboxylase was observed, as well as phosphorylation of a number of polypeptides in crude soluble protein extracts from etiolated Avena seedlings. Images Figure 9 Figure 10 PMID:16667091

  6. Time courses for phytochrome-induced enzyme levels in phenylpropanoid metabolism (phenylalanine ammonia-lyase, naringenin-chalcone synthase) compared with time courses for phytochrome-mediated end-product accumulation (anthocyanin, quercetin).

    PubMed

    Brödenfeldt, R; Mohr, H

    1988-12-01

    Time course for changes in the levels of enzymes characteristic of general phenylpropanoid metabolism (phenylalanine ammonia-lyase, PAL; EC 4.3.1.5) and of the flavonoid-glycoside branch pathway (naringenin-chalcone synthase, CHS; EC 2.3.1.74) were measured in the cotyledons of mustard (Sinapis alba L.) seedlings and compared with the rates of accumulation of related end products (anthocyanin and quercetin). Induction of enzyme levels and of end-product accumulation was carried out with red and far-red (FR) light, operating via phytochrome. The data are compatible with the concept that the phytochrome-mediated appearance of enzymes such as PAL and CHS is indeed a prerequisite for the appearance of anthocyanins and flavonols. However, there is no close correlation between enzyme levels and the rates of synthesis of end products which could justify the identification of specific rate-limiting enzymes. Rather, the data indicate that there is a second phytochrome-dependent step, beyond enzyme induction, where the actual rate of flavonoid accumulation is determined. Anthocyanin and quercetin accumulation respond differently to light. However, the relative action of continuous FR, red light pulses and 'stored phytochrome signal' is the same in both cases. This indicates that the mode of operation of phytochrome is the same in both cases. The two syntheses differ only in the degree of responsiveness towards phytochrome. The time course for changes in CHS levels in continuous FR, i.e. under conditions of phytochrome photosteady state, is similar to the time course for PAL levels whereas the time courses in darkness, following transfer from FR to darkness, are totally different. In the case of CHS, a transient rise is observed whereas, with PAL, an instantaneous drop in enzyme level occurs after transfer from FR to darkness. It is concluded that the 'stored phytochrome signal' operates in darkness in the case of CHS but not in the case of PAL.

  7. Phytochrome-mediated induction of phenylalanine ammonia-lyase in the cotyledons of tomato (Lycopersicon esculentum Mill.) plants.

    PubMed

    Lercari, B; Sodi, F; Fastami, C

    1982-01-01

    Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.

  8. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    PubMed

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.

  9. SU-E-T-286: Dose Verification of Spot-Scanning Proton Beam Using GafChromic EBT3 Film

    SciTech Connect

    Chen, C; Tang, S; Mah, D; Chan, M

    2015-06-15

    Purpose: Dose verification of spot-scanning proton pencil beam is performed via planar dose measurements at several depths using an ionization-chamber array, requiring repeat irradiations of each field for each depth. Here we investigate film dosimetry which has two advantages: higher resolution and efficiency from one-shot irradiation for multiple depths. Methods: Film calibration was performed using an EBT3 film at 20-cm depth of Plastic Water (CIRS, Norfolk, VA) exposed by a 10-level step wedge on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged from 25–250 cGy(RBE) for proton energies of 170–200 MeV. A uniform 1000 cm{sup 3} dose cube and a clinical prostate combined with seminal-vesicle and pelvic-nodes plan were used for this study. All treatment plans were generated in the RayStation (RaySearch Lab, Sweden). The planar doses at different depths for both cases were measured with film using triple-channel dosimetry and the MatriXX PT (IBA Dosimetry, Germany). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and MatriXX, versus treatment planning system (TPS) calculations were analyzed and compared using the FilmQA Pro (Ashland Inc., Bridgewater, NJ). Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate >95% for 2%/2mm and are comparable with the MatriXX measurements (0.7%, 1.8%, 3.8% mean differences corresponding to 3%/3mm, 3%/2mm, 2%/2mm, respectively). Overall passing rates for EBT3 films appear higher than those with MatriXX detectors. Conclusion: The energy dependence of the film response could be minimized by calibration using proton beam with mixed energies. The greater efficiency of the dose verification using GafChromic EBT3 results in a potential cost trade-off between room capacity and film cost. EBT3 film may offer distinct advantages in highly intensity-modulated fields due to its higher resolution

  10. Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability[C][W

    PubMed Central

    Robson, Frances; Okamoto, Haruko; Patrick, Elaine; Harris, Sue-Ré; Wasternack, Claus; Brearley, Charles; Turner, John G.

    2010-01-01

    Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress. PMID:20435902

  11. Arabidopsis Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling[C][W

    PubMed Central

    Li, Jigang; Li, Gang; Gao, Shumin; Martinez, Cristina; He, Guangming; Zhou, Zhenzhen; Huang, Xi; Lee, Jae-Hoon; Zhang, Huiyong; Shen, Yunping; Wang, Haiyang; Deng, Xing Wang

    2010-01-01

    Phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) are two small plant-specific proteins essential for light-regulated phyA nuclear accumulation and subsequent phyA signaling processes. FHY3 and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are two transposase-derived transcription factors that directly activate FHY1/FHL transcription and thus mediate subsequent phyA nuclear accumulation and responses. Here, we report that ELONGATED HYPOCOTYL5 (HY5), a well-characterized bZIP transcription factor involved in promoting photomorphogenesis, directly binds ACGT-containing elements a few base pairs away from the FHY3/FAR1 binding sites in the FHY1/FHL promoters. We demonstrate that HY5 physically interacts with FHY3/FAR1 through their respective DNA binding domains and negatively regulates FHY3/FAR1-activated FHY1/FHL expression under far-red light. Together, our data show that HY5 plays a role in negative feedback regulation of phyA signaling by attenuating FHY3/FAR1-activated FHY1/FHL expression, providing a mechanism for fine-tuning phyA signaling homeostasis. PMID:21097709

  12. Light-dependent, Dark-promoted Interaction between Arabidopsis Cryptochrome 1 and Phytochrome B Proteins*♦

    PubMed Central

    Hughes, Robert M.; Vrana, Justin D.; Song, Junqi; Tucker, Chandra L.

    2012-01-01

    Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs. PMID:22577138

  13. Ethylene Is Not Responsible for Phytochrome-Mediated Apical Hook Exaggeration in Tomato

    PubMed Central

    Takahashi-Asami, Miki; Shichijo, Chizuko; Tsurumi, Seiji; Hashimoto, Tohru

    2016-01-01

    The apical hook of tomato seedlings is exaggerated by phytochrome actions, while in other species such as bean, pea and Arabidopsis, the hook is exaggerated by ethylene and opens by phytochrome actions. The present study was aimed to clarify mainly whether ethylene is responsible for the phytochrome-mediated hook exaggeration of tomato seedlings. Dark-grown 5-day-old seedlings were subjected to various ways of ethylene application in the dark as well as under the actions of red (R) or far-red light (FR). The ethylene emitted by seedlings was also quantified relative to hook exaggeration. The results show: Ambient ethylene, up-to about 1.0 μL L-1, suppressed (opened) the hooks formed in the dark as well as the ones exaggerated by R or FR, while at 3.0–10 μL L-1 it enhanced (closed) the hook only slightly as compared with the most-suppressed level at about 1.0 μL L-1. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene biosynthesis, did not enhance the hook, only mimicking the suppressive effects of ambient ethylene. The biosynthesis inhibitor, CoCl2 or aminoethoxyvinylglycine, enhanced hook curvature, and the enhancement was canceled by supplement of ethylene below 1.0 μL L-1. Auxin transport inhibitor, N-1-naphthylphthalamic acid, by contrast, suppressed curvature markedly without altering ethylene emission. The effects of the above-stated treatments did not differentiate qualitatively among the R-, FR-irradiated seedlings and dark control so as to explain phytochrome-mediated hook exaggeration. In addition, ethylene emission by seedlings was affected neither by R nor FR at such fluences as to cause hook exaggeration. In conclusion, (1) ethylene suppresses not only the light-exaggerated hook, but also the dark-formed one; (2) ethylene emission is not affected by R or FR, and also not correlated with the hook exaggerations; thus ethylene is not responsible for the hook exaggeration in tomato; and (3) auxin is

  14. Dynamic Structural Changes Underpin Photoconversion of a Blue/Green Cyanobacteriochrome between Its Dark and Photoactivated States*

    PubMed Central

    Cornilescu, Claudia C.; Cornilescu, Gabriel; Burgie, E. Sethe; Markley, John L.; Ulijasz, Andrew T.; Vierstra, Richard D.

    2014-01-01

    The phytochrome superfamily of photoreceptors exploits reversible light-driven changes in the bilin chromophore to initiate a variety of signaling cascades. The nature of these alterations and how they impact the protein moiety remain poorly resolved and might include several species-specific routes. Here, we provide a detailed picture of photoconversion for the photosensing cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain from Thermosynechococcus elongatus (Te) PixJ, a member of the cyanobacteriochrome clade. Solution NMR structures of the blue light-absorbing dark state Pb and green light-absorbing photoactivated state Pg, combined with paired crystallographic models, revealed that the bilin and GAF domain dynamically transition via breakage of the C10/Cys-494 thioether bond, opposite rotations of the A and D pyrrole rings, sliding of the bilin in the GAF pocket, and the appearance of an extended region of disorder that includes Cys-494. Changes in GAF domain backbone dynamics were also observed that are likely important for inter-domain signal propagation. Taken together, photoconversion of T. elongatus PixJ from Pb to Pg involves complex structural changes within the GAF domain pocket that transduce light into a mechanical signal, many aspects of which should be relevant to others within the extended phytochrome superfamily. PMID:24337572

  15. Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states.

    PubMed

    Cornilescu, Claudia C; Cornilescu, Gabriel; Burgie, E Sethe; Markley, John L; Ulijasz, Andrew T; Vierstra, Richard D

    2014-01-31

    The phytochrome superfamily of photoreceptors exploits reversible light-driven changes in the bilin chromophore to initiate a variety of signaling cascades. The nature of these alterations and how they impact the protein moiety remain poorly resolved and might include several species-specific routes. Here, we provide a detailed picture of photoconversion for the photosensing cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain from Thermosynechococcus elongatus (Te) PixJ, a member of the cyanobacteriochrome clade. Solution NMR structures of the blue light-absorbing dark state Pb and green light-absorbing photoactivated state Pg, combined with paired crystallographic models, revealed that the bilin and GAF domain dynamically transition via breakage of the C10/Cys-494 thioether bond, opposite rotations of the A and D pyrrole rings, sliding of the bilin in the GAF pocket, and the appearance of an extended region of disorder that includes Cys-494. Changes in GAF domain backbone dynamics were also observed that are likely important for inter-domain signal propagation. Taken together, photoconversion of T. elongatus PixJ from Pb to Pg involves complex structural changes within the GAF domain pocket that transduce light into a mechanical signal, many aspects of which should be relevant to others within the extended phytochrome superfamily.

  16. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  17. SU-E-T-32: An Application of GafChromic RTQA2 Film to the Patient Specified Quality Assurance

    SciTech Connect

    Peng, J; Hu, W

    2014-06-01

    Purpose: GafChromic RTQA2 film is known as a quality assurance (QA) tool for light field and radiation field verification. This study is attempted to apply the RTQA2 film to the patient specified quality assurance. Methods: Pre-irradiated and post-irradiated RTQA2 films were scanned in a reflection mode using a flatbed scanner. A plan-based dose calibration method utilized the mapping information of calculated dose image and measured film image to create a dose vs. pixel value calibration model. This model was used to calibrate the measured film image from the pixel value (gray value) image to the dose image. The dose agreement between calculated and measured dose images were analyzed using the gamma analysis. To evaluate the feasibility of this method, three clinical approved RapidArc cases (one abdomen cancer and two head-and-neck cancer patients) were tested. The tolerance of 3% dose difference and 3 mm distance to agreement (DTA) and gamma index ≤ 1 were set for the analysis. Results: The calibrated film dose image from measurement was successfully compared to the predicted dose image from the commercial treatment planning. The gamma analysis results showed good consistency. Gamma passing rates were 99.02%, 94.84%, and 98.33% for the three patients, respectively. Conclusion: The plan based calibration method has the feasibility for dose verification without shortages of film batch and development time variation.

  18. Phytochrome from Green Plants: Properties and biological Function

    SciTech Connect

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy

  19. Phytochrome Transformation and Action in Seeds of Rumex crispus L. during Secondary Dormancy

    PubMed Central

    Taylorson, R. B.; Hendricks, S. B.

    1973-01-01

    Promotion of germination by red light fails after prolonged dark imbibition of Rumex crispus L. seeds, indicative of a secondary dormancy. The degree and rate of inception of the dormancy increases with increasing temperature. Following establishment of the dormancy, germination response to red light can be restored by either prolonged cold treatment or brief high temperature shifts. Loss of phytochrome was not a factor in the initial establishment of the dormancy. When the seeds are in secondary dormancy, the chromophore of phytochrome can be transformed to the far red-absorbing form, but the far red-absorbing form cannot induce germination. The responses to changes in temperature suggested dependence of germination on order ⇆ disorder transitions in components of the seeds. PMID:16658587

  20. Phytochrome Control of Germination of Rumex crispus L. Seeds Induced by Temperature Shifts.

    PubMed

    Taylorson, R B; Hendricks, S B

    1972-12-01

    High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.

  1. Phytochrome Control of Germination of Rumex crispus L. Seeds Induced by Temperature Shifts

    PubMed Central

    Taylorson, R. B.; Hendricks, S. B.

    1972-01-01

    High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift. PMID:16658235

  2. Phytochrome Transformation and Action in Seeds of Rumex crispus L. during Secondary Dormancy.

    PubMed

    Taylorson, R B; Hendricks, S B

    1973-11-01

    Promotion of germination by red light fails after prolonged dark imbibition of Rumex crispus L. seeds, indicative of a secondary dormancy. The degree and rate of inception of the dormancy increases with increasing temperature. Following establishment of the dormancy, germination response to red light can be restored by either prolonged cold treatment or brief high temperature shifts. Loss of phytochrome was not a factor in the initial establishment of the dormancy. When the seeds are in secondary dormancy, the chromophore of phytochrome can be transformed to the far red-absorbing form, but the far red-absorbing form cannot induce germination. The responses to changes in temperature suggested dependence of germination on order left arrow over right arrow disorder transitions in components of the seeds.

  3. Mapping light-driven conformational changes within the photosensory module of plant phytochrome B

    PubMed Central

    von Horsten, Silke; Straß, Simon; Hellwig, Nils; Gruth, Verena; Klasen, Ramona; Mielcarek, Andreas; Linne, Uwe; Morgner, Nina; Essen, Lars-Oliver

    2016-01-01

    Organisms developed different photoreceptors to be able to adapt to changing environmental light conditions. Phytochromes are red/far-red (r/fr) photochromic photoreceptors that belong to the classical photoreceptors along with cryptochromes and phototropins. They convert absorbed light into a biological signal by switching between two states in a light-dependent manner therefore enabling the light control downstream signalling. Their Pfr conformation is the biological active form in plants, but until now only a structure of the ground state (Pr) was solved. Here, the authors provide information about structural changes occurring during photoconversion within phytochrome B and identify possible interaction sites for its N-terminal extension (NTE) utilising hydrogen/deuterium exchange rate analyses of its amide backbone. Especially, the newly identified light-dependency of two regions in the NTE are of particular interest for understanding the involvement of the phytochrome’s NTE in the regulation of its downstream signalling. PMID:27694986

  4. Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels

    PubMed Central

    Evans, A.; Smith, H.

    1976-01-01

    Etioplasts isolated from barley leaves and purified on a Sephadex G-50 (coarse) column were characterized by electron microscopy and nucleic acid analysis. The majority of etioplasts retained an intact outer envelope, and contamination by other fragments was extremely low. The level of gibberellin-like substances extractable from intact etioplast suspensions was enhanced within 5 min of the termination of a saturating red irradiation, and the response was far-red reversible. Ultra-sonication caused a 3-fold increase in extractable activity both in dark control suspension and suspensions treated with red light. It is concluded that phytochrome, as a function of its interconversions, probably causes the transport of gibberellin from inside the etioplast into the surrounding medium. This leads to increased production of active gibberellins, possibly by release of feedback control of late steps of the biosynthetic pathway. Dual wavelength difference spectrophotometry has demonstrated the presence of a proportion of total cellular phytochrome within the etioplast. Images PMID:16592300

  5. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  6. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  7. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development

    SciTech Connect

    Thiele, A.; Herold, M.; Lenk, I.; Gatz, C. . Albrecht von Haller Inst. fuer Pflanzenwissenschaften); Quail, P.H. )

    1999-05-01

    Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration of chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.

  8. Photoreceptors CRYTOCHROME2 and Phytochrome B Control Chromatin Compaction in Arabidopsis1[W][OA

    PubMed Central

    van Zanten, Martijn; Tessadori, Federico; McLoughlin, Fionn; Smith, Reuben; Millenaar, Frank F.; van Driel, Roel; Voesenek, Laurentius A.C.J.; Peeters, Anton J.M.; Fransz, Paul

    2010-01-01

    Development and acclimation processes to the environment are associated with large-scale changes in chromatin compaction in Arabidopsis (Arabidopsis thaliana). Here, we studied the effects of light signals on chromatin organization. A decrease in light intensity induces a large-scale reduction in chromatin compaction. This low light response is reversible and shows strong natural genetic variation. Moreover, the degree of chromatin compaction is affected by light quality signals relevant for natural canopy shade. The photoreceptor CRYPTOCHROME2 appears a general positive regulator of low light-induced chromatin decompaction. Phytochrome B also controls light-induced chromatin organization, but its effect appears to be dependent on the genetic background. We present a model in which chromatin compaction is regulated by the light environment via CRYPTOCHROME2 protein abundance, which is controlled by phytochrome B action. PMID:20935177

  9. Reversibly switchable photoacoustic tomography using a genetically encoded near-infrared phytochrome

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Kaberniuk, Andrii A.; Li, Lei; Shcherbakova, Daria M.; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V.; Wang, Lihong V.

    2016-03-01

    Optical imaging of genetically encoded probes has revolutionized biomedical studies by providing valuable information about targeted biological processes. Here, we report a novel imaging technique, termed reversibly switchable photoacoustic tomography (RS-PAT), which exhibits large penetration depth, high detection sensitivity, and super-resolution. RS-PAT combines advanced photoacoustic imaging techniques with, for the first time, a nonfluorescent photoswitchable bacterial phytochrome. This bacterial phytochrome is the most near-infrared shifted genetically encoded probe reported so far. Moreover, this bacterial phytochrome is reversibly photoconvertible between its far-red and near-infrared light absorption states. Taking maximum advantage of the powerful imaging capability of PAT and the unique photochemical properties of the phytochrome, RS-PAT has broken through both the optical diffusion limit for deep-tissue imaging and the optical diffraction limit for super-resolution photoacoustic microscopy. Specifically, with RS-PAT we have achieved an unprecedented detection sensitivity of ~2 μM, or as few as ~20 tumor cells, at a centimeter depth. Such high sensitivity is fully demonstrated in our study by monitoring tumor growth and metastasis at whole-body level with ~100 μm resolution. Moreover, our microscopic implementation of RS-PAT is capable of imaging mammalian cells with a sub-diffraction lateral resolution of ~140 nm and axial resolution of ~400 nm, which are respectively ~2-fold and ~75-fold finer than those of our conventional photoacoustic microscopy. Overall, RS-PAT is a new and promising imaging technology for studying biological processes at different length scales.

  10. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin.

    PubMed Central

    Heyne, Karsten; Herbst, Johannes; Stehlik, Dietmar; Esteban, Berta; Lamparter, Tilman; Hughes, Jon; Diller, Rolf

    2002-01-01

    Femtosecond time-resolved transient absorption spectroscopy was employed to characterize for the first time the primary photoisomerization dynamics of a bacterial phytochrome system in the two thermally stable states of the photocycle. The 85-kDa phytochrome Cph1 from the cyanobacterium Synechocystis PCC 6803 expressed in Escherichia coli was reconstituted with phycocyanobilin (Cph1-PCB) and phycoerythrobilin (Cph1-PEB). The red-light-absorbing form Pr of Cph1-PCB shows an approximately 150 fs relaxation in the S(1) state after photoexcitation at 650 nm. The subsequent Z-E isomerization between rings C and D of the linear tetrapyrrole-chromophore is best described by a distribution of rate constants with the first moment at (16 ps)(-1). Excitation at 615 nm leads to a slightly broadened distribution. The reverse E-Z isomerization, starting from the far-red-absorbing form Pfr, is characterized by two shorter time constants of 0.54 and 3.2 ps. In the case of Cph1-PEB, double-bond isomerization does not take place, and the excited-state lifetime extends into the nanosecond regime. Besides a stimulated emission rise time between 40 and 150 fs, no fast relaxation processes are observed. This suggests that the chromophore-protein interaction along rings A, B, and C does not contribute much to the picosecond dynamics observed in Cph1-PCB but rather the region around ring D near the isomerizing C(15) [double bond] C(16) double bond. The primary reaction dynamics of Cph1-PCB at ambient temperature is found to exhibit very similar features as those described for plant type A phytochrome, i.e., a relatively slow Pr, and a fast Pfr, photoreaction. This suggests that the initial reactions were established already before evolution of plant phytochromes began. PMID:11806940

  11. Light exaggerates apical hook curvature through phytochrome actions in tomato seedlings.

    PubMed

    Shichijo, Chizuko; Ohuchi, Hisako; Iwata, Naoko; Nagatoshi, Yukari; Takahashi, Miki; Nakatani, Eri; Inoue, Kentaroh; Tsurumi, Seiji; Tanaka, Osamu; Hashimoto, Tohru

    2010-02-01

    Contrary to the established notion that the apical hook of dark-grown dicotyledonous seedlings opens in response to light, we found in tomato (Solanum lycopersicum L.) that the apical hook curvature is exaggerated by light. Experiments with several tomato cultivars and phytochrome mutants, irradiated with red and far-red light either as a brief pulse (Rp, FRp) or continuously (Rc, FRc), revealed: the hook-exaggeration response is maximal at the emergence of the hypocotyl from the seed; the effect of Rp is FRp-reversible; fluence-response curves to a single Rp or FRp show an involvement of low and very low fluence responses (LFR, VLFR); the effect of Rc is fluence-rate dependent, but that of FRc is not; the phyA mutant (phyA hp-1) failed to respond to an Rp of less than 10(-2) micromol m(-2) and to an FRp of all fluences tested as well as to FRc, thus indicating that the hook-exaggeration response involves phyA-mediated VLFR. The Rp fluence-response curve with the same mutant also confirmed the presence of an LFR mediated by phytochrome(s) other than phyA, although the phyB1 mutant (phyB1 hp-1) still showed full response probably due to other redundant phytochrome species (e.g., phyB2). Simulation experiments led to the possible significance of hook exaggeration in the field that the photoresponse may facilitate the release of seed coat when seeds germinate at some range of depth in soil. It was also observed that seed coat and/or endosperm are essential to the hook exaggeration.

  12. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation

    PubMed Central

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-01-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4–OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants. PMID:22764280

  13. Ultraviolet B Radiation Enhances a Phytochrome-B-Mediated Photomorphogenic Response in Arabidopsis1

    PubMed Central

    Boccalandro, Hernán E.; Mazza, Carlos A.; Mazzella, M. Agustina; Casal, Jorge J.; Ballaré, Carlos L.

    2001-01-01

    Ultraviolet B radiation (UV-B, 290–315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-red pulse, or 2.5 h of continuous R caused very little cotyledon opening. The enhancing effect of UV-B increased with fluence rate up to approximately 7.58 μmol m−2 s−1; at higher fluence rates the response to UV-B was greatly reduced. The phyA, phyA cry1, and cry1 cry2 mutants behaved like the wild type when exposed to UV-B followed by an R pulse. In contrast, phyB, phyB cry1, and phyB phyA mutants failed to open the cotyledons. Thus, phytochrome B was required for the cotyledon opening response to UV-B → R treatments, whereas phytochrome A and cryptochromes 1 and 2 were not necessary under the conditions of our experiments. The enhancing effect of low doses of UV-B on cotyledon opening in uvr1 uvr2 and uvr1 uvr3 mutants, deficient in DNA repair, was similar to that found in the wild type, suggesting that this effect of UV-B was not elicited by signals derived from UV-B-induced DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts). We conclude that low doses of UV-B, perceived by a receptor system different from phytochromes, cryptochromes, or DNA, enhance a de-etiolation response that is induced by active phytochrome B. PMID:11402206

  14. Altered Phytochrome Regulation of Greening in an aurea Mutant of Tomato.

    PubMed

    Ken-Dror, S; Horwitz, B A

    1990-04-01

    A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.

  15. Far-red light-insensitive, phytochrome A-deficient mutants of tomato.

    PubMed

    van Tuinen, A; Kerckhoffs, L H; Nagatani, A; Kendrick, R E; Koornneef, M

    1995-01-20

    We have selected two recessive mutants of tomato with slightly longer hypocotyls than the wild type, one under low fluence rate (3 mumol/m2/s) red light (R) and the other under low fluence rate blue light. These two mutants were shown to be allelic and further analysis revealed that hypocotyl growth was totally insensitive to far-red light (FR). We propose the gene symbol fri (far-red light insensitive) for this locus and have mapped it on chromosome 10. Immunochemically detectable phytochrome A polypeptide is essentially absent in the fri mutants as is the bulk spectrophotometrically detectable labile phytochrome pool in etiolated seedlings. A phytochrome B-like polypeptide is present in normal amounts and a small stable phytochrome pool can be readily detected by spectrophotometry in the fri mutants. Inhibition of hypocotyl growth by a R pulse given every 4 h is quantitatively similar in the fri mutants and wild type and the effect is to a large extent reversible if R pulses are followed immediately by a FR pulse. After 7 days in darkness, both fri mutants and the wild type become green on transfer to white light, but after 7 days in FR, the wild-type seedlings that have expanded their cotyledons lose their capacity to green in white light, while the fri mutants de-etiolate. Adult plants of the fri mutants show retarded growth and are prone to wilting, but exhibit a normal elongation response to FR given at the end of the daily photoperiod. The inhibition of seed germination by continuous FR exhibited by the wild type is normal in the fri mutants.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity

    PubMed Central

    Moreno, Javier E.; Tao, Yi; Chory, Joanne; Ballaré, Carlos L.

    2009-01-01

    For plants, the tradeoff between resource investment in defense and increased growth to out-compete neighbors creates an allocation dilemma. How plants resolve this dilemma, at the mechanistic level, is unclear. We found that Arabidopsis plants produced an attenuated defense phenotype under conditions of crowding and when exposed to far-red (FR) radiation, a light signal that plants use to detect the proximity of neighbors via the photoreceptor phytochrome. This phenotype was detectable through standard bioassays that measured the growth of Spodoptera frugiperda caterpillars. Two possible explanations for the effect of FR are: (i) a simple by-product of the diversion of resources to competition, and (ii) a specific effect of phytochrome on defense signaling. The first possibility was ruled out by the fact that the auxin-deficient sav3 mutant, which fails to induce growth responses to FR, still responded to FR with an attenuated defense phenotype. In support of the second hypothesis, we found that phytochrome inactivation by FR caused a strong reduction of plant sensitivity to jasmonates, which are key regulators of plant immunity. The effects of FR on jasmonate sensitivity were restricted to certain elements of the pathway. Supporting the idea that the FR effects on jasmonate signaling are functionally significant, we found that FR failed to increase tissue quality in jar1, a mutant impaired in jasmonate response. We conclude that the plant modulates its investment in defense as a function of the perceived risk of competition, and that this modulation is effected by phytochrome via selective desensitization to jasmonates. PMID:19251652

  17. Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean.

    PubMed

    Fortunato, Antonio Emidio; Jaubert, Marianne; Enomoto, Gen; Bouly, Jean-Pierre; Raniello, Raffaella; Thaler, Michael; Malviya, Shruti; Bernardes, Juliana Silva; Rappaport, Fabrice; Gentili, Bernard; Huysman, Marie J J; Carbone, Alessandra; Bowler, Chris; d'Alcalà, Maurizio Ribera; Ikeuchi, Masahiko; Falciatore, Angela

    2016-03-01

    The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Spatially and genetically distinct control of seed germination by phytochromes A and B

    PubMed Central

    Lee, Keun Pyo; Piskurewicz, Urszula; Turečková, Veronika; Carat, Solenne; Chappuis, Richard; Strnad, Miroslav; Fankhauser, Christian; Lopez-Molina, Luis

    2012-01-01

    Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth. PMID:22948663

  19. Immunochemical and Spectroscopic Evidence for Protein Conformational Changes in Phytochrome Transformations

    PubMed Central

    Hopkins, D. W.; Butler, W. L.

    1970-01-01

    Phytochrome was examined by immunochemical and spectroscopic techniques to detect differences between the protein moieties of red- and far red-absorbing phytochrome (Pr and Pfr). No differences in the reaction of Pr and Pfr with phytochrome antibody were discernible on Ouchterlony double diffusion plates. However, the microcomplement fixation assay showed a greater degree of antibody reaction with Pfr than with Pr, indicating some difference in the surface characteristics of the two forms. Circular dichroism spectroscopy between 300 and 200 nanometers revealed differences between Pr and Pfr which may reflect differences in the protein conformation. The circular dichroism spectrum of Pr showed a negative band at 285 nanometers which was not present in the spectrum of Pfr, and the large negative circular dichroism band at 222 nanometers with Pfr, associated with the α-helical content, was shifted 2 nanometers to shorter wave length with Pr although there was no change of magnitude of this band. The absorbancy of Pr and Pfr is very nearly the same in the 280 nanometer spectral region, but sensitive difference spectra between Pr and Pfr did reveal spectra which were similar to solvent perturbation spectra obtained by others with different proteins. In total, the experiments indicate that there are conformational differences between the protein moieties of Pr and Pfr but that these differences are rather slight from a standpoint of gross structure. Images PMID:16657343

  20. Functional identification of MdPIF1 as a Phytochrome Interacting Factor in Apple.

    PubMed

    Zhou, Li-Jie; Mao, Ke; Qiao, Yu; Jiang, Han; Li, Yuan-Yuan; Hao, Yu-Jin

    2017-10-01

    Light plays a central role in regulating both apple plant yield and fruit quality formation; however, the Phytochrome interacting factors (PIFs), which are the main components of Phytochrome-mediated light signal transduction in apple, have rarely been characterized. Here, we isolated and identified a PIF-like protein(MdPIF1) in apple, which is similar to AtPIF1. MdPIF1 was constitutively expressed at different levels in various apple tissues, and the transcription level of MdPIF1 was significantly induced during seed germination. A functional complementation assay in the Arabidopsis PIF1-deletion mutant pil5 suggested that MdPIF1 was a negative regulator in the Phy-mediated inhibition of hypocotyl elongation under far-red light conditions. MdPIF1-overexpression promoted hypocotyl elongation, while inhibiting seed germination and PIF1 deletion-induced the bleaching phenotype in the pil5 mutant. In addition, expression analysis indicated that MdPIF1 was involved in the germination of apple seeds and dormancy breaking of apple buds. Moreover, MdPIF1 inhibited the growth of apple calli via Phy-mediated pathways. These findings build a solid foundation for studies on Phytochrome-mediated light signal transduction and molecular breeding in apple. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

    PubMed

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M; Quail, Peter H; Monte, Elena

    2016-05-06

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.

  2. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network

    PubMed Central

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M.; Quail, Peter H.; Monte, Elena

    2016-01-01

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation. PMID:27150909

  3. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha.

    PubMed

    Nishihama, Ryuichi; Ishizaki, Kimitsune; Hosaka, Masashi; Matsuda, Yoriko; Kubota, Akane; Kohchi, Takayuki

    2015-05-01

    Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells

  4. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses.

    PubMed

    Kang, Xiaojun; Chong, Jason; Ni, Min

    2005-03-01

    Plant photoreceptors that regulate photomorphogenic development include red/far-red-light-absorbing phytochromes and blue/UV-A-light-absorbing cryptochromes. We have undertaken a genetic screen to identify additional components downstream of the photoreceptors in Arabidopsis thaliana. We identified a short hypocotyl mutant under red and blue light, hypersensitive to red and blue 1 (hrb1). Mutation in HRB1 also enhances the end-of-day far-red light response, inhibits leaf expansion and petiole elongation, and attenuates the expression of CAB3 and CHS. Double mutant analysis indicates that phyB is epistatic to hrb1 under red light, and cry1 cry2 is epistatic to hrb1 under blue light for both hypocotyl growth and light-regulated gene expression responses. HRB1 localizes to the nucleus and belongs to a protein family of Drought induced 19 (Di19). HRB1 and all other family members contain a ZZ-type zinc finger domain, which in other organisms is implicated in protein-protein interactions between dystrophin and calmodulin and between transcriptional adaptors and activators. HRB1 activity is also required for red and blue light-induced expression of PHYTOCHROME INTERACTING FACTOR 4 (PIF4). pif4 shows a very similar hypersensitive response as hrb1 to both red light and blue light and is epistatic to hrb1 in control of light-regulated gene expression responses. Thus, the roles of HRB1 and PIF4 together in regulating both red and blue light responses may represent points where red light signaling and blue light signaling intersect.

  5. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: What level is achievable?

    SciTech Connect

    Battum, L. J. van; Hoffmans, D.; Piersma, H.; Heukelom, S.

    2008-02-15

    This paper focuses on the accuracy, in absolute dose measurements, with GafChromic EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.

  6. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: what level is achievable?

    PubMed

    van Battum, L J; Hoffmans, D; Piersma, H; Heukelom, S

    2008-02-01

    This paper focuses on the accuracy, in absolute dose measurements, with GafChromicTM EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.

  7. Residues Clustered in the Light-Sensing Knot of Phytochrome B Are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    USDA-ARS?s Scientific Manuscript database

    The bHLH transcription factor, Phytochrome Interacting Factor 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response t...

  8. Unusual Spectral Properties of Bacteriophytochrome Agp2 Result from a Deprotonation of the Chromophore in the Red-absorbing Form Pr*

    PubMed Central

    Zienicke, Benjamin; Molina, Isabel; Glenz, René; Singer, Patrick; Ehmer, Dorothee; Escobar, Francisco Velazquez; Hildebrandt, Peter; Diller, Rolf; Lamparter, Tilman

    2013-01-01

    Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion. PMID:24036118

  9. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.

    PubMed

    Zienicke, Benjamin; Molina, Isabel; Glenz, René; Singer, Patrick; Ehmer, Dorothee; Escobar, Francisco Velazquez; Hildebrandt, Peter; Diller, Rolf; Lamparter, Tilman

    2013-11-01

    Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.

  10. [An in vivo study of detectable phytochrome in seeds of Cucurbita pepo L. in the course of different phases of germination].

    PubMed

    Zouaghi, M; Malcoste, R; Rollin, P

    1972-03-01

    In dry gourd seeds all the phytochrome is in the Pfr form. The increase of phytochrome content from the beginning of hydration involves two phases, A and B, in the embryonic axis as well as in the cotyledons. Cycloheximide does not prevent the appearance of Pr during phase A. We assume that Pr is gradually released from an inactive complex. On the other hand phase B is inhibited by cycloheximide; this could mean that a de novo synthesis of Pr occurs.Some experiments indicate that the phytochrome which is localized in the embryonic axis may be involved only in the germinating process.The phytochrome which is synthesized during phase B disappears when the seeds are irradiated with red light, while the original phytochrome does not.According to our data it seems necessary to lay down a new and precise definition of the germination process.

  11. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena.

    PubMed Central

    Hershey, H P; Barker, R F; Idler, K B; Lissemore, J L; Quail, P H

    1985-01-01

    Cloned cDNA and genomic sequences have been analyzed to deduce the amino acid sequence of phytochrome from etiolated Avena. Restriction endonuclease site polymorphism between clones indicates that at least four phytochrome genes are expressed in this tissue. Sequence analysis of two complete and one partial coding region shows approximately 98% homology at both the nucleotide and amino acid levels, with the majority of amino acid changes being conservative. High sequence homology is also found in the 5'-untranslated region but significant divergence occurs in the 3'-untranslated region. The phytochrome polypeptides are 1128 amino acid residues long corresponding to a molecular mass of 125 kdaltons. The known protein sequence at the chromophore attachment site occurs only once in the polypeptide, establishing that phytochrome has a single chromophore per monomer covalently linked to Cys-321. Computer analyses of the amino acid sequences have provided predictions regarding a number of structural features of the phytochrome molecule. PMID:3001642

  12. SU-E-T-526: Irradiation of Human Cell Lines Using Carbon Ions: Real Time Dosimetry Using Gaf-Chromic Film

    SciTech Connect

    Lin, Y; Held, K; La Tessa, C; Rusek, A

    2015-06-15

    Purpose: The purpose of this study is to investigate and quantify several factors affecting biological effects of carbon ions such as cell type, dose, energy and position where the cells are irradiated along the pristine Bragg curve. Methods: Experiments to quantify clonogenic cell survival in three human lung cancer cell lines and a fibroblast cell line were performed at the NASA Space Radiation Laboratory, BNL, Upton, USA. A system of water or media-filled T25 flasks lined up along the beam axis was designed so that the cell-containing surfaces of the flasks were placed at specific depths along the Bragg curve. Gaf-chromic films were placed between the flasks to monitor the dose distribution in the sample as soon as the irradiation was finished. Additional studies were conducted at four selected depths along the Bragg curve to obtain full cell survival dose response curves for the four cell lines. Results: The percent depth dose of the beams was determined using an ionization chamber and showed that the physical Bragg peak is at 22.5 cm water depth. However, the clonogenic cell survival data indicated that the maximum cell killing occurred at 21.5 cm. Gaf-chromic films revealed some inhomogeneity in the dose distribution on the flasks near the peak, presumably due to lack of scattering from the sides of the flasks, which might account for the differences. Depending on the cell line and radiation dose, the maximum cell killing (i.e., the greatest RBE) is at the 21.5 (the peak) or 24 cm (distal fall off) depth. Conclusion: There is a difference in biological effect along the Bragg curve of a carbon ion beam, indicating an elevated RBE at or beyond the end of the range. Gaf-chromic films are proven to be effective in monitoring the 2D irradiation pattern to the flasks. Research supported by NIH/NCI through grant no. R21 CA182259.

  13. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT

    PubMed Central

    2014-01-01

    Purpose The purpose of this study was to compare the surface dose of 7-field IMRT (7 F-IMRT), tangential beam IMRT (TB-IMRT), and tangential beam 3D-CRT (3D-CRT) of breast cancer patients receiving adjuvant radiotherapy by means of in vivo GafChromic film dosimetry. Material and methods Breast cancer patients receiving adjuvant radiotherapy of the whole breast or the chest wall were eligible for the study. Study patients were treated with a treatment plan using two different radiotherapy techniques (first patient series, 3D-CRT followed by TB-IMRT; second patient series, TB-IMRT followed by 7 F-IMRT). The surface dose was evaluated on three consecutive treatment fractions per radiotherapy technique using in vivo GafChromic film dosimetry. The paired t-test was used to assess the difference of in vivo GafChromic film readings or calculated plan parameters of the compared pairs of radiation techniques for statistical significance. Results Forty-five unselected breast cancer patients were analysed in this study. 7 F-IMRT significantly reduced the surface dose compared to TB-IMRT. Differences were greatest in the central and lateral breast or chest wall region and amounted to a dose reduction of -11.8% to -18.8%. No significant difference of the surface dose was observed between TB-IMRT and 3D-CRT. A corresponding observation was obtained for the calculated skin dose derived from dose-volume histograms. Conclusions In adjuvant breast cancer radiotherapy, 7 F-IMRT offers a significantly reduced surface dose compared to TB-IMRT or 3D-CRT. PMID:25022449

  14. Phytochrome-mediated de Novo Synthesis of Phenylalanine Ammonia-Lyase in Cell Suspension Cultures of Parsley 1

    PubMed Central

    Wellmann, Eckard; Schopfer, Peter

    1975-01-01

    After a preirradiation with ultraviolet light, phenylalanine ammonia-lyase activity in cell suspension cultures of parsley (Petroselinum hortense Hoff.) is controlled by phytochrome (red/far red photoreversibility). Isopycnic CsCl density gradient centrifugation, after labeling with 15N (90 atom%) under inductive and noninductive conditions, was used to investigate the mode of action of phytochrome in this response. After a 5hour labeling period, a buoyant density shift of 0.009 kg·l−1 (0.7%) without band-broadening (indicating close to maximal labeling of the enzyme), was observed in irradiated cells. In dark-grown controls, the density shift was 0.004 kg·l−1 (0.3%), accompanied by significant band-broadening, indicating turnover of about half of the enzyme pool during 5 hours. These results are taken as evidence that phytochrome controls de novo synthesis of this enzyme over a background of basal turnover. PMID:16659175

  15. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion.

    PubMed

    Burgie, E Sethe; Zhang, Junrui; Vierstra, Richard D

    2016-03-01

    Phytochromes are photochromic photoreceptors responsible for a myriad of red/far-red light-dependent processes in plants and microorganisms. Interconversion is initially driven by photoreversible isomerization of bilin, but how this alteration directs the photostate-dependent changes within the protein to actuate signaling is poorly understood. Here, we describe the structure of the Deinococcus phytochrome photosensory module in its near complete far-red light-absorbing Pfr state. In addition to confirming the 180° rotation of the D-pyrrole ring, the dimeric structure clearly identifies downstream rearrangements that trigger large-scale conformational differences between the dark-adapted and photoactivated states. Mutational analyses verified the importance of residues surrounding the bilin in Pfr stabilization, and protease sensitivity assays corroborated photostate alterations that propagate along the dimeric interface. Collectively, these data support a cooperative "toggle" model for phytochrome photoconversion and advance our understanding of the allosteric connection between the photosensory and output modules.

  16. Discrimination of phytochrome dependent light inducible from non-light inducible plant genes. Prediction of a common light-responsive element (LRE) in phytochrome dependent light inducible plant genes.

    PubMed Central

    Grob, U; Stüber, K

    1987-01-01

    We aligned 14 5'-leading sequences of small subunit ribulose-1,5-bisphosphate carboxylase (rbcS) genes. A strong consensus sequence ("CCTTATCAT") was located directly upstream of the TATA-box. The occurrence of this motif in other light dependent phytochrome regulated plant genes led to the calculation of two consensus matrices. With these two matrices we are able to distinguish almost all known light induced plant genes which are phytochrome regulated from non-light induced plant genes indicating, that all these genes share a common light-responsive element (LRE). The results obtained by computer analysis are discussed with regard to experimental data. PMID:3697087

  17. Phylogenetic utility of the nuclear genes AGAMOUS 1 and PHYTOCHROME B in palms (Arecaceae): an example within Bactridinae

    PubMed Central

    Ludeña, Bertha; Chabrillange, Nathalie; Aberlenc-Bertossi, Frédérique; Adam, Hélène; Tregear, James W.; Pintaud, Jean-Christophe

    2011-01-01

    Background and Aims Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics. Methods New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated. Key Results The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics. Conclusions AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other

  18. Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in arabidopsis thaliana

    SciTech Connect

    Janoudi, A.K.; Gordon, W.R.; Poff, K.L.; Wagner, D.; Quail, P. |

    1997-03-01

    The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Arabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two responses in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast, the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indicate that phyA is necessary for the very-low-to-low but not the high-fluence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by a phytochrome other than phyA or phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in unpreditable fashion. 25 refs., 3 figs.

  19. Phytochrome- and Gibberellin-Mediated Regulation of Abscisic Acid Metabolism during Germination of Photoblastic Lettuce Seeds1[OA

    PubMed Central

    Sawada, Yoshiaki; Aoki, Miki; Nakaminami, Kentaro; Mitsuhashi, Wataru; Tatematsu, Kiyoshi; Kushiro, Tetsuo; Koshiba, Tomokazu; Kamiya, Yuji; Inoue, Yasunori; Nambara, Eiji; Toyomasu, Tomonobu

    2008-01-01

    Germination of lettuce (Lactuca sativa) ‘Grand Rapids’ seeds is regulated by phytochrome. The action of phytochrome includes alterations in the levels of gibberellin (GA) and abscisic acid (ABA). To determine the molecular mechanism of phytochrome regulation of ABA metabolism, we isolated four lettuce cDNAs encoding 9-cis-epoxycarotenoid dioxygenase (biosynthesis; LsNCED1–LsNCED4) and four cDNAs for ABA 8′-hydroxylase (catabolism; LsABA8ox1–LsABA8ox4). Measurements of ABA and its catabolites showed that a decrease in ABA level coincided with a slight increase in the level of the ABA catabolite phaseic acid after red light treatment. Quantitative reverse transcription-polymerase chain reaction analysis indicated that ABA levels are controlled by phytochrome through down-regulation of LsNCED2 and LsNCED4 expression and up-regulation of LsABA8ox4 expression in lettuce seeds. Furthermore, the expression levels of LsNCED4 decreased after GA1 treatment, whereas the levels of expression of the other two genes were unaffected. The LsNCED4 expression was also down-regulated by red light in lettuce seeds in which GA biosynthesis was suppressed by AMO-1618, a specific GA biosynthesis inhibitor. These results indicate that phytochrome regulation of ABA metabolism is mediated by both GA-dependent and -independent mechanisms. Spatial analysis showed that after red light treatment, the ABA decrease on the hypocotyl side was greater than that on the cotyledon side of lettuce seeds. Moreover, phytochrome-regulated expression of ABA and GA biosynthesis genes was observed on the hypocotyl side, rather than the cotyledon side, suggesting that this regulation occurs near the photoperceptive site. PMID:18184730

  20. GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis.

    PubMed

    Saur, Sigrun; Frengen, Jomar

    2008-07-01

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution

  1. Use of phytochrome-dependent reaction in evaluating the effect of space flight factors on the plant organism

    NASA Technical Reports Server (NTRS)

    Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.

    1982-01-01

    The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.

  2. Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice

    PubMed Central

    He, Yanan; Li, Yaping; Cui, Lixin; Xie, Lixia; Zheng, Chongke; Zhou, Guanhua; Zhou, Jinjun; Xie, Xianzhi

    2016-01-01

    Cross talk between light signaling and cold signaling has been elucidated in the model plant Arabidopsis and tomato, but little is known about their relationship in rice. Here, we report that phytochrome B (phyB) mutants exhibit improved cold tolerance compared with wild type (WT) rice (Oryza sativa L. cv. Nipponbare). The phyB mutants had a lower electrolyte leakage index and malondialdehyde concentration than the WT, suggesting that they had greater cell membrane integrity and less lipid peroxidation. Real-time PCR analysis revealed that the expression levels of dehydration-responsive element binding protein 1 (OsDREB1) family genes, which functions in the cold stress response in rice, were increased in the phyB mutant under normal and cold stress conditions. PIFs are central players in phytochrome-mediated light signaling networks. To explore the relationship between rice PIFs and OsDREB1 gene expression, we produced overexpression lines of rice PIF genes. OsDREB1 family genes were up-regulated in OsPIL16-overexpression lines, which had improved cold tolerance relative to the WT. Chromatin immunoprecipitation (ChIP)-qPCR assay revealed that OsPIL16 can bind to the N-box region of OsDREB1B promoter. Expression pattern analyses revealed that OsPIL16 transcripts were induced by cold stress and was significantly higher in the phyB mutant than in the WT. Moreover, yeast two-hybrid assay showed that OsPIL16 can bind to rice PHYB. Based on these results, we propose that phyB deficiency positively regulates OsDREB1 expression through OsPIL16 to enhance cell membrane integrity and to reduce the malondialdehyde concentration, resulting in the improved cold tolerance of the phyB mutants. PMID:28083003

  3. Phytochromes A and B Mediate Red-Light-Induced Positive Phototropism in Roots1

    PubMed Central

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30° to 40°, compared with 5° to 10° without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants. PMID:12644690

  4. Phytochromes A and B mediate red-light-induced positive phototropism in roots.

    PubMed

    Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P

    2003-03-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  5. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  6. Modulation of phytochrome signaling networks for improved biomass accumulation using a bioenergy crop model

    SciTech Connect

    Mockler, Todd C.

    2016-11-07

    Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrok generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for manipulation in

  7. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  8. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B

    PubMed Central

    Bognár, László Kozma; Hall, Anthony; Ádám, Éva; Thain, Simon C.; Nagy, Ferenc; Millar, Andrew J.

    1999-01-01

    Developmental and physiological responses are regulated by light throughout the entire life cycle of higher plants. To sense changes in the light environment, plants have developed various photoreceptors, including the red/far-red light-absorbing phytochromes and blue light-absorbing cryptochromes. A wide variety of physiological responses, including most light responses, also are modulated by circadian rhythms that are generated by an endogenous oscillator, the circadian clock. To provide information on local time, circadian clocks are synchronized and entrained by environmental time cues, of which light is among the most important. Light-driven entrainment of the Arabidopsis circadian clock has been shown to be mediated by phytochrome A (phyA), phytochrome B (phyB), and cryptochromes 1 and 2, thus affirming the roles of these photoreceptors as input regulators to the plant circadian clock. Here we show that the expression of PHYB∷LUC reporter genes containing the promoter and 5′ untranslated region of the tobacco NtPHYB1 or Arabidopsis AtPHYB genes fused to the luciferase (LUC) gene exhibit robust circadian oscillations in transgenic plants. We demonstrate that the abundance of PHYB RNA retains this circadian regulation and use a PHYB∷Luc fusion protein to show that the rate of PHYB synthesis is also rhythmic. The abundance of bulk PHYB protein, however, exhibits only weak circadian rhythmicity, if any. These data suggest that photoreceptor gene expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the input pathway and the putative circadian clock mechanism in higher plants. PMID:10588760

  9. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana

    PubMed Central

    Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc

    2015-01-01

    The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376

  10. Phytochrome Regulates Gibberellin Biosynthesis during Germination of Photoblastic Lettuce Seeds1

    PubMed Central

    Toyomasu, Tomonobu; Kawaide, Hiroshi; Mitsuhashi, Wataru; Inoue, Yasunori; Kamiya, Yuji

    1998-01-01

    Germination of lettuce (Lactuca sativa L.) seed is regulated by phytochrome. The requirement for red light is circumvented by the application of gibberellin (GA). We have previously shown that the endogenous content of GA1, the main bioactive GA in lettuce seeds, increases after red-light treatment. To clarify which step of GA1 synthesis is regulated by phytochrome, cDNAs encoding GA 20-oxidases (Ls20ox1 and Ls20ox2, for L. sativa GA 20-oxidase) and 3β-hydroxylases (Ls3h1 and Ls3h2 for L. sativa GA 3β-hydroxylase) were isolated from lettuce seeds by reverse-transcription polymerase chain reaction. Functional analysis of recombinant proteins expressed in Escherichia coli confirmed that the Ls20ox and Ls3h encode GA 20-oxidases and 3β-hydroxylases, respectively. Northern-blot analysis showed that Ls3h1 expression was dramatically induced by red-light treatment within 2 h, and that this effect was canceled by a subsequent far-red-light treatment. Ls3h2 mRNA was not detected in seeds that had been allowed to imbibe under any light conditions. Expression of the two Ls20ox genes was induced by initial imbibition alone in the dark. The level of Ls20ox2 mRNA decreased after the red-light treatment, whereas that of Ls20ox1 was unaffected by light. These results suggest that red light promotes GA1 synthesis in lettuce seeds by inducing Ls3h1 expression via phytochrome action. PMID:9847128

  11. A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B1[OPEN

    PubMed Central

    2017-01-01

    Selectable markers derived from plant genes circumvent the potential risk of antibiotic/herbicide-resistance gene transfer into neighboring plant species, endophytic bacteria, and mycorrhizal fungi. Toward this goal, we have engineered and validated signaling-active alleles of phytochrome B (eYHB) as plant-derived selection marker genes in the model plant Arabidopsis (Arabidopsis thaliana). By probing the relationship of construct size and induction conditions to optimal phenotypic selection, we show that eYHB-based alleles are robust substitutes for antibiotic/herbicide-dependent marker genes as well as surprisingly sensitive reporters of off-target transgene expression. PMID:27881727

  12. Rice phytochrome-interacting factor protein OsPIFff14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    USDA-ARS?s Scientific Manuscript database

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bi...

  13. Phytochrome and Seed Germination. I. Temperature Dependence and Relative P(FR) Levels in the Germination of Dark-germinating Tomato Seeds.

    PubMed

    Mancinelli, A L; Yaniv, Z; Smith, P

    1967-03-01

    Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20 degrees , a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as P(FR) in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.

  14. Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis[W][OA

    PubMed Central

    Kami, Chitose; Hersch, Micha; Trevisan, Martine; Genoud, Thierry; Hiltbrunner, Andreas; Bergmann, Sven; Fankhauser, Christian

    2012-01-01

    Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl. PMID:22374392

  15. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  17. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots.

    PubMed

    Correll, Melanie J; Coveney, Katrina M; Raines, Steven V; Mullen, Jack L; Hangarter, Roger P; Kiss, John Z

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  19. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    SciTech Connect

    Karve, Abhijit A; Weston, David; Jawdy, Sara; Gunter, Lee E; Allen, Sara M; Yang, Xiaohan; Wullschleger, Stan D; Tuskan, Gerald A

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosol in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.

  1. Shedding (far-red) light on phytochrome mechanisms and responses in land plants.

    PubMed

    Possart, Anja; Fleck, Christian; Hiltbrunner, Andreas

    2014-03-01

    In order to monitor ambient light conditions, plants rely on functionally diversified photoreceptors. Among these, phytochromes perceive red (R) and far-red (FR) light. FR light does not constitute a photosynthetic energy source; it however influences adaptive and developmental processes. In seed plants, phytochrome A (phyA) acts as FR receptor and mediates FR high irradiance responses (FR-HIRs). It exerts a dual role by promoting e.g. germination and seedling de-etiolation in canopy shade and by antagonising shade avoidance growth. Even though cryptogam plants such as mosses and ferns do not have phyA, they show FR-induced responses. In the present review we discuss the mechanistic basis of phyA-dependent FR-HIRs as well as their dual role in seed plants. We compare FR responses in seed plants and cryptogam plants and conclude on different potential concepts for the detection of canopy shade. Scenarios for the evolution of FR perception and responses are discussed.

  2. Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1

    PubMed Central

    Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László

    2001-01-01

    Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105

  3. The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated.

    PubMed Central

    Gaiser, J C; Lomax, T L

    1993-01-01

    Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component. PMID:11536545

  4. Water content and the conversion of phytochrome regulation of lettuce dormancy

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  5. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana.

    PubMed

    Kozuka, Toshiaki; Suetsugu, Noriyuki; Wada, Masamitsu; Nagatani, Akira

    2013-01-01

    Light is one of the most important environmental factors regulating the growth and development of leaves. As the primary photosynthetic organs, leaves have a laminar structure in many dicotyledonous plants. The regulation of leaf flatness is a key mechanism for the efficient absorption of light under low light conditions. In the present study, we demonstrated that phytochrome B (phyB) promoted the development of curled leaves. Wild-type leaves gently curled downwards under white light, whereas the phyB-deficient mutant (phyB) constitutively exhibited flatter leaves. In the wild type, leaf flattening was promoted by end-of-day far-red light (EODFR) treatment, which rapidly eliminates the active Pfr phytochrome. Interestingly, the curled-leaf phenotype in a phototropin-deficient mutant was almost completely suppressed by the phyB mutation as well as by EODFR. Thus, phototropin promotes leaf flattening by suppressing the leaf-curling activity of phyB. We examined the downstream components of phyB and phototropin to assess their antagonistic regulation of leaf flatness further. Consequently, we found that a phototropin signaling transducer, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), was required to promote leaf flattening in phyB. The present study provides new insights into a mechanism in which leaf flatness is regulated in response to different light environmental cues.

  6. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis

    PubMed Central

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination. PMID:27506149

  7. Epidermal Phytochrome B Inhibits Hypocotyl Negative Gravitropism Non-Cell-Autonomously.

    PubMed

    Kim, Jaewook; Song, Kijong; Park, Eunae; Kim, Keunhwa; Bae, Gabyong; Choi, Giltsu

    2016-11-01

    Seedling hypocotyls display negative gravitropism in the dark but agravitropism in the light. The Arabidopsis thaliana pif quadruple mutant (pifQ), which lacks four PHYTOCHROME-INTERACTING FACTORS (PIFs), is agravitropic in the dark. Endodermis-specific expression of PIF1 rescues gravitropism in pifQ mutant seedlings. Since phytochromes induce light responses by inhibiting PIFs and the COP1-SPA ubiquitin E3 ligase complex in the nucleus, we asked whether phyB can cell autonomously inhibit hypocotyl negative gravitropism in the endodermis. We found that while epidermis-specific expression of PHYB rescues hypocotyl negative gravitropism and all other phyB mutant phenotypes, endodermis-specific expression of PHYB does not. Epidermal phyB induces the phosphorylation and degradation of endodermal PIFs in response to red light. This induces a global gene expression pattern similar to that induced by red light treatment of seedlings expressing PHYB under the control of its own endogenous promoter. Our results imply that epidermal phyB generates an unidentified mobile signal that travels to the endodermis where it promotes PIF degradation and inhibits hypocotyl negative gravitropism. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Water content and the conversion of phytochrome regulation of lettuce dormancy

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  9. Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A.

    PubMed

    Staneloni, Roberto J; Rodriguez-Batiller, María José; Legisa, Danilo; Scarpin, María R; Agalou, Adamantia; Cerdán, Pablo D; Meijer, Annemarie H; Ouwerkerk, Pieter B F; Casal, Jorge J

    2009-08-11

    Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.

  10. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling

    PubMed Central

    Ermert, Anna Lena; Mailliet, Katharina; Hughes, Jon

    2016-01-01

    Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP’s) and their possible roles in signaling. PMID:27242820

  11. Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A

    PubMed Central

    Staneloni, Roberto J.; Rodriguez-Batiller, María José; Legisa, Danilo; Scarpin, María R.; Agalou, Adamantia; Cerdán, Pablo D.; Meijer, Annemarie H.; Ouwerkerk, Pieter B. F.; Casal, Jorge J.

    2009-01-01

    Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A. PMID:19666535

  12. The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated.

    PubMed

    Gaiser, J C; Lomax, T L

    1993-06-01

    Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component.

  13. Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine.

    PubMed

    García-Gil, Maria Rosario

    2008-08-01

    According to the neutral theory of evolution, mutation and genetic drift are the only forces that shape unconstrained, neutral, gene evolution. Thus, pseudogenes (which often evolve neutrally) provide opportunities to obtain direct estimates of mutation rates that are not biased by selection, and gene families comprising functional and pseudogene members provide useful material for both estimating neutral mutation rates and identifying sites that appear to be under positive or negative selection pressures. Conifers could be very useful for such analyses since they have large and complex genomes. There is evidence that pseudogenes make significant contributions to the size and complexity of gene families in pines, although few studies have examined the composition and evolution of gene families in conifers. In this work, I examine the complexity and rates of mutation of the phytochrome gene family in Pinus sylvestris and show that it includes not only functional genes but also pseudogenes. As expected, the functional PHYO does not appear to have evolved neutrally, while phytochrome pseudogenes show signs of unconstrained evolution.

  14. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod.

    PubMed

    Chen, Andrew; Li, Chengxia; Hu, Wei; Lau, Mei Yee; Lin, Huiqiong; Rockwell, Nathan C; Martin, Shelley S; Jernstedt, Judith A; Lagarias, J Clark; Dubcovsky, Jorge

    2014-07-15

    Phytochromes are dimeric proteins that function as red and far-red light sensors influencing nearly every phase of the plant life cycle. Of the three major phytochrome families found in flowering plants, phytochrome C (PHYC) is the least understood. In Arabidopsis and rice, PHYC is unstable and functionally inactive unless it heterodimerizes with another phytochrome. However, when expressed in an Arabidopsis phy-null mutant, wheat PHYC forms signaling active homodimers that translocate into the nucleus in red light to mediate photomorphogenic responses. Tetraploid wheat plants homozygous for loss-of-function mutations in all PHYC copies (phyC(AB)) flower on average 108 d later than wild-type plants under long days but only 19 d later under short days, indicating a strong interaction between PHYC and photoperiod. This interaction is further supported by the drastic down-regulation in the phyC(AB) mutant of the central photoperiod gene photoperiod 1 (PPD1) and its downstream target flowering locus T1, which are required for the promotion of flowering under long days. These results implicate light-dependent, PHYC-mediated activation of PPD1 expression in the acceleration of wheat flowering under inductive long days. Plants homozygous for the phyC(AB) mutations also show altered profiles of circadian clock and clock-output genes, which may also contribute to the observed differences in heading time. Our results highlight important differences in the photoperiod pathways of the temperate grasses with those of well-studied model plant species.

  15. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.

  16. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice.

    PubMed

    Yoshitake, Yoshihiro; Yokoo, Takayuki; Saito, Hiroki; Tsukiyama, Takuji; Quan, Xu; Zikihara, Kazunori; Katsura, Hitomi; Tokutomi, Satoru; Aboshi, Takako; Mori, Naoki; Inoue, Hiromo; Nishida, Hidetaka; Kohchi, Takayuki; Teraishi, Masayoshi; Okumoto, Yutaka; Tanisaka, Takatoshi

    2015-01-09

    Plants commonly rely on photoperiodism to control flowering time. Rice development before floral initiation is divided into two successive phases: the basic vegetative growth phase (BVP, photoperiod-insensitive phase) and the photoperiod-sensitive phase (PSP). The mechanism responsible for the transition of rice plants into their photoperiod-sensitive state remains elusive. Here, we show that se13, a mutation detected in the extremely early flowering mutant X61 is a nonsense mutant gene of OsHY2, which encodes phytochromobilin (PΦB) synthase, as evidenced by spectrometric and photomorphogenic analyses. We demonstrated that some flowering time and circadian clock genes harbor different expression profiles in BVP as opposed to PSP, and that this phenomenon is chiefly caused by different phytochrome-mediated light signal requirements: in BVP, phytochrome-mediated light signals directly suppress Ehd2, while in PSP, phytochrome-mediated light signals activate Hd1 and Ghd7 expression through the circadian clock genes' expression. These findings indicate that light receptivity through the phytochromes is different between two distinct developmental phases corresponding to the BVP and PSP in the rice flowering process. Our results suggest that these differences might be involved in the acquisition of photoperiod sensitivity in rice.

  17. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice

    PubMed Central

    Yoshitake, Yoshihiro; Yokoo, Takayuki; Saito, Hiroki; Tsukiyama, Takuji; Quan, Xu; Zikihara, Kazunori; Katsura, Hitomi; Tokutomi, Satoru; Aboshi, Takako; Mori, Naoki; Inoue, Hiromo; Nishida, Hidetaka; Kohchi, Takayuki; Teraishi, Masayoshi; Okumoto, Yutaka; Tanisaka, Takatoshi

    2015-01-01

    Plants commonly rely on photoperiodism to control flowering time. Rice development before floral initiation is divided into two successive phases: the basic vegetative growth phase (BVP, photoperiod-insensitive phase) and the photoperiod-sensitive phase (PSP). The mechanism responsible for the transition of rice plants into their photoperiod-sensitive state remains elusive. Here, we show that se13, a mutation detected in the extremely early flowering mutant X61 is a nonsense mutant gene of OsHY2, which encodes phytochromobilin (PΦB) synthase, as evidenced by spectrometric and photomorphogenic analyses. We demonstrated that some flowering time and circadian clock genes harbor different expression profiles in BVP as opposed to PSP, and that this phenomenon is chiefly caused by different phytochrome-mediated light signal requirements: in BVP, phytochrome-mediated light signals directly suppress Ehd2, while in PSP, phytochrome-mediated light signals activate Hd1 and Ghd7 expression through the circadian clock genes' expression. These findings indicate that light receptivity through the phytochromes is different between two distinct developmental phases corresponding to the BVP and PSP in the rice flowering process. Our results suggest that these differences might be involved in the acquisition of photoperiod sensitivity in rice. PMID:25573482

  18. The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms

    USDA-ARS?s Scientific Manuscript database

    HYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short h...

  19. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually-negative phyB-PIF feedback loop

    USDA-ARS?s Scientific Manuscript database

    The reversibly red (R)-far-red (FR)-light-responsive phytochrome (phy) photosensory system initiates both the deetiolation process in dark-germinated seedlings upon first exposure to light, and the shade-avoidance process in fully-deetiolated seedlings upon exposure to vegetational shade. The intra...

  20. [Control of chlorophyll a synthesis by phytochrome and cryptochrome in the red alga Corallina elongata Ellis et Soland].

    PubMed

    López-Figueroa, F; Niell, F X

    1988-09-01

    Chlorophyll a synthesis in the red alga Corallina elongata is controlled by phytochrome and by a specific blue light photoreceptor. Although the estimated photoequilibrium of phytochrome is similar in blue and red light, the amount of chlorophyll accumulated is greater in blue light, which implies the action of cryptochrome, according to the criteria for the specific blue light photoreceptor involvement. The amount of chlorophyll synthesized is greater when the level of photoequilibrium approaches 65% (in blue and red light) than with higher levels (72.7% in white light and 70.8% in green light). The action of phytochrome is demonstrated by the induction of chlorophyll synthesis after red pulses and the reversion after far red pulses. The reversion is not complete but the percentage of reversibility is high (85-90%). The amount of chlorophyll accumulated is greater in darkness after the application of red light pulses than in white light after the same light pulses. The induction of chlorophyll synthesis is greater after red pulses than after continuous red light. The existence of a fast destruction of chlorophyll in continuous light is observed. This destruction is greater in the high photoequilibrium of phytochrome (70-72%). The turnover times and the induction mechanism of chlorophyll synthesis must be very fast. This indicates the existence of a possible rapid adaptation to the change in light quality and intensity in the marine system.

  1. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis.

    PubMed

    Parks, B M; Spalding, E P

    1999-11-23

    Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.

  2. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.

  3. Thermochromic phase-transitions of GafChromic films studied by z-scan and temperature-dependent absorbance measurements.

    PubMed

    Koulouklidis, A D; Cohen, S; Kalef-Ezra, J

    2013-11-01

    Upon irradiation the active diacetylene layer of radiochromic films undergoes dose-dependent polymerization in the blue polydiacetylene form. Dose assessment is currently based on linear absorbance measurements. The scope of the present study was designed for the further understanding of the linear and, in particular, the nonlinear optical characteristics of such films and the utilization of these characteristics for devising alternative "reading" procedures. The nonlinear optical interactions of laser light with previously irradiated GafChromic(®) HD-810 and MD55-2 films were studied by z-scan techniques. The focused laser beam strikes on the film, which is located at various distances from the focal spot. The beam induces linear and nonlinear absorption and refraction. The measurement of the transmitted power (open-aperture z-scan) allows the study of the nonlinear absorption. On the other hand, the measurement of the axial region of the transmitted beam (closed-aperture z-scan) is related to both nonlinear absorption and refraction effects. A 10 mW, 633 nm, linearly polarized He/Ne laser was employed as the light source. The transmittance measurements were coupled with absorbance measurements carried out over the whole visible spectrum and at various reading temperatures, in an attempt to clarify the underlying mechanisms dictating the observed effects. These effects were incorporated to an open-aperture z-scan model, developed for the purpose of comparison to the corresponding experimental curves. The transmittance data obtained by both open- and closed-aperture z-scan were found to be dose-dependent, thus allowing such transmittance techniques to be employed for dose assessment. Low power open-aperture z-scan measurements (sensitive to absorptive nonlinearities) revealed a stepwise two-photon excitation of the active layer, through an intermediate state. At higher laser intensities (and/or absorbed dose), the shapes of the z-scan curves were found to be more

  4. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis.

    PubMed

    Costigan, Stephanie E; Warnasooriya, Sankalpi N; Humphries, Brock A; Montgomery, Beronda L

    2011-11-01

    Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.

  5. Function of phytochrome A in potato plants as revealed through the study of transgenic plants.

    PubMed Central

    Heyer, A G; Mozley, D; Landschütze, V; Thomas, B; Gatz, C

    1995-01-01

    We have generated transgenic potato plants (Solanum tuberosum) containing the potato phytochrome protein encoded by the PHYA gene cDNA (phyA) in sense or antisense orientation under the control of the 35S cauliflower mosaic virus promoter. Plants with increased and decreased phyA levels were analyzed. When grown under white light, development and growth of sprouts and plants were barely distinguishable from wild type. Under continuous far-red light, stem extension, leaf expansion, and hook opening of sprouts were accelerated in phyA overexpressors and delayed in antisense plants. Sprouts with reduced phyA levels were less sensitive to red light with regard to stem extension and expression of the small subunit genes for ribulose bisphosphate carboxylase. Under low red light:far-red light ratios, increased phyA levels reduced the stem extension component of the shade-avoidance response, whereas decreased levels led to an increase in the response. PMID:7480332

  6. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana

    PubMed Central

    Balasubramanian, Sureshkumar; Sureshkumar, Sridevi; Agrawal, Mitesh; Michael, Todd P.; Wessinger, Carrie; Maloof, Julin N.; Clark, Richard; Warthmann, Norman; Chory, Joanne; Weigel, Detlef

    2006-01-01

    Light plays an important role in modulating seedling growth and flowering time1. We show that allelic variation at the PHYTOCHROME C (PHYC) photoreceptor locus affects both traits in natural populations of A. thaliana. Two functionally distinct PHYC haplotype groups are distributed in a FRIGIDA-dependent latitudinal cline that is stronger than the one reported for FLOWERING LOCUS C, which together with FRIGIDA explains a large portion of the variation in A. thaliana flowering time2. In a genome-wide scan for association of 65 loci with latitude, there was an excess of significant p-values, indicative of population structure. Nevertheless, PHYC was the most strongly associated locus across 163 strains, suggesting that PHYC alleles are under diversifying selection in A. thaliana. Our work, together with previous findings3–6, suggests that photoreceptor genes are major agents of natural variation in plant flowering and growth response. PMID:16732287

  7. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes

    PubMed Central

    Oliinyk, Olena S.; Chernov, Konstantin G.

    2017-01-01

    Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs. PMID:28771184

  8. Ultrafast E to Z photoisomerization dynamics of the Cph1 phytochrome

    NASA Astrophysics Data System (ADS)

    Kim, Peter W.; Pan, Jie; Rockwell, Nathan C.; Chang, Che-Wei; Taylor, Keenan C.; Clark Lagarias, J.; Larsen, Delmar S.

    2012-10-01

    Femtosecond photodynamics of the reverse (15EPfr → 15ZPr) reaction of the red/far-red phytochrome Cph1 from Synechocystis were resolved with visible broadband transient absorption spectroscopy. Multi-phasic dynamics were resolved and separated via global target analysis into a fast-decaying (260 fs) excited-state population that bifurcates to generate the isomerized Lumi-F primary photoproduct and a non-isomerizing vibrationally excited ground state that relaxes back into the 15EPfr ground state on a 2.8-ps time scale. Relaxation on a 1-ms timescale results in the loss of red absorbing region, but not blue region, of Lumi-F, which indicates that formation of 15ZPr occurs on slower timescales.

  9. PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, Brachypodium distachyon

    PubMed Central

    Woods, Daniel P.; Ream, Thomas S.; Minevich, Gregory; Hobert, Oliver; Amasino, Richard M.

    2014-01-01

    We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses. PMID:25023399

  10. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  11. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  12. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.

    PubMed

    Woods, Daniel P; Ream, Thomas S; Minevich, Gregory; Hobert, Oliver; Amasino, Richard M

    2014-09-01

    We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses.

  13. Red Light-Independent Instability of Oat Phytochrome mRNA in Vivo.

    PubMed Central

    Seeley, KA; Byrne, DH; Colbert, JT

    1992-01-01

    Phytochrome A (phyA) mRNA abundance decreased rapidly in total RNA samples isolated from 4-day-old etiolated oat seedlings following a red light pulse. Putative in vivo phyA mRNA degradation products were detectable both before and after red light treatment. Cordycepin-treated coleoptiles were unable to accumulate the chlorophyll a/b-binding protein mRNA in response to red light, indicating that cordycepin effectively inhibited mRNA synthesis. In cordycepin-treated coleoptiles, phyA mRNA rapidly decreased in abundance, consistent with the hypothesis that phyA mRNA is inherently unstable, rather than being destabilized after red light treatment of etiolated oat seedlings. PMID:12297628

  14. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A

    PubMed Central

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-01-01

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses. PMID:17566111

  15. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A.

    PubMed

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-06-19

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses.

  16. Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence

    PubMed Central

    Piao, Weilan; Kim, Eun-Young; Han, Su-Hyun; Sakuraba, Yasuhito; Paek, Nam-Chon

    2015-01-01

    Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. PMID:27135344

  17. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis.

    PubMed

    Hajdu, Anita; Ádám, Éva; Sheerin, David J; Dobos, Orsolya; Bernula, Péter; Hiltbrunner, Andreas; Kozma-Bognár, László; Nagy, Ferenc

    2015-09-01

    Optimal timing of flowering in higher plants is crucial for successful reproduction and is coordinated by external and internal factors, including light and the circadian clock. In Arabidopsis, light-dependent stabilization of the rhythmically expressed CONSTANS (CO) is required for the activation of FLOWERING LOCUS T (FT), resulting in the initiation of flowering. Phytochrome A and cryptochrome photoreceptors stabilize CO in the evening by attenuating the activity of the CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 1 (COP1-SPA1) ubiquitin ligase complex, which promotes turnover of CO. In contrast, phytochrome B (phyB) facilitates degradation of CO in the morning and delays flowering. Accordingly, flowering is accelerated in phyB mutants. Paradoxically, plants overexpressing phyB also show early flowering, which may arise from an early phase of rhythmic CO expression. Here we demonstrate that overexpression of phyB induces FT transcription at dusk and in the night without affecting the phase or level of CO transcription. This response depends on the light-activated Pfr form of phyB that inhibits the function of the COP1-SPA1 complex by direct interactions. Our data suggest that attenuation of COP1 activity results in the accumulation of CO protein and subsequent induction of FT. We show that phosphorylation of Ser-86 inhibits this function of phyB by accelerating dark reversion and thus depletion of Pfr forms in the night. Our results explain the early flowering phenotype of phyB overexpression and reveal additional features of the molecular machinery by which photoreceptors mediate photoperiodism.

  18. An Integrative Model for Phytochrome B Mediated Photomorphogenesis: From Protein Dynamics to Physiology

    PubMed Central

    Kircher, Stefan; Kirchenbauer, Daniel; Timmer, Jens; Nagy, Ferenc; Schäfer, Eberhard; Fleck, Christian

    2010-01-01

    Background Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes. Methodology/Principal Findings We have developed an integrative mathematical model that describes how phytochrome B (phyB), an essential receptor in Arabidopsis thaliana, controls growth. Our model is based on a multiscale approach and connects the mesoscopic intracellular phyB protein dynamics to the macroscopic growth phenotype. To establish reliable and relevant parameters for the model phyB regulated growth we measured: accumulation and degradation, dark reversion kinetics and the dynamic behavior of different nuclear phyB pools using in vivo spectroscopy, western blotting and Fluorescence Recovery After Photobleaching (FRAP) technique, respectively. Conclusions/Significance The newly developed model predicts that the phyB-containing nuclear bodies (NBs) (i) serve as storage sites for phyB and (ii) control prolonged dark reversion kinetics as well as partial reversibility of phyB Pfr in extended darkness. The predictive power of this mathematical model is further validated by the fact that we are able to formalize a basic photobiological observation, namely that in light-grown seedlings hypocotyl length depends on the total amount of phyB. In addition, we demonstrate that our theoretical predictions are in excellent agreement with quantitative data concerning phyB levels and the corresponding hypocotyl lengths. Hence, we conclude that the integrative model suggested in this study captures the main features of phyB-mediated photomorphogenesis in Arabidopsis. PMID:20502669

  19. cis-acting elements involved in photoregulation of an oat phytochrome promoter in rice.

    PubMed Central

    Bruce, W B; Quail, P H

    1990-01-01

    Phytochrome negatively regulates the transcription of its own phyA genes. High levels of Pfr, the active, far-red-light absorbing form of phytochrome, repress phyA transcription; low Pfr levels result in derepression. We have utilized microprojectile-mediated gene transfer to identify regions of an oat phyA3 gene involved in this autoregulation. Chimeric constructs containing various deletion and sequence substitution mutants of the oat phyA3 gene fused to a chloramphenicol acetyltransferase reporter (phyA3/CAT) have been introduced into etiolated rice seedlings by particle bombardment. Low Pfr concentrations induce high phyA3/CAT expression, whereas high Pfr represses activity to near basal levels. Removal of phyA3 sequences 3' to the transcription start site reduces expression about fivefold, suggesting that intron 1 of the phyA3 gene may be required for high activity. The degree of high-Pfr-imposed repression is unaffected by any of a series of deletions or sequence substitutions in the phyA3 promoter, thus providing no evidence of any Pfr-activated negative elements. In contrast, 5' and internal deletions identify a minimum of three major positive promoter elements, designated PE1 [-381 base pairs (bp) to -348 bp], PE2 (-635 bp to -489 bp), and PE3 (-110 bp to -76 bp) that are necessary for high-level expression in low-Pfr cells. The data indicate that PE1 and PE2 are functionally redundant, but that PE3 is required in conjunction with either PE1 or PE2 for activity. PE3 contains a sequence element that is highly conserved between monocot phyA promoters, indicative of a critical role in phyA expression. PMID:2152109

  20. Phytochrome A and B Regulate Primary Metabolism in Arabidopsis Leaves in Response to Light.

    PubMed

    Han, Xiaozhen; Tohge, Takayuki; Lalor, Pierce; Dockery, Peter; Devaney, Nicholas; Esteves-Ferreira, Alberto A; Fernie, Alisdair R; Sulpice, Ronan

    2017-01-01

    Primary metabolism is closely linked to plant productivity and quality. Thus, a better understanding of the regulation of primary metabolism by photoreceptors has profound implications for agricultural practices and management. This study aims at identifying the role of light signaling in the regulation of primary metabolism, with an emphasis on starch. We first screened seven cryptochromes and phytochromes mutants for starch phenotype. The phyAB mutant showed impairment in starch accumulation while its biomass, chlorophyll fluorescence parameters, and leaf anatomy were unaffected, this deficiency being present over the whole vegetative growth period. Mutation of plastidial nucleoside diphosphate kinase-2 (NDPK2), acting downstream of phytochromes, also caused a deficit in starch accumulation. Besides, the glucose-1-phosphate adenylyltransferase small subunit (APS1) was down-regulated in phyAB. Those results suggest that PHYAB affect starch accumulation through NDPK2 and APS1. Then, we determined changes in starch and primary metabolites in single phyA, single phyB, double phyAB grown in light conditions differing in light intensity and/or light spectral content. PHYA is involved in starch accumulation in all the examined light conditions, whereas PHYB only exhibits a role under low light intensity (44 ± 1 μmol m(-2) s(-1)) or low R:FR (11.8 ± 0.6). PCA analysis of the metabolic profiles in the mutants and wild type (WT) suggested that PHYB acts as a major regulator of the leaf metabolic status in response to light intensity. Overall, we propose that PHYA and PHYB signaling play essential roles in the control of primary metabolism in Arabidopsis leaves in response to light.

  1. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB.

    PubMed

    Velázquez Escobar, Francisco; Buhrke, David; Fernandez Lopez, Maria; Shenkutie, Sintayehu Manaye; von Horsten, Silke; Essen, Lars-Oliver; Hughes, Jon; Hildebrandt, Peter

    2017-05-01

    The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics. © 2017 Federation of European Biochemical Societies.

  2. Arabidopsis Phytochrome B Promotes SPA1 Nuclear Accumulation to Repress Photomorphogenesis under Far-Red Light[C][W][OA

    PubMed Central

    Zheng, Xu; Wu, Suowei; Zhai, Huqu; Zhou, Peng; Song, Meifang; Su, Liang; Xi, Yulin; Li, Zhiyong; Cai, Yingfan; Meng, Fanhua; Yang, Li; Wang, Haiyang; Yang, Jianping

    2013-01-01

    Phytochrome A (phyA) is the primary photoreceptor mediating deetiolation under far-red (FR) light, whereas phyB predominantly regulates light responses in red light. SUPPRESSOR OF PHYA-105 (SPA1) forms an E3 ubiquitin ligase complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which is responsible for the degradation of various photomorphogenesis-promoting factors, resulting in desensitization to light signaling. However, the role of phyB in FR light signaling and the regulatory pathway from light-activated phytochromes to the COP1-SPA1 complex are largely unknown. Here, we confirm that PHYB overexpression causes an etiolation response with reduced ELONGATED HYPOCOTYL5 (HY5) accumulation under FR light. Notably, phyB exerts its nuclear activities and promotes seedling etiolation in both the presence and absence of phyA in response to FR light. PhyB acts upstream of SPA1 and is functionally dependent on it in FR light signaling. PhyB interacts and forms a protein complex with SPA1, enhancing its nuclear accumulation under FR light. During the dark-to-FR transition, phyB is rapidly imported into the nucleus and facilitates nuclear SPA1 accumulation. These findings support the notion that phyB plays a role in repressing FR light signaling. Activity modulation of the COP1-SPA E3 complex by light-activated phytochromes is an effective and pivotal regulatory step in light signaling. PMID:23371951

  3. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Shinkle, J. R.; Roux, S. J.

    1989-01-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  4. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.

    PubMed Central

    Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.

    1995-01-01

    We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato. PMID:12228517

  5. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Shinkle, J. R.; Roux, S. J.

    1989-01-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  6. Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean[OPEN

    PubMed Central

    Enomoto, Gen; Bouly, Jean-Pierre; Thaler, Michael; Malviya, Shruti; Bernardes, Juliana Silva; Rappaport, Fabrice; Gentili, Bernard; Huysman, Marie J.J.; Carbone, Alessandra; Bowler, Chris; Ikeuchi, Masahiko; Falciatore, Angela

    2016-01-01

    The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs. PMID:26941092

  7. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis.

    PubMed

    Xie, Yurong; Liu, Yang; Wang, Hai; Ma, Xiaojing; Wang, Baobao; Wu, Guangxia; Wang, Haiyang

    2017-08-24

    Plants have evolved a repertoire of strategies collectively termed the shade-avoidance syndrome to avoid shade from canopy and compete for light with their neighbors. However, the signaling mechanism governing the adaptive changes of adult plant architecture to shade is not well understood. Here, we show that in Arabidopsis, compared with the wild type, several PHYTOCHROME-INTERACTING FACTORS (PIFS) overexpressors all display constitutive shade-avoidance syndrome under normal high red to far-red light ratio conditions but are less sensitive to the simulated shade, whereas the MIR156 overexpressors exhibit an opposite phenotype. The simulated shade induces rapid accumulation of PIF proteins, reduced expression of multiple MIR156 genes, and concomitant elevated expression of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family genes. Moreover, in vivo and in vitro assays indicate that PIFs bind to the promoters of several MIR156 genes directly and repress their expression. Our results establish a direct functional link between the phytochrome-PIFs and miR156-SPL regulatory modules in mediating shade-avoidance syndrome.Plants employ developmental strategies to avoid shade and compete with neighbors for light. Here, Xie et al. show that phytochrome-interacting factors, which are regulated in a light-dependent manner, directly repress MIR156 genes and promote the expression of SPL genes to enhance shade-avoidance responses.

  8. The Heme-Oxygenase Family Required for Phytochrome Chromophore Biosynthesis Is Necessary for Proper Photomorphogenesis in Higher Plants1

    PubMed Central

    Davis, Seth J.; Bhoo, Seong Hee; Durski, Adam M.; Walker, Joseph M.; Vierstra, Richard D.

    2001-01-01

    The committed step in the biosynthesis of the phytochrome chromophore phytochromobilin involves the oxidative cleavage of heme by a heme oxygenase (HO) to form biliverdin IXα. Through positional cloning of the photomorphogenic mutant hy1, the Arabidopsis HO (designated AtHO1) responsible for much of phytochromobilin synthesis recently was identified. Using the AtHO1 sequence, we identified families of HO genes in a number of plants that cluster into two subfamilies (HO1- and HO2-like). The tomato (Lycopersicon esculentum) yg-2 and Nicotiana plumbaginifolia pew1 photomorphogenic mutants are defective in specific HO genes. Phenotypic analysis of a T-DNA insertion mutant of Arabidopsis HO2 revealed that the second HO subfamily also contributes to phytochromobilin synthesis. Homozygous ho2-1 plants show decreased chlorophyll accumulation, reduced growth rate, accelerated flowering time, and reduced de-etiolation. A mixture of apo- and holo-phyA was detected in etiolated ho2-1 seedlings, suggesting that phytochromobilin is limiting in this mutant, even in the presence of functional AtHO1. The patterns of Arabidopsis HO1 and HO2 expression suggest that the products of both genes overlap temporally and spatially. Taken together, the family of HOs is important for phytochrome-mediated development in a number of plants and that each family member may uniquely contribute to the phytochromobilin pool needed to assemble holo-phytochromes. PMID:11402195

  9. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings.

    PubMed

    Kim, S H; Shinkle, J R; Roux, S J

    1989-12-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  10. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.

    PubMed

    Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.

    1995-07-01

    We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato.

  11. Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-re...

  12. Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation by Pfr.

    PubMed

    Lamparter, T; Marwan, W

    2001-06-01

    Sporulation of the true slime mold Physarum polycephalum (Myxomycetales) can be triggered by the far-red/red reversible Physarum phytochrome. Physarum plasmodia were analyzed with a purpose-built dual-wavelength photometer that is designed for phytochrome measurements. A photoreversible absorbance change at 670 nm was monitored after actinic red (R) and far-red (FR) irradiation of starved plasmodia, confirming the occurrence of a phytochrome-like photoreceptor in Physarum spectroscopically. These signals were not found in growing plasmodia, suggesting the Physarum phytochrome to be synthesized during starvation, which makes the cells competent for the photoinduction of sporulation. The photoconversion rates by R and FR light were similar in the phytochromes of Physarum and etiolated oat shoots. In dark-grown Physarum plasmodia that had not been preexposed to any light only R induced a detectable absorbance change while FR did not. This indicates that most (at least 90%) of the photoreversible pigment occurs in the red-absorbing form. Since the effectiveness of FR in triggering sporulation was enhanced by preirradiation with R, it is concluded that at least part of the Pr can be photoconverted to the active Pfr photoreceptor species. We propose a kinetic mechanism for the photocontrol of sporulation by photoconversion of Pfr, which may also hold for the high-irradiance response to FR in Arabidopsis and Cuscuta.

  13. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation.

    PubMed

    Staneloni, Roberto J; Rodriguez-Batiller, María José; Casal, Jorge J

    2008-01-01

    In etiolated seedlings, light perceived by phytochrome promotes the expression of light-harvesting chlorophyll a/b protein of photosystem II (Lhcb) genes. However, excess of photosynthetically active radiation can reduce Lhcb expression. Here, we investigate the convergence and divergence of phytochrome, high-light stress and abscisic acid (ABA) signaling, which could connect these processes. Etiolated Arabidopsis thaliana seedlings bearing an Lhcb promoter fused to a reporter were exposed to continuous far-red light to activate phytochrome and not photosynthesis, and treated with ABA. We identified a cis-acting region of the promoter required for down-regulation by ABA. This region contains a CCAC sequence recently found to be necessary for ABI4-binding to an Lhcb promoter. However, we did not find a G-box-binding core motif often associated with the ABI4-binding site in genes promoted by light and repressed by ABI4. Mutations involving this motif also impaired the responses to reduced water potential, the response to high photosynthetic light and the response to methyl viologen but not the response to low temperature or to Norflurazon. We propose a model based on current and previous findings, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression. Since the mutation that affects high-light and methyl viologen responses does not affect phytochrome-mediated responses, the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.

  14. Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae): Differential regulation by light and an endogenous clock.

    PubMed

    Zheng, Cheng Chao; Potter, Daniel; O'Neill, Sharman D

    2009-07-01

    To investigate the role of distinct phytochrome pools in photoperiodic timekeeping, we characterized four phytochrome genes in the short-day plant Pharbitis nil. Each PHY gene had different photosensory properties and sensitivity to night break that inhibits flowering. During extended dark periods, PHYE, PHYB, and PHYC mRNA accumulation exhibited a circadian rhythmicity indicative of control by an endogenous clock. Phylogenetic analysis recovered four clades of angiosperm phytochrome genes, phyA, phyB, phyC, and phyE. All except the phyE clade included sequences from both monocots and eudicots. In addition, phyA is sister to phyC and phyE sister to phyB, with gymnosperm sequences sister to either the phyA-phyC clade or to the phyB-phyE clade. These results suggest that a single duplication occurred in an ancestral seed plant before the divergence of extant gymnosperms from angiosperms and that two subsequent duplications occurred in an ancestral angiosperm before the divergence of monocots from eudicots. Thus in P. nil, a multigene family with different patterns of mRNA abundance in light and darkness contributes to the total phytochrome pool: one pool is light labile (phyA), whereas the other is light stable (phyB and phyE). In addition, PHYC mRNA represents a third phytochrome pool with intermediate photosensory properties.

  15. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex.

    PubMed

    Sheerin, David J; Menon, Chiara; zur Oven-Krockhaus, Sven; Enderle, Beatrix; Zhu, Ling; Johnen, Philipp; Schleifenbaum, Frank; Stierhof, York-Dieter; Huq, Enamul; Hiltbrunner, Andreas

    2015-01-01

    Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception. © 2015 American Society of Plant Biologists. All rights reserved.

  16. Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins.

    PubMed

    Oelmüller, R; Kendrick, R E

    1991-02-01

    When dark-grown aurea mutant tomato seedlings which lack more than 95% of the phytochrome present in isogenic wild-type seedlings are kept in white or blue light, four nuclear-encoded transcripts coding for plastidic proteins (the light-harvesting chlorophyll a/b-binding protein of photosystem I and II [cab-PSII], plastocyanin and subunit 2 of photosystem I) are present in comparable amounts. These transcript levels in red light are strongly reduced in aurea seedlings when compared with those of wild type. Thus, blue light is required for normal expression of these genes in the mutant, while red light alone is not sufficient. Red light-grown aurea seedlings are very sensitive to blue light, even 10 minutes of blue light every day suffices to cause a measurable increase in cab-PSII transcript level. The action of blue light on the expression of cab-PSII in the mutant is under phytochrome control. After 8 days of blue light, phytochrome is almost as effective in inducing cab-PSII mRNA as in the isogenic wild type, whereas after 8 days of red light, only a small phytochrome response was observed in the mutant. It is concluded that blue light sensitizes the mutant to the residual phytochrome which allows normal gene expression and survival of the mutant under daylight conditions.

  17. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    PubMed

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  18. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  19. Multiparametric Flow Cytometry Using Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes

    PubMed Central

    Telford, William G.; Shcherbakova, Daria M.; Buschke, David; Hawley, Teresa S.; Verkhusha, Vladislav V.

    2015-01-01

    Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo. PMID:25811854

  20. An optogenetic system based on bacterial phytochrome controllable with near-infrared light

    PubMed Central

    Kaberniuk, Andrii A.; Shemetov, Anton A.; Verkhusha, Vladislav V.

    2016-01-01

    Light-mediated control of protein-protein interactions to regulate metabolic pathways is an important approach of optogenetics. Here, we report the first optogenetic system based on a reversible light-induced binding between a bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1–PpsR2 interaction both in vitro and in mammalian cells, and then used it to translocate target proteins to specific cellular compartments, such as plasma membrane and nucleus. Applying this approach we achieved a light-control of cell morphology resulting in the substantial increase of cell area. We next demonstrated the light-induced gene expression with the 40-fold contrast in cultured cells, 32-fold subcutaneously and 5.7-fold in deep tissues in mice. The unique characteristics of the BphP1–PpsR2 optogenetic system are its sensitivity to 740–780 nm near-infrared light, ability to utilize an endogenous biliverdin chromophore in eukaryotes including mammals, and spectral compatibility with blue-light optogenetic systems. PMID:27159085

  1. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.

    PubMed

    Tsuchida-Mayama, Tomoko; Sakai, Tatsuya; Hanada, Atsushi; Uehara, Yukiko; Asami, Tadao; Yamaguchi, Shinjiro

    2010-05-01

    Unilateral blue-light irradiation activates phototropin (phot) photoreceptors, resulting in asymmetric distribution of the phytohormone auxin and induction of a phototropic response in higher plants. Other photoreceptors, including phytochrome (phy) and cryptochrome (cry), have been proposed as modulators of phototropic responses. We show here that either phy or cry is required for hypocotyl phototropism in Arabidopsis thaliana under high fluence rates of blue light, and that constitutive expression of ROOT PHOTOTROPISM 2 (RPT2) and treatment with the phytohormone gibberellin (GA) biosynthesis inhibitor paclobutrazol partially and independently complement the non-phototropic hypocotyl phenotype of the phyA cry1 cry2 mutant under high fluence rates of blue light. Our results indicate that induction of RPT2 and reduction in the GA are crucial for hypocotyl phototropic regulation by phy and cry. We also show that GA suppresses hypocotyl bending via destabilization of DELLA transcriptional regulators under darkness, but does not suppress the phototropic response in the presence of either phyA or cryptochromes, suggesting that these photoreceptors control not only the GA content but also the GA sensing and/or signaling that affects hypocotyl phototropism. The metabolic and signaling regulation of not only auxin but also GA by photoreceptors therefore appears to determine the hypocotyl growth pattern, including phototropic and gravitropic responses and inhibition of hypocotyl elongation, for adaptation to various light environments.

  2. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis.

    PubMed

    Sullivan, Stuart; Hart, Jaynee E; Rasch, Patrick; Walker, Catriona H; Christie, John M

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.

  3. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome

    PubMed Central

    Piatkevich, Kiryl D.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2013-01-01

    Ability to modulate fluorescence of optical probes can be used to enhance signal-to-noise ratio for imaging within highly autofluorescent environments, such as intact tissues and living organisms. Here we report two phytochrome-based photoactivatable near-infrared fluorescent proteins, named PAiRFP1 and PAiRFP2. PAiRFPs utilize heme-derived biliverdin, ubiquitous in mammalian tissues, as the chromophore. Initially weakly fluorescent PAiRFPs undergo photoconversion into a highly fluorescent state with excitation/emission at 690 nm/717 nm following a brief irradiation with far-red light. After photoactivation, PAiRFPs slowly revert back to initial state, enabling multiple photoactivation-relaxation cycles. Low-temperature optical spectroscopy reveals several intermediates involved in PAiRFP photocycles, which all differ from that of the bacteriophytochrome precursor. PAiRFPs can be photoactivated in a spatially selective manner in mouse tissues, and optical modulation of their fluorescence allows for substantial contrast enhancement, making PAiRFPs advantageous over permanently fluorescent probes for in vivo imaging conditions of high autofluorescence and low signal levels. PMID:23842578

  4. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3

    DOE PAGES

    Ni, Weimin; Xu, Shou-Ling; González-Grandío, Eduardo; ...

    2017-05-11

    Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here in this paper we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1–4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro,more » with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.« less

  5. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L

    NASA Astrophysics Data System (ADS)

    Abdurakhmonov, Ibrokhim Y.; Buriev, Zabardast T.; Saha, Sukumar; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2014-01-01

    Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.

  6. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L.

    PubMed

    Abdurakhmonov, Ibrokhim Y; Buriev, Zabardast T; Saha, Sukumar; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2014-01-01

    Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.

  7. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    PubMed

    Karve, Abhijit A; Jawdy, Sara S; Gunter, Lee E; Allen, Sara M; Yang, Xiaohan; Tuskan, Gerald A; Wullschleger, Stan D; Weston, David J

    2012-11-01

    Shade avoidance signaling involves perception of incident red/far-red (R/FR) light by phytochromes (PHYs) and modulation of downstream transcriptional networks. Although these responses are well studied in Arabidopsis, little is known about the role of PHYs and the transcriptional responses to shade in the woody perennial Populus. Tissue expression and subcellular localization of Populus PHYs was studied by quantitative real-time PCR (qRT-PCR) and protoplast transient assay. Transgenic lines with altered PHYB1 and/or PHYB2 expression were used in phenotypic assays and transcript profiling with qRT-PCR. RNA-Seq was used to identify transcriptional responses to enriched FR light. All three PHYs were differentially expressed among tissue types and PHYBs were targeted to the nucleus under white light. Populus PHYB1 rescued Arabidopsis phyB mutant phenotypes. Phenotypes of Populus transgenic lines and the expression of candidate shade response genes suggested that PHYB1 and PHYB2 have distinct yet overlapping functions. RNA-Seq analysis indicated that genes associated with cell wall modification and brassinosteroid signaling were induced under enriched FR light in Populus. This study is an initial attempt at deciphering the role of Populus PHYs by evaluating transcriptional reprogramming to enriched FR and demonstrates functional diversity and overlap of the Populus PHYB1 and PHYB2 in regulating shade responses.

  8. Long-lived Intermediates in Phytochrome Transformation I: In Vitro Studies.

    PubMed

    Briggs, W R

    1969-08-01

    Irradiation of phytochrome solutions with a high-intensity mixed red and far red light source causes measurable absorbancy increases at 543 nm. Evidence is presented that these absorbancy increases are caused by accumulation of intermediates on the P(R) to P(FR) pathway with relatively slow thermal decay constants. Kinetic analysis of the decay signals is consistent with the interpretation that the signals represent simultaneous independent and parallel decay of 2 species by first order kinetics to P(FR). If actinic light intensity is kept constant and exposure time changed, the relative amounts of the 2 components change, with proportionately more of the rapidly decaying species present following short exposure times. If the amount of the intermediates is decreased by decreasing actinic light intensity at constant exposure time, however, the relative amounts of the 2 remain constant. The Q(10) for intermediate decay following illumination is approximately 2.0, while that for complete phototransformation of the pigment in either direction is very close to 1.0. Incomplete transformation of P(R) to P(FR), caused by overlapping absorption of the 2 forms, is shown by the presence of intermediates (indicating cycling of the pigment) in continuous red light. Such intermediates do not appear in continuous far red, indicating a rate of pigment cycling below detection by the available instrumentation.

  9. The Tissue-Specific Expression of a Tobacco Phytochrome B Gene.

    PubMed Central

    Adam, E.; Kozma-Bognar, L.; Kolar, C.; Schafer, E.; Nagy, F.

    1996-01-01

    We have isolated a genomic clone from Nicotiana tabacum, designated Nt-PHYB-1, encoding a type-II, "green tissue" phytochrome apoprotein. Recombinant genes, consisting of the 3319-bp promoter of the Nt-PHYB-1 gene (including the entire 5[prime] untranslated sequence but not the ATG) or its deletion derivatives and the bacterial [beta]-glucuronidase reporter gene, were constructed and transferred into tobacco. The expression patterns and levels of the endogenous Nt-PHYB-1, as well as those of the transgenes, were determined by RNase protection assays and by [beta]-glucuronidase histochemical staining. We show that (a) the PHYB-1 gene has three transcription start sites, (b) the abundance of the three PHYB-1-specific mRNAs is different, and that (c) it is not regulated by light. However, we do demonstrate that transcription of the endogenous PHYB-1 gene and that of the recombinant genes exhibit a well-defined organ and tissue specificity. This tobacco PHYB gene is relatively highly expressed in leaf, stem, and different floral organs but not in root. Deletion analysis of the Nt-PHYB-1 promoter indicates that a 382-bp region, located between -1472 and -1089, is required for high-level expression of this gene. PMID:12226242

  10. Arabidopsis BPG2: a phytochrome-regulated gene whose protein product binds to plastid ribosomal RNAs.

    PubMed

    Kim, Byung-Hoon; Malec, Przemyslaw; Waloszek, Andrzej; von Arnim, Albrecht G

    2012-08-01

    BPG2 (Brz-insensitive pale green 2) is a dark-repressible and light-inducible gene that is required for the greening process in Arabidopsis. Light pulse experiments suggested that light-regulated gene expression of BPG2 is mediated by phytochrome. The T-DNA insertion mutant bpg2-2 exhibited a reduced level of chlorophyll and carotenoid pigmentation in the plastids. Measurements of time resolved chlorophyll fluorescence and of fluorescence emission at 77 K indicated defective photosystem II and altered photosystem I functions in bpg2 mutants. Kinetic analysis of chlorophyll fluorescence induction suggested that the reduction of the primary acceptor (QA) is impaired in bpg2. The observed alterations resulted in reduced photosynthetic efficiency as measured by the electron transfer rate. BPG2 protein is localized in the plastid stroma fraction. Co-immunoprecipitation of a formaldehyde cross-linked RNA-protein complex indicated that BPG2 protein binds with specificity to chloroplast 16S and 23S ribosomal RNAs. The direct physical interaction with the plastid rRNAs supports an emerging model whereby BPG2 provides light-regulated ribosomal RNA processing functions, which are rate limiting for development of the plastid and its photosynthetic apparatus.

  11. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots.

    PubMed

    Lee, Hyo-Jun; Ha, Jun-Ho; Kim, Sang-Gyu; Choi, Han-Kyu; Kim, Zee Hwan; Han, Yun-Jeong; Kim, Jeong-Il; Oh, Youngjoo; Fragoso, Variluska; Shin, Kwangsoo; Hyeon, Taeghwan; Choi, Hong-Gu; Oh, Kyung-Hwan; Baldwin, Ian T; Park, Chung-Mo

    2016-11-01

    The roles of photoreceptors and their associated signaling mechanisms have been extensively studied in plant photomorphogenesis with a major focus on the photoresponses of the shoot system. Accumulating evidence indicates that light also influences root growth and development through the light-induced release of signaling molecules that travel from the shoot to the root. We explored whether aboveground light directly influences the root system of Arabidopsis thaliana Light was efficiently conducted through the stems to the roots, where photoactivated phytochrome B (phyB) triggered expression of ELONGATED HYPOCOTYL 5 (HY5) and accumulation of HY5 protein, a transcription factor that promotes root growth in response to light. Stimulation of HY5 in response to illumination of only the shoot was reduced when root tissues carried a loss-of-function mutation in PHYB, and HY5 mutant roots exhibited alterations in root growth and gravitropism in response to shoot illumination. These findings demonstrate that the underground roots directly sense stem-piped light to monitor the aboveground light environment during plant environmental adaptation. Copyright © 2016, American Association for the Advancement of Science.

  12. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    PubMed Central

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  13. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice.

    PubMed

    Liu, Jing; Zhang, Fang; Zhou, Jinjun; Chen, Fan; Wang, Baoshan; Xie, Xianzhi

    2012-02-01

    We report that phytochrome B (phyB) mutants exhibit improved drought tolerance compared to wild type (WT) rice (Oryza sativa L. cv. Nipponbare). To understand the underlying mechanism by which phyB regulates drought tolerance, we analyzed root growth and water loss from the leaves of phyB mutants. The root system showed no significant difference between the phyB mutants and WT, suggesting that improved drought tolerance has little relation to root growth. However, phyB mutants exhibited reduced total leaf area per plant, which was probably due to a reduction in the total number of cells per leaf caused by enhanced expression of Orysa;KRP1 and Orysa;KRP4 (encoding inhibitors of cyclin-dependent kinase complex activity) in the phyB mutants. In addition, the developed leaves of phyB mutants displayed larger epidermal cells than WT leaves, resulting in reduced stomatal density. phyB deficiency promoted the expression of both putative ERECTA family genes and EXPANSIN family genes involved in cell expansion in leaves, thus causing greater epidermal cell expansion in the phyB mutants. Reduced stomatal density resulted in reduced transpiration per unit leaf area in the phyB mutants. Considering all these findings, we propose that phyB deficiency causes both reduced total leaf area and reduced transpiration per unit leaf area, which explains the reduced water loss and improved drought tolerance of phyB mutants.

  14. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis.

    PubMed

    Boccalandro, Hernán E; Rugnone, Matías L; Moreno, Javier E; Ploschuk, Edmundo L; Serna, Laura; Yanovsky, Marcelo J; Casal, Jorge J

    2009-06-01

    In open places, plants are exposed to higher fluence rates of photosynthetically active radiation and to higher red to far-red ratios than under the shade of neighbor plants. High fluence rates are known to increase stomata density. Here we show that high, compared to low, red to far-red ratios also increase stomata density in Arabidopsis (Arabidopsis thaliana). High red to far-red ratios increase the proportion of phytochrome B (phyB) in its active form and the phyB mutant exhibited a constitutively low stomata density. phyB increased the stomata index (the ratio between stomata and epidermal cells number) and the level of anphistomy (by increasing stomata density more intensively in the adaxial than in the abaxial face). phyB promoted the expression of FAMA and TOO MANY MOUTHS genes involved in the regulation of stomata development in young leaves. Increased stomata density resulted in increased transpiration per unit leaf area. However, phyB promoted photosynthesis rates only at high fluence rates of photosynthetically active radiation. In accordance to these observations, phyB reduced long-term water-use efficiency estimated by the analysis of isotopic discrimination against (13)CO(2). We propose a model where active phyB promotes stomata differentiation in open places, allowing plants to take advantage of the higher irradiances at the expense of a reduction of water-use efficiency, which is compensated by a reduced leaf area.

  15. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature

    PubMed Central

    Franklin, Keara A.; Lee, Sang Ho; Patel, Dhaval; Kumar, S. Vinod; Spartz, Angela K.; Gu, Chen; Ye, Songqing; Yu, Peng; Breen, Gordon; Cohen, Jerry D.; Wigge, Philip A.; Gray, William M.

    2011-01-01

    At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPOCOTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA (SAUR) genes that are expressed at high temperature in a PIF4-dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature. PMID:22123947

  16. 14-3-3 Proteins Participate in Light Signaling through Association with PHYTOCHROME INTERACTING FACTORs

    PubMed Central

    Adams, Eri; Diaz, Celine; Hong, Jong-Pil; Shin, Ryoung

    2014-01-01

    14-3-3 proteins are regulatory proteins found in all eukaryotes and are known to selectively interact with phosphorylated proteins to regulate physiological processes. Through an affinity purification screening, many light-related proteins were recovered as 14-3-3 candidate binding partners. Yeast two-hybrid analysis revealed that the 14-3-3 kappa isoform (14-3-3κ) could bind to PHYTOCHROME INTERACTING FACTOR3 (PIF3) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). Further analysis by in vitro pull-down assay confirmed the interaction between 14-3-3κ and PIF3. Interruption of putative phosphorylation sites on the 14-3-3 binding motifs of PIF3 was not sufficient to inhibit 14-3-3κ from binding or to disturb nuclear localization of PIF3. It was also indicated that 14-3-3κ could bind to other members of the PIF family, such as PIF1 and PIF6, but not to LONG HYPOCOTYL IN FAR-RED1 (HFR1). 14-3-3 mutants, as well as the PIF3 overexpressor, displayed longer hypocotyls, and a pif3 mutant displayed shorter hypocotyls than the wild-type in red light, suggesting that 14-3-3 proteins are positive regulators of photomorphogenesis and function antagonistically with PIF3. Consequently, our results indicate that 14-3-3 proteins bind to PIFs and initiate photomorphogenesis in response to a light signal. PMID:25501334

  17. PHYTOCHROME B and HISTONE DEACETYLASE 6 Control Light-Induced Chromatin Compaction in Arabidopsis thaliana

    PubMed Central

    Pavlova, Penka; Clifton, Rachel; Pontvianne, Frédéric; Snoek, L. Basten; Millenaar, Frank F.; Schulkes, Roeland Kees; van Driel, Roel; Voesenek, Laurentius A. C. J.; Spillane, Charles; Pikaard, Craig S.; Fransz, Paul; Peeters, Anton J. M.

    2009-01-01

    Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. PMID:19730687

  18. Photochromic conversion in a red/green cyanobacteriochrome from Synechocystis PCC6803: quantum yields in solution and photoswitching dynamics in living E. coli cells.

    PubMed

    Pennacchietti, Francesca; Losi, Aba; Xu, Xiu-ling; Zhao, Kai-hong; Gärtner, Wolfgang; Viappiani, Cristiano; Cella, Francesca; Diaspro, Alberto; Abbruzzetti, Stefania

    2015-02-01

    The protein encoded by the gene slr1393 from the cyanobacterium Synechocystis sp. PCC6803 (Slr1393) is composed of three GAF domains, a PAS domain, and a histidine kinase motif. The third GAF domain (referred to as GAF3) was previously characterized as the sole domain in this protein, being able to carry phycocyanobilin (PCB) as the chromophore and to accomplish photochemistry. GAF3 shows photochromicity, and is able to switch between a red-absorbing parental state (GAF3R, λmax = 649 nm) and a green-absorbing photoproduct state (GAF3G, λmax = 536 nm) upon appropriate irradiation. In this study we have determined the photochemical quantum yields for the interconversion between both forms using two methods: an "absolute" method and a reference-based control. The latter is a comparative procedure which exploits a well-characterized blue-light photoreceptor, YtvA from Bacillus subtilis, and the cyanobacterial phytochrome Cph1 as actinometers. The former is an ad hoc developed, four laser-based setup where two cw lasers provide the pump beams to induce photoswitching (red to green and green to red, respectively) and two cw lasers simultaneously monitor the appearance and disappearance of the two species. Interestingly, fit analysis of the recorded transient absorbance changes provided a quantum yield for the green → red conversion (≈0.3) at least three times larger than for the red → green conversion (≈0.08). These data are in agreement with the results from the comparative method documenting the usefulness of the 'direct' method developed here for quantum yields' determination. The light-induced switching capability of this photochromic protein allowed measuring the kinetics of GAF3 immobilized on a glass plate, and within living, overexpressing Escherichia coli cells.

  19. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    SciTech Connect

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B. F.; Quail, Peter H.; Margarida Oliveira, M.; Saibo, Nelson J. M.

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.

  20. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    DOE PAGES

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  1. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B.

    PubMed

    Cordeiro, André M; Figueiredo, Duarte D; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A; Ouwerkerk, Pieter B F; Quail, Peter H; Margarida Oliveira, M; Saibo, Nelson J M

    2016-02-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.

  2. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of Phytochrome B

    PubMed Central

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2016-01-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823

  3. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and {sup 60}Co γ-rays

    SciTech Connect

    Vadrucci, M. Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-08-15

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference {sup 60}Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a {sup 60}Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to {sup 60}Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose

  4. Characterization of XR-RV3 GafChromic{sup ®} films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors

    SciTech Connect

    Farah, J. Clairand, I.; Huet, C.; Trianni, A.; Ciraj-Bjelac, O.; De Angelis, C.; Delle Canne, S.; Hadid, L.; Waryn, M. J.; Jarvinen, H.; Siiskonen, T.; Negri, A.; Novák, L.; Pinto, M.; Knežević, Ž.

    2015-07-15

    Purpose: To investigate the optimal use of XR-RV3 GafChromic{sup ®} films to assess patient skin dose in interventional radiology while addressing the means to reduce uncertainties in dose assessment. Methods: XR-Type R GafChromic films have been shown to represent the most efficient and suitable solution to determine patient skin dose in interventional procedures. As film dosimetry can be associated with high uncertainty, this paper presents the EURADOS WG 12 initiative to carry out a comprehensive study of film characteristics with a multisite approach. The considered sources of uncertainties include scanner, film, and fitting-related errors. The work focused on studying film behavior with clinical high-dose-rate pulsed beams (previously unavailable in the literature) together with reference standard laboratory beams. Results: First, the performance analysis of six different scanner models has shown that scan uniformity perpendicular to the lamp motion axis and that long term stability are the main sources of scanner-related uncertainties. These could induce errors of up to 7% on the film readings unless regularly checked and corrected. Typically, scan uniformity correction matrices and reading normalization to the scanner-specific and daily background reading should be done. In addition, the analysis on multiple film batches has shown that XR-RV3 films have generally good uniformity within one batch (<1.5%), require 24 h to stabilize after the irradiation and their response is roughly independent of dose rate (<5%). However, XR-RV3 films showed large variations (up to 15%) with radiation quality both in standard laboratory and in clinical conditions. As such, and prior to conducting patient skin dose measurements, it is mandatory to choose the appropriate calibration beam quality depending on the characteristics of the x-ray systems that will be used clinically. In addition, yellow side film irradiations should be preferentially used since they showed a lower

  5. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co γ-rays.

    PubMed

    Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C

    2015-08-01

    To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range

  6. PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis.

    PubMed

    Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya

    2014-11-01

    Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. © 2014 American Society of Plant Biologists. All Rights Reserved.

  7. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues.

    PubMed

    Andel, F; Murphy, J T; Haas, J A; McDowell, M T; van der Hoef, I; Lugtenburg, J; Lagarias, J C; Mathies, R A

    2000-03-14

    Resonance Raman spectra of native and recombinant analogues of oat phytochrome have been obtained and analyzed in conjunction with normal mode calculations. On the basis of frequency shifts observed upon methine bridge deuteration and vinyl and C(15)-methine bridge saturation of the chromophore, intense Raman lines at 805 and 814 cm(-)(1) in P(r) and P(fr), respectively, are assigned as C(15)-hydrogen out-of-plane (HOOP) wags, lines at 665 cm(-)(1) in P(r) and at 672 and 654 cm(-)(1) in P(fr) are assigned as coupled C=C and C-C torsions and in-plane ring twisting modes, and modes at approximately 1300 cm(-)(1) in P(r) are coupled N-H and C-H rocking modes. The empirical assignments and normal mode calculations support proposals that the chromophore structures in P(r) and P(fr) are C(15)-Z,syn and C(15)-E,anti, respectively. The intensities of the C(15)-hydrogen out-of-plane, C=C and C-C torsional, and in-plane ring modes in both P(r) and P(fr) suggest that the initial photochemistry involves simultaneous bond rotations at the C(15)-methine bridge coupled to C(15)-H wagging and D-ring rotation. The strong nonbonded interactions of the C- and D-ring methyl groups in the C(15)-E,anti P(fr) chromophore structure indicated by the intense 814 cm(-1) C(15) HOOP mode suggest that the excited state of P(fr) and its photoproduct states are strongly coupled.

  8. Resonance Raman analysis of the Pr and Pfr forms of phytochrome.

    PubMed

    Fodor, S P; Lagarias, J C; Mathies, R A

    1990-12-18

    Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.

  9. Multiple Heme Oxygenase Family Members Contribute to the Biosynthesis of the Phytochrome Chromophore in Arabidopsis1

    PubMed Central

    Emborg, Thomas J.; Walker, Joseph M.; Noh, Bosl; Vierstra, Richard D.

    2006-01-01

    The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXα (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2–4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys. PMID:16428602

  10. Recombinant phytochrome of the moss Ceratodon purpureus (CP2): fluorescence spectroscopy and photochemistry.

    PubMed

    Sineshchekov, V; Koppel, L; Hughes, J; Lamparter, T; Zeidler, M

    2000-07-01

    The recombinant phytochrome of the moss Ceratodon purpureus (CP2) expressed in Saccharomyces cerevisiae and reconstituted with phycocyanobilin (PCB) was investigated using fluorescence spectroscopy. The pigment had an emission maximum at 670 nm at low temperature (85 K) and at 667 nm at room temperature (RT) and an excitation maximum at 650-652 nm at 85 K (excitation spectra could not be measured at RT). Both spectra had a half-band width of approx. 30-35 nm at 85 K. The fluorescence intensity revealed a steep temperature dependence with an activation energy of fluorescence decay (Ea) of 5.9-6.4 and 12.6-14.7 kJ mol(-1) in the interval from 85 to 210 K and from 210 to 275 K, respectively. The photochemical properties of CP2/PCB were characterised by the extent of the red-induced (lambda(a) = 639 nm) Pr conversion into the first photoproduct lumi-R at 85 K (gamma1) of approximately 0.07 and into Pfr at RT (gamma2) of approximately 0.7. From these characteristics, CP2/PCB can be attributed to the Pr" photochemical type with gamma1 < or = 0.05, which comprises the minor phyA fraction (phyA"), phyB, Adiantum phy1 and Synechocystis Cph1 in contrast to the major phyA' fraction (Pr' type with gamma1 = 0.5). Within the Pr" type, it is closer to phyA" than to phyB and Cph1.

  11. PF1: an A-T hook-containing DNA binding protein from rice that interacts with a functionally defined d(AT)-rich element in the oat phytochrome A3 gene promoter.

    PubMed Central

    Nieto-Sotelo, J; Ichida, A; Quail, P H

    1994-01-01

    Phytochrome-imposed down-regulation of the expression of its own phytochrome A gene (PHYA) is one of the fastest light-induced effects on transcription reported in plants to date. Functional analysis of the oat PHYA3 promoter in a transfection assay has revealed two positive elements, PE1 and PE3, that function synergistically to support high levels of transcription in the absence of light. We have isolated a rice cDNA clone (pR4) encoding a DNA binding protein that binds to the AT-rich PE1 element. We tested the selectivity of the pR4-encoded DNA binding activity using linker substitution mutations of PE1 that are known to disrupt positive expression supported by the PHYA3 promoter in vivo. Binding to these linker substitution mutants was one to two orders of magnitude less than to the native PE1 element. Because this is the behavior expected of positive factor 1 (PF1), the presumptive nuclear transcription factor that acts in trans at the PE1 element in vivo, the data support the conclusion that the protein encoded by pR4 is in fact rice PF1. The PF1 polypeptide encoded by pR4 is 213 amino acids long and contains four repeats of the A-T hook DNA binding motif found in high-mobility group I-Y (HMGI-Y) proteins. In addition, PF1 contains an 11-amino acid-long hydrophobic region characteristic of HMG I proteins, its N-terminal region shows strong similarities to a pea H1 histone sequence and a short peptide sequence from wheat HMGa, and it shows a high degree of similarity along its entire length to the HMG Y-like protein encoded by a soybean cDNA, SB16. In vitro footprinting and quantitative gel shift analyses showed that PF1 binds preferentially to the PE1 element but also at lower affinity to two other AT-rich regions upstream of PE1. This feature is consistent with the binding characteristics of HMG I-Y proteins that are known to bind to most runs of six or more AT base pairs. Taken together, the properties of PF1 suggest that it belongs to a newly described

  12. Heat Shock–Induced Fluctuations in Clock and Light Signaling Enhance Phytochrome B–Mediated Arabidopsis Deetiolation[C][W

    PubMed Central

    Karayekov, Elizabeth; Sellaro, Romina; Legris, Martina; Yanovsky, Marcelo J.; Casal, Jorge J.

    2013-01-01

    Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and increased the abundance of its target ELONGATED HYPOCOTYL5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability. PMID:23933882

  13. Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes.

    PubMed

    Stowe-Evans, Emily L; Kehoe, David M

    2004-06-01

    The colorful process of complementary chromatic adaptation (CCA), in which cyanobacteria dramatically alter their pigmentation in response to ambient light color changes, has intrigued scientists for more than a century. Over the past four decades, intensive research on the model organism Fremyella diplosiphon has revealed many details of the photobiology and molecular biology of this process, which includes restructuring of these organism's photosynthetic light-harvesting antennae, called phycobilisomes. This restructuring involves changes in transcription of genes encoding phycobilisome components. These genes have been cloned and their patterns of light-responsive expression characterized. In the past ten years, attention has focused on the signal transduction mechanism(s) through which cyanobacteria sense and respond to changes in ambient light color. Genetic approaches led to the isolation of signal transduction components that control light-color responses in F. diplosiphon. Several of these appear to be within a complex phosphorelay that is in part controlled by a photoreceptor called RcaE, the founding member of a large, novel class of prokaryotic photoreceptors with similarity to both plant phytochrome photoreceptors and sensor histidine kinases. The strong foundation of knowledge provided by years of research on CCA makes this a powerful model system for studying signal transduction systems controlled by prokaryotic phytochromes. In this regard, recent results demonstrate that multiple light sensing systems control this organism's responses to changes in light quality and that large numbers of genes are differentially regulated during this process.

  14. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

    PubMed

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-08-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein-VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering.

  15. Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering.

    PubMed

    Ishikawa, Ryo; Shinomura, Tomoko; Takano, Makoto; Shimamoto, Ko

    2009-04-01

    A short exposure to light during relative night (night break; NB) delays flowering in the short day plant rice. NB acts by downregulating Heading date 3a (Hd3a) expression. Because phytochrome B mutants do not respond to NB and their flowering time is not affected even under NB conditions, phyB is required for the suppression of Hd3a expression. The effect of NB is quantitatively controlled by light quality and by either light intensity or duration. However, the molecular mechanisms that regulate these interactions are poorly understood. Here, we examine the roles of phytochromes in the regulation of Hd3a transcription under NB conditions using monochromatic red, far-red and blue light. Red and blue light downregulated Hd3a expression, but far-red light NB did not. The effect of red light NB on Hd3a is dependent on photon fluence and is restored by subsequent far-red light irradiation. Our results suggest that quantitative effect of light on flowering in rice NB is mediated by the regulation of Hd3a transcription by phyB.

  16. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.

    PubMed

    Lariguet, Patricia; Fankhauser, Christian

    2004-12-01

    How developing seedlings integrate gravitropic and phototropic stimuli to determine their direction of growth is poorly understood. In this study we tested whether blue light influences hypocotyl gravitropism in Arabidopsis. Phototropin1 (phot1) triggers phototropism under low fluence rates of blue light but, at least in the dark, has no effect on gravitropism. By analyzing the growth orientation of phototropism-deficient seedlings in response to gravitropic and phototropic stimulations we show that blue light not only triggers phototropism but also represses hypocotyl gravitropism. At low fluence rates of blue light phot1 mutants were agravitropic. In contrast, phyAphot1 double mutants grew exclusively according to gravity demonstrating that phytochrome A (phyA) is necessary to inhibit gravitropism. Analyses of phot1cry1cry2 triple mutants indicate that cryptochromes play a minor role in this response. Thus the optimal growth orientation of hypocotyls is determined by the action of phyA-suppressing gravitropism and the phototropin-triggering phototropism. It has long been known that phytochromes promote phototropism but the mechanism involved is still unknown. Our data show that by inhibiting gravitropism phyA acts as a positive regulator of phototropism.

  17. A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis

    PubMed Central

    Zhu, Ling; Bu, Qingyun; Shen, Hui; Dang, Jonathan

    2016-01-01

    The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulate PIFs to promote photomorphogenesis. HEC1 and HEC2 heterodimerize with PIF family members. PIF1, HEC1, and HEC2 genes are spatially and temporally coexpressed, and HEC2 is localized in the nucleus. hec1, hec2, and hec3 single mutants and the hec1 hec2 double mutant showed hyposensitivity to light-induced seed germination and accumulation of chlorophyll and carotenoids, hallmark processes oppositely regulated by PIF1. HEC2 inhibits PIF1 target gene expression by directly heterodimerizing with PIF1 and preventing DNA binding and transcriptional activation activity of PIF1. Conversely, PIFs directly activate the expression of HEC1 and HEC2 in the dark, and light reduces the expression of these HECs possibly by degrading PIFs. HEC2 is partially degraded in the dark through the ubiquitin/26S-proteasome pathway and is stabilized by light. HEC2 overexpression also reduces the light-induced degradation of PIF1. Taken together, these data suggest that PIFs and HECs constitute a negative feedback loop to fine-tune photomorphogenesis in Arabidopsis thaliana. PMID:27073231

  18. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  19. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions.

  20. Phytochrome Interacting Factors (PIFs) in Solanum lycopersicum: Diversity, Evolutionary History and Expression Profiling during Different Developmental Processes

    PubMed Central

    Rosado, Daniele; Gramegna, Giovanna; Cruz, Aline; Lira, Bruno Silvestre; Freschi, Luciano; de Setta, Nathalia

    2016-01-01

    Although the importance of light for tomato plant yield and edible fruit quality is well known, the PHYTOCHROME INTERACTING FACTORS (PIFs), main components of phytochrome-mediated light signal transduction, have been studied almost exclusively in Arabidopsis thaliana. Here, the diversity, evolution and expression profile of PIF gene subfamily in Solanum lycopersicum was characterized. Eight tomato PIF loci were identified, named SlPIF1a, SlPIF1b, SlPIF3, SlPIF4, SlPIF7a, SlPIF7b, SlPIF8a and SlPIF8b. The duplication of SlPIF1, SlPIF7 and SlPIF8 genes were dated and temporally coincided with the whole-genome triplication event that preceded tomato and potato divergence. Different patterns of mRNA accumulation in response to light treatments were observed during seedling deetiolation, dark-induced senescence, diel cycle and fruit ripening. SlPIF4 showed similar expression profile as that reported for A. thaliana homologs, indicating an evolutionary conserved function of PIF4 clade. A comprehensive analysis of the evolutionary and transcriptional data allowed proposing that duplicated SlPIFs have undergone sub- and neofunctionalization at mRNA level, pinpointing the importance of transcriptional regulation for the maintenance of duplicated genes. Altogether, the results indicate that genome polyploidization and functional divergence have played a major role in diversification of the Solanum PIF gene subfamily. PMID:27802334

  1. Genome-wide identification and characterization of microRNAs differenytially expressed in fibers in a cotton phytochrome A1 RNAi line

    USDA-ARS?s Scientific Manuscript database

    Silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneously improved fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Comparative analyses of altered molecular proc...

  2. PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thalianaW⃞

    PubMed Central

    Oh, Eunkyoo; Kim, Jonghyun; Park, Eunae; Kim, Jeong-Il; Kang, Changwon; Choi, Giltsu

    2004-01-01

    The first decision made by an angiosperm seed, whether to germinate or not, is based on integration of various environmental signals such as water and light. The phytochromes (Phys) act as red and far-red light (Pfr) photoreceptors to mediate light signaling through yet uncharacterized pathways. We report here that the PIF3-like 5 (PIL5) protein, a basic helix-loop-helix transcription factor, is a key negative regulator of phytochrome-mediated seed germination. PIL5 preferentially interacts with the Pfr forms of Phytochrome A (PhyA) and Phytochrome B (PhyB). Analyses of a pil5 mutant in conjunction with phyA and phyB mutants, a pif3 pil5 double mutant, and PIL5 overexpression lines indicate that PIL5 is a negative factor in Phy-mediated promotion of seed germination, inhibition of hypocotyl negative gravitropism, and inhibition of hypocotyl elongation. Our data identify PIL5 as the first Phy-interacting protein that regulates seed germination. PMID:15486102

  3. Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor.

    PubMed

    Sato, Y; Wada, M; Kadota, A

    2001-01-01

    Light induced chloroplast movement has been studied as a model system for photoreception and actin microfilament (MF)-based intracellular motilities in plants. Chloroplast photo-accumulation and -avoidance movement is mediated by phytochrome as well as blue light (BL) receptor in the moss Physcomitrella patens. Here we report the discovery of an involvement of a microtubule (MT)-based system in addition to an MF-based system in photorelocation of chloroplasts in this moss. In the dark, MTs provided tracks for rapid movement of chloroplasts in a longitudinal direction and MFs contributed the tracks for slow movement in any direction. We found that phytochrome responses utilized only the MT-based system, while BL responses had an alternative way of moving, either along MTs or MFs. MT-based systems were mediated by both photoreceptors, but chloroplasts showed movements with different velocity and pattern between them. No apparent difference in the behavior of chloroplast movement between the accumulation and avoidance movement was detected in phytochrome responses or BL responses, except for the direction of the movement. The results presented here demonstrate that chloroplasts use both MTs and MFs for motility and that phytochrome and a BL receptor control directional photo-movement of chloroplasts through the differential regulation of these motile systems.

  4. Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1).

    PubMed

    Mayerhofer, Hubert; Panneerselvam, Saravanan; Kaljunen, Heidi; Tuukkanen, Anne; Mertens, Haydyn D T; Mueller-Dieckmann, Jochen

    2015-01-30

    Ethylene initiates important aspects of plant growth and development through disulfide-linked receptor dimers located in the endoplasmic reticulum. The receptors feature a small transmembrane, ethylene binding domain followed by a large cytosolic domain, which serves as a scaffold for the assembly of large molecular weight complexes of different ethylene receptors and other cellular participants of the ethylene signaling pathway. Here we report the crystallographic structures of the ethylene receptor 1 (ETR1) catalytic ATP-binding and the ethylene response sensor 1 dimerization histidine phosphotransfer (DHp) domains and the solution structure of the entire cytosolic domain of ETR1, all from Arabidopsis thaliana. The isolated dimeric ethylene response sensor 1 DHp domain is asymmetric, the result of different helical bending angles close to the conserved His residue. The structures of the catalytic ATP-binding, DHp, and receiver domains of ethylene receptors and of a homologous, but dissimilar, GAF domain were refined against experimental small angle x-ray scattering data, leading to a structural model of the entire cytosolic domain of the ethylene receptor 1. The model illustrates that the cytosolic domain is shaped like a dumbbell and that the receiver domain is flexible and assumes a position different from those observed in prokaryotic histidine kinases. Furthermore the cytosolic domain of ETR1 plays a key role, interacting with all other receptors and several participants of the ethylene signaling pathway. Our model, therefore, provides the first step toward a detailed understanding of the molecular mechanics of this important signal transduction process in plants.

  5. Phytochrome-controlled phototropism of protonemata of the moss ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants

    PubMed

    Esch; Hartmann; Cove; Wada; Lamparter

    1999-09-01

    Phototropism and polarotropism in protonemata of the moss Ceratodon purpureus are controlled by the photoreceptor phytochrome. One class of phototropism mutants is characterised by growing randomly when kept for a prolonged time (5 d or longer) in unilateral red light. It was found that a subclass of these mutants grows faster than the wild type, the rate of cell division and the length of the cells being increased. This difference is found for light-grown and dark-grown filaments. It is therefore suggested that the mutant phenotype neither results from a defect in phytochrome photoconversion nor from a defect in phytochrome-gradient formation. Instead, it is possible that a factor which is involved in both signal transduction of phototropism and regulation of cell size and cell division is deregulated. If dark-grown mutant filaments are phototropically stimulated for 24 h, they show a weak phototropic response. Phototropism and polarotropism fluence-rate effect curves for mutants were flattened and shifted to higher fluence rates compared with those for the wild type. With wild-type filaments, a previously unreported response was observed. At a low fluence rate, half of the filaments grew positively phototropically, while the other half grew negatively phototropically. It seems that under these conditions, a phytochrome gradient with two maxima for the far-red-absorbing form of phytochrome (Pfr) within the cross-section of the cell is displayed by the response of the filaments. At higher fluence rates, all filaments of the wild type grew towards the light. These data and results from microbeam irradiation experiments and from phototropism studies with filaments growing within agar, indicate that light refraction plays an important role in the formation of the Pfr gradient in phototropism of Ceratodon.

  6. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method

    NASA Astrophysics Data System (ADS)

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-01

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter. Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method. The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality. By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the

  7. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner

    SciTech Connect

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.

    2011-04-15

    Purpose: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was {+-}7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film

  8. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner

    PubMed Central

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.

    2011-01-01

    Purpose: In this study, newly formulated XR-RV3 GafChromic® film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was ±7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film

  9. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method.

    PubMed

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-07

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter.Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method.The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality.By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration

  10. FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1

    PubMed Central

    Zhou, Qingwen; Hare, Peter D.; Yang, Seong Wook; Zeidler, Mathias; Huang, Li-Fang; Chua, Nam-Hai

    2006-01-01

    Summary Phytochrome A (phyA) plays a primary role in initiating seedling de-etiolation and is the only plant photoreceptor known to be activated by far-red light (FR). The signaling intermediate FHY1 appears to either participate directly in relaying the phyA signal or to positively regulate a critical signaling event(s) downstream of phyA activation. Here we identify a homolog of FHY1 named FHL (FHY1-like) as a novel signaling factor essential for complete responsiveness to phyA. FHL possesses functional nuclear localization and nuclear export signals. Lines in which FHL function was abolished by insertional mutagenesis or attenuated by RNAi-mediated suppression displayed a weaker hyposensitivity to continuous FR than fhy1 null mutants and most reported phyA signaling mutants. However, hypocotyl elongation assays indicated that suppression of FHL expression in fhy1-3 caused an insensitivity of hypocotyl elongation to FR and blue light (B) indistinguishable from that seen in phyA. Real-time PCR indicates that in FR, FHY1 transcripts are approximately 15-fold more abundant than FHL transcripts. Although both FHY1 and FHL are capable of homo- and hetero-interaction via their C-termini, the ability of FHL overexpression to restore wild-type (WT) morphological and molecular phenotypes to fhy1-3 seedlings suggests that the extreme insensitivity to FR associated with suppression of FHL expression in fhy1-3 cannot be accounted for by a critical role for FHY1-FHL heterodimers in phyA signal transmission. Rather, we suggest that the relative abundances of FHY1 and FHL in WT plants account for the differences in the severity of fhy1 and fhl mutations. As for FHY1, FHL transcript accumulation is dependent on FHY3 and is decreased after exposure to FR, R or B light. These findings reiterate the prevalence of partial degeneracy in plant signaling networks that regulate responses crucial to survival. PMID:16045472

  11. FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1.

    PubMed

    Zhou, Qingwen; Hare, Peter D; Yang, Seong Wook; Zeidler, Mathias; Huang, Li-Fang; Chua, Nam-Hai

    2005-08-01

    Phytochrome A (phyA) plays a primary role in initiating seedling de-etiolation and is the only plant photoreceptor known to be activated by far-red light (FR). The signaling intermediate FHY1 appears to either participate directly in relaying the phyA signal or to positively regulate a critical signaling event(s) downstream of phyA activation. Here we identify a homolog of FHY1 named FHL (FHY1-like) as a novel signaling factor essential for complete responsiveness to phyA. FHL possesses functional nuclear localization and nuclear export signals. Lines in which FHL function was abolished by insertional mutagenesis or attenuated by RNAi-mediated suppression displayed a weaker hyposensitivity to continuous FR than fhy1 null mutants and most reported phyA signaling mutants. However, hypocotyl elongation assays indicated that suppression of FHL expression in fhy1-3 caused an insensitivity of hypocotyl elongation to FR and blue light (B) indistinguishable from that seen in phyA. Real-time PCR indicates that in FR, FHY1 transcripts are approximately 15-fold more abundant than FHL transcripts. Although both FHY1 and FHL are capable of homo- and hetero-interaction via their C-termini, the ability of FHL overexpression to restore wild-type (WT) morphological and molecular phenotypes to fhy1-3 seedlings suggests that the extreme insensitivity to FR associated with suppression of FHL expression in fhy1-3 cannot be accounted for by a critical role for FHY1-FHL heterodimers in phyA signal transmission. Rather, we suggest that the relative abundances of FHY1 and FHL in WT plants account for the differences in the severity of fhy1 and fhl mutations. As for FHY1, FHL transcript accumulation is dependent on FHY3 and is decreased after exposure to FR, R or B light. These findings reiterate the prevalence of partial degeneracy in plant signaling networks that regulate responses crucial to survival.

  12. A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes

    SciTech Connect

    Burgie, E. Sethe; Walker, Joseph M.; George N. Phillips Jr.; Vierstra, Richard D.

    2013-01-08

    The phytochrome superfamily encompasses a diverse collection of photochromic photoreceptors in plants and microorganisms that employ a covalently linked bilin cradled in a cGMP-phosphodiesterase/adenylyl-cyclase/FhlA (GAF) domain to detect light. Whereas most interconvert between red- and far-red-light-absorbing states, cyanobacteria also express variants called cyanobacteriochromes (CBCRs) that modify bilin absorption to collectively perceive the entire visible spectrum. Here, we present two X-ray crystallographic structures of the GAF domain from the blue/green photochromic CBCR PixJ from Thermosynechococcus elongatus. Moreover, these structures confirm the hypothesis that CBCRs variably manipulate the chromophore π-conjugation system through isomerization and a second thioether linkage, in this case involving the bilin C10 carbon and Cys494 within a DXCF sequence characteristic of blue/green CBCRs. Biochemical studies support a mechanism for photoconversion whereby the second linkage ruptures on route to the green-light-absorbing state. All together, theTePixJ(GAF) models illustrate the remarkable structural and photochemical versatility among phytochromes and CBCRs in driving light perception.

  13. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    PubMed Central

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-01-01

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 Å resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an “arm” structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  14. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    SciTech Connect

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-11-12

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 {angstrom} resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an 'arm' structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.

  15. Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating HEMB1 during Deetiolation in Arabidopsis[W

    PubMed Central

    Tang, Weijiang; Wang, Wanqing; Chen, Dongqin; Ji, Qiang; Jing, Yanjun; Wang, Haiyang; Lin, Rongcheng

    2012-01-01

    Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, as positive regulators of chlorophyll biosynthesis in Arabidopsis thaliana. We show that null mutations in FHY3 and FAR1 cause reduced protochlorophyllide (a precursor of chlorophyll) levels in darkness and less photobleaching in the light. We find that FHY3 directly binds to the promoter and activates expression of HEMB1, which encodes 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. We reveal that PHYTOCHROME-INTERACTING FACTOR1 physically interacts with the DNA binding domain of FHY3, thereby partly repressing FHY3/FAR1-activated HEMB1 expression. Strikingly, FHY3 expression is upregulated by white light. In addition, our genetic data indicate that overexpression, severe reduction, or lack of HEMB1 impairs plant growth and development. Together, our findings reveal a crucial role of FHY3/FAR1 in regulating chlorophyll biosynthesis, thus uncovering a new layer of regulation by which light promotes plant dark–light transition in early seedling development. PMID:22634759

  16. Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore.

    PubMed

    van Thor, Jasper J; Fisher, Nicholas; Rich, Peter R

    2005-11-03

    The reversible red and far-red light-induced transitions of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 were investigated by Fourier transform infrared (FTIR) difference spectroscopy. High-quality light-induced Pfr-Pr difference FTIR spectra were recorded for the 58 kDa N-terminal domain of Cph1 by repetitive photochemical cycling and signal averaging. The Pfr-Pr difference spectra in H(2)O and D(2)O were very similar to those previously reported for full-length 85 kDa Cph1.(1) Published assignments were extended by analysis of the effects of (13)C and (15)N isotope substitutions at selected sites in the phycocyanobilin chromophore and by (15)N global labeling of the protein. The Pfr-Pr difference spectra were dominated by an amide I peak/trough at 1653 cm(-1)(+)/1631 cm(-1)(-) and a smaller amide II band at 1554 cm(-1). Labeling effects allowed specific chromophore assignments for the C(1)=O (1736 cm(-1)(-)/1724 cm(-1)(+)) and C(19)=O (1704 cm(-1)(-)) carbonyl vibrations, C=C vibrations at 1589 cm(-1)(+), and bands at 1537(-), 1512(+), 1491(-), 1163(+), 1151(-), 1134(+), 1109(-), and 1072(-) cm(-1) that must involve chromophore C-N bonds. A variety of additional changes were insensitive to isotope labeling of the chromophore. Effects of (15)N labeling of the protein were used to tentatively assign some of these to specific amino acid changes. Those insensitive to (15)N labeling included a protonated aspartic or glutamic acid at 1734 cm(-1)(-)/1722 cm(-1)(+) and a cysteine at 2575 cm(-1)(+)/2557 cm(-1)(-). Bands sensitive to (15)N protein labeling at 1487 cm(-1)(+)/1502 cm(-1)(-) might arise from trytophan and bands at 1261 cm(-1)(+)/1244 cm(-1)(-) and 1107 cm(-1)(-)/1095 cm(-1)(+) might arise from a histidine environment or protonation change. These assignments are discussed in light of the 15Z-E photoisomerization model of phototransformation and the associated protein conformational changes.

  17. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.

    PubMed

    Seo, Mitsunori; Hanada, Atsushi; Kuwahara, Ayuko; Endo, Akira; Okamoto, Masanori; Yamauchi, Yukika; North, Helen; Marion-Poll, Annie; Sun, Tai-Ping; Koshiba, Tomokazu; Kamiya, Yuji; Yamaguchi, Shinjiro; Nambara, Eiji

    2006-11-01

    In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.

  18. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.

    PubMed

    Castillon, Alicia; Shen, Hui; Huq, Enamul

    2009-05-01

    Phytochrome interacting factors (PIFs) are nuclear basic helix-loop-helix (bHLH) transcription factors that negatively regulate photomorphogenesis both in the dark and in the light in Arabidopsis. The phytochrome (phy) family of photoreceptors induces the rapid phosphorylation and degradation of PIFs in response to both red and far-red light conditions to promote photomorphogenesis. Although phys have been shown to function under blue light conditions, the roles of PIFs under blue light have not been investigated in detail. Here we show that PIF1 negatively regulates photomorphogenesis at the seedling stage under blue light conditions. pif1 seedlings displayed more open cotyledons and slightly reduced hypocotyl length compared to wild type under diurnal (12 hr light/12 hr dark) blue light conditions. Double-mutant analyses demonstrated that pif1phyA, pif1phyB, pif1cry1, and pif1cry2 have enhanced cotyledon opening compared to the single photoreceptor mutants under diurnal blue light conditions. Blue light induced the rapid phosphorylation, polyubiquitination, and degradation of PIF1 through the ubi/26S proteasomal pathway. PIF1 interacted with phyA and phyB in a blue light-dependent manner, and the interactions with phys are necessary for the blue light-induced degradation of PIF1. phyA played a dominant role under pulses of blue light, while phyA, phyB, and phyD induced the degradation of PIF1 in an additive manner under prolonged continuous blue light conditions. Interestingly, the absence of cry1 and cry2 enhanced the degradation of PIF1 under blue light conditions. Taken together, these data suggest that PIF1 functions as a negative regulator of photomorphogenesis under blue light conditions and that blue light-activated phys induce the degradation of PIF1 through the ubi/26S proteasomal pathway to promote photomorphogenesis.

  19. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades

    PubMed Central

    Keller, Mercedes M; Jaillais, Yvon; Pedmale, Ullas V; Moreno, Javier E; Chory, Joanne; Ballaré, Carlos L

    2011-01-01

    Plants respond to a reduction in the red/far-red ratio (R:FR) of light, caused by the proximity of other plants, by initiating morphological changes that improve light capture. In Arabidopsis, this response (shade avoidance syndrome, SAS) is controlled by phytochromes (particularly phyB), and is dependent on the TAA1 pathway of auxin biosynthesis. However, when grown in real canopies, we found that phyB mutants and mutants deficient in TAAI (sav3) still display robust SAS responses to increased planting density and leaf shading. The SAS morphology (leaf hyponasty and reduced lamina/petiole ratio) could be phenocopied by exposing plants to blue light attenuation. These responses to blue light attenuation required the UV-A/blue light photoreceptor cry1. Moreover, they were mediated through mechanisms that showed only limited overlap with the pathways recruited by phyB inactivation. In particular, pathways for polar auxin transport, auxin biosynthesis and gibberellin signaling that are involved in SAS responses to low R:FR were not required for the SAS responses to blue light depletion. By contrast, the brassinosteroid response appeared to be required for the full expression of the SAS phenotype under low blue light. The phyB and cry1 inactivation pathways appeared to converge in their requirement for the basic/helix-loop-helix (bHLH) transcription factors PHYTOCHROME INTERACTING FACTORs 4 and 5 (PIF4 and PIF5) to elicit the SAS phenotype. Our results suggest that blue light is an important control of SAS responses, and that PIF4 and PIF5 are critical hubs for a diverse array of signaling routes that control plant architecture in canopies. PMID:21457375

  20. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  1. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  2. Non-Bonded Interactions Drive the Sub-Picosecond Bilin Photoisomerization in the P(fr) State of Phytochrome Cph1.

    PubMed

    Yang, Yang; Heyne, Karsten; Mathies, Richard A; Dasgupta, Jyotishman

    2016-02-03

    Phytochromes are protein-based photoreceptors harboring a bilin-based photoswitch in the active site. The timescale of photosignaling via C15 =C16 E-to-Z photoisomerization has been ambiguous in the far-red-absorbing Pfr state. Here we present a unified view of the structural events in phytochrome Cph1 post excitation with femtosecond precision, obtained via stimulated Raman and polarization-resolved transient IR spectroscopy. We demonstrate that photoproduct formation occurs within 700 fs, determined by a two-step partitioning process initiated by a planarization on the electronic excited state with a 300 fs time scale. The ultrafast isomerization timescale for Pfr -to-Pr conversion highlights the active role of the nonbonding methyl-methyl clash initiating the reaction in the excited state. We envision that our results will motivate the synthesis of new artificial photoswitches with precisely tuned non-bonded interactions for ultrafast response.

  3. Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold Physarum polycephalum: action spectra and evidence for involvement of the phytochrome.

    PubMed

    Kakiuchi, Y; Takahashi, T; Murakami, A; Ueda, T

    2001-03-01

    A new photomorphogenesis was found in the plasmodium of the true slime mold Physarum polycephalum: the plasmodium broke temporarily into equal-sized spherical pieces, each containing about eight nuclei, about 5 h after irradiation with light. Action spectroscopic study showed that UVA, blue and far-red lights were effective, while red light inhibited the far-red-induced fragmentation. Difference absorption spectra of both the living plasmodium and the plasmodial homogenate after alternate irradiation with far-red and red light gave two extremes at 750 and 680 nm, which agreed with those for the induction and inhibition of the fragmentation, respectively. A kinetic model similar to that of phytochrome action explained quantitatively the fluence rate-response curves of the fragmentation. Our results indicate that one of the photoreceptors for the plasmodial fragmentation is a phytochrome.

  4. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353*

    PubMed Central

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Kupriyanova, Elena V.; Pronina, Natalia A.; Lee, Bong-Woo; Jo, Seong-Whan; Park, Beom-Seok; Choi, Sang-Bong; Song, Ji-Joon; Park, Youn-Il

    2015-01-01

    Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found. PMID:26405033

  5. PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5

    PubMed Central

    Soy, Judit; Leivar, Pablo; Monte, Elena

    2014-01-01

    Seedlings growing under diurnal conditions display maximal growth at the end of the night in short-day (SD) photoperiods. Current evidence indicates that this behaviour involves the action of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) together with PIF4 and PIF5, through direct regulation of growth-related genes at dawn coinciding with a PIF3 accumulation peak generated by phytochrome-imposed oscillations in protein abundance. Here, to assess how alterations in PIF3 levels impact seedling growth, the night-specific accumulation of PIF3 was modulated by releasing SD-grown seedlings into continuous light, or by exposing them to a phytochrome-inactivating end-of-day far-red pulse (EOD-FRp). The data show a strong direct correlation between PIF3 accumulation, PIF3-regulated induction of growth-related genes, and hypocotyl elongation, and suggest that growth promotion in SD conditions involves factors other than PIF3, PIF4, and PIF5. Using a pif1 mutant, evidence is provided that PIF1 also contributes to inducing hypocotyl elongation during the dark period under diurnal conditions. PIF1 displayed constitutive transcript levels in SD conditions, suggesting that phytochrome-imposed oscillations in PIF1 protein abundance determine its accumulation and action during the night, similar to PIF3 and in contrast to PIF4 and PIF5, which oscillate diurnally due to a combination of circadian clock-regulated transcription and light control of protein accumulation. Furthermore, using single and higher order pif mutants, the relative contribution of each member of the PIF quartet to the regulation of morphogenesis and the expression of selected growth marker genes under SD conditions, or under SD conditions supplemented with an EOD-FRp, is defined. Collectively, the data indicate that PIF1, PIF3, PIF4, and PIF5 act together to promote and optimize growth under photoperiodic conditions. PMID:24420574

  6. Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana

    PubMed Central

    Rusaczonek, Anna; Czarnocka, Weronika; Kacprzak, Sylwia; Witoń, Damian; Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Gawroński, Piotr; Karpiński, Stanisław

    2015-01-01

    Plants coordinate their responses to various biotic and abiotic stresses in order to optimize their developmental and acclimatory programmes. The ultimate response to an excessive amount of stress is local induction of cell death mechanisms. The death of certain cells can help to maintain tissue homeostasis and enable nutrient remobilization, thus increasing the survival chances of the whole organism in unfavourable environmental conditions. UV radiation is one of the environmental factors that negatively affects the photosynthetic process and triggers cell death. The aim of this work was to evaluate a possible role of the red/far-red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) and their interrelations during acclimatory responses to UV stress. We showed that UV-C treatment caused a disturbance in photosystem II and a deregulation of photosynthetic pigment content and antioxidant enzymes activities, followed by increased cell mortality rate in phyB and phyAB null mutants. We also propose a regulatory role of phyA and phyB in CO2 assimilation, non-photochemical quenching, reactive oxygen species accumulation and salicylic acid content. Taken together, our results suggest a novel role of phytochromes as putative regulators of cell death and acclimatory responses to UV. PMID:26385378

  7. Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato.

    PubMed

    Oelmüller, R; Kendrick, R E; Briggs, W R

    1989-08-01

    Polyclonal antibodies against pea phytochrome detect 2 protein bands (about 116 and 120 kDa) on blots of crude protein extracts and protein of microsomal preparations of dark-grown tomato seedlings. Both protein bands are undetectable in Western blots of the aurea mutant extracts. Neither protein band is detectable after isogenic wild-type seedlings are illuminated with 3 h of red light, either in the crude extract or in the membrane fraction of the irradiated seedlings; this result is consistent with the hypothesis that both bands are phytochrome. When dark-grown wild-type seedlings are illuminated with 3 h of red light or blue light against a red light background, the transcript levels for chlorophyll a/b-binding proteins of photosystem I and II, plastocyanin, and the subunit II of photosystem I increase. In all cases, the same fluence rate of blue light is much more effective than red light alone, a result that indicates the involvement of a blue/UV-A light photoreceptor in addition to the involvement of the far-red-absorbing form of phytochrome, Pfr. The aurea mutant responds neither to red light nor to blue light. Thus, no Pfr-independent induction of the four transcripts by a blue/UV-A light photoreceptor can be measured in the aurea mutant.

  8. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.

    PubMed

    Li, Ting; Jia, Kun-Peng; Lian, Hong-Li; Yang, Xu; Li, Ling; Yang, Hong-Quan

    2014-11-07

    Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest

  9. Photobiology of Phytochrome-Mediated Growth Responses in Sections of Stem Tissue from Etiolated Oats and Corn 1

    PubMed Central

    Shinkle, James R.

    1986-01-01

    The far-red reversibility of the phytochrome-controlled stimulation of elongation of coleoptile sections by low fluence red light has been characterized in subapical coleoptile sections from dark-grown Avena sativa L., cv Lodi seedlings. The fluence dependence of the far-red reversal was the same whether or not the very low fluence response is also expressed. The capacity of far-red light to reverse the red light-induced response began to decline if the far-red light was given more than 90 minutes after the red irradiation. Escape was complete if the far red irradiation was given more than 240 minutes after the red irradiation. Sections consisting of both mesocotyl and coleoptile tissue from dark-grown Avena seedlings were found to have physiological regulation of the very low fluence response by indole 3-acetic acid and low external pH similar to that seen for sections consisting entirely of coleoptile tissue. The fluence-dependence of the red light-induced inhibition of mesocotyl elongation was studied in mesocotyl sections from dark grown Zea mays L. hybrid T-929 seedlings. Ten micromolar indole 3-acetic acid stimulates the control elongation of the sections, while at the same time increasing the sensitivity of the tissue for the light-induced inhibition of growth by a factor of 100. PMID:16664851

  10. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals.

    PubMed

    Martínez-Hernández, Aída; López-Ochoa, Luisa; Argüello-Astorga, Gerardo; Herrera-Estrella, Luis

    2002-04-01

    Light-inducible promoters are able to respond to a wide spectrum of light through multiple photoreceptor systems. Several cis-acting elements have been identified as components of light-responsive promoter elements; however, none of these regulatory elements by itself appears to be sufficient to confer light responsiveness; rather, the combination of at least two elements seems to be required. Using phylogenetic structural analysis, we have identified conserved DNA modular arrays (CMAs) associated with light-responsive promoter regions that have been conserved throughout the evolutionary radiation of angiosperms. Here, we report the functional characterization of CMA5, a native 52-bp fragment of the Nicotiana plumbaginifolia rbcS 8B promoter, which contains an I- and a G-box cis-element. CMA5 behaves as a light-responsive minimal unit capable of activating a heterologous minimal promoter in a phytochrome-, cryptochrome-, and plastid-dependent manner. We also show that CMA5 light induction requires HY5 and that downstream negative regulators COP (constitutive photomorphogenic)/DET (de-etiolated) regulate its activity. Our results show that the simplest light-responsive promoter element from photosynthesis-associated genes described to date is the common target for different signals involved in light regulation. The possible mechanism involved in light-transcriptional regulation and tissue specificity of combinatorial elements units is discussed.

  11. The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade.

    PubMed

    Martínez-García, Jaime F; Gallemí, Marçal; Molina-Contreras, María José; Llorente, Briardo; Bevilaqua, Maycon R R; Quail, Peter H

    2014-01-01

    Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.

  12. Multi-scale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    PubMed Central

    Yao, Junjie; Kaberniuk, Andrii A.; Li, Lei; Shcherbakova, Daria M.; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V.; Wang, Lihong V.

    2015-01-01

    Photoacoustic tomography (PAT) of genetically encoded probes allows imaging of targeted biological processes with high spatial resolution at depths. Here, we combined multi-scale photoacoustic imaging with, for the first time, a reversibly switchable non-fluorescent bacterial phytochrome BphP1. With a heme-derived biliverdin chromophore, BphP1 has the most red-shifted absorption among reported genetically encoded probes, and is reversibly photoconvertible between its red and near-infrared light absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, enabling differential imaging that substantially removed background signals, enhanced detection sensitivity, increased penetration depth, and improved spatial resolution. In doing so, we monitored tumor growth and metastasis with a ~100 µm resolution at depths approaching 10 mm using photoacoustic computed tomography, and imaged individual cancer cells with a sub-optical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at different length scales. PMID:26550774

  13. Structure-Guided Engineering of Plant Phytochrome B with Altered Photochemistry and Light Signaling1[W][OA

    PubMed Central

    Zhang, Junrui; Stankey, Robert J.; Vierstra, Richard D.

    2013-01-01

    Phytochromes (phys) encompass a diverse collection of biliproteins that enable cellular light perception by photoconverting between a red-light-absorbing ground state (Pr) and a far-red light-absorbing active state (Pfr). Based on the central role of plant phys in controlling numerous agriculturally important processes, their rational redesign offers great promise toward accelerating crop improvement. Employing as templates the available three-dimensional models of the photosensory module within bacterial phys, we report here our initial attempt to apply structure-guided mutagenesis to phy engineering using Arabidopsis (Arabidopsis thaliana) phyB, the dominant isoform in light-grown plants, as the example. A collection of phyB mutants was generated affecting the bilin-binding pocket that altered photochemistry, thermal stability, and/or nuclear localization patterns, some of which also impacted phenotypic outputs. Of particular interest are the Y361F substitution, which created Arabidopsis plants with greatly enhanced light sensitivity, mutants variably altered in Pfr-to-Pr thermal reversion and nuclear aggregation, and the D307A substitution, which failed to photoconvert from Pr to Pfr and display light-induced nuclear aggregation but retained some biological activity and accelerated turnover in red light. Taken together, this collection provides variants potentially useful to agriculture as well as new tools to better understand the molecular mechanisms underpinning phy signaling. PMID:23321421

  14. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark.

    PubMed

    Dong, Jie; Tang, Dafang; Gao, Zhaoxu; Yu, Renbo; Li, Kunlun; He, Hang; Terzaghi, William; Deng, Xing Wang; Chen, Haodong

    2014-09-01

    Arabidopsis thaliana seedlings undergo photomorphogenic development even in darkness when the function of DE-ETIOLATED1 (DET1), a repressor of photomorphogenesis, is disrupted. However, the mechanism by which DET1 represses photomorphogenesis remains unclear. Our results indicate that DET1 directly interacts with a group of transcription factors known as the phytochrome-interacting factors (PIFs). Furthermore, our results suggest that DET1 positively regulates PIF protein levels primarily by stabilizing PIF proteins in the dark. Genetic analysis showed that each pif single mutant could enhance the det1-1 phenotype, and ectopic expression of each PIF in det1-1 partially suppressed the det1-1 phenotype, based on hypocotyl elongation and cotyledon opening angles observed in darkness. Genomic analysis also revealed that DET1 may modulate the expression of light-regulated genes to mediate photomorphogenesis partially through PIFs. The observed interaction and regulation between DET1 and PIFs not only reveal how DET1 represses photomorphogenesis, but also suggest a possible mechanism by which two groups of photomorphogenic repressors, CONSTITUTIVE PHOTOMORPHOGENESIS/DET/FUSCA and PIFs, work in concert to repress photomorphogenesis in darkness.

  15. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis.

    PubMed

    Zhang, Yongqiang; Liu, Zhongjuan; Chen, Yadi; He, Jun-Xian; Bi, Yurong

    2015-08-01

    Darkness is a known environmental factor that induces plant senescence. Here, Phytochrome-Interacting Factors (PIFs), several bHLH transcription factors involved in plant skotomorphogenesis, were examined for their roles in the regulation of dark-induced senescence and chlorophyll breakdown in Arabidopsis thaliana. After light-grown seedlings were transferred to darkness, green leaves turned yellow, and chlorophyll contents decreased, but membrane lipid peroxidation and cell death increased in wild-type Col-0. These responses were enhanced in overexpression line PIF5OX but decreased in mutant pif5-3. Darkness significantly induced expression of several genes involved in chlorophyll breakdown, including SGR, NYC1, NOL, and PAO, as well as genes encoding for transcription factors that have been shown to be required for dark-induced senescence, including WRKY22, NAP, EIN3, EIL1, and ORE1. These effects on gene expression were also enhanced in PIF5OX but decreased in pif5-3 relative to Col-0. Further analyses using ChIP-qPCR, EMSA, and protoplast transient assays indicated that PIF5 binds to the G-box motifs in the promoters of SGR, NYC1, and ORE1 genes and stimulate their expression. Collectively, our data indicate that PIF5 is a key factor that positively regulates dark-induced senescence upstream of ORE1 and regulates chlorophyll breakdown upstream of SGR and NYC1.

  16. Resistance of Arabidopsis thaliana L. photosynthetic apparatus to UV-B is reduced by deficit of phytochromes B and A.

    PubMed

    Khudyakova, Aleksandra Yu; Kreslavski, Vladimir D; Shirshikova, Galina N; Zharmukhamedov, Sergey K; Kosobryukhov, Anatoly A; Allakhverdiev, Suleyman I

    2017-04-01

    The photosynthetic responses of 25-day-old Arabidopsis phyA phyB double mutant (DM) compared with the wild type (WT) to UV-B radiation (1Wm(-2), 30min) were investigated. UV-B irradiation led to reduction of photosystem 2 (PS-2) activity and the photosynthetic rate. In plants grown under both white and red light (λm - 660nm) the reduction was greater in DM plants compared to the WT. Without UV-B irradiation a decrease in PS-2 activity was observed in DM grown under RL only. It is assumed that the lower content of UV-absorbing pigments and carotenoids observed in DM may be one of the reasons of reduced PS-2 resistance to UV-B. Higher decrease in activities under UV in DM plants grown under RL compared to DM plants grown under white light is likely due to the lack of activity of cryptochromes in plants grown under red light. Rates of post-stress recovery of photosynthetic activity of DM compared with WT plants under white and red light of low intensity were studied. Almost complete recovery of the activity was found which was not observed under dark conditions and in the presence of a protein synthesis inhibitor, chloramphenicol. It is assumed that phytochrome system participates in stress-protective mechanisms of the photosynthetic apparatus to UV-radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A knot in the protein structure: probing the near-infrared fluorescent protein iRFP designed from bacterial phytochrome

    PubMed Central

    Stepanenko, Olesya V.; Bublikov, Gregory S.; Stepanenko, Olga V.; Shcherbakova, Daria M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.; Kuznetsova, Irina M.

    2014-01-01

    Substantial interest to a family of the bacterial phytochrome photoreceptors (BphPs) is caused by development of near-infrared fluorescent proteins and biosensors, molecularly engineered from BphPs. The near-infrared fluorescent proteins have allowed bioimaging of deep tissues and whole organs noninvasively in living animals. BphPs and derived near-infrared fluorescent proteins contain a structural element, called knot, in their polypeptide chains. Formation of knot structures in proteins was denied for a long time. Here, we studied denaturation and renaturation processes of the near-infrared fluorescent probe, iRFP engineered from RpBphP2, which utilizes a heme-derived tetrapyrrole compound biliverdin as a chromophore. iRFP contains a unique figure-of-eight knot. The denaturation and renaturation curves of the iRFP apoform coincided well, suggesting its efficient refolding. However, the iRFP holoform exhibited the irreversible unfolding and aggregation, associated with the bound chromophore. The knot structure in the apoform did not prevent its subsequent binding of biliverdin, resulting in the functional iRFP holoform. We suggest that the irreversibility of protein unfolding is caused by posttranslational protein modifications, such as chromophore binding, rather than the presence of the knot. These results are important for future design of BphP-based near-infrared probes and add important features to the fundamental problem of protein folding. PMID:24628916

  18. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    PubMed

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis.

  19. Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark[C][W

    PubMed Central

    Dong, Jie; Tang, Dafang; Gao, Zhaoxu; Yu, Renbo; Li, Kunlun; He, Hang; Terzaghi, William; Deng, Xing Wang

    2014-01-01

    Arabidopsis thaliana seedlings undergo photomorphogenic development even in darkness when the function of DE-ETIOLATED1 (DET1), a repressor of photomorphogenesis, is disrupted. However, the mechanism by which DET1 represses photomorphogenesis remains unclear. Our results indicate that DET1 directly interacts with a group of transcription factors known as the phytochrome-interacting factors (PIFs). Furthermore, our results suggest that DET1 positively regulates PIF protein levels primarily by stabilizing PIF proteins in the dark. Genetic analysis showed that each pif single mutant could enhance the det1-1 phenotype, and ectopic expression of each PIF in det1-1 partially suppressed the det1-1 phenotype, based on hypocotyl elongation and cotyledon opening angles observed in darkness. Genomic analysis also revealed that DET1 may modulate the expression of light-regulated genes to mediate photomorphogenesis partially through PIFs. The observed interaction and regulation between DET1 and PIFs not only reveal how DET1 represses photomorphogenesis, but also suggest a possible mechanism by which two groups of photomorphogenic repressors, CONSTITUTIVE PHOTOMORPHOGENESIS/DET/FUSCA and PIFs, work in concert to repress photomorphogenesis in darkness. PMID:25248553

  20. Long-Term Operation and Maintenance of Engine Monitoring Systems - Recommendations Derived from 15 Years of OLMOS Use by the GAF

    DTIC Science & Technology

    2003-02-01

    vieillissants et le controle] [Symposium Partie A - Developpements dans le domaine de l’aeroacoustique et I’hydroacoustique numeriques ] [Symposium Partie B...derivatives is illustrated in Figure 2 (Source: [A100]). Strategies are known how to mitigate both hardware and Paper presented at the RTO A VTSymposium...8-11 October 2001. and published in RTO-MP-079(I). (SYB) 3-2 software related obsolescence problems [CT98, NRCOI]. Implementing these strategies

  1. Light-regulated expression of the nitrate-reductase and nitrite-reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato.

    PubMed

    Becker, T W; Foyer, C; Caboche, M

    1992-08-01

    The phytochrome-deficient aurea mutant of tomato (Lycopersicon esculentum (L.) Mill) was used to investigate if phytochrome plays a role in the regulation of nitrate-reductase (NR, EC 1.6.6.1) and nitrite-reductase (NiR, EC 1.7.7.1) gene expression. We show that the expression of the tomato NR and NiR genes is stimulated by light and that this light response is mediated by the photoreceptor phytochrome. The red-light response of the NR and NiR genes was reduced in etiolated aurea seedlings when compared to isogenic wild-type cotyledons. The relative levels of NR mRNA and NiR transcripts and their diurnal fluctuations were identical in mature white-light-grown leaves of the wild-type and of the aurea mutant. The transcript levels for cab and RbcS (genes for the chlorophyll-a/b-binding protein of PSII and the small subunit of the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively) in aurea leaves grown in white light were indistinguishable from the respective transcript levels in the leaves of the wildtype grown under the same conditions. Despite a severe reduction in the chlorophyll content, the rate of net CO2 uptake by leaves of the aurea mutant was only slightly reduced when compared to the rate of net photosynthesis of wild-type leaves. This difference in the photosynthetic performances of wild-type and aurea mutant plants disappeared during aging of the plants. The increase in zeaxanthin and the concomitant decrease in violaxanthin in leaves of the aurea mutant compared with the same pigment levels in leaves of the wild-type indicate that the activity of the xanthophyll cycle is increased in aurea leaves as a consequence of the reduced CO2-fixation capacity of the mutant leaves.

  2. Contribution of calcium ions and hydrogen ions to the signal transduction chain in phytochrome-mediated spore germination. [Onoclea sensibilis L

    SciTech Connect

    Wayne, R.

    1985-01-01

    Red light stimulates germination in the spores of Onoclea sensibilis L. Phytochrome is confirmed to be the photoreceptor pigment in the germination response by demonstrating red-far-red photoreversibility. External Ca/sup 2 +/ is required for this response with a threshold at a submicromolar concentration. Red light stimulates an increase in the total concentration of intracellular calcium in the spores as determined by atomic absorption spectroscopy. Subsequent exposure to far-red light inhibits the red light-induced increase in intracellular calcium. The majority of the increase occurs 5 minutes after the onset of irradiation. The calcium-antagonist, La/sup 3 +/ inhibits both germination and the red light-induced increase in intracellular calcium. Using /sup 31/P-nuclear magnetic resonance spectroscopy, the author tested the hypothesis that a sustained increase in intracellular pH contributes to the signal transduction chain. He never detected a red light-induced increase in intracellular pH or a change in portion efflux. An artificially induced change in intracellular pH of greater than 1 pH unit (5.8-7.2) has no effect on germination. Although the intracellular pH can be varied in magnitude greater than it would be expected to change if it were acting as an intracellular signal, germination of Onoclea spores is independent of intracellular pH in this range. These data indicate that a sustained increase in intracellular pH does not contribute to the single transduction chain phytochrome-mediated fern spore germination. Therefore, Ca/sup 2 +/, but not pH, contributes to the signal transduction chain in phytochrome-mediated fern spore germination.

  3. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    SciTech Connect

    Poder, Joel; Corde, Stéphanie

    2013-12-15

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods: Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately

  4. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles

  5. Novel near-infrared BiFC systems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological conditions.

    PubMed

    Chen, Minghai; Li, Wei; Zhang, Zhiping; Liu, Sanying; Zhang, Xiaowei; Zhang, Xian-En; Cui, Zongqiang

    2015-04-01

    Monitoring protein-protein interactions (PPIs) in live subjects is critical for understanding these fundamental biological processes. Bimolecular fluorescence complementation (BiFC) provides a good technique for imaging PPIs; however, a BiFC system with a long wavelength remains to be pursued for in vivo imaging. Here, we conducted systematic screening of split reporters from a bacterial phytochrome-based, near-infrared fluorescent protein (iRFP). Several new near-infrared phytochrome BiFC systems were built based on selected split sites including the amino acids residues 97/98, 99/100, 122/123, and 123/124. These new near-infrared BiFC systems from a bacterial phytochrome were verified as powerful tools for imaging PPIs under physiological conditions in live cells and in live mice. The interaction between HIV-1 integrase (IN) and cellular cofactor protein Lens epithelium-derived growth factor (LEDGF/p75) was visualized in live cells using the newly constructed iRFP BiFC system because of its important roles in HIV-1 integration and replication. Because the HIV IN-LEDGF/p75 interaction is an attractive anti-HIV target, drug evaluation assays to inhibit the HIV IN-LEDGF/p75 interaction were also performed using the newly constructed BiFC system. The results showed that compound 6 and carbidopa inhibit the HIV IN-LEDGF/p75 interaction in a dose-dependent manner under physiological conditions in the BiFC assays. This study provides novel near-infrared BiFC systems for imaging protein interactions under physiological conditions and provides guidance for splitting other bacterial phytochrome-like proteins to construct BiFC systems. The study also provides a new method for drug evaluation in live cells based on iRFP BiFC systems and supplies some new information regarding candidate drugs for anti-HIV therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chromophore Structure in the Photocycle of the Cyanobacterial Phytochrome Cph1

    PubMed Central

    van Thor, Jasper J.; Mackeen, Mukram; Kuprov, Ilya; Dwek, Raymond A.; Wormald, Mark R.

    2006-01-01

    The chromophore conformations of the red and far red light induced product states “Pfr” and “Pr” of the N-terminal photoreceptor domain Cph1-N515 from Synechocystis 6803 have been investigated by NMR spectroscopy, using specific 13C isotope substitutions in the chromophore. 13C-NMR spectroscopy in the Pfr and Pr states indicated reversible chemical shift differences predominantly of the C4 carbon in ring A of the phycocyanobilin chromophore, in contrast to differences of C15 and C5, which were much less pronounced. Ab initio calculations of the isotropic shielding and optical transition energies identify a region for C4-C5-C6-N2 dihedral angle changes where deshielding of C4 is correlated with red-shifted absorption. These could occur during thermal reactions on microsecond and millisecond timescales after excitation of Pr which are associated with red-shifted absorption. A reaction pathway involving a hula-twist at C5 could satisfy the observed NMR and visible absorption changes. Alternatively, C15 Z-E photoisomerization, although expected to lead to a small change of the chemical shift of C15, in addition to changes of the C4-C5-C6-N2 dihedral angle could be consistent with visible absorption changes and the chemical shift difference at C4. NMR spectroscopy of a 13C-labeled chromopeptide provided indication for broadening due to conformational exchange reactions in the intact photoreceptor domain, which is more pronounced for the C- and D-rings of the chromophore. This broadening was also evident in the F2 hydrogen dimension from heteronuclear 1H-13C HSQC spectroscopy, which did not detect resonances for the 13C5-H, 13C10-H, and 13C15-H hydrogen atoms whereas strong signals were detected for the 13C-labeled chromopeptide. The most pronounced 13C-chemical shift difference between chromopeptide and intact receptor domain was that of the 13C4-resonance, which could be consistent with an increased conformational energy of the C4-C5-C6-N2 dihedral angle in the

  7. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.

    PubMed

    Wu, Guosheng; Cameron, John N; Ljung, Karin; Spalding, Edgar P

    2010-04-01

    During seedling establishment, blue and red light suppress hypocotyl growth through the cryptochrome 1 (cry1) and phytochrome B (phyB) photosensory pathways, respectively. How these photosensory pathways integrate with growth control mechanisms to achieve the appropriate degree of stem elongation was investigated by combining cry1 and phyB photoreceptor mutations with genetic manipulations of a multidrug resistance-like membrane protein known as ABCB19 that influenced auxin distribution within the plant, as evidenced by a combination of reporter gene assays and direct auxin measurements. Auxin signaling and ABCB19 protein levels, hypocotyl growth rates, and apical hook opening were measured in mutant and wild-type seedlings exposed to a range of red and blue light conditions. Ectopic/overexpression of ABCB19 (B19OE) greatly increased auxin in the hypocotyl, which reduced the sensitivity of hypocotyl growth specifically to blue light in long-term assays and red light in high-resolution, short-term assays. Loss of ABCB19 partially suppressed the cry1 hypocotyl growth phenotype in blue light. Hypocotyl growth of B19OE seedlings in red light was very similar to phyB mutants. Altered auxin distribution in B19OE seedlings also affected the opening of the apical hook. The cry1 and phyB photoreceptor mutations both increased ABCB19 protein levels at the plasma membrane, as measured by confocal microscopy. The B19OE plant proved to be a useful tool for determining aspects of the mechanism by which light, acting through cry1 or phyB, influences the auxin transport process to control hypocotyl growth during de-etiolation.

  8. PINOID AGC Kinases Are Necessary for Phytochrome-Mediated Enhancement of Hypocotyl Phototropism in Arabidopsis1[W][OPEN

    PubMed Central

    Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya

    2014-01-01

    Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. PMID:25281709

  9. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass.

    PubMed

    Ganesan, Markkandan; Han, Yun-Jeong; Bae, Tae-Woong; Hwang, Ok-Jin; Chandrasekhar, Thummala; Chandrasekkhar, Thummala; Shin, Ah-Young; Goh, Chang-Hyo; Nishiguchi, Satoshi; Song, In-Ja; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2012-10-01

    Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions.

  10. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling1[OPEN

    PubMed Central

    Guo, Zhixin; Li, Huizi; Wang, Mengmeng; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan

    2016-01-01

    Light signaling and phytohormones both influence plant growth, development, and stress responses; however, cross talk between these two signaling pathways in response to cold remains underexplored. Here, we report that far-red light (FR) and red light (R) perceived by phytochrome A (phyA) and phyB positively and negatively regulated cold tolerance, respectively, in tomato (Solanum lycopersicum), which were associated with the regulation of levels of phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and transcript levels of ABA- and JA-related genes and the C-REPEAT BINDING FACTOR (CBF) stress signaling pathway genes. A reduction in the R/FR ratio did not alter cold tolerance, ABA and JA accumulation, and transcript levels of ABA- and JA-related genes and the CBF pathway genes in phyA mutant plants; however, those were significantly increased in wild-type and phyB plants with the reduction in the R/FR ratio. Even though low R/FR treatments did not confer cold tolerance in ABA-deficient (notabilis [not]) and JA-deficient (prosystemin-mediated responses2 [spr2]) mutants, it up-regulated ABA accumulation and signaling in the spr2 mutant, with no effect on JA levels and signaling in the not mutant. Foliar application of ABA and JA further confirmed that JA functioned downstream of ABA to activate the CBF pathway in light quality-mediated cold tolerance. It is concluded that phyA and phyB function antagonistically to regulate cold tolerance that essentially involves FR light-induced activation of phyA to induce ABA signaling and, subsequently, JA signaling, leading to an activation of the CBF pathway and a cold response in tomato plants. PMID:26527654

  11. SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth.

    PubMed

    Favero, David S; Jacques, Caitlin N; Iwase, Akira; Le, Kimberly Ngan; Zhao, Jianfei; Sugimoto, Keiko; Neff, Michael M

    2016-08-01

    Developing seedlings are well equipped to alter their growth in response to external factors in order to maximize their chances of survival. SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) and other members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors modulate the development of Arabidopsis (Arabidopsis thaliana) by repressing hypocotyl elongation in young seedlings growing in light. However, the molecular mechanism behind how AHLs influence seedling development is largely unknown. We have identified genes associated with auxin-mediated hypocotyl elongation as downstream targets of SOB3. We found that YUCCA8 (YUC8) as well as members of the SMALL AUXIN UP-REGULATED RNA19 (SAUR19) subfamily were down-regulated in the short-hypocotyl, gain-of-function SOB3-D mutant and up-regulated in the dominant-negative, tall-hypocotyl sob3-6 mutant. SOB3-D and sob3-6 hypocotyls also exhibited altered sensitivity to the polar auxin transport inhibitor N-1-napthylphthalamic acid, suggesting a critical connection between auxin and the modulation of seedling elongation by SOB3 Finally, we found that overexpression of GREEN FLUORESCENT PROTEIN-SAUR19 in the SOB3-D line partially rescued defects in hypocotyl elongation, and SOB3 bound directly to the promoters of YUC8 and SAUR19 subfamily members. Taken together, these data indicate that SOB3 modulates hypocotyl elongation in young seedlings by directly repressing the transcription of genes associated with auxin signaling. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis1[C][W

    PubMed Central

    Raya-González, Javier; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Kazan, Kemal; López-Bucio, José

    2014-01-01

    Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis. PMID:24784134

  13. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    PubMed

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  14. SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth1[OPEN

    PubMed Central

    Iwase, Akira

    2016-01-01

    Developing seedlings are well equipped to alter their growth in response to external factors in order to maximize their chances of survival. SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) and other members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors modulate the development of Arabidopsis (Arabidopsis thaliana) by repressing hypocotyl elongation in young seedlings growing in light. However, the molecular mechanism behind how AHLs influence seedling development is largely unknown. We have identified genes associated with auxin-mediated hypocotyl elongation as downstream targets of SOB3. We found that YUCCA8 (YUC8) as well as members of the SMALL AUXIN UP-REGULATED RNA19 (SAUR19) subfamily were down-regulated in the short-hypocotyl, gain-of-function SOB3-D mutant and up-regulated in the dominant-negative, tall-hypocotyl sob3-6 mutant. SOB3-D and sob3-6 hypocotyls also exhibited altered sensitivity to the polar auxin transport inhibitor N-1-napthylphthalamic acid, suggesting a critical connection between auxin and the modulation of seedling elongation by SOB3. Finally, we found that overexpression of GREEN FLUORESCENT PROTEIN-SAUR19 in the SOB3-D line partially rescued defects in hypocotyl elongation, and SOB3 bound directly to the promoters of YUC8 and SAUR19 subfamily members. Taken together, these data indicate that SOB3 modulates hypocotyl elongation in young seedlings by directly repressing the transcription of genes associated with auxin signaling. PMID:27342309

  15. The Enhancement of Phototropin-Induced Phototropic Curvature in Arabidopsis Occurs via a Photoreversible Phytochrome A-Dependent Modulation of Auxin Responsiveness1

    PubMed Central

    Stowe-Evans, Emily L.; Luesse, Darron R.; Liscum, Emmanuel

    2001-01-01

    The induction of phototropism in etiolated (dark-grown) seedlings exposed to an unidirectional pulse or extended irradiation with low fluence rate blue light (BL) requires the action of the phototropin (nph1) BL receptor. Although cryptochromes and phytochromes are not required for phototropic induction, these photoreceptors do modulate the magnitude of curvature resulting from phototropin activation. Modulatory increases in the magnitude of phototropic curvature have been termed “enhancement.” Here, we show that phototropic enhancement is primarily a phytochrome A (phyA)-dependent red/far-red-reversible low fluence response. This phyA-dependent response is genetically separable from the basal phototropin-dependent response, as demonstrated by its retention under extended irradiation conditions in the nph4 mutant background, which normally lacks the basal BL-induced response. It is interesting that the nph4 mutants fail to exhibit the basal phototropin-dependent and phyA-dependent enhancement responses under limiting light conditions. Given that NPH4 encodes a transcriptional activator, auxin response factor 7 (ARF7), we hypothesize that the ultimate target(s) of phyA action during the phototropic enhancement response is a rate-limiting ARF-containing transcriptional complex in which the constituent ARFs can vary in identity or activity depending upon the irradiation condition. PMID:11402210

  16. The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis[C][W

    PubMed Central

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-01-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE–ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein–VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering. PMID:22904146

  17. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus1[OPEN